qemu/hw/net/etraxfs_eth.c
<<
>>
Prefs
   1/*
   2 * QEMU ETRAX Ethernet Controller.
   3 *
   4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qapi/error.h"
  27#include "hw/sysbus.h"
  28#include "net/net.h"
  29#include "hw/cris/etraxfs.h"
  30#include "qemu/error-report.h"
  31#include "qemu/module.h"
  32#include "trace.h"
  33
  34#define D(x)
  35
  36/* Advertisement control register. */
  37#define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
  38#define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
  39#define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
  40#define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
  41
  42/*
  43 * The MDIO extensions in the TDK PHY model were reversed engineered from the
  44 * linux driver (PHYID and Diagnostics reg).
  45 * TODO: Add friendly names for the register nums.
  46 */
  47struct qemu_phy
  48{
  49    uint32_t regs[32];
  50
  51    int link;
  52
  53    unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
  54    void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data);
  55};
  56
  57static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
  58{
  59    int regnum;
  60    unsigned r = 0;
  61
  62    regnum = req & 0x1f;
  63
  64    switch (regnum) {
  65    case 1:
  66        if (!phy->link) {
  67            break;
  68        }
  69        /* MR1.     */
  70        /* Speeds and modes.  */
  71        r |= (1 << 13) | (1 << 14);
  72        r |= (1 << 11) | (1 << 12);
  73        r |= (1 << 5); /* Autoneg complete.  */
  74        r |= (1 << 3); /* Autoneg able.     */
  75        r |= (1 << 2); /* link.     */
  76        break;
  77    case 5:
  78        /* Link partner ability.
  79           We are kind; always agree with whatever best mode
  80           the guest advertises.  */
  81        r = 1 << 14; /* Success.  */
  82        /* Copy advertised modes.  */
  83        r |= phy->regs[4] & (15 << 5);
  84        /* Autoneg support.  */
  85        r |= 1;
  86        break;
  87    case 18:
  88    {
  89        /* Diagnostics reg.  */
  90        int duplex = 0;
  91        int speed_100 = 0;
  92
  93        if (!phy->link) {
  94            break;
  95        }
  96
  97        /* Are we advertising 100 half or 100 duplex ? */
  98        speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
  99        speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
 100
 101        /* Are we advertising 10 duplex or 100 duplex ? */
 102        duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
 103        duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
 104        r = (speed_100 << 10) | (duplex << 11);
 105    }
 106    break;
 107
 108    default:
 109        r = phy->regs[regnum];
 110        break;
 111    }
 112    trace_mdio_phy_read(regnum, r);
 113    return r;
 114}
 115
 116static void
 117tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
 118{
 119    int regnum;
 120
 121    regnum = req & 0x1f;
 122    trace_mdio_phy_write(regnum, data);
 123    switch (regnum) {
 124    default:
 125        phy->regs[regnum] = data;
 126        break;
 127    }
 128}
 129
 130static void
 131tdk_reset(struct qemu_phy *phy)
 132{
 133    phy->regs[0] = 0x3100;
 134    /* PHY Id.  */
 135    phy->regs[2] = 0x0300;
 136    phy->regs[3] = 0xe400;
 137    /* Autonegotiation advertisement reg.  */
 138    phy->regs[4] = 0x01E1;
 139    phy->link = 1;
 140}
 141
 142struct qemu_mdio
 143{
 144    /* bus.     */
 145    int mdc;
 146    int mdio;
 147
 148    /* decoder.  */
 149    enum {
 150        PREAMBLE,
 151        SOF,
 152        OPC,
 153        ADDR,
 154        REQ,
 155        TURNAROUND,
 156        DATA
 157    } state;
 158    unsigned int drive;
