qemu/hw/nvram/fw_cfg.c
<<
>>
Prefs
   1/*
   2 * QEMU Firmware configuration device emulation
   3 *
   4 * Copyright (c) 2008 Gleb Natapov
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu-common.h"
  27#include "sysemu/sysemu.h"
  28#include "sysemu/dma.h"
  29#include "sysemu/reset.h"
  30#include "hw/boards.h"
  31#include "hw/nvram/fw_cfg.h"
  32#include "hw/qdev-properties.h"
  33#include "hw/sysbus.h"
  34#include "migration/qemu-file-types.h"
  35#include "migration/vmstate.h"
  36#include "trace.h"
  37#include "qemu/error-report.h"
  38#include "qemu/option.h"
  39#include "qemu/config-file.h"
  40#include "qemu/cutils.h"
  41#include "qapi/error.h"
  42
  43#define FW_CFG_FILE_SLOTS_DFLT 0x20
  44
  45/* FW_CFG_VERSION bits */
  46#define FW_CFG_VERSION      0x01
  47#define FW_CFG_VERSION_DMA  0x02
  48
  49/* FW_CFG_DMA_CONTROL bits */
  50#define FW_CFG_DMA_CTL_ERROR   0x01
  51#define FW_CFG_DMA_CTL_READ    0x02
  52#define FW_CFG_DMA_CTL_SKIP    0x04
  53#define FW_CFG_DMA_CTL_SELECT  0x08
  54#define FW_CFG_DMA_CTL_WRITE   0x10
  55
  56#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
  57
  58struct FWCfgEntry {
  59    uint32_t len;
  60    bool allow_write;
  61    uint8_t *data;
  62    void *callback_opaque;
  63    FWCfgCallback select_cb;
  64    FWCfgWriteCallback write_cb;
  65};
  66
  67/**
  68 * key_name:
  69 *
  70 * @key: The uint16 selector key.
  71 *
  72 * Returns: The stringified name if the selector refers to a well-known
  73 *          numerically defined item, or NULL on key lookup failure.
  74 */
  75static const char *key_name(uint16_t key)
  76{
  77    static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
  78        [FW_CFG_SIGNATURE] = "signature",
  79        [FW_CFG_ID] = "id",
  80        [FW_CFG_UUID] = "uuid",
  81        [FW_CFG_RAM_SIZE] = "ram_size",
  82        [FW_CFG_NOGRAPHIC] = "nographic",
  83        [FW_CFG_NB_CPUS] = "nb_cpus",
  84        [FW_CFG_MACHINE_ID] = "machine_id",
  85        [FW_CFG_KERNEL_ADDR] = "kernel_addr",
  86        [FW_CFG_KERNEL_SIZE] = "kernel_size",
  87        [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
  88        [FW_CFG_INITRD_ADDR] = "initrd_addr",
  89        [FW_CFG_INITRD_SIZE] = "initdr_size",
  90        [FW_CFG_BOOT_DEVICE] = "boot_device",
  91        [FW_CFG_NUMA] = "numa",
  92        [FW_CFG_BOOT_MENU] = "boot_menu",
  93        [FW_CFG_MAX_CPUS] = "max_cpus",
  94        [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
  95        [FW_CFG_KERNEL_DATA] = "kernel_data",
  96        [FW_CFG_INITRD_DATA] = "initrd_data",
  97        [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
  98        [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
  99        [FW_CFG_CMDLINE_DATA] = "cmdline_data",
 100        [FW_CFG_SETUP_ADDR] = "setup_addr",
 101        [FW_CFG_SETUP_SIZE] = "setup_size",
 102        [FW_CFG_SETUP_DATA] = "setup_data",
 103        [FW_CFG_FILE_DIR] = "file_dir",
 104    };
 105
 106    if (key & FW_CFG_ARCH_LOCAL) {
 107        return fw_cfg_arch_key_name(key);
 108    }
 109    if (key < FW_CFG_FILE_FIRST) {
 110        return fw_cfg_wellknown_keys[key];
 111    }
 112
 113    return NULL;
 114}
 115
 116static inline const char *trace_key_name(uint16_t key)
 117{
 118    const char *name = key_name(key);
 119
 120    return name ? name : "unknown";
 121}
 122
 123#define JPG_FILE 0
 124#define BMP_FILE 1
 125
 126static char *read_splashfile(char *filename, gsize *file_sizep,
 127                             int *file_typep)
 128{
 129    GError *err = NULL;
 130    gchar *content;
 131    int file_type;
 132    unsigned int filehead;
 133    int bmp_bpp;
 134
 135    if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
 136        error_report("failed to read splash file '%s': %s",
 137                     filename, err->message);
 138        g_error_free(err);
 139        return NULL;
 140    }
 141
 142    /* check file size */
 143    if (*file_sizep < 30) {
 144        goto error;
 145    }
 146
 147    /* check magic ID */
 148    filehead = lduw_le_p(content);
 149    if (filehead == 0xd8ff) {
 150        file_type = JPG_FILE;
 151    } else if (filehead == 0x4d42) {
 152        file_type = BMP_FILE;
 153    } else {
 154        goto error;
 155    }
 156
 157    /* check BMP bpp */
 158    if (file_type == BMP_FILE) {
 159        bmp_bpp = lduw_le_p(&content[28]);
 160        if (bmp_bpp != 24) {
 161            goto error;
 162        }
 163    }
 164
 165    /* return values */
 166    *file_typep = file_type;
 167
 168    return content;
 169
 170error:
 171    error_report("splash file '%s' format not recognized; must be JPEG "
 172                 "or 24 bit BMP", filename);
 173    g_free(content);
 174    return NULL;
 175}
 176
 177static void fw_cfg_bootsplash(FWCfgState *s)
 178{
 179    const char *boot_splash_filename = NULL;
