qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 */
  26
  27#include "qemu/osdep.h"
  28#include "qemu-common.h"
  29#include "qapi/error.h"
  30#include "qapi/visitor.h"
  31#include "sysemu/sysemu.h"
  32#include "sysemu/hostmem.h"
  33#include "sysemu/numa.h"
  34#include "sysemu/qtest.h"
  35#include "sysemu/reset.h"
  36#include "sysemu/runstate.h"
  37#include "qemu/log.h"
  38#include "hw/fw-path-provider.h"
  39#include "elf.h"
  40#include "net/net.h"
  41#include "sysemu/device_tree.h"
  42#include "sysemu/cpus.h"
  43#include "sysemu/hw_accel.h"
  44#include "kvm_ppc.h"
  45#include "migration/misc.h"
  46#include "migration/qemu-file-types.h"
  47#include "migration/global_state.h"
  48#include "migration/register.h"
  49#include "mmu-hash64.h"
  50#include "mmu-book3s-v3.h"
  51#include "cpu-models.h"
  52#include "hw/core/cpu.h"
  53
  54#include "hw/boards.h"
  55#include "hw/ppc/ppc.h"
  56#include "hw/loader.h"
  57
  58#include "hw/ppc/fdt.h"
  59#include "hw/ppc/spapr.h"
  60#include "hw/ppc/spapr_vio.h"
  61#include "hw/qdev-properties.h"
  62#include "hw/pci-host/spapr.h"
  63#include "hw/pci/msi.h"
  64
  65#include "hw/pci/pci.h"
  66#include "hw/scsi/scsi.h"
  67#include "hw/virtio/virtio-scsi.h"
  68#include "hw/virtio/vhost-scsi-common.h"
  69
  70#include "exec/address-spaces.h"
  71#include "exec/ram_addr.h"
  72#include "hw/usb.h"
  73#include "qemu/config-file.h"
  74#include "qemu/error-report.h"
  75#include "trace.h"
  76#include "hw/nmi.h"
  77#include "hw/intc/intc.h"
  78
  79#include "qemu/cutils.h"
  80#include "hw/ppc/spapr_cpu_core.h"
  81#include "hw/mem/memory-device.h"
  82#include "hw/ppc/spapr_tpm_proxy.h"
  83
  84#include "monitor/monitor.h"
  85
  86#include <libfdt.h>
  87
  88/* SLOF memory layout:
  89 *
  90 * SLOF raw image loaded at 0, copies its romfs right below the flat
  91 * device-tree, then position SLOF itself 31M below that
  92 *
  93 * So we set FW_OVERHEAD to 40MB which should account for all of that
  94 * and more
  95 *
  96 * We load our kernel at 4M, leaving space for SLOF initial image
  97 */
  98#define FDT_MAX_SIZE            0x100000
  99#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
 100#define FW_MAX_SIZE             0x400000
 101#define FW_FILE_NAME            "slof.bin"
 102#define FW_OVERHEAD             0x2800000
 103#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
 104
 105#define MIN_RMA_SLOF            128UL
 106
 107#define PHANDLE_INTC            0x00001111
 108
 109/* These two functions implement the VCPU id numbering: one to compute them
 110 * all and one to identify thread 0 of a VCORE. Any change to the first one
 111 * is likely to have an impact on the second one, so let's keep them close.
 112 */
 113static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
 114{
 115    MachineState *ms = MACHINE(spapr);
 116    unsigned int smp_threads = ms->smp.threads;
 117
 118    assert(spapr->vsmt);
 119    return
 120        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 121}
 122static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
 123                                      PowerPCCPU *cpu)
 124{
 125    assert(spapr->vsmt);
 126    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 127}
 128
 129static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 130{
 131    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 132     * and newer QEMUs don't even have them. In both cases, we don't want
 133     * to send anything on the wire.
 134     */
 135    return false;
 136}
 137
 138static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 139    .name = "icp/server",
 140    .version_id = 1,
 141    .minimum_version_id = 1,
 142    .needed = pre_2_10_vmstate_dummy_icp_needed,
 143    .fields = (VMStateField[]) {
 144        VMSTATE_UNUSED(4), /* uint32_t xirr */
 145        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 146        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 147        VMSTATE_END_OF_LIST()
 148    },
 149};
 150
 151static void pre_2_10_vmstate_register_dummy_icp(int i)
 152{
 153    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 154                     (void *)(uintptr_t) i);
 155}
 156
 157static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 158{
 159    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 160                       (void *)(uintptr_t) i);
 161}
 162
 163int spapr_max_server_number(SpaprMachineState *spapr)
 164{
 165    MachineState *ms = MACHINE(spapr);
 166
 167    assert(spapr->vsmt);
 168    return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
 169}
 170
 171static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 172                                  int smt_threads)
 173{
 174    int i, ret = 0;
 175    uint32_t servers_prop[smt_threads];
 176    uint32_t gservers_prop[smt_threads * 2];
 177    int index = spapr_get_vcpu_id(cpu);
 178
 179    if (cpu->compat_pvr) {
 180        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 181        if (ret < 0) {
 182            return ret;
 183        }
 184    }
 185
 186    /* Build interrupt servers and gservers properties */
 187    for (i = 0; i < smt_threads; i++) {
 188        servers_prop[i] = cpu_to_be32(index + i);
 189        /* Hack, direct the group queues back to cpu 0 */
 190        gservers_prop[i*2] = cpu_to_be32(index + i);
 191        gservers_prop[i*2 + 1] = 0;
 192    }
 193    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 194                      servers_prop, sizeof(servers_prop));
 195    if (ret < 0) {
 196        return ret;
 197    }
 198    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 199                      gservers_prop, sizeof(gservers_prop));
 200
 201    return ret;
 202}
 203
 204static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 205{
 206    int index = spapr_get_vcpu_id(cpu);
 207    uint32_t associativity[] = {cpu_to_be32(0x5),
 208                                cpu_to_be32(0x0),
 209                                cpu_to_be32(0x0),
 210                                cpu_to_be32(0x0),
 211                                cpu_to_be32(cpu->node_id),
 212                                cpu_to_be32(index)};
 213
 214    /* Advertise NUMA via ibm,associativity */
 215    return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 216                          sizeof(associativity));
 217}
 218
 219/* Populate the "ibm,pa-features" property */
 220static void spapr_populate_pa_features(SpaprMachineState *spapr,
 221                                       PowerPCCPU *cpu,
 222                                       void *fdt, int offset)
 223{
 224    uint8_t pa_features_206[] = { 6, 0,
 225        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 226    uint8_t pa_features_207[] = { 24, 0,
 227        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 228        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 229        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 230        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 231    uint8_t pa_features_300[] = { 66, 0,
 232        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 233        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 234        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 235        /* 6: DS207 */
 236        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 237        /* 16: Vector */
 238        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 239        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 240        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 241        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 242        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 243        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 244        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 245        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 246        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 247        /* 42: PM, 44: PC RA, 46: SC vec'd */
 248        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 249        /* 48: SIMD, 50: QP BFP, 52: String */
 250        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 251        /* 54: DecFP, 56: DecI, 58: SHA */
 252        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 253        /* 60: NM atomic, 62: RNG */
 254        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 255    };
 256    uint8_t *pa_features = NULL;
 257    size_t pa_size;
 258
 259    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 260        pa_features = pa_features_206;
 261        pa_size = sizeof(pa_features_206);
 262    }
 263    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 264        pa_features = pa_features_207;
 265        pa_size = sizeof(pa_features_207);
 266    }
 267    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 268        pa_features = pa_features_300;
 269        pa_size = sizeof(pa_features_300);
 270    }
 271    if (!pa_features) {
 272        return;
 273    }
 274
 275    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 276        /*
 277         * Note: we keep CI large pages off by default because a 64K capable
 278         * guest provisioned with large pages might otherwise try to map a qemu
 279         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 280         * even if that qemu runs on a 4k host.
 281         * We dd this bit back here if we are confident this is not an issue
 282         */
 283        pa_features[3] |= 0x20;
 284    }
 285    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 286        pa_features[24] |= 0x80;    /* Transactional memory support */
 287    }
 288    if (spapr->cas_pre_isa3_guest && pa_size > 40) {
 289        /* Workaround for broken kernels that attempt (guest) radix
 290         * mode when they can't handle it, if they see the radix bit set
 291         * in pa-features. So hide it from them. */
 292        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 293    }
 294
 295    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 296}
 297
 298static hwaddr spapr_node0_size(MachineState *machine)
 299{
 300    if (machine->numa_state->num_nodes) {
 301        int i;
 302        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
 303            if (machine->numa_state->nodes[i].node_mem) {
 304                return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
 305                           machine->ram_size);
 306            }
 307        }
 308    }
 309    return machine->ram_size;
 310}
 311
 312static void add_str(GString *s, const gchar *s1)
 313{
 314    g_string_append_len(s, s1, strlen(s1) + 1);
 315}
 316
 317static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 318                                       hwaddr size)
 319{
 320    uint32_t associativity[] = {
 321        cpu_to_be32(0x4), /* length */
 322        cpu_to_be32(0x0), cpu_to_be32(0x0),
 323        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 324    };
 325    char mem_name[32];
 326    uint64_t mem_reg_property[2];
 327    int off;
 328
 329    mem_reg_property[0] = cpu_to_be64(start);
 330    mem_reg_property[1] = cpu_to_be64(size);
 331
 332    sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
 333    off = fdt_add_subnode(fdt, 0, mem_name);
 334    _FDT(off);
 335    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 336    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 337                      sizeof(mem_reg_property))));
 338    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 339                      sizeof(associativity))));
 340    return off;
 341}
 342
 343static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
 344{
 345    MachineState *machine = MACHINE(spapr);
 346    hwaddr mem_start, node_size;
 347    int i, nb_nodes = machine->numa_state->num_nodes;
 348    NodeInfo *nodes = machine->numa_state->nodes;
 349
 350    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 351        if (!nodes[i].node_mem) {
 352            continue;
 353        }
 354        if (mem_start >= machine->ram_size) {
 355            node_size = 0;
 356        } else {
 357            node_size = nodes[i].node_mem;
 358            if (node_size > machine->ram_size - mem_start) {
 359                node_size = machine->ram_size - mem_start;
 360            }
 361        }
 362        if (!mem_start) {
 363            /* spapr_machine_init() checks for rma_size <= node0_size
 364             * already */
 365            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 366            mem_start += spapr->rma_size;
 367            node_size -= spapr->rma_size;
 368        }
 369        for ( ; node_size; ) {
 370            hwaddr sizetmp = pow2floor(node_size);
 371
 372            /* mem_start != 0 here */
 373            if (ctzl(mem_start) < ctzl(sizetmp)) {
 374                sizetmp = 1ULL << ctzl(mem_start);
 375            }
 376
 377            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 378            node_size -= sizetmp;
 379            mem_start += sizetmp;
 380        }
 381    }
 382
 383    return 0;
 384}
 385
 386static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 387                                  SpaprMachineState *spapr)
 388{
 389    MachineState *ms = MACHINE(spapr);
 390    PowerPCCPU *cpu = POWERPC_CPU(cs);
 391    CPUPPCState *env = &cpu->env;
 392    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 393    int index = spapr_get_vcpu_id(cpu);
 394    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 395                       0xffffffff, 0xffffffff};
 396    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 397        : SPAPR_TIMEBASE_FREQ;
 398    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 399    uint32_t page_sizes_prop[64];
 400    size_t page_sizes_prop_size;
 401    unsigned int smp_threads = ms->smp.threads;
 402    uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
 403    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 404    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 405    SpaprDrc *drc;
 406    int drc_index;
 407    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 408    int i;
 409
 410    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 411    if (drc) {
 412        drc_index = spapr_drc_index(drc);
 413        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 414    }
 415
 416    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 417    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 418
 419    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 420    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 421                           env->dcache_line_size)));
 422    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 423                           env->dcache_line_size)));
 424    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 425                           env->icache_line_size)));
 426    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 427                           env->icache_line_size)));
 428
 429    if (pcc->l1_dcache_size) {
 430        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 431                               pcc->l1_dcache_size)));
 432    } else {
 433        warn_report("Unknown L1 dcache size for cpu");
 434    }
 435    if (pcc->l1_icache_size) {
 436        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 437                               pcc->l1_icache_size)));
 438    } else {
 439        warn_report("Unknown L1 icache size for cpu");
 440    }
 441
 442    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 443    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 444    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
 445    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 446    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 447    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 448
 449    if (env->spr_cb[SPR_PURR].oea_read) {
 450        _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
 451    }
 452    if (env->spr_cb[SPR_SPURR].oea_read) {
 453        _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
 454    }
 455
 456    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 457        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 458                          segs, sizeof(segs))));
 459    }
 460
 461    /* Advertise VSX (vector extensions) if available
 462     *   1               == VMX / Altivec available
 463     *   2               == VSX available
 464     *
 465     * Only CPUs for which we create core types in spapr_cpu_core.c
 466     * are possible, and all of those have VMX */
 467    if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 468        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 469    } else {
 470        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 471    }
 472
 473    /* Advertise DFP (Decimal Floating Point) if available
 474     *   0 / no property == no DFP
 475     *   1               == DFP available */
 476    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 477        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 478    }
 479
 480    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 481                                                      sizeof(page_sizes_prop));
 482    if (page_sizes_prop_size) {
 483        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 484                          page_sizes_prop, page_sizes_prop_size)));
 485    }
 486
 487    spapr_populate_pa_features(spapr, cpu, fdt, offset);
 488
 489    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 490                           cs->cpu_index / vcpus_per_socket)));
 491
 492    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 493                      pft_size_prop, sizeof(pft_size_prop))));
 494
 495    if (ms->numa_state->num_nodes > 1) {
 496        _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 497    }
 498
 499    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 500
 501    if (pcc->radix_page_info) {
 502        for (i = 0; i < pcc->radix_page_info->count; i++) {
 503            radix_AP_encodings[i] =
 504                cpu_to_be32(pcc->radix_page_info->entries[i]);
 505        }
 506        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 507                          radix_AP_encodings,
 508                          pcc->radix_page_info->count *
 509                          sizeof(radix_AP_encodings[0]))));
 510    }
 511
 512    /*
 513     * We set this property to let the guest know that it can use the large
 514     * decrementer and its width in bits.