 159
 160    unsigned int cnt;
 161    unsigned int addr;
 162    unsigned int opc;
 163    unsigned int req;
 164    unsigned int data;
 165
 166    struct qemu_phy *devs[32];
 167};
 168
 169static void
 170mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
 171{
 172    bus->devs[addr & 0x1f] = phy;
 173}
 174
 175#ifdef USE_THIS_DEAD_CODE
 176static void
 177mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
 178{
 179    bus->devs[addr & 0x1f] = NULL;
 180}
 181#endif
 182
 183static void mdio_read_req(struct qemu_mdio *bus)
 184{
 185    struct qemu_phy *phy;
 186
 187    phy = bus->devs[bus->addr];
 188    if (phy && phy->read) {
 189        bus->data = phy->read(phy, bus->req);
 190    } else {
 191        bus->data = 0xffff;
 192    }
 193}
 194
 195static void mdio_write_req(struct qemu_mdio *bus)
 196{
 197    struct qemu_phy *phy;
 198
 199    phy = bus->devs[bus->addr];
 200    if (phy && phy->write) {
 201        phy->write(phy, bus->req, bus->data);
 202    }
 203}
 204
 205static void mdio_cycle(struct qemu_mdio *bus)
 206{
 207    bus->cnt++;
 208
 209    trace_mdio_bitbang(bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive);
 210#if 0
 211    if (bus->mdc) {
 212        printf("%d", bus->mdio);
 213    }
 214#endif
 215    switch (bus->state) {
 216    case PREAMBLE:
 217        if (bus->mdc) {
 218            if (bus->cnt >= (32 * 2) && !bus->mdio) {
 219                bus->cnt = 0;
 220                bus->state = SOF;
 221                bus->data = 0;
 222            }
 223        }
 224        break;
 225    case SOF:
 226        if (bus->mdc) {
 227            if (bus->mdio != 1) {
 228                printf("WARNING: no SOF\n");
 229            }
 230            if (bus->cnt == 1*2) {
 231                bus->cnt = 0;
 232                bus->opc = 0;
 233                bus->state = OPC;
 234            }
 235        }
 236        break;
 237    case OPC:
 238        if (bus->mdc) {
 239            bus->opc <<= 1;
 240            bus->opc |= bus->mdio & 1;
 241            if (bus->cnt == 2*2) {
 242                bus->cnt = 0;
 243                bus->addr = 0;
 244                bus->state = ADDR;
 245            }
 246        }
 247        break;
 248    case ADDR:
 249        if (bus->mdc) {
 250            bus->addr <<= 1;
 251            bus->addr |= bus->mdio & 1;
 252
 253            if (bus->cnt == 5*2) {
 254                bus->cnt = 0;
 255                bus->req = 0;
 256                bus->state = REQ;
 257            }
 258        }
 259        break;
 260    case REQ:
 261        if (bus->mdc) {
 262            bus->req <<= 1;
 263            bus->req |= bus->mdio & 1;
 264            if (bus->cnt == 5*2) {
 265                bus->cnt = 0;
 266                bus->state = TURNAROUND;
 267            }
 268        }
 269        break;
 270    case TURNAROUND:
 271        if (bus->mdc && bus->cnt == 2*2) {
 272            bus->mdio = 0;
 273            bus->cnt = 0;
 274
 275            if (bus->opc == 2) {
 276                bus->drive = 1;
 277                mdio_read_req(bus);
 278                bus->mdio = bus->data & 1;
 279            }
 280            bus->state = DATA;
 281        }
 282        break;
 283    case DATA:
 284        if (!bus->mdc) {
 285            if (bus->drive) {
 286                bus->mdio = !!(bus->data & (1 << 15));
 287                bus->data <<= 1;
 288            }
 289        } else {
 290            if (!bus->drive) {
 291                bus->data <<= 1;
 292                bus->data |= bus->mdio;
 293            }
 294            if (bus->cnt == 16 * 2) {
 295                bus->cnt = 0;
 296                bus->state = PREAMBLE;
 297                if (!bus->drive) {