 180    const char *boot_splash_time = NULL;
 181    char *filename, *file_data;
 182    gsize file_size;
 183    int file_type;
 184
 185    /* get user configuration */
 186    QemuOptsList *plist = qemu_find_opts("boot-opts");
 187    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 188    boot_splash_filename = qemu_opt_get(opts, "splash");
 189    boot_splash_time = qemu_opt_get(opts, "splash-time");
 190
 191    /* insert splash time if user configurated */
 192    if (boot_splash_time) {
 193        int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
 194        uint16_t bst_le16;
 195
 196        /* validate the input */
 197        if (bst_val < 0 || bst_val > 0xffff) {
 198            error_report("splash-time is invalid,"
 199                         "it should be a value between 0 and 65535");
 200            exit(1);
 201        }
 202        /* use little endian format */
 203        bst_le16 = cpu_to_le16(bst_val);
 204        fw_cfg_add_file(s, "etc/boot-menu-wait",
 205                        g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
 206    }
 207
 208    /* insert splash file if user configurated */
 209    if (boot_splash_filename) {
 210        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
 211        if (filename == NULL) {
 212            error_report("failed to find file '%s'", boot_splash_filename);
 213            return;
 214        }
 215
 216        /* loading file data */
 217        file_data = read_splashfile(filename, &file_size, &file_type);
 218        if (file_data == NULL) {
 219            g_free(filename);
 220            return;
 221        }
 222        g_free(boot_splash_filedata);
 223        boot_splash_filedata = (uint8_t *)file_data;
 224
 225        /* insert data */
 226        if (file_type == JPG_FILE) {
 227            fw_cfg_add_file(s, "bootsplash.jpg",
 228                            boot_splash_filedata, file_size);
 229        } else {
 230            fw_cfg_add_file(s, "bootsplash.bmp",
 231                            boot_splash_filedata, file_size);
 232        }
 233        g_free(filename);
 234    }
 235}
 236
 237static void fw_cfg_reboot(FWCfgState *s)
 238{
 239    const char *reboot_timeout = NULL;
 240    uint64_t rt_val = -1;
 241    uint32_t rt_le32;
 242
 243    /* get user configuration */
 244    QemuOptsList *plist = qemu_find_opts("boot-opts");
 245    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 246    reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
 247
 248    if (reboot_timeout) {
 249        rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
 250
 251        /* validate the input */
 252        if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
 253            error_report("reboot timeout is invalid,"
 254                         "it should be a value between -1 and 65535");
 255            exit(1);
 256        }
 257    }
 258
 259    rt_le32 = cpu_to_le32(rt_val);
 260    fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
 261}
 262
 263static void fw_cfg_write(FWCfgState *s, uint8_t value)
 264{
 265    /* nothing, write support removed in QEMU v2.4+ */
 266}
 267
 268static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
 269{
 270    return s->file_slots;
 271}
 272
 273/* Note: this function returns an exclusive limit. */
 274static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
 275{
 276    return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
 277}
 278
 279static int fw_cfg_select(FWCfgState *s, uint16_t key)
 280{
 281    int arch, ret;
 282    FWCfgEntry *e;
 283
 284    s->cur_offset = 0;
 285    if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
 286        s->cur_entry = FW_CFG_INVALID;
 287        ret = 0;
 288    } else {
 289        s->cur_entry = key;
 290        ret = 1;
 291        /* entry successfully selected, now run callback if present */
 292        arch = !!(key & FW_CFG_ARCH_LOCAL);
 293        e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
 294        if (e->select_cb) {
 295            e->select_cb(e->callback_opaque);
 296        }
 297    }
 298
 299    trace_fw_cfg_select(s, key, trace_key_name(key), ret);
 300    return ret;
 301}
 302
 303static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
 304{
 305    FWCfgState *s = opaque;
 306    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 307    FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 308                    &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 309    uint64_t value = 0;
 310
 311    assert(size > 0 && size <= sizeof(value));
 312    if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
 313        /* The least significant 'size' bytes of the return value are
 314         * expected to contain a string preserving portion of the item
 315         * data, padded with zeros on the right in case we run out early.