 515     */
 516    if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
 517        _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
 518                              pcc->lrg_decr_bits)));
 519}
 520
 521static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
 522{
 523    CPUState **rev;
 524    CPUState *cs;
 525    int n_cpus;
 526    int cpus_offset;
 527    char *nodename;
 528    int i;
 529
 530    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 531    _FDT(cpus_offset);
 532    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 533    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 534
 535    /*
 536     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 537     * created by fdt_add_subnode() end up in the right order in FDT
 538     * for the guest kernel the enumerate the CPUs correctly.
 539     *
 540     * The CPU list cannot be traversed in reverse order, so we need
 541     * to do extra work.
 542     */
 543    n_cpus = 0;
 544    rev = NULL;
 545    CPU_FOREACH(cs) {
 546        rev = g_renew(CPUState *, rev, n_cpus + 1);
 547        rev[n_cpus++] = cs;
 548    }
 549
 550    for (i = n_cpus - 1; i >= 0; i--) {
 551        CPUState *cs = rev[i];
 552        PowerPCCPU *cpu = POWERPC_CPU(cs);
 553        int index = spapr_get_vcpu_id(cpu);
 554        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 555        int offset;
 556
 557        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 558            continue;
 559        }
 560
 561        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 562        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 563        g_free(nodename);
 564        _FDT(offset);
 565        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 566    }
 567
 568    g_free(rev);
 569}
 570
 571static int spapr_rng_populate_dt(void *fdt)
 572{
 573    int node;
 574    int ret;
 575
 576    node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
 577    if (node <= 0) {
 578        return -1;
 579    }
 580    ret = fdt_setprop_string(fdt, node, "device_type",
 581                             "ibm,platform-facilities");
 582    ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
 583    ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
 584
 585    node = fdt_add_subnode(fdt, node, "ibm,random-v1");
 586    if (node <= 0) {
 587        return -1;
 588    }
 589    ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
 590
 591    return ret ? -1 : 0;
 592}
 593
 594static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 595{
 596    MemoryDeviceInfoList *info;
 597
 598    for (info = list; info; info = info->next) {
 599        MemoryDeviceInfo *value = info->value;
 600
 601        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 602            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 603
 604            if (addr >= pcdimm_info->addr &&
 605                addr < (pcdimm_info->addr + pcdimm_info->size)) {
 606                return pcdimm_info->node;
 607            }
 608        }
 609    }
 610
 611    return -1;
 612}
 613
 614struct sPAPRDrconfCellV2 {
 615     uint32_t seq_lmbs;
 616     uint64_t base_addr;
 617     uint32_t drc_index;
 618     uint32_t aa_index;
 619     uint32_t flags;
 620} QEMU_PACKED;
 621
 622typedef struct DrconfCellQueue {
 623    struct sPAPRDrconfCellV2 cell;
 624    QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
 625} DrconfCellQueue;
 626
 627static DrconfCellQueue *
 628spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
 629                      uint32_t drc_index, uint32_t aa_index,
 630                      uint32_t flags)
 631{
 632    DrconfCellQueue *elem;
 633
 634    elem = g_malloc0(sizeof(*elem));
 635    elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
 636    elem->cell.base_addr = cpu_to_be64(base_addr);
 637    elem->cell.drc_index = cpu_to_be32(drc_index);
 638    elem->cell.aa_index = cpu_to_be32(aa_index);
 639    elem->cell.flags = cpu_to_be32(flags);
 640
 641    return elem;
 642}
 643
 644/* ibm,dynamic-memory-v2 */
 645static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
 646                                   int offset, MemoryDeviceInfoList *dimms)
 647{
 648    MachineState *machine = MACHINE(spapr);
 649    uint8_t *int_buf, *cur_index;
 650    int ret;
 651    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 652    uint64_t addr, cur_addr, size;
 653    uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
 654    uint64_t mem_end = machine->device_memory->base +
 655                       memory_region_size(&machine->device_memory->mr);
 656    uint32_t node, buf_len, nr_entries = 0;
 657    SpaprDrc *drc;
 658    DrconfCellQueue *elem, *next;
 659    MemoryDeviceInfoList *info;
 660    QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
 661        = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
 662
 663    /* Entry to cover RAM and the gap area */
 664    elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
 665                                 SPAPR_LMB_FLAGS_RESERVED |
 666                                 SPAPR_LMB_FLAGS_DRC_INVALID);
 667    QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 668    nr_entries++;
 669
 670    cur_addr = machine->device_memory->base;
 671    for (info = dimms; info; info = info->next) {
 672        PCDIMMDeviceInfo *di = info->value->u.dimm.data;
 673
 674        addr = di->addr;
 675        size = di->size;
 676        node = di->node;
 677
 678        /* Entry for hot-pluggable area */
 679        if (cur_addr < addr) {
 680            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 681            g_assert(drc);
 682            elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
 683                                         cur_addr, spapr_drc_index(drc), -1, 0);
 684            QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 685            nr_entries++;
 686        }
 687
 688        /* Entry for DIMM */
 689        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
 690        g_assert(drc);
 691        elem = spapr_get_drconf_cell(size / lmb_size, addr,
 692                                     spapr_drc_index(drc), node,
 693                                     SPAPR_LMB_FLAGS_ASSIGNED);
 694        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 695        nr_entries++;
 696        cur_addr = addr + size;
 697    }
 698
 699    /* Entry for remaining hotpluggable area */
 700    if (cur_addr < mem_end) {
 701        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 702        g_assert(drc);
 703        elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
 704                                     cur_addr, spapr_drc_index(drc), -1, 0);
 705        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 706        nr_entries++;
 707    }
 708
 709    buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
 710    int_buf = cur_index = g_malloc0(buf_len);
 711    *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
 712    cur_index += sizeof(nr_entries);
 713
 714    QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
 715        memcpy(cur_index, &elem->cell, sizeof(elem->cell));
 716        cur_index += sizeof(elem->cell);
 717        QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
 718        g_free(elem);
 719    }
 720
 721    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
 722    g_free(int_buf);
 723    if (ret < 0) {
 724        return -1;
 725    }
 726    return 0;
 727}
 728
 729/* ibm,dynamic-memory */
 730static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
 731                                   int offset, MemoryDeviceInfoList *dimms)
 732{
 733    MachineState *machine = MACHINE(spapr);
 734    int i, ret;
 735    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 736    uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
 737    uint32_t nr_lmbs = (machine->device_memory->base +
 738                       memory_region_size(&machine->device_memory->mr)) /
 739                       lmb_size;
 740    uint32_t *int_buf, *cur_index, buf_len;
 741
 742    /*
 743     * Allocate enough buffer size to fit in ibm,dynamic-memory
 744     */
 745    buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
 746    cur_index = int_buf = g_malloc0(buf_len);
 747    int_buf[0] = cpu_to_be32(nr_lmbs);
 748    cur_index++;
 749    for (i = 0; i < nr_lmbs; i++) {
 750        uint64_t addr = i * lmb_size;
 751        uint32_t *dynamic_memory = cur_index;
 752
 753        if (i >= device_lmb_start) {
 754            SpaprDrc *drc;
 755
 756            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 757            g_assert(drc);
 758
 759            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 760            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 761            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 762            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 763            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 764            if (memory_region_present(get_system_memory(), addr)) {
 765                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 766            } else {
 767                dynamic_memory[5] = cpu_to_be32(0);
 768            }
 769        } else {
 770            /*
 771             * LMB information for RMA, boot time RAM and gap b/n RAM and
 772             * device memory region -- all these are marked as reserved
 773             * and as having no valid DRC.
 774             */
 775            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 776            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 777            dynamic_memory[2] = cpu_to_be32(0);
 778            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 779            dynamic_memory[4] = cpu_to_be32(-1);
 780            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 781                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 782        }
 783
 784        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 785    }
 786    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 787    g_free(int_buf);
 788    if (ret < 0) {
 789        return -1;
 790    }
 791    return 0;
 792}
 793
 794/*
 795 * Adds ibm,dynamic-reconfiguration-memory node.