 298                    mdio_write_req(bus);
 299                }
 300                bus->drive = 0;
 301            }
 302        }
 303        break;
 304    default:
 305        break;
 306    }
 307}
 308
 309/* ETRAX-FS Ethernet MAC block starts here.  */
 310
 311#define RW_MA0_LO      0x00
 312#define RW_MA0_HI      0x01
 313#define RW_MA1_LO      0x02
 314#define RW_MA1_HI      0x03
 315#define RW_GA_LO      0x04
 316#define RW_GA_HI      0x05
 317#define RW_GEN_CTRL      0x06
 318#define RW_REC_CTRL      0x07
 319#define RW_TR_CTRL      0x08
 320#define RW_CLR_ERR      0x09
 321#define RW_MGM_CTRL      0x0a
 322#define R_STAT          0x0b
 323#define FS_ETH_MAX_REGS      0x17
 324
 325#define TYPE_ETRAX_FS_ETH "etraxfs-eth"
 326#define ETRAX_FS_ETH(obj) \
 327    OBJECT_CHECK(ETRAXFSEthState, (obj), TYPE_ETRAX_FS_ETH)
 328
 329typedef struct ETRAXFSEthState
 330{
 331    SysBusDevice parent_obj;
 332
 333    MemoryRegion mmio;
 334    NICState *nic;
 335    NICConf conf;
 336
 337    /* Two addrs in the filter.  */
 338    uint8_t macaddr[2][6];
 339    uint32_t regs[FS_ETH_MAX_REGS];
 340
 341    union {
 342        void *vdma_out;
 343        struct etraxfs_dma_client *dma_out;
 344    };
 345    union {
 346        void *vdma_in;
 347        struct etraxfs_dma_client *dma_in;
 348    };
 349
 350    /* MDIO bus.  */
 351    struct qemu_mdio mdio_bus;
 352    unsigned int phyaddr;
 353    int duplex_mismatch;
 354
 355    /* PHY.     */
 356    struct qemu_phy phy;
 357} ETRAXFSEthState;
 358
 359static void eth_validate_duplex(ETRAXFSEthState *eth)
 360{
 361    struct qemu_phy *phy;
 362    unsigned int phy_duplex;
 363    unsigned int mac_duplex;
 364    int new_mm = 0;
 365
 366    phy = eth->mdio_bus.devs[eth->phyaddr];
 367    phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
 368    mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
 369
 370    if (mac_duplex != phy_duplex) {
 371        new_mm = 1;
 372    }
 373
 374    if (eth->regs[RW_GEN_CTRL] & 1) {
 375        if (new_mm != eth->duplex_mismatch) {
 376            if (new_mm) {
 377                printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n",
 378                       mac_duplex, phy_duplex);
 379            } else {
 380                printf("HW: ETH duplex ok.\n");
 381            }
 382        }
 383        eth->duplex_mismatch = new_mm;
 384    }
 385}
 386
 387static uint64_t
 388eth_read(void *opaque, hwaddr addr, unsigned int size)
 389{
 390    ETRAXFSEthState *eth = opaque;
 391    uint32_t r = 0;
 392
 393    addr >>= 2;
 394
 395    switch (addr) {
 396    case R_STAT:
 397        r = eth->mdio_bus.mdio & 1;
 398        break;
 399    default:
 400        r = eth->regs[addr];
 401        D(printf("%s %x\n", __func__, addr * 4));
 402        break;
 403    }
 404    return r;
 405}
 406
 407static void eth_update_ma(ETRAXFSEthState *eth, int ma)
 408{
 409    int reg;
 410    int i = 0;
 411
 412    ma &= 1;
 413
 414    reg = RW_MA0_LO;
 415    if (ma) {
 416        reg = RW_MA1_LO;
 417    }
 418
 419    eth->macaddr[ma][i++] = eth->regs[reg];
 420    eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
 421    eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
 422    eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
 423    eth->macaddr[ma][i++] = eth->regs[reg + 1];
 424    eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
 425
 426    D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
 427             eth->macaddr[ma][0], eth->macaddr[ma][1],
 428             eth->macaddr[ma][2], eth->macaddr[ma][3],
 429             eth->macaddr[ma][4], eth->macaddr[ma][5]));
 430}
 431
 432static void
 433eth_write(void *opaque, hwaddr addr,