 316         * In technical terms, we're composing the host-endian representation
 317         * of the big endian interpretation of the fw_cfg string.
 318         */
 319        do {
 320            value = (value << 8) | e->data[s->cur_offset++];
 321        } while (--size && s->cur_offset < e->len);
 322        /* If size is still not zero, we *did* run out early, so continue
 323         * left-shifting, to add the appropriate number of padding zeros
 324         * on the right.
 325         */
 326        value <<= 8 * size;
 327    }
 328
 329    trace_fw_cfg_read(s, value);
 330    return value;
 331}
 332
 333static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
 334                                  uint64_t value, unsigned size)
 335{
 336    FWCfgState *s = opaque;
 337    unsigned i = size;
 338
 339    do {
 340        fw_cfg_write(s, value >> (8 * --i));
 341    } while (i);
 342}
 343
 344static void fw_cfg_dma_transfer(FWCfgState *s)
 345{
 346    dma_addr_t len;
 347    FWCfgDmaAccess dma;
 348    int arch;
 349    FWCfgEntry *e;
 350    int read = 0, write = 0;
 351    dma_addr_t dma_addr;
 352
 353    /* Reset the address before the next access */
 354    dma_addr = s->dma_addr;
 355    s->dma_addr = 0;
 356
 357    if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
 358        stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 359                   FW_CFG_DMA_CTL_ERROR);
 360        return;
 361    }
 362
 363    dma.address = be64_to_cpu(dma.address);
 364    dma.length = be32_to_cpu(dma.length);
 365    dma.control = be32_to_cpu(dma.control);
 366
 367    if (dma.control & FW_CFG_DMA_CTL_SELECT) {
 368        fw_cfg_select(s, dma.control >> 16);
 369    }
 370
 371    arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 372    e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 373        &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 374
 375    if (dma.control & FW_CFG_DMA_CTL_READ) {
 376        read = 1;
 377        write = 0;
 378    } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
 379        read = 0;
 380        write = 1;
 381    } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
 382        read = 0;
 383        write = 0;
 384    } else {
 385        dma.length = 0;
 386    }
 387
 388    dma.control = 0;
 389
 390    while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
 391        if (s->cur_entry == FW_CFG_INVALID || !e->data ||
 392                                s->cur_offset >= e->len) {
 393            len = dma.length;
 394
 395            /* If the access is not a read access, it will be a skip access,
 396             * tested before.
 397             */
 398            if (read) {
 399                if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
 400                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 401                }
 402            }
 403            if (write) {
 404                dma.control |= FW_CFG_DMA_CTL_ERROR;
 405            }
 406        } else {
 407            if (dma.length <= (e->len - s->cur_offset)) {
 408                len = dma.length;
 409            } else {
 410                len = (e->len - s->cur_offset);
 411            }
 412
 413            /* If the access is not a read access, it will be a skip access,
 414             * tested before.
 415             */
 416            if (read) {
 417                if (dma_memory_write(s->dma_as, dma.address,
 418                                    &e->data[s->cur_offset], len)) {
 419                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 420                }
 421            }
 422            if (write) {
 423                if (!e->allow_write ||
 424                    len != dma.length ||
 425                    dma_memory_read(s->dma_as, dma.address,
 426                                    &e->data[s->cur_offset], len)) {
 427                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 428                } else if (e->write_cb) {
 429                    e->write_cb(e->callback_opaque, s->cur_offset, len);
 430                }
 431            }
 432
 433            s->cur_offset += len;
 434        }
 435
 436        dma.address += len;
 437        dma.length  -= len;
 438
 439    }
 440
 441    stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 442                dma.control);
 443
 444    trace_fw_cfg_read(s, 0);
 445}
 446
 447static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
 448                                    unsigned size)
 449{
 450    /* Return a signature value (and handle various read sizes) */
 451    return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
 452}
 453
 454static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
 455                                 uint64_t value, unsigned size)
 456{
 457    FWCfgState *s = opaque;
 458
 459    if (size == 4) {
 460        if (addr == 0) {
 461            /* FWCfgDmaAccess high address */
 462            s->dma_addr = value << 32;
 463        } else if (addr == 4) {
 464            /* FWCfgDmaAccess low address */
 465            s->dma_addr |= value;