 796 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 797 * of this device tree node.
 798 */
 799static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
 800{
 801    MachineState *machine = MACHINE(spapr);
 802    int nb_numa_nodes = machine->numa_state->num_nodes;
 803    int ret, i, offset;
 804    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 805    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 806    uint32_t *int_buf, *cur_index, buf_len;
 807    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 808    MemoryDeviceInfoList *dimms = NULL;
 809
 810    /*
 811     * Don't create the node if there is no device memory
 812     */
 813    if (machine->ram_size == machine->maxram_size) {
 814        return 0;
 815    }
 816
 817    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 818
 819    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 820                    sizeof(prop_lmb_size));
 821    if (ret < 0) {
 822        return ret;
 823    }
 824
 825    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 826    if (ret < 0) {
 827        return ret;
 828    }
 829
 830    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 831    if (ret < 0) {
 832        return ret;
 833    }
 834
 835    /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
 836    dimms = qmp_memory_device_list();
 837    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
 838        ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
 839    } else {
 840        ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
 841    }
 842    qapi_free_MemoryDeviceInfoList(dimms);
 843
 844    if (ret < 0) {
 845        return ret;
 846    }
 847
 848    /* ibm,associativity-lookup-arrays */
 849    buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
 850    cur_index = int_buf = g_malloc0(buf_len);
 851    int_buf[0] = cpu_to_be32(nr_nodes);
 852    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 853    cur_index += 2;
 854    for (i = 0; i < nr_nodes; i++) {
 855        uint32_t associativity[] = {
 856            cpu_to_be32(0x0),
 857            cpu_to_be32(0x0),
 858            cpu_to_be32(0x0),
 859            cpu_to_be32(i)
 860        };
 861        memcpy(cur_index, associativity, sizeof(associativity));
 862        cur_index += 4;
 863    }
 864    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 865            (cur_index - int_buf) * sizeof(uint32_t));
 866    g_free(int_buf);
 867
 868    return ret;
 869}
 870
 871static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
 872                                SpaprOptionVector *ov5_updates)
 873{
 874    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 875    int ret = 0, offset;
 876
 877    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 878    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 879        g_assert(smc->dr_lmb_enabled);
 880        ret = spapr_populate_drconf_memory(spapr, fdt);
 881        if (ret) {
 882            goto out;
 883        }
 884    }
 885
 886    offset = fdt_path_offset(fdt, "/chosen");
 887    if (offset < 0) {
 888        offset = fdt_add_subnode(fdt, 0, "chosen");
 889        if (offset < 0) {
 890            return offset;
 891        }
 892    }
 893    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 894                                 "ibm,architecture-vec-5");
 895
 896out:
 897    return ret;
 898}
 899
 900static bool spapr_hotplugged_dev_before_cas(void)
 901{
 902    Object *drc_container, *obj;
 903    ObjectProperty *prop;
 904    ObjectPropertyIterator iter;
 905
 906    drc_container = container_get(object_get_root(), "/dr-connector");
 907    object_property_iter_init(&iter, drc_container);
 908    while ((prop = object_property_iter_next(&iter))) {
 909        if (!strstart(prop->type, "link<", NULL)) {
 910            continue;
 911        }
 912        obj = object_property_get_link(drc_container, prop->name, NULL);
 913        if (spapr_drc_needed(obj)) {
 914            return true;
 915        }
 916    }
 917    return false;
 918}
 919
 920static void *spapr_build_fdt(SpaprMachineState *spapr, bool reset);
 921
 922int spapr_h_cas_compose_response(SpaprMachineState *spapr,
 923                                 target_ulong addr, target_ulong size,
 924                                 SpaprOptionVector *ov5_updates)
 925{
 926    void *fdt;
 927    SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 928
 929    if (spapr_hotplugged_dev_before_cas()) {
 930        return 1;
 931    }
 932
 933    if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
 934        error_report("SLOF provided an unexpected CAS buffer size "
 935                     TARGET_FMT_lu " (min: %zu, max: %u)",
 936                     size, sizeof(hdr), FW_MAX_SIZE);
 937        exit(EXIT_FAILURE);
 938    }
 939
 940    size -= sizeof(hdr);
 941
 942    fdt = spapr_build_fdt(spapr, false);
 943    _FDT((fdt_pack(fdt)));
 944
 945    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
 946        g_free(fdt);
 947        trace_spapr_cas_failed(size);
 948        return -1;
 949    }
 950
 951    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
 952    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
 953    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
 954
 955    g_free(spapr->fdt_blob);
 956    spapr->fdt_size = fdt_totalsize(fdt);
 957    spapr->fdt_initial_size = spapr->fdt_size;
 958    spapr->fdt_blob = fdt;
 959
 960    return 0;
 961}
 962
 963static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
 964{
 965    MachineState *ms = MACHINE(spapr);
 966    int rtas;
 967    GString *hypertas = g_string_sized_new(256);
 968    GString *qemu_hypertas = g_string_sized_new(256);
 969    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
 970    uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
 971        memory_region_size(&MACHINE(spapr)->device_memory->mr);
 972    uint32_t lrdr_capacity[] = {
 973        cpu_to_be32(max_device_addr >> 32),
 974        cpu_to_be32(max_device_addr & 0xffffffff),
 975        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
 976        cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
 977    };
 978    uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
 979    uint32_t maxdomains[] = {
 980        cpu_to_be32(4),
 981        maxdomain,
 982        maxdomain,
 983        maxdomain,
 984        cpu_to_be32(spapr->gpu_numa_id),
 985    };
 986
 987    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 988
 989    /* hypertas */
 990    add_str(hypertas, "hcall-pft");
 991    add_str(hypertas, "hcall-term");
 992    add_str(hypertas, "hcall-dabr");
 993    add_str(hypertas, "hcall-interrupt");
 994    add_str(hypertas, "hcall-tce");
 995    add_str(hypertas, "hcall-vio");
 996    add_str(hypertas, "hcall-splpar");
 997    add_str(hypertas, "hcall-join");
 998    add_str(hypertas, "hcall-bulk");
 999    add_str(hypertas, "hcall-set-mode");
1000    add_str(hypertas, "hcall-sprg0");
1001    add_str(hypertas, "hcall-copy");
1002    add_str(hypertas, "hcall-debug");
1003    add_str(hypertas, "hcall-vphn");
1004    add_str(qemu_hypertas, "hcall-memop1");
1005
1006    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1007        add_str(hypertas, "hcall-multi-tce");
1008    }
1009
1010    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1011        add_str(hypertas, "hcall-hpt-resize");
1012    }
1013
1014    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1015                     hypertas->str, hypertas->len));
1016    g_string_free(hypertas, TRUE);
1017    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1018                     qemu_hypertas->str, qemu_hypertas->len));
1019    g_string_free(qemu_hypertas, TRUE);
1020
1021    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1022                     refpoints, sizeof(refpoints)));
1023
1024    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1025                     maxdomains, sizeof(maxdomains)));
1026
1027    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1028                          RTAS_ERROR_LOG_MAX));
1029    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1030                          RTAS_EVENT_SCAN_RATE));
1031
1032    g_assert(msi_nonbroken);
1033    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1034
1035    /*
1036     * According to PAPR, rtas ibm,os-term does not guarantee a return
1037     * back to the guest cpu.
1038     *
1039     * While an additional ibm,extended-os-term property indicates
1040     * that rtas call return will always occur. Set this property.
1041     */
1042    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1043
1044    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1045                     lrdr_capacity, sizeof(lrdr_capacity)));
1046
1047    spapr_dt_rtas_tokens(fdt, rtas);
1048}
1049
1050/*
1051 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1052 * and the XIVE features that the guest may request and thus the valid
1053 * values for bytes 23..26 of option vector 5:
1054 */
1055static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1056                                          int chosen)
1057{
1058    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1059
1060    char val[2 * 4] = {
1061        23, 0x00, /* XICS / XIVE mode */
1062        24, 0x00, /* Hash/Radix, filled in below. */
1063        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1064        26, 0x40, /* Radix options: GTSE == yes. */
1065    };
1066
1067    if (spapr->irq->xics && spapr->irq->xive) {
1068        val[1] = SPAPR_OV5_XIVE_BOTH;
1069    } else if (spapr->irq->xive) {
1070        val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1071    } else {
1072        assert(spapr->irq->xics);
1073        val[1] = SPAPR_OV5_XIVE_LEGACY;
1074    }
1075
1076    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1077                          first_ppc_cpu->compat_pvr)) {
1078        /*
1079         * If we're in a pre POWER9 compat mode then the guest should
1080         * do hash and use the legacy interrupt mode
1081         */
1082        val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1083        val[3] = 0x00; /* Hash */
1084    } else if (kvm_enabled()) {
1085        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1086            val[3] = 0x80; /* OV5_MMU_BOTH */
1087        } else if (kvmppc_has_cap_mmu_radix()) {
1088            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1089        } else {
1090            val[3] = 0x00; /* Hash */
1091        }
1092    } else {
1093        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1094        val[3] = 0xC0;
1095    }
1096    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1097                     val, sizeof(val)));
1098}
1099
1100static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1101{
1102    MachineState *machine = MACHINE(spapr);
1103    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1104    int chosen;
1105    const char *boot_device = machine->boot_order;
1106    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1107    size_t cb = 0;
1108    char *bootlist = get_boot_devices_list(&cb);
1109
1110    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1111
1112    if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1113        _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1114                                machine->kernel_cmdline));
1115    }
1116    if (spapr->initrd_size) {
1117        _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1118                              spapr->initrd_base));
1119        _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1120                              spapr->initrd_base + spapr->initrd_size));
1121    }
1122
1123    if (spapr->kernel_size) {
1124        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1125                              cpu_to_be64(spapr->kernel_size) };
1126
1127        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1128                         &kprop, sizeof(kprop)));
1129        if (spapr->kernel_le) {
1130            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1131        }
1132    }
1133    if (boot_menu) {
1134        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1135    }
1136    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1137    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1138    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1139
1140    if (cb && bootlist) {
1141        int i;
1142
1143        for (i = 0; i < cb; i++) {
1144            if (bootlist[i] == '\n') {
1145                bootlist[i] = ' ';
1146            }
1147        }
1148        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1149    }
1150
1151    if (boot_device && strlen(boot_device)) {
1152        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1153    }
1154
1155    if (!spapr->has_graphics && stdout_path) {
1156        /*
1157         * "linux,stdout-path" and "stdout" properties are deprecated by linux
1158         * kernel. New platforms should only use the "stdout-path" property. Set
1159         * the new property and continue using older property to remain
1160         * compatible with the existing firmware.
1161         */
1162        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1163        _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1164    }
1165
1166    /* We can deal with BAR reallocation just fine, advertise it to the guest */
1167    if (smc->linux_pci_probe) {
1168        _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1169    }
1170
1171    spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1172
1173    g_free(stdout_path);
1174    g_free(bootlist);
1175}
1176
1177static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1178{
1179    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1180     * KVM to work under pHyp with some guest co-operation */
1181    int hypervisor;
1182    uint8_t hypercall[16];
1183
1184    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1185    /* indicate KVM hypercall interface */
1186    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1187    if (kvmppc_has_cap_fixup_hcalls()) {
1188        /*
1189         * Older KVM versions with older guest kernels were broken
1190         * with the magic page, don't allow the guest to map it.
