qemu/hw/misc/mps2-fpgaio.c
<<
>>
Prefs
   1/*
   2 * ARM MPS2 AN505 FPGAIO emulation
   3 *
   4 * Copyright (c) 2018 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License version 2 or
   9 *  (at your option) any later version.
  10 */
  11
  12/* This is a model of the "FPGA system control and I/O" block found
  13 * in the AN505 FPGA image for the MPS2 devboard.
  14 * It is documented in AN505:
  15 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
  16 */
  17
  18#include "qemu/osdep.h"
  19#include "qemu/log.h"
  20#include "qemu/module.h"
  21#include "qapi/error.h"
  22#include "trace.h"
  23#include "hw/sysbus.h"
  24#include "migration/vmstate.h"
  25#include "hw/registerfields.h"
  26#include "hw/misc/mps2-fpgaio.h"
  27#include "hw/qdev-properties.h"
  28#include "qemu/timer.h"
  29
  30REG32(LED0, 0)
  31REG32(BUTTON, 8)
  32REG32(CLK1HZ, 0x10)
  33REG32(CLK100HZ, 0x14)
  34REG32(COUNTER, 0x18)
  35REG32(PRESCALE, 0x1c)
  36REG32(PSCNTR, 0x20)
  37REG32(MISC, 0x4c)
  38
  39static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
  40{
  41    return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
  42}
  43
  44static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
  45{
  46    return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
  47}
  48
  49static void resync_counter(MPS2FPGAIO *s)
  50{
  51    /*
  52     * Update s->counter and s->pscntr to their true current values
  53     * by calculating how many times PSCNTR has ticked since the
  54     * last time we did a resync.
  55     */
  56    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  57    int64_t elapsed = now - s->pscntr_sync_ticks;
  58
  59    /*
  60     * Round elapsed down to a whole number of PSCNTR ticks, so we don't
  61     * lose time if we do multiple resyncs in a single tick.
  62     */
  63    uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
  64
  65    /*
  66     * Work out what PSCNTR and COUNTER have moved to. We assume that
  67     * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
  68     * and that COUNTER increments at the same moment.
  69     */
  70    if (ticks == 0) {
  71        /* We haven't ticked since the last time we were asked */
  72        return;
  73    } else if (ticks < s->pscntr) {
  74        /* We haven't yet reached zero, just reduce the PSCNTR */
  75        s->pscntr -= ticks;
  76    } else {
  77        if (s->prescale == 0) {
  78            /*
  79             * If the reload value is zero then the PSCNTR will stick
  80             * at zero once it reaches it, and so we will increment
  81             * COUNTER every tick after that.
  82             */
  83            s->counter += ticks - s->pscntr;
  84            s->pscntr = 0;
  85        } else {
  86            /*
  87             * This is the complicated bit. This ASCII art diagram gives an
  88             * example with PRESCALE==5 PSCNTR==7:
  89             *
  90             * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
  91             * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
  92             * cinc                           1                 2
  93             * y            0  1  2  3  4  5  6  7  8  9 10 11 12
  94             * x            0  1  2  3  4  5  0  1  2  3  4  5  0
  95             *
  96             * where x = y % (s->prescale + 1)
  97             * and so PSCNTR = s->prescale - x
  98             * and COUNTER is incremented by y / (s->prescale + 1)
  99             *
 100             * The case where PSCNTR < PRESCALE works out the same,
 101             * though we must be careful to calculate y as 64-bit unsigned
 102             * for all parts of the expression.
 103             * y < 0 is not possible because that implies ticks < s->pscntr.
 104             */
 105            uint64_t y = ticks - s->pscntr + s->prescale;
 106            s->pscntr = s->prescale - (y % (s->prescale + 1));
 107            s->counter += y / (s->prescale + 1);
 108        }
 109    }
 110
 111    /*
 112     * Only advance the sync time to the timestamp of the last PSCNTR tick,
 113     * not all the way to 'now', so we don't lose time if we do multiple
 114     * resyncs in a single tick.
 115     */
 116    s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
 117                                     s->prescale_clk);
 118}
 119
 120static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
 121{
 122    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
 123    uint64_t r;
 124    int64_t now;
 125
 126    switch (offset) {
 127    case A_LED0:
 128        r = s->led0;
 129        break;
 130    case A_BUTTON:
 131        /* User-pressable board buttons. We don't model that, so just return
 132         * zeroes.
 133         */
 134        r = 0;
 135        break;
 136    case A_PRESCALE:
 137        r = s->prescale;
 138        break;
 139    case A_MISC:
 140        r = s->misc;
 141        break;
 142    case A_CLK1HZ:
 143        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 144        r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
 145        break;
 146    case A_CLK100HZ:
 147        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 148        r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
 149        break;
 150    case A_COUNTER:
 151        resync_counter(s);
 152        r = s->counter;
 153        break;
 154    case A_PSCNTR:
 155        resync_counter(s);
 156        r = s->pscntr;
 157        break;
 158    default:
 159        qemu_log_mask(LOG_GUEST_ERROR,
 160                      "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
 161        r = 0;
 162        break;
 163    }
 164
 165    trace_mps2_fpgaio_read(offset, r, size);
 166    return r;
 167}
 168
 169static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
 170                              unsigned size)
 171{
 172    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
 173    int64_t now;
 174
 175    trace_mps2_fpgaio_write(offset, value, size);
 176
 177    switch (offset) {
 178    case A_LED0:
 179        /* LED bits [1:0] control board LEDs. We don't currently have
 180         * a mechanism for displaying this graphically, so use a trace event.