 466            fw_cfg_dma_transfer(s);
 467        }
 468    } else if (size == 8 && addr == 0) {
 469        s->dma_addr = value;
 470        fw_cfg_dma_transfer(s);
 471    }
 472}
 473
 474static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
 475                                 unsigned size, bool is_write,
 476                                 MemTxAttrs attrs)
 477{
 478    return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
 479                         (size == 8 && addr == 0));
 480}
 481
 482static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
 483                                  unsigned size, bool is_write,
 484                                  MemTxAttrs attrs)
 485{
 486    return addr == 0;
 487}
 488
 489static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
 490{
 491    return 0;
 492}
 493
 494static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
 495                                 uint64_t value, unsigned size)
 496{
 497    fw_cfg_select(opaque, (uint16_t)value);
 498}
 499
 500static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
 501                                 unsigned size, bool is_write,
 502                                 MemTxAttrs attrs)
 503{
 504    return is_write && size == 2;
 505}
 506
 507static void fw_cfg_comb_write(void *opaque, hwaddr addr,
 508                              uint64_t value, unsigned size)
 509{
 510    switch (size) {
 511    case 1:
 512        fw_cfg_write(opaque, (uint8_t)value);
 513        break;
 514    case 2:
 515        fw_cfg_select(opaque, (uint16_t)value);
 516        break;
 517    }
 518}
 519
 520static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
 521                              unsigned size, bool is_write,
 522                              MemTxAttrs attrs)
 523{
 524    return (size == 1) || (is_write && size == 2);
 525}
 526
 527static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
 528    .read = fw_cfg_ctl_mem_read,
 529    .write = fw_cfg_ctl_mem_write,
 530    .endianness = DEVICE_BIG_ENDIAN,
 531    .valid.accepts = fw_cfg_ctl_mem_valid,
 532};
 533
 534static const MemoryRegionOps fw_cfg_data_mem_ops = {
 535    .read = fw_cfg_data_read,
 536    .write = fw_cfg_data_mem_write,
 537    .endianness = DEVICE_BIG_ENDIAN,
 538    .valid = {
 539        .min_access_size = 1,
 540        .max_access_size = 1,
 541        .accepts = fw_cfg_data_mem_valid,
 542    },
 543};
 544
 545static const MemoryRegionOps fw_cfg_comb_mem_ops = {
 546    .read = fw_cfg_data_read,
 547    .write = fw_cfg_comb_write,
 548    .endianness = DEVICE_LITTLE_ENDIAN,
 549    .valid.accepts = fw_cfg_comb_valid,
 550};
 551
 552static const MemoryRegionOps fw_cfg_dma_mem_ops = {
 553    .read = fw_cfg_dma_mem_read,
 554    .write = fw_cfg_dma_mem_write,
 555    .endianness = DEVICE_BIG_ENDIAN,
 556    .valid.accepts = fw_cfg_dma_mem_valid,
 557    .valid.max_access_size = 8,
 558    .impl.max_access_size = 8,
 559};
 560
 561static void fw_cfg_reset(DeviceState *d)
 562{
 563    FWCfgState *s = FW_CFG(d);
 564
 565    /* we never register a read callback for FW_CFG_SIGNATURE */
 566    fw_cfg_select(s, FW_CFG_SIGNATURE);
 567}
 568
 569/* Save restore 32 bit int as uint16_t
 570   This is a Big hack, but it is how the old state did it.
 571   Or we broke compatibility in the state, or we can't use struct tm
 572 */
 573
 574static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
 575                                const VMStateField *field)
 576{
 577    uint32_t *v = pv;
 578    *v = qemu_get_be16(f);
 579    return 0;
 580}
 581
 582static int put_unused(QEMUFile *f, void *pv, size_t size,
 583                      const VMStateField *field, QJSON *vmdesc)
 584{
 585    fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
 586    fprintf(stderr, "This functions shouldn't be called.\n");
 587
 588    return 0;
 589}
 590
 591static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
 592    .name = "int32_as_uint16",
 593    .get  = get_uint32_as_uint16,
 594    .put  = put_unused,
 595};
 596
 597#define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
 598    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
 599
 600
 601static bool is_version_1(void *opaque, int version_id)
 602{
 603    return version_id == 1;
 604}
 605
 606bool fw_cfg_dma_enabled(void *opaque)
 607{
 608    FWCfgState *s = opaque;
 609
 610    return s->dma_enabled;
 611}
 612
 613static const VMStateDescription vmstate_fw_cfg_dma = {
 614    .name = "fw_cfg/dma",
 615    .needed = fw_cfg_dma_enabled,
 616    .fields = (VMStateField[]) {
 617        VMSTATE_UINT64(dma_addr, FWCfgState),
 618        VMSTATE_END_OF_LIST()
 619    },
 620};
 621
 622static const VMStateDescription vmstate_fw_cfg = {
 623    .name = "fw_cfg",
 624    .version_id = 2,
 625    .minimum_version_id = 1,
 626    .fields = (VMStateField[]) {
 627        VMSTATE_UINT16(cur_entry, FWCfgState),
 628        VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
 629        VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
 630        VMSTATE_END_OF_LIST()
 631    },