1191         */
1192        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1193                                  sizeof(hypercall))) {
1194            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1195                             hypercall, sizeof(hypercall)));
1196        }
1197    }
1198}
1199
1200static void *spapr_build_fdt(SpaprMachineState *spapr, bool reset)
1201{
1202    MachineState *machine = MACHINE(spapr);
1203    MachineClass *mc = MACHINE_GET_CLASS(machine);
1204    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1205    int ret;
1206    void *fdt;
1207    SpaprPhbState *phb;
1208    char *buf;
1209
1210    fdt = g_malloc0(FDT_MAX_SIZE);
1211    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1212
1213    /* Root node */
1214    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1215    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1216    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1217
1218    /* Guest UUID & Name*/
1219    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1220    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1221    if (qemu_uuid_set) {
1222        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1223    }
1224    g_free(buf);
1225
1226    if (qemu_get_vm_name()) {
1227        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1228                                qemu_get_vm_name()));
1229    }
1230
1231    /* Host Model & Serial Number */
1232    if (spapr->host_model) {
1233        _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1234    } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1235        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1236        g_free(buf);
1237    }
1238
1239    if (spapr->host_serial) {
1240        _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1241    } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1242        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1243        g_free(buf);
1244    }
1245
1246    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1247    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1248
1249    /* /interrupt controller */
1250    spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1251
1252    ret = spapr_populate_memory(spapr, fdt);
1253    if (ret < 0) {
1254        error_report("couldn't setup memory nodes in fdt");
1255        exit(1);
1256    }
1257
1258    /* /vdevice */
1259    spapr_dt_vdevice(spapr->vio_bus, fdt);
1260
1261    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1262        ret = spapr_rng_populate_dt(fdt);
1263        if (ret < 0) {
1264            error_report("could not set up rng device in the fdt");
1265            exit(1);
1266        }
1267    }
1268
1269    QLIST_FOREACH(phb, &spapr->phbs, list) {
1270        ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1271        if (ret < 0) {
1272            error_report("couldn't setup PCI devices in fdt");
1273            exit(1);
1274        }
1275    }
1276
1277    /* cpus */
1278    spapr_populate_cpus_dt_node(fdt, spapr);
1279
1280    if (smc->dr_lmb_enabled) {
1281        _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1282    }
1283
1284    if (mc->has_hotpluggable_cpus) {
1285        int offset = fdt_path_offset(fdt, "/cpus");
1286        ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1287        if (ret < 0) {
1288            error_report("Couldn't set up CPU DR device tree properties");
1289            exit(1);
1290        }
1291    }
1292
1293    /* /event-sources */
1294    spapr_dt_events(spapr, fdt);
1295
1296    /* /rtas */
1297    spapr_dt_rtas(spapr, fdt);
1298
1299    /* /chosen */
1300    if (reset) {
1301        spapr_dt_chosen(spapr, fdt);
1302    }
1303
1304    /* /hypervisor */
1305    if (kvm_enabled()) {
1306        spapr_dt_hypervisor(spapr, fdt);
1307    }
1308
1309    /* Build memory reserve map */
1310    if (reset) {
1311        if (spapr->kernel_size) {
1312            _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1313        }
1314        if (spapr->initrd_size) {
1315            _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1316                                  spapr->initrd_size)));
1317        }
1318    }
1319
1320    /* ibm,client-architecture-support updates */
1321    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1322    if (ret < 0) {
1323        error_report("couldn't setup CAS properties fdt");
1324        exit(1);
1325    }
1326
1327    if (smc->dr_phb_enabled) {
1328        ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1329        if (ret < 0) {
1330            error_report("Couldn't set up PHB DR device tree properties");
1331            exit(1);
1332        }
1333    }
1334
1335    return fdt;
1336}
1337
1338static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1339{
1340    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1341}
1342
1343static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1344                                    PowerPCCPU *cpu)
1345{
1346    CPUPPCState *env = &cpu->env;
1347
1348    /* The TCG path should also be holding the BQL at this point */
1349    g_assert(qemu_mutex_iothread_locked());
1350
1351    if (msr_pr) {
1352        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1353        env->gpr[3] = H_PRIVILEGE;
1354    } else {
1355        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1356    }
1357}
1358
1359struct LPCRSyncState {
1360    target_ulong value;
1361    target_ulong mask;
1362};
1363
1364static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1365{
1366    struct LPCRSyncState *s = arg.host_ptr;
1367    PowerPCCPU *cpu = POWERPC_CPU(cs);
1368    CPUPPCState *env = &cpu->env;
1369    target_ulong lpcr;
1370
1371    cpu_synchronize_state(cs);
1372    lpcr = env->spr[SPR_LPCR];
1373    lpcr &= ~s->mask;
1374    lpcr |= s->value;
1375    ppc_store_lpcr(cpu, lpcr);
1376}
1377
1378void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1379{
1380    CPUState *cs;
1381    struct LPCRSyncState s = {
1382        .value = value,
1383        .mask = mask
1384    };
1385    CPU_FOREACH(cs) {
1386        run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1387    }
1388}
1389
1390static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1391{
1392    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1393
1394    /* Copy PATE1:GR into PATE0:HR */
1395    entry->dw0 = spapr->patb_entry & PATE0_HR;
1396    entry->dw1 = spapr->patb_entry;
1397}
1398
1399#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1400#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1401#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1402#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1403#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1404
1405/*
1406 * Get the fd to access the kernel htab, re-opening it if necessary
1407 */
1408static int get_htab_fd(SpaprMachineState *spapr)
1409{
1410    Error *local_err = NULL;
1411
1412    if (spapr->htab_fd >= 0) {
1413        return spapr->htab_fd;
1414    }
1415
1416    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1417    if (spapr->htab_fd < 0) {
1418        error_report_err(local_err);
1419    }
1420
1421    return spapr->htab_fd;
1422}
1423
1424void close_htab_fd(SpaprMachineState *spapr)
1425{
1426    if (spapr->htab_fd >= 0) {
1427        close(spapr->htab_fd);
1428    }
1429    spapr->htab_fd = -1;
1430}
1431
1432static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1433{
1434    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1435
1436    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1437}
1438
1439static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1440{
1441    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1442
1443    assert(kvm_enabled());
1444
1445    if (!spapr->htab) {
1446        return 0;
1447    }
1448
1449    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1450}
1451
1452static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1453                                                hwaddr ptex, int n)
1454{
1455    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1456    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1457
1458    if (!spapr->htab) {
1459        /*
1460         * HTAB is controlled by KVM. Fetch into temporary buffer
1461         */
1462        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1463        kvmppc_read_hptes(hptes, ptex, n);
1464        return hptes;
1465    }
1466
1467    /*
1468     * HTAB is controlled by QEMU. Just point to the internally
1469     * accessible PTEG.
1470     */
1471    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1472}
1473
1474static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1475                              const ppc_hash_pte64_t *hptes,
1476                              hwaddr ptex, int n)
1477{
1478    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1479
1480    if (!spapr->htab) {
1481        g_free((void *)hptes);
1482    }
1483
1484    /* Nothing to do for qemu managed HPT */
1485}
1486
1487void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1488                      uint64_t pte0, uint64_t pte1)
1489{
1490    SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1491    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1492
1493    if (!spapr->htab) {
1494        kvmppc_write_hpte(ptex, pte0, pte1);
1495    } else {
1496        if (pte0 & HPTE64_V_VALID) {
1497            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1498            /*
1499             * When setting valid, we write PTE1 first. This ensures
1500             * proper synchronization with the reading code in
1501             * ppc_hash64_pteg_search()
1502             */
1503            smp_wmb();
1504            stq_p(spapr->htab + offset, pte0);
1505        } else {
1506            stq_p(spapr->htab + offset, pte0);
1507            /*
1508             * When clearing it we set PTE0 first. This ensures proper
1509             * synchronization with the reading code in
1510             * ppc_hash64_pteg_search()
1511             */
1512            smp_wmb();
1513            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1514        }
1515    }
1516}
1517
1518static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1519                             uint64_t pte1)
1520{
1521    hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1522    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1523
1524    if (!spapr->htab) {
1525        /* There should always be a hash table when this is called */
1526        error_report("spapr_hpte_set_c called with no hash table !");
1527        return;
1528    }
1529
1530    /* The HW performs a non-atomic byte update */
1531    stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1532}
1533
1534static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1535                             uint64_t pte1)
1536{
1537    hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1538    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1539
1540    if (!spapr->htab) {
1541        /* There should always be a hash table when this is called */
1542        error_report("spapr_hpte_set_r called with no hash table !");
1543        return;
1544    }
1545
1546    /* The HW performs a non-atomic byte update */
1547    stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1548}
1549
1550int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1551{
1552    int shift;
1553
1554    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1555     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1556     * that's much more than is needed for Linux guests */
1557    shift = ctz64(pow2ceil(ramsize)) - 7;
1558    shift = MAX(shift, 18); /* Minimum architected size */
1559    shift = MIN(shift, 46); /* Maximum architected size */
1560    return shift;
1561}
1562
1563void spapr_free_hpt(SpaprMachineState *spapr)
1564{
1565    g_free(spapr->htab);
1566    spapr->htab = NULL;
1567    spapr->htab_shift = 0;
1568    close_htab_fd(spapr);
1569}
1570
1571void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1572                          Error **errp)
1573{
1574    long rc;
1575
1576    /* Clean up any HPT info from a previous boot */
1577    spapr_free_hpt(spapr);
1578
1579    rc = kvmppc_reset_htab(shift);
1580    if (rc < 0) {
1581        /* kernel-side HPT needed, but couldn't allocate one */
1582        error_setg_errno(errp, errno,
1583                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1584                         shift);
1585        /* This is almost certainly fatal, but if the caller really
1586         * wants to carry on with shift == 0, it's welcome to try */
1587    } else if (rc > 0) {
1588        /* kernel-side HPT allocated */
1589        if (rc != shift) {
1590            error_setg(errp,
1591                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1592                       shift, rc);
1593        }
1594
1595        spapr->htab_shift = shift;
1596        spapr->htab = NULL;
1597    } else {
1598        /* kernel-side HPT not needed, allocate in userspace instead */
1599        size_t size = 1ULL << shift;
1600        int i;
1601
1602        spapr->htab = qemu_memalign(size, size);
1603        if (!spapr->htab) {
1604            error_setg_errno(errp, errno,
1605                             "Could not allocate HPT of order %d", shift);
1606            return;
1607        }
1608
1609        memset(spapr->htab, 0, size);
1610        spapr->htab_shift = shift;
1611
1612        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1613            DIRTY_HPTE(HPTE(spapr->htab, i));
1614        }
1615    }
1616    /* We're setting up a hash table, so that means we're not radix */
1617    spapr->patb_entry = 0;
1618    spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1619}
1620
1621void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1622{
1623    int hpt_shift;
1624
1625    if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1626        || (spapr->cas_reboot
1627            && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1628        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1629    } else {
1630        uint64_t current_ram_size;
1631
1632        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1633        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1634    }
1635    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1636
1637    if (spapr->vrma_adjust) {
1638        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1639                                          spapr->htab_shift);
1640    }
1641}
1642
1643static int spapr_reset_drcs(Object *child, void *opaque)
1644{
1645    SpaprDrc *drc =
1646        (SpaprDrc *) object_dynamic_cast(child,
1647                                                 TYPE_SPAPR_DR_CONNECTOR);
1648
1649    if (drc) {
1650        spapr_drc_reset(drc);
1651    }
1652
1653    return 0;
1654}
1655
1656static void spapr_machine_reset(MachineState *machine)
1657{
1658    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1659    PowerPCCPU *first_ppc_cpu;
1660    hwaddr fdt_addr;
1661    void *fdt;
1662    int rc;
1663
1664    spapr_caps_apply(spapr);
1665
1666    first_ppc_cpu = POWERPC_CPU(first_cpu);
1667    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1668        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1669                              spapr->max_compat_pvr)) {
1670        /*
1671         * If using KVM with radix mode available, VCPUs can be started
1672         * without a HPT because KVM will start them in radix mode.
