qemu/hw/mem/memory-device.c
<<
>>
Prefs
   1/*
   2 * Memory Device Interface
   3 *
   4 * Copyright ProfitBricks GmbH 2012
   5 * Copyright (C) 2014 Red Hat Inc
   6 * Copyright (c) 2018 Red Hat Inc
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   9 * See the COPYING file in the top-level directory.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "hw/mem/memory-device.h"
  14#include "qapi/error.h"
  15#include "hw/boards.h"
  16#include "qemu/range.h"
  17#include "hw/virtio/vhost.h"
  18#include "sysemu/kvm.h"
  19#include "trace.h"
  20
  21static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
  22{
  23    const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
  24    const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
  25    const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
  26    const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
  27    const uint64_t addr_a = mdc_a->get_addr(md_a);
  28    const uint64_t addr_b = mdc_b->get_addr(md_b);
  29
  30    if (addr_a > addr_b) {
  31        return 1;
  32    } else if (addr_a < addr_b) {
  33        return -1;
  34    }
  35    return 0;
  36}
  37
  38static int memory_device_build_list(Object *obj, void *opaque)
  39{
  40    GSList **list = opaque;
  41
  42    if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  43        DeviceState *dev = DEVICE(obj);
  44        if (dev->realized) { /* only realized memory devices matter */
  45            *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
  46        }
  47    }
  48
  49    object_child_foreach(obj, memory_device_build_list, opaque);
  50    return 0;
  51}
  52
  53static int memory_device_used_region_size(Object *obj, void *opaque)
  54{
  55    uint64_t *size = opaque;
  56
  57    if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  58        const DeviceState *dev = DEVICE(obj);
  59        const MemoryDeviceState *md = MEMORY_DEVICE(obj);
  60
  61        if (dev->realized) {
  62            *size += memory_device_get_region_size(md, &error_abort);
  63        }
  64    }
  65
  66    object_child_foreach(obj, memory_device_used_region_size, opaque);
  67    return 0;
  68}
  69
  70static void memory_device_check_addable(MachineState *ms, uint64_t size,
  71                                        Error **errp)
  72{
  73    uint64_t used_region_size = 0;
  74
  75    /* we will need a new memory slot for kvm and vhost */
  76    if (kvm_enabled() && !kvm_has_free_slot(ms)) {
  77        error_setg(errp, "hypervisor has no free memory slots left");
  78        return;
  79    }
  80    if (!vhost_has_free_slot()) {
  81        error_setg(errp, "a used vhost backend has no free memory slots left");
  82        return;
  83    }
  84
  85    /* will we exceed the total amount of memory specified */
  86    memory_device_used_region_size(OBJECT(ms), &used_region_size);
  87    if (used_region_size + size < used_region_size ||
  88        used_region_size + size > ms->maxram_size - ms->ram_size) {
  89        error_setg(errp, "not enough space, currently 0x%" PRIx64
  90                   " in use of total space for memory devices 0x" RAM_ADDR_FMT,
  91                   used_region_size, ms->maxram_size - ms->ram_size);
  92        return;
  93    }
  94
  95}
  96
  97static uint64_t memory_device_get_free_addr(MachineState *ms,
  98                                            const uint64_t *hint,
  99                                            uint64_t align, uint64_t size,
 100                                            Error **errp)
 101{
 102    GSList *list = NULL, *item;
 103    Range as, new = range_empty;
 104
 105    if (!ms->device_memory) {
 106        error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
 107                         "supported by the machine");
 108        return 0;
 109    }
 110
 111    if (!memory_region_size(&ms->device_memory->mr)) {
 112        error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
 113                         "enabled, please specify the maxmem option");
 114        return 0;
 115    }
 116    range_init_nofail(&as, ms->device_memory->base,
 117                      memory_region_size(&ms->device_memory->mr));
 118
 119    /* start of address space indicates the maximum alignment we expect */
 120    if (!QEMU_IS_ALIGNED(range_lob(&as), align)) {
 121        error_setg(errp, "the alignment (0x%" PRIx64 ") is not supported",
 122                   align);
 123        return 0;
 124    }
 125
 126    memory_device_check_addable(ms, size, errp);
 127    if (*errp) {
 128        return 0;
 129    }
 130
 131    if (hint && !QEMU_IS_ALIGNED(*hint, align)) {
 132        error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
 133                   align);
 134        return 0;
 135    }
 136
 137    if (!QEMU_IS_ALIGNED(size, align)) {
 138        error_setg(errp, "backend memory size must be multiple of 0x%"
 139                   PRIx64, align);
 140        return 0;
 141    }
 142
 143    if (hint) {
 144        if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) {
 145            error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
 146                       "], usable range for memory devices [0x%" PRIx64 ":0x%"
 147                       PRIx64 "]", *hint, size, range_lob(&as),
 148                       range_size(&as));
 149            return 0;
 150        }
 151    } else {
 152        if (range_init(&new, range_lob(&as), size)) {
 153            error_setg(errp, "can't add memory device, device too big");
 154            return 0;
 155        }
 156    }
 157
 158    /* find address range that will fit new memory device */
 159    object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
 160    for (item = list; item; item = g_slist_next(item)) {
 161        const MemoryDeviceState *md = item->data;
 162        const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
 163        uint64_t next_addr;
 164        Range tmp;