 632    .subsections = (const VMStateDescription*[]) {
 633        &vmstate_fw_cfg_dma,
 634        NULL,
 635    }
 636};
 637
 638static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
 639                                      FWCfgCallback select_cb,
 640                                      FWCfgWriteCallback write_cb,
 641                                      void *callback_opaque,
 642                                      void *data, size_t len,
 643                                      bool read_only)
 644{
 645    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 646
 647    key &= FW_CFG_ENTRY_MASK;
 648
 649    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 650    assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
 651
 652    s->entries[arch][key].data = data;
 653    s->entries[arch][key].len = (uint32_t)len;
 654    s->entries[arch][key].select_cb = select_cb;
 655    s->entries[arch][key].write_cb = write_cb;
 656    s->entries[arch][key].callback_opaque = callback_opaque;
 657    s->entries[arch][key].allow_write = !read_only;
 658}
 659
 660static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
 661                                              void *data, size_t len)
 662{
 663    void *ptr;
 664    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 665
 666    key &= FW_CFG_ENTRY_MASK;
 667
 668    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 669
 670    /* return the old data to the function caller, avoid memory leak */
 671    ptr = s->entries[arch][key].data;
 672    s->entries[arch][key].data = data;
 673    s->entries[arch][key].len = len;
 674    s->entries[arch][key].callback_opaque = NULL;
 675    s->entries[arch][key].allow_write = false;
 676
 677    return ptr;
 678}
 679
 680void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
 681{
 682    trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
 683    fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
 684}
 685
 686void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
 687{
 688    size_t sz = strlen(value) + 1;
 689
 690    trace_fw_cfg_add_string(key, trace_key_name(key), value);
 691    fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
 692}
 693
 694void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
 695{
 696    size_t sz = strlen(value) + 1;
 697    char *old;
 698
 699    old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
 700    g_free(old);
 701}
 702
 703void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
 704{
 705    uint16_t *copy;
 706
 707    copy = g_malloc(sizeof(value));
 708    *copy = cpu_to_le16(value);
 709    trace_fw_cfg_add_i16(key, trace_key_name(key), value);
 710    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 711}
 712
 713void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
 714{
 715    uint16_t *copy, *old;
 716
 717    copy = g_malloc(sizeof(value));
 718    *copy = cpu_to_le16(value);
 719    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 720    g_free(old);
 721}
 722
 723void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
 724{
 725    uint32_t *copy;
 726
 727    copy = g_malloc(sizeof(value));
 728    *copy = cpu_to_le32(value);
 729    trace_fw_cfg_add_i32(key, trace_key_name(key), value);
 730    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 731}
 732
 733void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
 734{
 735    uint32_t *copy, *old;
 736
 737    copy = g_malloc(sizeof(value));
 738    *copy = cpu_to_le32(value);
 739    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 740    g_free(old);
 741}
 742
 743void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
 744{
 745    uint64_t *copy;
 746
 747    copy = g_malloc(sizeof(value));
 748    *copy = cpu_to_le64(value);
 749    trace_fw_cfg_add_i64(key, trace_key_name(key), value);
 750    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 751}
 752
 753void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
 754{
 755    uint64_t *copy, *old;
 756
 757    copy = g_malloc(sizeof(value));
 758    *copy = cpu_to_le64(value);
 759    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 760    g_free(old);
 761}
 762
 763void fw_cfg_set_order_override(FWCfgState *s, int order)
 764{
 765    assert(s->fw_cfg_order_override == 0);
 766    s->fw_cfg_order_override = order;
 767}
 768
 769void fw_cfg_reset_order_override(FWCfgState *s)
 770{
 771    assert(s->fw_cfg_order_override != 0);
 772    s->fw_cfg_order_override = 0;
 773}
 774
 775/*
 776 * This is the legacy order list.  For legacy systems, files are in
 777 * the fw_cfg in the order defined below, by the "order" value.  Note
 778 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
 779 * specific area, but there may be more than one and they occur in the
 780 * order that the user specifies them on the command line.  Those are
 781 * handled in a special manner, using the order override above.
 782 *
 783 * For non-legacy, the files are sorted by filename to avoid this kind
 784 * of complexity in the future.
 785 *
 786 * This is only for x86, other arches don't implement versioning so
 787 * they won't set legacy mode.