1673         * Set the GR bit in PATE so that we know there is no HPT.
1674         */
1675        spapr->patb_entry = PATE1_GR;
1676        spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1677    } else {
1678        spapr_setup_hpt_and_vrma(spapr);
1679    }
1680
1681    qemu_devices_reset();
1682
1683    /*
1684     * If this reset wasn't generated by CAS, we should reset our
1685     * negotiated options and start from scratch
1686     */
1687    if (!spapr->cas_reboot) {
1688        spapr_ovec_cleanup(spapr->ov5_cas);
1689        spapr->ov5_cas = spapr_ovec_new();
1690
1691        ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1692    }
1693
1694    /*
1695     * This is fixing some of the default configuration of the XIVE
1696     * devices. To be called after the reset of the machine devices.
1697     */
1698    spapr_irq_reset(spapr, &error_fatal);
1699
1700    /*
1701     * There is no CAS under qtest. Simulate one to please the code that
1702     * depends on spapr->ov5_cas. This is especially needed to test device
1703     * unplug, so we do that before resetting the DRCs.
1704     */
1705    if (qtest_enabled()) {
1706        spapr_ovec_cleanup(spapr->ov5_cas);
1707        spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1708    }
1709
1710    /* DRC reset may cause a device to be unplugged. This will cause troubles
1711     * if this device is used by another device (eg, a running vhost backend
1712     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1713     * situations, we reset DRCs after all devices have been reset.
1714     */
1715    object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1716
1717    spapr_clear_pending_events(spapr);
1718
1719    /*
1720     * We place the device tree and RTAS just below either the top of the RMA,
1721     * or just below 2GB, whichever is lower, so that it can be
1722     * processed with 32-bit real mode code if necessary
1723     */
1724    fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1725
1726    fdt = spapr_build_fdt(spapr, true);
1727
1728    rc = fdt_pack(fdt);
1729
1730    /* Should only fail if we've built a corrupted tree */
1731    assert(rc == 0);
1732
1733    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1734        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1735                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1736        exit(1);
1737    }
1738
1739    /* Load the fdt */
1740    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1741    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1742    g_free(spapr->fdt_blob);
1743    spapr->fdt_size = fdt_totalsize(fdt);
1744    spapr->fdt_initial_size = spapr->fdt_size;
1745    spapr->fdt_blob = fdt;
1746
1747    /* Set up the entry state */
1748    spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1749    first_ppc_cpu->env.gpr[5] = 0;
1750
1751    spapr->cas_reboot = false;
1752}
1753
1754static void spapr_create_nvram(SpaprMachineState *spapr)
1755{
1756    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1757    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1758
1759    if (dinfo) {
1760        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1761                            &error_fatal);
1762    }
1763
1764    qdev_init_nofail(dev);
1765
1766    spapr->nvram = (struct SpaprNvram *)dev;
1767}
1768
1769static void spapr_rtc_create(SpaprMachineState *spapr)
1770{
1771    object_initialize_child(OBJECT(spapr), "rtc",
1772                            &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1773                            &error_fatal, NULL);
1774    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1775                              &error_fatal);
1776    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1777                              "date", &error_fatal);
1778}
1779
1780/* Returns whether we want to use VGA or not */
1781static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1782{
1783    switch (vga_interface_type) {
1784    case VGA_NONE:
1785        return false;
1786    case VGA_DEVICE:
1787        return true;
1788    case VGA_STD:
1789    case VGA_VIRTIO:
1790    case VGA_CIRRUS:
1791        return pci_vga_init(pci_bus) != NULL;
1792    default:
1793        error_setg(errp,
1794                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1795        return false;
1796    }
1797}
1798
1799static int spapr_pre_load(void *opaque)
1800{
1801    int rc;
1802
1803    rc = spapr_caps_pre_load(opaque);
1804    if (rc) {
1805        return rc;
1806    }
1807
1808    return 0;
1809}
1810
1811static int spapr_post_load(void *opaque, int version_id)
1812{
1813    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1814    int err = 0;
1815
1816    err = spapr_caps_post_migration(spapr);
1817    if (err) {
1818        return err;
1819    }
1820
1821    /*
1822     * In earlier versions, there was no separate qdev for the PAPR
1823     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1824     * So when migrating from those versions, poke the incoming offset
1825     * value into the RTC device
1826     */
1827    if (version_id < 3) {
1828        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1829        if (err) {
1830            return err;
1831        }
1832    }
1833
1834    if (kvm_enabled() && spapr->patb_entry) {
1835        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1836        bool radix = !!(spapr->patb_entry & PATE1_GR);
1837        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1838
1839        /*
1840         * Update LPCR:HR and UPRT as they may not be set properly in
1841         * the stream
1842         */
1843        spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1844                            LPCR_HR | LPCR_UPRT);
1845
1846        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1847        if (err) {
1848            error_report("Process table config unsupported by the host");
1849            return -EINVAL;
1850        }
1851    }
1852
1853    err = spapr_irq_post_load(spapr, version_id);
1854    if (err) {
1855        return err;
1856    }
1857
1858    return err;
1859}
1860
1861static int spapr_pre_save(void *opaque)
1862{
1863    int rc;
1864
1865    rc = spapr_caps_pre_save(opaque);
1866    if (rc) {
1867        return rc;
1868    }
1869
1870    return 0;
1871}
1872
1873static bool version_before_3(void *opaque, int version_id)
1874{
1875    return version_id < 3;
1876}
1877
1878static bool spapr_pending_events_needed(void *opaque)
1879{
1880    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1881    return !QTAILQ_EMPTY(&spapr->pending_events);
1882}
1883
1884static const VMStateDescription vmstate_spapr_event_entry = {
1885    .name = "spapr_event_log_entry",
1886    .version_id = 1,
1887    .minimum_version_id = 1,
1888    .fields = (VMStateField[]) {
1889        VMSTATE_UINT32(summary, SpaprEventLogEntry),
1890        VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1891        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1892                                     NULL, extended_length),
1893        VMSTATE_END_OF_LIST()
1894    },
1895};
1896
1897static const VMStateDescription vmstate_spapr_pending_events = {
1898    .name = "spapr_pending_events",
1899    .version_id = 1,
1900    .minimum_version_id = 1,
1901    .needed = spapr_pending_events_needed,
1902    .fields = (VMStateField[]) {
1903        VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1904                         vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1905        VMSTATE_END_OF_LIST()
1906    },
1907};
1908
1909static bool spapr_ov5_cas_needed(void *opaque)
1910{
1911    SpaprMachineState *spapr = opaque;
1912    SpaprOptionVector *ov5_mask = spapr_ovec_new();
1913    SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1914    SpaprOptionVector *ov5_removed = spapr_ovec_new();
1915    bool cas_needed;
1916
1917    /* Prior to the introduction of SpaprOptionVector, we had two option
1918     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1919     * Both of these options encode machine topology into the device-tree
1920     * in such a way that the now-booted OS should still be able to interact
1921     * appropriately with QEMU regardless of what options were actually
1922     * negotiatied on the source side.
1923     *
1924     * As such, we can avoid migrating the CAS-negotiated options if these
1925     * are the only options available on the current machine/platform.
1926     * Since these are the only options available for pseries-2.7 and
1927     * earlier, this allows us to maintain old->new/new->old migration
1928     * compatibility.
1929     *
1930     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1931     * via default pseries-2.8 machines and explicit command-line parameters.
1932     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1933     * of the actual CAS-negotiated values to continue working properly. For
1934     * example, availability of memory unplug depends on knowing whether
1935     * OV5_HP_EVT was negotiated via CAS.
1936     *
1937     * Thus, for any cases where the set of available CAS-negotiatable
1938     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1939     * include the CAS-negotiated options in the migration stream, unless
1940     * if they affect boot time behaviour only.
1941     */
1942    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1943    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1944    spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1945
1946    /* spapr_ovec_diff returns true if bits were removed. we avoid using
1947     * the mask itself since in the future it's possible "legacy" bits may be
1948     * removed via machine options, which could generate a false positive
1949     * that breaks migration.