 165
 166        range_init_nofail(&tmp, mdc->get_addr(md),
 167                          memory_device_get_region_size(md, &error_abort));
 168
 169        if (range_overlaps_range(&tmp, &new)) {
 170            if (hint) {
 171                const DeviceState *d = DEVICE(md);
 172                error_setg(errp, "address range conflicts with memory device"
 173                           " id='%s'", d->id ? d->id : "(unnamed)");
 174                goto out;
 175            }
 176
 177            next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align);
 178            if (!next_addr || range_init(&new, next_addr, range_size(&new))) {
 179                range_make_empty(&new);
 180                break;
 181            }
 182        } else if (range_lob(&tmp) > range_upb(&new)) {
 183            break;
 184        }
 185    }
 186
 187    if (!range_contains_range(&as, &new)) {
 188        error_setg(errp, "could not find position in guest address space for "
 189                   "memory device - memory fragmented due to alignments");
 190    }
 191out:
 192    g_slist_free(list);
 193    return range_lob(&new);
 194}
 195
 196MemoryDeviceInfoList *qmp_memory_device_list(void)
 197{
 198    GSList *devices = NULL, *item;
 199    MemoryDeviceInfoList *list = NULL, *prev = NULL;
 200
 201    object_child_foreach(qdev_get_machine(), memory_device_build_list,
 202                         &devices);
 203
 204    for (item = devices; item; item = g_slist_next(item)) {
 205        const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
 206        const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
 207        MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1);
 208        MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
 209
 210        mdc->fill_device_info(md, info);
 211
 212        elem->value = info;
 213        elem->next = NULL;
 214        if (prev) {
 215            prev->next = elem;
 216        } else {
 217            list = elem;
 218        }
 219        prev = elem;
 220    }
 221
 222    g_slist_free(devices);
 223
 224    return list;
 225}
 226
 227static int memory_device_plugged_size(Object *obj, void *opaque)
 228{
 229    uint64_t *size = opaque;
 230
 231    if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
 232        const DeviceState *dev = DEVICE(obj);
 233        const MemoryDeviceState *md = MEMORY_DEVICE(obj);
 234        const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
 235
 236        if (dev->realized) {
 237            *size += mdc->get_plugged_size(md, &error_abort);
 238        }
 239    }
 240
 241    object_child_foreach(obj, memory_device_plugged_size, opaque);
 242    return 0;
 243}
 244
 245uint64_t get_plugged_memory_size(void)
 246{
 247    uint64_t size = 0;
 248
 249    memory_device_plugged_size(qdev_get_machine(), &size);
 250
 251    return size;
 252}
 253
 254void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
 255                            const uint64_t *legacy_align, Error **errp)
 256{
 257    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 258    Error *local_err = NULL;
 259    uint64_t addr, align;
 260    MemoryRegion *mr;
 261
 262    mr = mdc->get_memory_region(md, &local_err);
 263    if (local_err) {
 264        goto out;
 265    }
 266
 267    align = legacy_align ? *legacy_align : memory_region_get_alignment(mr);
 268    addr = mdc->get_addr(md);
 269    addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
 270                                       memory_region_size(mr), &local_err);
 271    if (local_err) {
 272        goto out;
 273    }
 274    mdc->set_addr(md, addr, &local_err);
 275    if (!local_err) {
 276        trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
 277                                     addr);
 278    }
 279out:
 280    error_propagate(errp, local_err);
 281}
 282
 283void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
 284{
 285    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 286    const uint64_t addr = mdc->get_addr(md);
 287    MemoryRegion *mr;
 288
 289    /*
 290     * We expect that a previous call to memory_device_pre_plug() succeeded, so
 291     * it can't fail at this point.
 292     */
 293    mr = mdc->get_memory_region(md, &error_abort);
 294    g_assert(ms->device_memory);
 295
 296    memory_region_add_subregion(&ms->device_memory->mr,
 297                                addr - ms->device_memory->base, mr);
 298    trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
 299}
 300
 301void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
 302{
 303    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 304    MemoryRegion *mr;
 305
 306    /*
 307     * We expect that a previous call to memory_device_pre_plug() succeeded, so
 308     * it can't fail at this point.
 309     */
 310    mr = mdc->get_memory_region(md, &error_abort);
 311    g_assert(ms->device_memory);
 312
 313    memory_region_del_subregion(&ms->device_memory->mr, mr);
 314    trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
 315                               mdc->get_addr(md));
 316}
 317
 318uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
 319                                       Error **errp)
 320{
 321    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 322    MemoryRegion *mr;
 323
 324    /* dropping const here is fine as we don't touch the memory region */
 325    mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
 326    if (!mr) {
 327        return 0;
 328    }
 329
 330    return memory_region_size(mr);
 331}
 332
 333static const TypeInfo memory_device_info = {
 334    .name          = TYPE_MEMORY_DEVICE,
 335    .parent        = TYPE_INTERFACE,
 336    .class_size = sizeof(MemoryDeviceClass),
 337};
 338
 339static void memory_device_register_types(void)
 340{
 341    type_register_static(&memory_device_info);
 342}
 343
 344type_init(memory_device_register_types)
 345