 434          uint64_t val64, unsigned int size)
 435{
 436    ETRAXFSEthState *eth = opaque;
 437    uint32_t value = val64;
 438
 439    addr >>= 2;
 440    switch (addr) {
 441    case RW_MA0_LO:
 442    case RW_MA0_HI:
 443        eth->regs[addr] = value;
 444        eth_update_ma(eth, 0);
 445        break;
 446    case RW_MA1_LO:
 447    case RW_MA1_HI:
 448        eth->regs[addr] = value;
 449        eth_update_ma(eth, 1);
 450        break;
 451
 452    case RW_MGM_CTRL:
 453        /* Attach an MDIO/PHY abstraction.  */
 454        if (value & 2) {
 455            eth->mdio_bus.mdio = value & 1;
 456        }
 457        if (eth->mdio_bus.mdc != (value & 4)) {
 458            mdio_cycle(&eth->mdio_bus);
 459            eth_validate_duplex(eth);
 460        }
 461        eth->mdio_bus.mdc = !!(value & 4);
 462        eth->regs[addr] = value;
 463        break;
 464
 465    case RW_REC_CTRL:
 466        eth->regs[addr] = value;
 467        eth_validate_duplex(eth);
 468        break;
 469
 470    default:
 471        eth->regs[addr] = value;
 472        D(printf("%s %x %x\n", __func__, addr, value));
 473        break;
 474    }
 475}
 476
 477/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
 478   filter dropping group addresses we have not joined.    The filter has 64
 479   bits (m). The has function is a simple nible xor of the group addr.    */
 480static int eth_match_groupaddr(ETRAXFSEthState *eth, const unsigned char *sa)
 481{
 482    unsigned int hsh;
 483    int m_individual = eth->regs[RW_REC_CTRL] & 4;
 484    int match;
 485
 486    /* First bit on the wire of a MAC address signals multicast or
 487       physical address.  */
 488    if (!m_individual && !(sa[0] & 1)) {
 489        return 0;
 490    }
 491
 492    /* Calculate the hash index for the GA registers. */
 493    hsh = 0;
 494    hsh ^= (*sa) & 0x3f;
 495    hsh ^= ((*sa) >> 6) & 0x03;
 496    ++sa;
 497    hsh ^= ((*sa) << 2) & 0x03c;
 498    hsh ^= ((*sa) >> 4) & 0xf;
 499    ++sa;
 500    hsh ^= ((*sa) << 4) & 0x30;
 501    hsh ^= ((*sa) >> 2) & 0x3f;
 502    ++sa;
 503    hsh ^= (*sa) & 0x3f;
 504    hsh ^= ((*sa) >> 6) & 0x03;
 505    ++sa;
 506    hsh ^= ((*sa) << 2) & 0x03c;
 507    hsh ^= ((*sa) >> 4) & 0xf;
 508    ++sa;
 509    hsh ^= ((*sa) << 4) & 0x30;
 510    hsh ^= ((*sa) >> 2) & 0x3f;
 511
 512    hsh &= 63;
 513    if (hsh > 31) {
 514        match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
 515    } else {
 516        match = eth->regs[RW_GA_LO] & (1 << hsh);
 517    }
 518    D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
 519             eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
 520    return match;
 521}
 522
 523static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size)
 524{
 525    unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
 526    ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
 527    int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
 528    int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
 529    int r_bcast = eth->regs[RW_REC_CTRL] & 8;
 530
 531    if (size < 12) {
 532        return -1;
 533    }
 534
 535    D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
 536         buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
 537         use_ma0, use_ma1, r_bcast));
 538
 539    /* Does the frame get through the address filters?  */
 540    if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
 541        && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
 542        && (!r_bcast || memcmp(buf, sa_bcast, 6))
 543        && !eth_match_groupaddr(eth, buf)) {
 544        return size;
 545    }
 546
 547    /* FIXME: Find another way to pass on the fake csum.  */
 548    etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