1950     */
1951    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1952    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1953
1954    spapr_ovec_cleanup(ov5_mask);
1955    spapr_ovec_cleanup(ov5_legacy);
1956    spapr_ovec_cleanup(ov5_removed);
1957
1958    return cas_needed;
1959}
1960
1961static const VMStateDescription vmstate_spapr_ov5_cas = {
1962    .name = "spapr_option_vector_ov5_cas",
1963    .version_id = 1,
1964    .minimum_version_id = 1,
1965    .needed = spapr_ov5_cas_needed,
1966    .fields = (VMStateField[]) {
1967        VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1968                                 vmstate_spapr_ovec, SpaprOptionVector),
1969        VMSTATE_END_OF_LIST()
1970    },
1971};
1972
1973static bool spapr_patb_entry_needed(void *opaque)
1974{
1975    SpaprMachineState *spapr = opaque;
1976
1977    return !!spapr->patb_entry;
1978}
1979
1980static const VMStateDescription vmstate_spapr_patb_entry = {
1981    .name = "spapr_patb_entry",
1982    .version_id = 1,
1983    .minimum_version_id = 1,
1984    .needed = spapr_patb_entry_needed,
1985    .fields = (VMStateField[]) {
1986        VMSTATE_UINT64(patb_entry, SpaprMachineState),
1987        VMSTATE_END_OF_LIST()
1988    },
1989};
1990
1991static bool spapr_irq_map_needed(void *opaque)
1992{
1993    SpaprMachineState *spapr = opaque;
1994
1995    return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1996}
1997
1998static const VMStateDescription vmstate_spapr_irq_map = {
1999    .name = "spapr_irq_map",
2000    .version_id = 1,
2001    .minimum_version_id = 1,
2002    .needed = spapr_irq_map_needed,
2003    .fields = (VMStateField[]) {
2004        VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2005        VMSTATE_END_OF_LIST()
2006    },
2007};
2008
2009static bool spapr_dtb_needed(void *opaque)
2010{
2011    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2012
2013    return smc->update_dt_enabled;
2014}
2015
2016static int spapr_dtb_pre_load(void *opaque)
2017{
2018    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2019
2020    g_free(spapr->fdt_blob);
2021    spapr->fdt_blob = NULL;
2022    spapr->fdt_size = 0;
2023
2024    return 0;
2025}
2026
2027static const VMStateDescription vmstate_spapr_dtb = {
2028    .name = "spapr_dtb",
2029    .version_id = 1,
2030    .minimum_version_id = 1,
2031    .needed = spapr_dtb_needed,
2032    .pre_load = spapr_dtb_pre_load,
2033    .fields = (VMStateField[]) {
2034        VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2035        VMSTATE_UINT32(fdt_size, SpaprMachineState),
2036        VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2037                                     fdt_size),
2038        VMSTATE_END_OF_LIST()
2039    },
2040};
2041
2042static const VMStateDescription vmstate_spapr = {
2043    .name = "spapr",
2044    .version_id = 3,
2045    .minimum_version_id = 1,
2046    .pre_load = spapr_pre_load,
2047    .post_load = spapr_post_load,
2048    .pre_save = spapr_pre_save,
2049    .fields = (VMStateField[]) {
2050        /* used to be @next_irq */
2051        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2052
2053        /* RTC offset */
2054        VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2055
2056        VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2057        VMSTATE_END_OF_LIST()
2058    },
2059    .subsections = (const VMStateDescription*[]) {
2060        &vmstate_spapr_ov5_cas,
2061        &vmstate_spapr_patb_entry,
2062        &vmstate_spapr_pending_events,
2063        &vmstate_spapr_cap_htm,
2064        &vmstate_spapr_cap_vsx,
2065        &vmstate_spapr_cap_dfp,
2066        &vmstate_spapr_cap_cfpc,
2067        &vmstate_spapr_cap_sbbc,
2068        &vmstate_spapr_cap_ibs,
2069        &vmstate_spapr_cap_hpt_maxpagesize,
2070        &vmstate_spapr_irq_map,
2071        &vmstate_spapr_cap_nested_kvm_hv,
2072        &vmstate_spapr_dtb,
2073        &vmstate_spapr_cap_large_decr,
2074        &vmstate_spapr_cap_ccf_assist,
2075        NULL
2076    }
2077};
2078
2079static int htab_save_setup(QEMUFile *f, void *opaque)
2080{
2081    SpaprMachineState *spapr = opaque;
2082
2083    /* "Iteration" header */
2084    if (!spapr->htab_shift) {
2085        qemu_put_be32(f, -1);
2086    } else {
2087        qemu_put_be32(f, spapr->htab_shift);
2088    }
2089
2090    if (spapr->htab) {
2091        spapr->htab_save_index = 0;
2092        spapr->htab_first_pass = true;
2093    } else {
2094        if (spapr->htab_shift) {
2095            assert(kvm_enabled());
2096        }
2097    }
2098
2099
2100    return 0;
2101}
2102
2103static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2104                            int chunkstart, int n_valid, int n_invalid)
2105{
2106    qemu_put_be32(f, chunkstart);
2107    qemu_put_be16(f, n_valid);
2108    qemu_put_be16(f, n_invalid);
2109    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2110                    HASH_PTE_SIZE_64 * n_valid);
2111}
2112
2113static void htab_save_end_marker(QEMUFile *f)
2114{
2115    qemu_put_be32(f, 0);
2116    qemu_put_be16(f, 0);
2117    qemu_put_be16(f, 0);
2118}
2119
2120static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2121                                 int64_t max_ns)
2122{
2123    bool has_timeout = max_ns != -1;
2124    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2125    int index = spapr->htab_save_index;
2126    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2127
2128    assert(spapr->htab_first_pass);
2129
2130    do {
2131        int chunkstart;
2132
2133        /* Consume invalid HPTEs */
2134        while ((index < htabslots)
2135               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2136            CLEAN_HPTE(HPTE(spapr->htab, index));
2137            index++;
2138        }
2139
2140        /* Consume valid HPTEs */
2141        chunkstart = index;
2142        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2143               && HPTE_VALID(HPTE(spapr->htab, index))) {
2144            CLEAN_HPTE(HPTE(spapr->htab, index));
2145            index++;
2146        }
2147
2148        if (index > chunkstart) {
2149            int n_valid = index - chunkstart;
2150
2151            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2152
2153            if (has_timeout &&
2154                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2155                break;
2156            }
2157        }
2158    } while ((index < htabslots) && !qemu_file_rate_limit(f));
2159
2160    if (index >= htabslots) {
2161        assert(index == htabslots);
2162        index = 0;
2163        spapr->htab_first_pass = false;
2164    }
2165    spapr->htab_save_index = index;
2166}
2167
2168static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2169                                int64_t max_ns)
2170{
2171    bool final = max_ns < 0;
2172    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2173    int examined = 0, sent = 0;
2174    int index = spapr->htab_save_index;
2175    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2176
2177    assert(!spapr->htab_first_pass);
2178
2179    do {
2180        int chunkstart, invalidstart;
2181
2182        /* Consume non-dirty HPTEs */
2183        while ((index < htabslots)
2184               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2185            index++;
2186            examined++;
2187        }
2188
2189        chunkstart = index;
2190        /* Consume valid dirty HPTEs */
2191        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2192               && HPTE_DIRTY(HPTE(spapr->htab, index))
2193               && HPTE_VALID(HPTE(spapr->htab, index))) {
2194            CLEAN_HPTE(HPTE(spapr->htab, index));
2195            index++;
2196            examined++;
2197        }
2198
2199        invalidstart = index;
2200        /* Consume invalid dirty HPTEs */
2201        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2202               && HPTE_DIRTY(HPTE(spapr->htab, index))
2203               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2204            CLEAN_HPTE(HPTE(spapr->htab, index));
2205            index++;
2206            examined++;
2207        }
2208
2209        if (index > chunkstart) {
2210            int n_valid = invalidstart - chunkstart;
2211            int n_invalid = index - invalidstart;
2212
2213            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2214            sent += index - chunkstart;
2215
2216            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2217                break;
2218            }
2219        }
2220
2221        if (examined >= htabslots) {
2222            break;
2223        }
2224
2225        if (index >= htabslots) {
2226            assert(index == htabslots);
2227            index = 0;
2228        }
2229    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2230
2231    if (index >= htabslots) {
2232        assert(index == htabslots);
2233        index = 0;
2234    }
2235
2236    spapr->htab_save_index = index;
2237
2238    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2239}
2240
2241#define MAX_ITERATION_NS    5000000 /* 5 ms */
2242#define MAX_KVM_BUF_SIZE    2048
2243
2244static int htab_save_iterate(QEMUFile *f, void *opaque)
2245{
2246    SpaprMachineState *spapr = opaque;
2247    int fd;
2248    int rc = 0;
2249
2250    /* Iteration header */
2251    if (!spapr->htab_shift) {
2252        qemu_put_be32(f, -1);
2253        return 1;
2254    } else {
2255        qemu_put_be32(f, 0);
2256    }
2257
2258    if (!spapr->htab) {
2259        assert(kvm_enabled());
2260
2261        fd = get_htab_fd(spapr);
2262        if (fd < 0) {
2263            return fd;
2264        }
2265
2266        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2267        if (rc < 0) {
2268            return rc;
2269        }
2270    } else  if (spapr->htab_first_pass) {
2271        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2272    } else {
2273        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2274    }
2275
2276    htab_save_end_marker(f);
2277
2278    return rc;
2279}
2280
2281static int htab_save_complete(QEMUFile *f, void *opaque)
2282{
2283    SpaprMachineState *spapr = opaque;
2284    int fd;
2285
2286    /* Iteration header */
2287    if (!spapr->htab_shift) {
2288        qemu_put_be32(f, -1);
2289        return 0;
2290    } else {
2291        qemu_put_be32(f, 0);
2292    }
2293
2294    if (!spapr->htab) {
2295        int rc;
2296
2297        assert(kvm_enabled());
2298
2299        fd = get_htab_fd(spapr);
2300        if (fd < 0) {
2301            return fd;
2302        }
2303
2304        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2305        if (rc < 0) {
2306            return rc;
2307        }
2308    } else {
2309        if (spapr->htab_first_pass) {
2310            htab_save_first_pass(f, spapr, -1);
2311        }
2312        htab_save_later_pass(f, spapr, -1);
2313    }
2314
2315    /* End marker */
2316    htab_save_end_marker(f);
2317
2318    return 0;
2319}
2320
2321static int htab_load(QEMUFile *f, void *opaque, int version_id)
2322{
2323    SpaprMachineState *spapr = opaque;
2324    uint32_t section_hdr;
2325    int fd = -1;
2326    Error *local_err = NULL;
2327
2328    if (version_id < 1 || version_id > 1) {
2329        error_report("htab_load() bad version");
2330        return -EINVAL;
2331    }
2332
2333    section_hdr = qemu_get_be32(f);
2334
2335    if (section_hdr == -1) {
2336        spapr_free_hpt(spapr);
2337        return 0;
2338    }
2339
2340    if (section_hdr) {
2341        /* First section gives the htab size */
2342        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2343        if (local_err) {
2344            error_report_err(local_err);
2345            return -EINVAL;
2346        }
2347        return 0;
2348    }
2349
2350    if (!spapr->htab) {
2351        assert(kvm_enabled());
2352
2353        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2354        if (fd < 0) {
2355            error_report_err(local_err);
2356            return fd;
2357        }
2358    }
2359
2360    while (true) {
2361        uint32_t index;
2362        uint16_t n_valid, n_invalid;
2363
2364        index = qemu_get_be32(f);
2365        n_valid = qemu_get_be16(f);
2366        n_invalid = qemu_get_be16(f);
2367
2368        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2369            /* End of Stream */
2370            break;
2371        }
2372
2373        if ((index + n_valid + n_invalid) >
2374            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2375            /* Bad index in stream */
2376            error_report(
2377                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2378                index, n_valid, n_invalid, spapr->htab_shift);
2379            return -EINVAL;
2380        }
2381
2382        if (spapr->htab) {
2383            if (n_valid) {
2384                qemu_get_buffer(f, HPTE(spapr->htab, index),
2385                                HASH_PTE_SIZE_64 * n_valid);
2386            }
2387            if (n_invalid) {
2388                memset(HPTE(spapr->htab, index + n_valid), 0,
2389                       HASH_PTE_SIZE_64 * n_invalid);
2390            }
2391        } else {
2392            int rc;
2393
2394            assert(fd >= 0);
2395
2396            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2397            if (rc < 0) {
2398                return rc;
2399            }
2400        }
2401    }
2402
2403    if (!spapr->htab) {
2404        assert(fd >= 0);
2405        close(fd);
2406    }
2407
2408    return 0;
2409}
2410
2411static void htab_save_cleanup(void *opaque)
2412{
2413    SpaprMachineState *spapr = opaque;
2414
2415    close_htab_fd(spapr);
2416}
2417
2418static SaveVMHandlers savevm_htab_handlers = {
2419    .save_setup = htab_save_setup,
2420    .save_live_iterate = htab_save_iterate,
2421    .save_live_complete_precopy = htab_save_complete,