 181         */
 182        trace_mps2_fpgaio_leds(value & 0x02 ? '*' : '.',
 183                               value & 0x01 ? '*' : '.');
 184        s->led0 = value & 0x3;
 185        break;
 186    case A_PRESCALE:
 187        resync_counter(s);
 188        s->prescale = value;
 189        break;
 190    case A_MISC:
 191        /* These are control bits for some of the other devices on the
 192         * board (SPI, CLCD, etc). We don't implement that yet, so just
 193         * make the bits read as written.
 194         */
 195        qemu_log_mask(LOG_UNIMP,
 196                      "MPS2 FPGAIO: MISC control bits unimplemented\n");
 197        s->misc = value;
 198        break;
 199    case A_CLK1HZ:
 200        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 201        s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
 202        break;
 203    case A_CLK100HZ:
 204        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 205        s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
 206        break;
 207    case A_COUNTER:
 208        resync_counter(s);
 209        s->counter = value;
 210        break;
 211    case A_PSCNTR:
 212        resync_counter(s);
 213        s->pscntr = value;
 214        break;
 215    default:
 216        qemu_log_mask(LOG_GUEST_ERROR,
 217                      "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
 218        break;
 219    }
 220}
 221
 222static const MemoryRegionOps mps2_fpgaio_ops = {
 223    .read = mps2_fpgaio_read,
 224    .write = mps2_fpgaio_write,
 225    .endianness = DEVICE_LITTLE_ENDIAN,
 226};
 227
 228static void mps2_fpgaio_reset(DeviceState *dev)
 229{
 230    MPS2FPGAIO *s = MPS2_FPGAIO(dev);
 231    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 232
 233    trace_mps2_fpgaio_reset();
 234    s->led0 = 0;
 235    s->prescale = 0;
 236    s->misc = 0;
 237    s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
 238    s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
 239    s->counter = 0;
 240    s->pscntr = 0;
 241    s->pscntr_sync_ticks = now;
 242}
 243
 244static void mps2_fpgaio_init(Object *obj)
 245{
 246    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 247    MPS2FPGAIO *s = MPS2_FPGAIO(obj);
 248
 249    memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
 250                          "mps2-fpgaio", 0x1000);
 251    sysbus_init_mmio(sbd, &s->iomem);
 252}
 253
 254static bool mps2_fpgaio_counters_needed(void *opaque)
 255{
 256    /* Currently vmstate.c insists all subsections have a 'needed' function */
 257    return true;
 258}
 259
 260static const VMStateDescription mps2_fpgaio_counters_vmstate = {
 261    .name = "mps2-fpgaio/counters",
 262    .version_id = 2,
 263    .minimum_version_id = 2,
 264    .needed = mps2_fpgaio_counters_needed,
 265    .fields = (VMStateField[]) {
 266        VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
 267        VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
 268        VMSTATE_UINT32(counter, MPS2FPGAIO),
 269        VMSTATE_UINT32(pscntr, MPS2FPGAIO),
 270        VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
 271        VMSTATE_END_OF_LIST()
 272    }
 273};
 274
 275static const VMStateDescription mps2_fpgaio_vmstate = {
 276    .name = "mps2-fpgaio",
 277    .version_id = 1,
 278    .minimum_version_id = 1,
 279    .fields = (VMStateField[]) {
 280        VMSTATE_UINT32(led0, MPS2FPGAIO),
 281        VMSTATE_UINT32(prescale, MPS2FPGAIO),
 282        VMSTATE_UINT32(misc, MPS2FPGAIO),
 283        VMSTATE_END_OF_LIST()
 284    },
 285    .subsections = (const VMStateDescription*[]) {
 286        &mps2_fpgaio_counters_vmstate,
 287        NULL
 288    }
 289};
 290
 291static Property mps2_fpgaio_properties[] = {
 292    /* Frequency of the prescale counter */
 293    DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
 294    DEFINE_PROP_END_OF_LIST(),
 295};
 296
 297static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
 298{
 299    DeviceClass *dc = DEVICE_CLASS(klass);
 300
 301    dc->vmsd = &mps2_fpgaio_vmstate;
 302    dc->reset = mps2_fpgaio_reset;
 303    dc->props = mps2_fpgaio_properties;
 304}
 305
 306static const TypeInfo mps2_fpgaio_info = {
 307    .name = TYPE_MPS2_FPGAIO,
 308    .parent = TYPE_SYS_BUS_DEVICE,
 309    .instance_size = sizeof(MPS2FPGAIO),
 310    .instance_init = mps2_fpgaio_init,
 311    .class_init = mps2_fpgaio_class_init,
 312};
 313
 314static void mps2_fpgaio_register_types(void)
 315{
 316    type_register_static(&mps2_fpgaio_info);
 317}
 318
 319type_init(mps2_fpgaio_register_types);
 320