 788 */
 789static struct {
 790    const char *name;
 791    int order;
 792} fw_cfg_order[] = {
 793    { "etc/boot-menu-wait", 10 },
 794    { "bootsplash.jpg", 11 },
 795    { "bootsplash.bmp", 12 },
 796    { "etc/boot-fail-wait", 15 },
 797    { "etc/smbios/smbios-tables", 20 },
 798    { "etc/smbios/smbios-anchor", 30 },
 799    { "etc/e820", 40 },
 800    { "etc/reserved-memory-end", 50 },
 801    { "genroms/kvmvapic.bin", 55 },
 802    { "genroms/linuxboot.bin", 60 },
 803    { }, /* VGA ROMs from pc_vga_init come here, 70. */
 804    { }, /* NIC option ROMs from pc_nic_init come here, 80. */
 805    { "etc/system-states", 90 },
 806    { }, /* User ROMs come here, 100. */
 807    { }, /* Device FW comes here, 110. */
 808    { "etc/extra-pci-roots", 120 },
 809    { "etc/acpi/tables", 130 },
 810    { "etc/table-loader", 140 },
 811    { "etc/tpm/log", 150 },
 812    { "etc/acpi/rsdp", 160 },
 813    { "bootorder", 170 },
 814
 815#define FW_CFG_ORDER_OVERRIDE_LAST 200
 816};
 817
 818static int get_fw_cfg_order(FWCfgState *s, const char *name)
 819{
 820    int i;
 821
 822    if (s->fw_cfg_order_override > 0) {
 823        return s->fw_cfg_order_override;
 824    }
 825
 826    for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
 827        if (fw_cfg_order[i].name == NULL) {
 828            continue;
 829        }
 830
 831        if (strcmp(name, fw_cfg_order[i].name) == 0) {
 832            return fw_cfg_order[i].order;
 833        }
 834    }
 835
 836    /* Stick unknown stuff at the end. */
 837    warn_report("Unknown firmware file in legacy mode: %s", name);
 838    return FW_CFG_ORDER_OVERRIDE_LAST;
 839}
 840
 841void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
 842                              FWCfgCallback select_cb,
 843                              FWCfgWriteCallback write_cb,
 844                              void *callback_opaque,
 845                              void *data, size_t len, bool read_only)
 846{
 847    int i, index, count;
 848    size_t dsize;
 849    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 850    int order = 0;
 851
 852    if (!s->files) {
 853        dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
 854        s->files = g_malloc0(dsize);
 855        fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
 856    }
 857
 858    count = be32_to_cpu(s->files->count);
 859    assert(count < fw_cfg_file_slots(s));
 860
 861    /* Find the insertion point. */
 862    if (mc->legacy_fw_cfg_order) {
 863        /*
 864         * Sort by order. For files with the same order, we keep them
 865         * in the sequence in which they were added.
 866         */
 867        order = get_fw_cfg_order(s, filename);
 868        for (index = count;
 869             index > 0 && order < s->entry_order[index - 1];
 870             index--);
 871    } else {
 872        /* Sort by file name. */
 873        for (index = count;
 874             index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
 875             index--);
 876    }
 877
 878    /*
 879     * Move all the entries from the index point and after down one
 880     * to create a slot for the new entry.  Because calculations are
 881     * being done with the index, make it so that "i" is the current
 882     * index and "i - 1" is the one being copied from, thus the
 883     * unusual start and end in the for statement.
 884     */
 885    for (i = count; i > index; i--) {
 886        s->files->f[i] = s->files->f[i - 1];
 887        s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
 888        s->entries[0][FW_CFG_FILE_FIRST + i] =
 889            s->entries[0][FW_CFG_FILE_FIRST + i - 1];
 890        s->entry_order[i] = s->entry_order[i - 1];
 891    }
 892
 893    memset(&s->files->f[index], 0, sizeof(FWCfgFile));
 894    memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
 895
 896    pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
 897    for (i = 0; i <= count; i++) {
 898        if (i != index &&
 899            strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
 900            error_report("duplicate fw_cfg file name: %s",
 901                         s->files->f[index].name);
 902            exit(1);
 903        }
 904    }
 905
 906    fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
 907                              select_cb, write_cb,
 908                              callback_opaque, data, len,
 909                              read_only);
 910
 911    s->files->f[index].size   = cpu_to_be32(len);
 912    s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
 913    s->entry_order[index] = order;
 914    trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
 915
 916    s->files->count = cpu_to_be32(count+1);
 917}
 918
 919void fw_cfg_add_file(FWCfgState *s,  const char *filename,
 920                     void *data, size_t len)
 921{
 922    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 923}
 924
 925void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
 926                        void *data, size_t len)
 927{
 928    int i, index;
 929    void *ptr = NULL;
 930
 931    assert(s->files);
 932
 933    index = be32_to_cpu(s->files->count);
 934
 935    for (i = 0; i < index; i++) {