2422    .save_cleanup = htab_save_cleanup,
2423    .load_state = htab_load,
2424};
2425
2426static void spapr_boot_set(void *opaque, const char *boot_device,
2427                           Error **errp)
2428{
2429    MachineState *machine = MACHINE(opaque);
2430    machine->boot_order = g_strdup(boot_device);
2431}
2432
2433static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2434{
2435    MachineState *machine = MACHINE(spapr);
2436    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2437    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2438    int i;
2439
2440    for (i = 0; i < nr_lmbs; i++) {
2441        uint64_t addr;
2442
2443        addr = i * lmb_size + machine->device_memory->base;
2444        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2445                               addr / lmb_size);
2446    }
2447}
2448
2449/*
2450 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2451 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2452 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2453 */
2454static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2455{
2456    int i;
2457
2458    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2459        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2460                   " is not aligned to %" PRIu64 " MiB",
2461                   machine->ram_size,
2462                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2463        return;
2464    }
2465
2466    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2467        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2468                   " is not aligned to %" PRIu64 " MiB",
2469                   machine->ram_size,
2470                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2471        return;
2472    }
2473
2474    for (i = 0; i < machine->numa_state->num_nodes; i++) {
2475        if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2476            error_setg(errp,
2477                       "Node %d memory size 0x%" PRIx64
2478                       " is not aligned to %" PRIu64 " MiB",
2479                       i, machine->numa_state->nodes[i].node_mem,
2480                       SPAPR_MEMORY_BLOCK_SIZE / MiB);
2481            return;
2482        }
2483    }
2484}
2485
2486/* find cpu slot in machine->possible_cpus by core_id */
2487static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2488{
2489    int index = id / ms->smp.threads;
2490
2491    if (index >= ms->possible_cpus->len) {
2492        return NULL;
2493    }
2494    if (idx) {
2495        *idx = index;
2496    }
2497    return &ms->possible_cpus->cpus[index];
2498}
2499
2500static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2501{
2502    MachineState *ms = MACHINE(spapr);
2503    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2504    Error *local_err = NULL;
2505    bool vsmt_user = !!spapr->vsmt;
2506    int kvm_smt = kvmppc_smt_threads();
2507    int ret;
2508    unsigned int smp_threads = ms->smp.threads;
2509
2510    if (!kvm_enabled() && (smp_threads > 1)) {
2511        error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2512                     "on a pseries machine");
2513        goto out;
2514    }
2515    if (!is_power_of_2(smp_threads)) {
2516        error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2517                     "machine because it must be a power of 2", smp_threads);
2518        goto out;
2519    }
2520
2521    /* Detemine the VSMT mode to use: */
2522    if (vsmt_user) {
2523        if (spapr->vsmt < smp_threads) {
2524            error_setg(&local_err, "Cannot support VSMT mode %d"
2525                         " because it must be >= threads/core (%d)",
2526                         spapr->vsmt, smp_threads);
2527            goto out;
2528        }
2529        /* In this case, spapr->vsmt has been set by the command line */
2530    } else if (!smc->smp_threads_vsmt) {
2531        /*
2532         * Default VSMT value is tricky, because we need it to be as
2533         * consistent as possible (for migration), but this requires
2534         * changing it for at least some existing cases.  We pick 8 as
2535         * the value that we'd get with KVM on POWER8, the
2536         * overwhelmingly common case in production systems.
2537         */
2538        spapr->vsmt = MAX(8, smp_threads);
2539    } else {
2540        spapr->vsmt = smp_threads;
2541    }
2542
2543    /* KVM: If necessary, set the SMT mode: */
2544    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2545        ret = kvmppc_set_smt_threads(spapr->vsmt);
2546        if (ret) {
2547            /* Looks like KVM isn't able to change VSMT mode */
2548            error_setg(&local_err,
2549                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2550                       spapr->vsmt, ret);
2551            /* We can live with that if the default one is big enough
2552             * for the number of threads, and a submultiple of the one
2553             * we want.  In this case we'll waste some vcpu ids, but
2554             * behaviour will be correct */
2555            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2556                warn_report_err(local_err);
2557                local_err = NULL;
2558                goto out;
2559            } else {
2560                if (!vsmt_user) {
2561                    error_append_hint(&local_err,
2562                                      "On PPC, a VM with %d threads/core"
2563                                      " on a host with %d threads/core"
2564                                      " requires the use of VSMT mode %d.\n",
2565                                      smp_threads, kvm_smt, spapr->vsmt);
2566                }
2567                kvmppc_hint_smt_possible(&local_err);
2568                goto out;
2569            }
2570        }
2571    }
2572    /* else TCG: nothing to do currently */
2573out:
2574    error_propagate(errp, local_err);
2575}
2576
2577static void spapr_init_cpus(SpaprMachineState *spapr)
2578{
2579    MachineState *machine = MACHINE(spapr);
2580    MachineClass *mc = MACHINE_GET_CLASS(machine);
2581    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2582    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2583    const CPUArchIdList *possible_cpus;
2584    unsigned int smp_cpus = machine->smp.cpus;
2585    unsigned int smp_threads = machine->smp.threads;
2586    unsigned int max_cpus = machine->smp.max_cpus;
2587    int boot_cores_nr = smp_cpus / smp_threads;
2588    int i;
2589
2590    possible_cpus = mc->possible_cpu_arch_ids(machine);
2591    if (mc->has_hotpluggable_cpus) {
2592        if (smp_cpus % smp_threads) {
2593            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2594                         smp_cpus, smp_threads);
2595            exit(1);
2596        }
2597        if (max_cpus % smp_threads) {
2598            error_report("max_cpus (%u) must be multiple of threads (%u)",
2599                         max_cpus, smp_threads);
2600            exit(1);
2601        }
2602    } else {
2603        if (max_cpus != smp_cpus) {
2604            error_report("This machine version does not support CPU hotplug");
2605            exit(1);
2606        }
2607        boot_cores_nr = possible_cpus->len;
2608    }
2609
2610    if (smc->pre_2_10_has_unused_icps) {
2611        int i;
2612
2613        for (i = 0; i < spapr_max_server_number(spapr); i++) {
2614            /* Dummy entries get deregistered when real ICPState objects
2615             * are registered during CPU core hotplug.
2616             */
2617            pre_2_10_vmstate_register_dummy_icp(i);
2618        }
2619    }
2620
2621    for (i = 0; i < possible_cpus->len; i++) {
2622        int core_id = i * smp_threads;
2623
2624        if (mc->has_hotpluggable_cpus) {
2625            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2626                                   spapr_vcpu_id(spapr, core_id));
2627        }
2628
2629        if (i < boot_cores_nr) {
2630            Object *core  = object_new(type);
2631            int nr_threads = smp_threads;
2632
2633            /* Handle the partially filled core for older machine types */
2634            if ((i + 1) * smp_threads >= smp_cpus) {
2635                nr_threads = smp_cpus - i * smp_threads;
2636            }
2637
2638            object_property_set_int(core, nr_threads, "nr-threads",
2639                                    &error_fatal);
2640            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2641                                    &error_fatal);
2642            object_property_set_bool(core, true, "realized", &error_fatal);
2643
2644            object_unref(core);
2645        }
2646    }
2647}
2648
2649static PCIHostState *spapr_create_default_phb(void)
2650{
2651    DeviceState *dev;
2652
2653    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2654    qdev_prop_set_uint32(dev, "index", 0);
2655    qdev_init_nofail(dev);
2656
2657    return PCI_HOST_BRIDGE(dev);
2658}
2659
2660/* pSeries LPAR / sPAPR hardware init */
2661static void spapr_machine_init(MachineState *machine)
2662{
2663    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2664    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2665    const char *kernel_filename = machine->kernel_filename;
2666    const char *initrd_filename = machine->initrd_filename;
2667    PCIHostState *phb;
2668    int i;
2669    MemoryRegion *sysmem = get_system_memory();
2670    MemoryRegion *ram = g_new(MemoryRegion, 1);
2671    hwaddr node0_size = spapr_node0_size(machine);
2672    long load_limit, fw_size;
2673    char *filename;
2674    Error *resize_hpt_err = NULL;
2675
2676    msi_nonbroken = true;
2677
2678    QLIST_INIT(&spapr->phbs);
2679    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2680
2681    /* Determine capabilities to run with */
2682    spapr_caps_init(spapr);
2683
2684    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2685    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2686        /*
2687         * If the user explicitly requested a mode we should either
2688         * supply it, or fail completely (which we do below).  But if
2689         * it's not set explicitly, we reset our mode to something
2690         * that works
2691         */
2692        if (resize_hpt_err) {
2693            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2694            error_free(resize_hpt_err);
2695            resize_hpt_err = NULL;
2696        } else {
2697            spapr->resize_hpt = smc->resize_hpt_default;
2698        }
2699    }
2700
2701    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2702
2703    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2704        /*
2705         * User requested HPT resize, but this host can't supply it.  Bail out
2706         */
2707        error_report_err(resize_hpt_err);
2708        exit(1);
2709    }
2710
2711    spapr->rma_size = node0_size;
2712
2713    /* With KVM, we don't actually know whether KVM supports an
2714     * unbounded RMA (PR KVM) or is limited by the hash table size
2715     * (HV KVM using VRMA), so we always assume the latter
2716     *
2717     * In that case, we also limit the initial allocations for RTAS
2718     * etc... to 256M since we have no way to know what the VRMA size
2719     * is going to be as it depends on the size of the hash table
2720     * which isn't determined yet.
2721     */
2722    if (kvm_enabled()) {
2723        spapr->vrma_adjust = 1;
2724        spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2725    }
2726
2727    /* Actually we don't support unbounded RMA anymore since we added
2728     * proper emulation of HV mode. The max we can get is 16G which
2729     * also happens to be what we configure for PAPR mode so make sure
2730     * we don't do anything bigger than that
2731     */
2732    spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2733
2734    if (spapr->rma_size > node0_size) {
2735        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2736                     spapr->rma_size);
2737        exit(1);
2738    }
2739
2740    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2741    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2742
2743    /*
2744     * VSMT must be set in order to be able to compute VCPU ids, ie to
2745     * call spapr_max_server_number() or spapr_vcpu_id().
2746     */
2747    spapr_set_vsmt_mode(spapr, &error_fatal);
2748
2749    /* Set up Interrupt Controller before we create the VCPUs */
2750    spapr_irq_init(spapr, &error_fatal);
2751
2752    /* Set up containers for ibm,client-architecture-support negotiated options
2753     */
2754    spapr->ov5 = spapr_ovec_new();
2755    spapr->ov5_cas = spapr_ovec_new();
2756
2757    if (smc->dr_lmb_enabled) {
2758        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2759        spapr_validate_node_memory(machine, &error_fatal);
2760    }
2761
2762    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2763
2764    /* advertise support for dedicated HP event source to guests */
2765    if (spapr->use_hotplug_event_source) {
2766        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2767    }
2768
2769    /* advertise support for HPT resizing */
2770    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2771        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2772    }
2773
2774    /* advertise support for ibm,dyamic-memory-v2 */
2775    spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2776
2777    /* advertise XIVE on POWER9 machines */
2778    if (spapr->irq->xive) {
2779        spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2780    }
2781
2782    /* init CPUs */
2783    spapr_init_cpus(spapr);
2784
2785    /*
2786     * check we don't have a memory-less/cpu-less NUMA node
2787     * Firmware relies on the existing memory/cpu topology to provide the
2788     * NUMA topology to the kernel.
