qemu/hw/misc/edu.c
<<
>>
Prefs
   1/*
   2 * QEMU educational PCI device
   3 *
   4 * Copyright (c) 2012-2015 Jiri Slaby
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22 * DEALINGS IN THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "hw/pci/pci.h"
  28#include "hw/hw.h"
  29#include "hw/pci/msi.h"
  30#include "qemu/timer.h"
  31#include "qemu/main-loop.h" /* iothread mutex */
  32#include "qemu/module.h"
  33#include "qapi/visitor.h"
  34
  35#define TYPE_PCI_EDU_DEVICE "edu"
  36#define EDU(obj)        OBJECT_CHECK(EduState, obj, TYPE_PCI_EDU_DEVICE)
  37
  38#define FACT_IRQ        0x00000001
  39#define DMA_IRQ         0x00000100
  40
  41#define DMA_START       0x40000
  42#define DMA_SIZE        4096
  43
  44typedef struct {
  45    PCIDevice pdev;
  46    MemoryRegion mmio;
  47
  48    QemuThread thread;
  49    QemuMutex thr_mutex;
  50    QemuCond thr_cond;
  51    bool stopping;
  52
  53    uint32_t addr4;
  54    uint32_t fact;
  55#define EDU_STATUS_COMPUTING    0x01
  56#define EDU_STATUS_IRQFACT      0x80
  57    uint32_t status;
  58
  59    uint32_t irq_status;
  60
  61#define EDU_DMA_RUN             0x1
  62#define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
  63# define EDU_DMA_FROM_PCI       0
  64# define EDU_DMA_TO_PCI         1
  65#define EDU_DMA_IRQ             0x4
  66    struct dma_state {
  67        dma_addr_t src;
  68        dma_addr_t dst;
  69        dma_addr_t cnt;
  70        dma_addr_t cmd;
  71    } dma;
  72    QEMUTimer dma_timer;
  73    char dma_buf[DMA_SIZE];
  74    uint64_t dma_mask;
  75} EduState;
  76
  77static bool edu_msi_enabled(EduState *edu)
  78{
  79    return msi_enabled(&edu->pdev);
  80}
  81
  82static void edu_raise_irq(EduState *edu, uint32_t val)
  83{
  84    edu->irq_status |= val;
  85    if (edu->irq_status) {
  86        if (edu_msi_enabled(edu)) {
  87            msi_notify(&edu->pdev, 0);
  88        } else {
  89            pci_set_irq(&edu->pdev, 1);
  90        }
  91    }
  92}
  93
  94static void edu_lower_irq(EduState *edu, uint32_t val)
  95{
  96    edu->irq_status &= ~val;
  97
  98    if (!edu->irq_status && !edu_msi_enabled(edu)) {
  99        pci_set_irq(&edu->pdev, 0);
 100    }
 101}
 102
 103static bool within(uint64_t addr, uint64_t start, uint64_t end)
 104{
 105    return start <= addr && addr < end;
 106}
 107
 108static void edu_check_range(uint64_t addr, uint64_t size1, uint64_t start,
 109                uint64_t size2)
 110{
 111    uint64_t end1 = addr + size1;
 112    uint64_t end2 = start + size2;
 113
 114    if (within(addr, start, end2) &&
 115            end1 > addr && within(end1, start, end2)) {
 116        return;
 117    }
 118
 119    hw_error("EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64
 120             " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!",
 121            addr, end1 - 1, start, end2 - 1);
 122}
 123
 124static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
 125{
 126    dma_addr_t res = addr & edu->dma_mask;
 127
 128    if (addr != res) {
 129        printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res);
 130    }
 131
 132    return res;
 133}
 134
 135static void edu_dma_timer(void *opaque)
 136{
 137    EduState *edu = opaque;
 138    bool raise_irq = false;
 139
 140    if (!(edu->dma.cmd & EDU_DMA_RUN)) {
 141        return;
 142    }
 143
 144    if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
 145        uint64_t dst = edu->dma.dst;
 146        edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
 147        dst -= DMA_START;
 148        pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
 149                edu->dma_buf + dst, edu->dma.cnt);
 150    } else {
 151        uint64_t src = edu->dma.src;
 152        edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
 153        src -= DMA_START;
 154        pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
 155                edu->dma_buf + src, edu->dma.cnt);
 156    }
 157
 158    edu->dma.cmd &= ~EDU_DMA_RUN;
 159    if (edu->dma.cmd & EDU_DMA_IRQ) {