 936        if (strcmp(filename, s->files->f[i].name) == 0) {
 937            ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
 938                                           data, len);
 939            s->files->f[i].size   = cpu_to_be32(len);
 940            return ptr;
 941        }
 942    }
 943
 944    assert(index < fw_cfg_file_slots(s));
 945
 946    /* add new one */
 947    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 948    return NULL;
 949}
 950
 951static void fw_cfg_machine_reset(void *opaque)
 952{
 953    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 954    FWCfgState *s = opaque;
 955    void *ptr;
 956    size_t len;
 957    char *buf;
 958
 959    buf = get_boot_devices_list(&len);
 960    ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
 961    g_free(ptr);
 962
 963    if (!mc->legacy_fw_cfg_order) {
 964        buf = get_boot_devices_lchs_list(&len);
 965        ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
 966        g_free(ptr);
 967    }
 968}
 969
 970static void fw_cfg_machine_ready(struct Notifier *n, void *data)
 971{
 972    FWCfgState *s = container_of(n, FWCfgState, machine_ready);
 973    qemu_register_reset(fw_cfg_machine_reset, s);
 974}
 975
 976
 977
 978static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
 979{
 980    FWCfgState *s = FW_CFG(dev);
 981    MachineState *machine = MACHINE(qdev_get_machine());
 982    uint32_t version = FW_CFG_VERSION;
 983
 984    if (!fw_cfg_find()) {
 985        error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
 986        return;
 987    }
 988
 989    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
 990    fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
 991    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
 992    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
 993    fw_cfg_bootsplash(s);
 994    fw_cfg_reboot(s);
 995
 996    if (s->dma_enabled) {
 997        version |= FW_CFG_VERSION_DMA;
 998    }
 999
1000    fw_cfg_add_i32(s, FW_CFG_ID, version);
1001
1002    s->machine_ready.notify = fw_cfg_machine_ready;
1003    qemu_add_machine_init_done_notifier(&s->machine_ready);
1004}
1005
1006FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1007                                AddressSpace *dma_as)
1008{
1009    DeviceState *dev;
1010    SysBusDevice *sbd;
1011    FWCfgIoState *ios;
1012    FWCfgState *s;
1013    bool dma_requested = dma_iobase && dma_as;
1014
1015    dev = qdev_create(NULL, TYPE_FW_CFG_IO);
1016    if (!dma_requested) {
1017        qdev_prop_set_bit(dev, "dma_enabled", false);
1018    }
1019
1020    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1021                              OBJECT(dev), NULL);
1022    qdev_init_nofail(dev);
1023
1024    sbd = SYS_BUS_DEVICE(dev);
1025    ios = FW_CFG_IO(dev);
1026    sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1027
1028    s = FW_CFG(dev);
1029
1030    if (s->dma_enabled) {
1031        /* 64 bits for the address field */
1032        s->dma_as = dma_as;
1033        s->dma_addr = 0;
1034        sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1035    }
1036
1037    return s;
1038}
1039
1040FWCfgState *fw_cfg_init_io(uint32_t iobase)
1041{
1042    return fw_cfg_init_io_dma(iobase, 0, NULL);
1043}
1044
1045FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1046                                 hwaddr data_addr, uint32_t data_width,
1047                                 hwaddr dma_addr, AddressSpace *dma_as)
1048{
1049    DeviceState *dev;
1050    SysBusDevice *sbd;
1051    FWCfgState *s;
1052    bool dma_requested = dma_addr && dma_as;
1053
1054    dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1055    qdev_prop_set_uint32(dev, "data_width", data_width);
1056    if (!dma_requested) {
1057        qdev_prop_set_bit(dev, "dma_enabled", false);
1058    }
1059
1060    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1061                              OBJECT(dev), NULL);
1062    qdev_init_nofail(dev);
1063
1064    sbd = SYS_BUS_DEVICE(dev);
1065    sysbus_mmio_map(sbd, 0, ctl_addr);
1066    sysbus_mmio_map(sbd, 1, data_addr);
1067
1068    s = FW_CFG(dev);
1069
1070    if (s->dma_enabled) {
1071        s->dma_as = dma_as;
1072        s->dma_addr = 0;
1073        sysbus_mmio_map(sbd, 2, dma_addr);
1074    }
1075
1076    return s;
1077}
1078
1079FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1080{
1081    return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1082                                fw_cfg_data_mem_ops.valid.max_access_size,
1083                                0, NULL);
1084}
1085
1086
1087FWCfgState *fw_cfg_find(void)
1088{
1089    /* Returns NULL unless there is exactly one fw_cfg device */
1090    return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1091}
1092
1093
1094static void fw_cfg_class_init(ObjectClass *klass, void *data)
1095{
1096    DeviceClass *dc = DEVICE_CLASS(klass);
1097
1098    dc->reset = fw_cfg_reset;
1099    dc->vmsd = &vmstate_fw_cfg;
1100}
1101
1102static const TypeInfo fw_cfg_info = {
1103    .name          = TYPE_FW_CFG,
1104    .parent        = TYPE_SYS_BUS_DEVICE,
1105    .abstract      = true,
1106    .instance_size = sizeof(FWCfgState),
1107    .class_init    = fw_cfg_class_init,
1108};
1109