 549
 550    return size;
 551}
 552
 553static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop)
 554{
 555    ETRAXFSEthState *eth = opaque;
 556
 557    D(printf("%s buf=%p len=%d\n", __func__, buf, len));
 558    qemu_send_packet(qemu_get_queue(eth->nic), buf, len);
 559    return len;
 560}
 561
 562static void eth_set_link(NetClientState *nc)
 563{
 564    ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
 565    D(printf("%s %d\n", __func__, nc->link_down));
 566    eth->phy.link = !nc->link_down;
 567}
 568
 569static const MemoryRegionOps eth_ops = {
 570    .read = eth_read,
 571    .write = eth_write,
 572    .endianness = DEVICE_LITTLE_ENDIAN,
 573    .valid = {
 574        .min_access_size = 4,
 575        .max_access_size = 4
 576    }
 577};
 578
 579static NetClientInfo net_etraxfs_info = {
 580    .type = NET_CLIENT_DRIVER_NIC,
 581    .size = sizeof(NICState),
 582    .receive = eth_receive,
 583    .link_status_changed = eth_set_link,
 584};
 585
 586static void etraxfs_eth_reset(DeviceState *dev)
 587{
 588    ETRAXFSEthState *s = ETRAX_FS_ETH(dev);
 589
 590    memset(s->regs, 0, sizeof(s->regs));
 591    memset(s->macaddr, 0, sizeof(s->macaddr));
 592    s->duplex_mismatch = 0;
 593
 594    s->mdio_bus.mdc = 0;
 595    s->mdio_bus.mdio = 0;
 596    s->mdio_bus.state = 0;
 597    s->mdio_bus.drive = 0;
 598    s->mdio_bus.cnt = 0;
 599    s->mdio_bus.addr = 0;
 600    s->mdio_bus.opc = 0;
 601    s->mdio_bus.req = 0;
 602    s->mdio_bus.data = 0;
 603
 604    tdk_reset(&s->phy);
 605}
 606
 607static void etraxfs_eth_realize(DeviceState *dev, Error **errp)
 608{
 609    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 610    ETRAXFSEthState *s = ETRAX_FS_ETH(dev);
 611
 612    if (!s->dma_out || !s->dma_in) {
 613        error_setg(errp, "Unconnected ETRAX-FS Ethernet MAC");
 614        return;
 615    }
 616
 617    s->dma_out->client.push = eth_tx_push;
 618    s->dma_out->client.opaque = s;
 619    s->dma_in->client.opaque = s;
 620    s->dma_in->client.pull = NULL;
 621
 622    memory_region_init_io(&s->mmio, OBJECT(dev), &eth_ops, s,
 623                          "etraxfs-eth", 0x5c);
 624    sysbus_init_mmio(sbd, &s->mmio);
 625
 626    qemu_macaddr_default_if_unset(&s->conf.macaddr);
 627    s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf,
 628                          object_get_typename(OBJECT(s)), dev->id, s);
 629    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
 630
 631    s->phy.read = tdk_read;
 632    s->phy.write = tdk_write;
 633    mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr);
 634}
 635
 636static Property etraxfs_eth_properties[] = {
 637    DEFINE_PROP_UINT32("phyaddr", ETRAXFSEthState, phyaddr, 1),
 638    DEFINE_PROP_PTR("dma_out", ETRAXFSEthState, vdma_out),
 639    DEFINE_PROP_PTR("dma_in", ETRAXFSEthState, vdma_in),
 640    DEFINE_NIC_PROPERTIES(ETRAXFSEthState, conf),
 641    DEFINE_PROP_END_OF_LIST(),
 642};
 643
 644static void etraxfs_eth_class_init(ObjectClass *klass, void *data)
 645{
 646    DeviceClass *dc = DEVICE_CLASS(klass);
 647
 648    dc->realize = etraxfs_eth_realize;
 649    dc->reset = etraxfs_eth_reset;
 650    dc->props = etraxfs_eth_properties;
 651    /* Reason: pointer properties "dma_out", "dma_in" */
 652    dc->user_creatable = false;
 653}
 654
 655static const TypeInfo etraxfs_eth_info = {
 656    .name          = TYPE_ETRAX_FS_ETH,
 657    .parent        = TYPE_SYS_BUS_DEVICE,
 658    .instance_size = sizeof(ETRAXFSEthState),
 659    .class_init    = etraxfs_eth_class_init,
 660};
 661
 662static void etraxfs_eth_register_types(void)
 663{
 664    type_register_static(&etraxfs_eth_info);
 665}
 666
 667type_init(etraxfs_eth_register_types)
 668