 160        raise_irq = true;
 161    }
 162
 163    if (raise_irq) {
 164        edu_raise_irq(edu, DMA_IRQ);
 165    }
 166}
 167
 168static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
 169                bool timer)
 170{
 171    if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
 172        return;
 173    }
 174
 175    if (write) {
 176        *dma = *val;
 177    } else {
 178        *val = *dma;
 179    }
 180
 181    if (timer) {
 182        timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
 183    }
 184}
 185
 186static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
 187{
 188    EduState *edu = opaque;
 189    uint64_t val = ~0ULL;
 190
 191    if (addr < 0x80 && size != 4) {
 192        return val;
 193    }
 194
 195    if (addr >= 0x80 && size != 4 && size != 8) {
 196        return val;
 197    }
 198
 199    switch (addr) {
 200    case 0x00:
 201        val = 0x010000edu;
 202        break;
 203    case 0x04:
 204        val = edu->addr4;
 205        break;
 206    case 0x08:
 207        qemu_mutex_lock(&edu->thr_mutex);
 208        val = edu->fact;
 209        qemu_mutex_unlock(&edu->thr_mutex);
 210        break;
 211    case 0x20:
 212        val = atomic_read(&edu->status);
 213        break;
 214    case 0x24:
 215        val = edu->irq_status;
 216        break;
 217    case 0x80:
 218        dma_rw(edu, false, &val, &edu->dma.src, false);
 219        break;
 220    case 0x88:
 221        dma_rw(edu, false, &val, &edu->dma.dst, false);
 222        break;
 223    case 0x90:
 224        dma_rw(edu, false, &val, &edu->dma.cnt, false);
 225        break;
 226    case 0x98:
 227        dma_rw(edu, false, &val, &edu->dma.cmd, false);
 228        break;
 229    }
 230
 231    return val;
 232}
 233
 234static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
 235                unsigned size)
 236{
 237    EduState *edu = opaque;
 238
 239    if (addr < 0x80 && size != 4) {
 240        return;
 241    }
 242
 243    if (addr >= 0x80 && size != 4 && size != 8) {
 244        return;
 245    }
 246
 247    switch (addr) {
 248    case 0x04:
 249        edu->addr4 = ~val;
 250        break;
 251    case 0x08:
 252        if (atomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
 253            break;
 254        }
 255        /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
 256         * set in this function and it is under the iothread mutex.
 257         */
 258        qemu_mutex_lock(&edu->thr_mutex);
 259        edu->fact = val;
 260        atomic_or(&edu->status, EDU_STATUS_COMPUTING);
 261        qemu_cond_signal(&edu->thr_cond);
 262        qemu_mutex_unlock(&edu->thr_mutex);
 263        break;
 264    case 0x20:
 265        if (val & EDU_STATUS_IRQFACT) {
 266            atomic_or(&edu->status, EDU_STATUS_IRQFACT);
 267        } else {
 268            atomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
 269        }
 270        break;
 271    case 0x60:
 272        edu_raise_irq(edu, val);
 273        break;
 274    case 0x64:
 275        edu_lower_irq(edu, val);
 276        break;
 277    case 0x80:
 278        dma_rw(edu, true, &val, &edu->dma.src, false);
 279        break;
 280    case 0x88:
 281        dma_rw(edu, true, &val, &edu->dma.dst, false);
 282        break;
 283    case 0x90:
 284        dma_rw(edu, true, &val, &edu->dma.cnt, false);
 285        break;
 286    case 0x98:
 287        if (!(val & EDU_DMA_RUN)) {
 288            break;
 289        }
 290        dma_rw(edu, true, &val, &edu->dma.cmd, true);
 291        break;
 292    }
 293}
 294
 295static const MemoryRegionOps edu_mmio_ops = {
 296    .read = edu_mmio_read,
 297    .write = edu_mmio_write,
 298    .endianness = DEVICE_NATIVE_ENDIAN,
 299    .valid = {
 300        .min_access_size = 4,
 301        .max_access_size = 8,
 302    },
 303    .impl = {
 304        .min_access_size = 4,
 305        .max_access_size = 8,
 306    },
 307
 308};
 309
 310/*
 311 * We purposely use a thread, so that users are forced to wait for the status
 312 * register.