1110static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1111{
1112    uint16_t file_slots_max;
1113
1114    if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1115        error_setg(errp, "\"file_slots\" must be at least 0x%x",
1116                   FW_CFG_FILE_SLOTS_MIN);
1117        return;
1118    }
1119
1120    /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1121     * that we permit. The actual (exclusive) value coming from the
1122     * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1123    file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1124    if (fw_cfg_file_slots(s) > file_slots_max) {
1125        error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1126                   file_slots_max);
1127        return;
1128    }
1129
1130    s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1131    s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1132    s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1133}
1134
1135static Property fw_cfg_io_properties[] = {
1136    DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1137                     true),
1138    DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1139                       FW_CFG_FILE_SLOTS_DFLT),
1140    DEFINE_PROP_END_OF_LIST(),
1141};
1142
1143static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1144{
1145    FWCfgIoState *s = FW_CFG_IO(dev);
1146    Error *local_err = NULL;
1147
1148    fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1149    if (local_err) {
1150        error_propagate(errp, local_err);
1151        return;
1152    }
1153
1154    /* when using port i/o, the 8-bit data register ALWAYS overlaps
1155     * with half of the 16-bit control register. Hence, the total size
1156     * of the i/o region used is FW_CFG_CTL_SIZE */
1157    memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1158                          FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1159
1160    if (FW_CFG(s)->dma_enabled) {
1161        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1162                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1163                              sizeof(dma_addr_t));
1164    }
1165
1166    fw_cfg_common_realize(dev, errp);
1167}
1168
1169static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1170{
1171    DeviceClass *dc = DEVICE_CLASS(klass);
1172
1173    dc->realize = fw_cfg_io_realize;
1174    dc->props = fw_cfg_io_properties;
1175}
1176
1177static const TypeInfo fw_cfg_io_info = {
1178    .name          = TYPE_FW_CFG_IO,
1179    .parent        = TYPE_FW_CFG,
1180    .instance_size = sizeof(FWCfgIoState),
1181    .class_init    = fw_cfg_io_class_init,
1182};
1183
1184
1185static Property fw_cfg_mem_properties[] = {
1186    DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1187    DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1188                     true),
1189    DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1190                       FW_CFG_FILE_SLOTS_DFLT),
1191    DEFINE_PROP_END_OF_LIST(),
1192};
1193
1194static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1195{
1196    FWCfgMemState *s = FW_CFG_MEM(dev);
1197    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1198    const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1199    Error *local_err = NULL;
1200
1201    fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1202    if (local_err) {
1203        error_propagate(errp, local_err);
1204        return;
1205    }
1206
1207    memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1208                          FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1209    sysbus_init_mmio(sbd, &s->ctl_iomem);
1210
1211    if (s->data_width > data_ops->valid.max_access_size) {
1212        s->wide_data_ops = *data_ops;
1213
1214        s->wide_data_ops.valid.max_access_size = s->data_width;
1215        s->wide_data_ops.impl.max_access_size  = s->data_width;
1216        data_ops = &s->wide_data_ops;
1217    }
1218    memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1219                          "fwcfg.data", data_ops->valid.max_access_size);
1220    sysbus_init_mmio(sbd, &s->data_iomem);
1221
1222    if (FW_CFG(s)->dma_enabled) {
1223        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1224                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1225                              sizeof(dma_addr_t));
1226        sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1227    }
1228
1229    fw_cfg_common_realize(dev, errp);
1230}
1231
1232static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1233{
1234    DeviceClass *dc = DEVICE_CLASS(klass);
1235
1236    dc->realize = fw_cfg_mem_realize;
1237    dc->props = fw_cfg_mem_properties;
1238}
1239
1240static const TypeInfo fw_cfg_mem_info = {
1241    .name          = TYPE_FW_CFG_MEM,
1242    .parent        = TYPE_FW_CFG,
1243    .instance_size = sizeof(FWCfgMemState),
1244    .class_init    = fw_cfg_mem_class_init,
1245};
1246
1247
1248static void fw_cfg_register_types(void)
1249{
1250    type_register_static(&fw_cfg_info);
1251    type_register_static(&fw_cfg_io_info);
1252    type_register_static(&fw_cfg_mem_info);
1253}
1254
1255type_init(fw_cfg_register_types)
1256