 313 */
 314static void *edu_fact_thread(void *opaque)
 315{
 316    EduState *edu = opaque;
 317
 318    while (1) {
 319        uint32_t val, ret = 1;
 320
 321        qemu_mutex_lock(&edu->thr_mutex);
 322        while ((atomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
 323                        !edu->stopping) {
 324            qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
 325        }
 326
 327        if (edu->stopping) {
 328            qemu_mutex_unlock(&edu->thr_mutex);
 329            break;
 330        }
 331
 332        val = edu->fact;
 333        qemu_mutex_unlock(&edu->thr_mutex);
 334
 335        while (val > 0) {
 336            ret *= val--;
 337        }
 338
 339        /*
 340         * We should sleep for a random period here, so that students are
 341         * forced to check the status properly.
 342         */
 343
 344        qemu_mutex_lock(&edu->thr_mutex);
 345        edu->fact = ret;
 346        qemu_mutex_unlock(&edu->thr_mutex);
 347        atomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
 348
 349        if (atomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
 350            qemu_mutex_lock_iothread();
 351            edu_raise_irq(edu, FACT_IRQ);
 352            qemu_mutex_unlock_iothread();
 353        }
 354    }
 355
 356    return NULL;
 357}
 358
 359static void pci_edu_realize(PCIDevice *pdev, Error **errp)
 360{
 361    EduState *edu = EDU(pdev);
 362    uint8_t *pci_conf = pdev->config;
 363
 364    pci_config_set_interrupt_pin(pci_conf, 1);
 365
 366    if (msi_init(pdev, 0, 1, true, false, errp)) {
 367        return;
 368    }
 369
 370    timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
 371
 372    qemu_mutex_init(&edu->thr_mutex);
 373    qemu_cond_init(&edu->thr_cond);
 374    qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
 375                       edu, QEMU_THREAD_JOINABLE);
 376
 377    memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
 378                    "edu-mmio", 1 * MiB);
 379    pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
 380}
 381
 382static void pci_edu_uninit(PCIDevice *pdev)
 383{
 384    EduState *edu = EDU(pdev);
 385
 386    qemu_mutex_lock(&edu->thr_mutex);
 387    edu->stopping = true;
 388    qemu_mutex_unlock(&edu->thr_mutex);
 389    qemu_cond_signal(&edu->thr_cond);
 390    qemu_thread_join(&edu->thread);
 391
 392    qemu_cond_destroy(&edu->thr_cond);
 393    qemu_mutex_destroy(&edu->thr_mutex);
 394
 395    timer_del(&edu->dma_timer);
 396    msi_uninit(pdev);
 397}
 398
 399static void edu_obj_uint64(Object *obj, Visitor *v, const char *name,
 400                           void *opaque, Error **errp)
 401{
 402    uint64_t *val = opaque;
 403
 404    visit_type_uint64(v, name, val, errp);
 405}
 406
 407static void edu_instance_init(Object *obj)
 408{
 409    EduState *edu = EDU(obj);
 410
 411    edu->dma_mask = (1UL << 28) - 1;
 412    object_property_add(obj, "dma_mask", "uint64", edu_obj_uint64,
 413                    edu_obj_uint64, NULL, &edu->dma_mask, NULL);
 414}
 415
 416static void edu_class_init(ObjectClass *class, void *data)
 417{
 418    DeviceClass *dc = DEVICE_CLASS(class);
 419    PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
 420
 421    k->realize = pci_edu_realize;
 422    k->exit = pci_edu_uninit;
 423    k->vendor_id = PCI_VENDOR_ID_QEMU;
 424    k->device_id = 0x11e8;
 425    k->revision = 0x10;
 426    k->class_id = PCI_CLASS_OTHERS;
 427    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
 428}
 429
 430static void pci_edu_register_types(void)
 431{
 432    static InterfaceInfo interfaces[] = {
 433        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
 434        { },
 435    };
 436    static const TypeInfo edu_info = {
 437        .name          = TYPE_PCI_EDU_DEVICE,
 438        .parent        = TYPE_PCI_DEVICE,
 439        .instance_size = sizeof(EduState),
 440        .instance_init = edu_instance_init,
 441        .class_init    = edu_class_init,
 442        .interfaces = interfaces,
 443    };
 444
 445    type_register_static(&edu_info);
 446}
 447type_init(pci_edu_register_types)
 448