2789     * And the linux kernel needs to know the NUMA topology at start
2790     * to be able to hotplug CPUs later.
2791     */
2792    if (machine->numa_state->num_nodes) {
2793        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2794            /* check for memory-less node */
2795            if (machine->numa_state->nodes[i].node_mem == 0) {
2796                CPUState *cs;
2797                int found = 0;
2798                /* check for cpu-less node */
2799                CPU_FOREACH(cs) {
2800                    PowerPCCPU *cpu = POWERPC_CPU(cs);
2801                    if (cpu->node_id == i) {
2802                        found = 1;
2803                        break;
2804                    }
2805                }
2806                /* memory-less and cpu-less node */
2807                if (!found) {
2808                    error_report(
2809                       "Memory-less/cpu-less nodes are not supported (node %d)",
2810                                 i);
2811                    exit(1);
2812                }
2813            }
2814        }
2815
2816    }
2817
2818    /*
2819     * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2820     * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2821     * called from vPHB reset handler so we initialize the counter here.
2822     * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2823     * must be equally distant from any other node.
2824     * The final value of spapr->gpu_numa_id is going to be written to
2825     * max-associativity-domains in spapr_build_fdt().
2826     */
2827    spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2828
2829    if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2830        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2831                              spapr->max_compat_pvr)) {
2832        /* KVM and TCG always allow GTSE with radix... */
2833        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2834    }
2835    /* ... but not with hash (currently). */
2836
2837    if (kvm_enabled()) {
2838        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2839        kvmppc_enable_logical_ci_hcalls();
2840        kvmppc_enable_set_mode_hcall();
2841
2842        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2843        kvmppc_enable_clear_ref_mod_hcalls();
2844
2845        /* Enable H_PAGE_INIT */
2846        kvmppc_enable_h_page_init();
2847    }
2848
2849    /* allocate RAM */
2850    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2851                                         machine->ram_size);
2852    memory_region_add_subregion(sysmem, 0, ram);
2853
2854    /* always allocate the device memory information */
2855    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2856
2857    /* initialize hotplug memory address space */
2858    if (machine->ram_size < machine->maxram_size) {
2859        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2860        /*
2861         * Limit the number of hotpluggable memory slots to half the number
2862         * slots that KVM supports, leaving the other half for PCI and other
2863         * devices. However ensure that number of slots doesn't drop below 32.
2864         */
2865        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2866                           SPAPR_MAX_RAM_SLOTS;
2867
2868        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2869            max_memslots = SPAPR_MAX_RAM_SLOTS;
2870        }
2871        if (machine->ram_slots > max_memslots) {
2872            error_report("Specified number of memory slots %"
2873                         PRIu64" exceeds max supported %d",
2874                         machine->ram_slots, max_memslots);
2875            exit(1);
2876        }
2877
2878        machine->device_memory->base = ROUND_UP(machine->ram_size,
2879                                                SPAPR_DEVICE_MEM_ALIGN);
2880        memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2881                           "device-memory", device_mem_size);
2882        memory_region_add_subregion(sysmem, machine->device_memory->base,
2883                                    &machine->device_memory->mr);
2884    }
2885
2886    if (smc->dr_lmb_enabled) {
2887        spapr_create_lmb_dr_connectors(spapr);
2888    }
2889
2890    /* Set up RTAS event infrastructure */
2891    spapr_events_init(spapr);
2892
2893    /* Set up the RTC RTAS interfaces */
2894    spapr_rtc_create(spapr);
2895
2896    /* Set up VIO bus */
2897    spapr->vio_bus = spapr_vio_bus_init();
2898
2899    for (i = 0; i < serial_max_hds(); i++) {
2900        if (serial_hd(i)) {
2901            spapr_vty_create(spapr->vio_bus, serial_hd(i));
2902        }
2903    }
2904
2905    /* We always have at least the nvram device on VIO */
2906    spapr_create_nvram(spapr);
2907
2908    /*
2909     * Setup hotplug / dynamic-reconfiguration connectors. top-level
2910     * connectors (described in root DT node's "ibm,drc-types" property)
2911     * are pre-initialized here. additional child connectors (such as
2912     * connectors for a PHBs PCI slots) are added as needed during their
2913     * parent's realization.
2914     */
2915    if (smc->dr_phb_enabled) {
2916        for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2917            spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2918        }
2919    }
2920
2921    /* Set up PCI */
2922    spapr_pci_rtas_init();
2923
2924    phb = spapr_create_default_phb();
2925
2926    for (i = 0; i < nb_nics; i++) {
2927        NICInfo *nd = &nd_table[i];
2928
2929        if (!nd->model) {
2930            nd->model = g_strdup("spapr-vlan");
2931        }
2932
2933        if (g_str_equal(nd->model, "spapr-vlan") ||
2934            g_str_equal(nd->model, "ibmveth")) {
2935            spapr_vlan_create(spapr->vio_bus, nd);
2936        } else {
2937            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2938        }
2939    }
2940
2941    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2942        spapr_vscsi_create(spapr->vio_bus);
2943    }
2944
2945    /* Graphics */
2946    if (spapr_vga_init(phb->bus, &error_fatal)) {
2947        spapr->has_graphics = true;
2948        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2949    }
2950
2951    if (machine->usb) {
2952        if (smc->use_ohci_by_default) {
2953            pci_create_simple(phb->bus, -1, "pci-ohci");
2954        } else {
2955            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2956        }
2957
2958        if (spapr->has_graphics) {
2959            USBBus *usb_bus = usb_bus_find(-1);
2960
2961            usb_create_simple(usb_bus, "usb-kbd");
2962            usb_create_simple(usb_bus, "usb-mouse");
2963        }
2964    }
2965
2966    if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2967        error_report(
2968            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2969            MIN_RMA_SLOF);
2970        exit(1);
2971    }
2972
2973    if (kernel_filename) {
2974        uint64_t lowaddr = 0;
2975
2976        spapr->kernel_size = load_elf(kernel_filename, NULL,
2977                                      translate_kernel_address, NULL,
2978                                      NULL, &lowaddr, NULL, 1,
2979                                      PPC_ELF_MACHINE, 0, 0);
2980        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2981            spapr->kernel_size = load_elf(kernel_filename, NULL,
2982                                          translate_kernel_address, NULL, NULL,
2983                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2984                                          0, 0);
2985            spapr->kernel_le = spapr->kernel_size > 0;
2986        }
2987        if (spapr->kernel_size < 0) {
2988            error_report("error loading %s: %s", kernel_filename,
2989                         load_elf_strerror(spapr->kernel_size));
2990            exit(1);
2991        }
2992
2993        /* load initrd */
2994        if (initrd_filename) {
2995            /* Try to locate the initrd in the gap between the kernel
2996             * and the firmware. Add a bit of space just in case
2997             */
2998            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2999                                  + 0x1ffff) & ~0xffff;
3000            spapr->initrd_size = load_image_targphys(initrd_filename,
3001                                                     spapr->initrd_base,
3002                                                     load_limit
3003                                                     - spapr->initrd_base);
3004            if (spapr->initrd_size < 0) {
3005                error_report("could not load initial ram disk '%s'",
3006                             initrd_filename);
3007                exit(1);
3008            }
3009        }
3010    }
3011
3012    if (bios_name == NULL) {
3013        bios_name = FW_FILE_NAME;
3014    }
3015    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3016    if (!filename) {
3017        error_report("Could not find LPAR firmware '%s'", bios_name);
3018        exit(1);
3019    }
3020    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3021    if (fw_size <= 0) {
3022        error_report("Could not load LPAR firmware '%s'", filename);
3023        exit(1);
3024    }
3025    g_free(filename);
3026
3027    /* FIXME: Should register things through the MachineState's qdev
3028     * interface, this is a legacy from the sPAPREnvironment structure
3029     * which predated MachineState but had a similar function */
3030    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3031    register_savevm_live("spapr/htab", -1, 1,
3032                         &savevm_htab_handlers, spapr);
3033
3034    qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3035                             &error_fatal);
3036
3037    qemu_register_boot_set(spapr_boot_set, spapr);
3038
3039    /*
3040     * Nothing needs to be done to resume a suspended guest because
3041     * suspending does not change the machine state, so no need for
3042     * a ->wakeup method.
3043     */
3044    qemu_register_wakeup_support();
3045
3046    if (kvm_enabled()) {
3047        /* to stop and start vmclock */
3048        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3049                                         &spapr->tb);
3050
3051        kvmppc_spapr_enable_inkernel_multitce();
3052    }
3053}
3054
3055static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3056{
3057    if (!vm_type) {
3058        return 0;
3059    }
3060
3061    if (!strcmp(vm_type, "HV")) {
3062        return 1;
3063    }
3064
3065    if (!strcmp(vm_type, "PR")) {
3066        return 2;
3067    }
3068
3069    error_report("Unknown kvm-type specified '%s'", vm_type);
3070    exit(1);
3071}
3072
3073/*
3074 * Implementation of an interface to adjust firmware path
3075 * for the bootindex property handling.
3076 */
3077static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3078                                   DeviceState *dev)
3079{
3080#define CAST(type, obj, name) \
3081    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3082    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3083    SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3084    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3085
3086    if (d) {
3087        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3088        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3089        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3090
3091        if (spapr) {
3092            /*
3093             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3094             * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3095             * 0x8000 | (target << 8) | (bus << 5) | lun
3096             * (see the "Logical unit addressing format" table in SAM5)
3097             */
3098            unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3099            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3100                                   (uint64_t)id << 48);
3101        } else if (virtio) {
3102            /*
3103             * We use SRP luns of the form 01000000 | (target << 8) | lun
3104             * in the top 32 bits of the 64-bit LUN
3105             * Note: the quote above is from SLOF and it is wrong,
3106             * the actual binding is:
3107             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3108             */
3109            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3110            if (d->lun >= 256) {
3111                /* Use the LUN "flat space addressing method" */
3112                id |= 0x4000;
3113            }
3114            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3115                                   (uint64_t)id << 32);
3116        } else if (usb) {
3117            /*
3118             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3119             * in the top 32 bits of the 64-bit LUN
3120             */
3121            unsigned usb_port = atoi(usb->port->path);
3122            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3123            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3124                                   (uint64_t)id << 32);
3125        }
3126    }
3127
3128    /*
3129     * SLOF probes the USB devices, and if it recognizes that the device is a
3130     * storage device, it changes its name to "storage" instead of "usb-host",
3131     * and additionally adds a child node for the SCSI LUN, so the correct
3132     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3133     */
3134    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3135        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3136        if (usb_host_dev_is_scsi_storage(usbdev)) {
3137            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3138        }
3139    }
3140
3141    if (phb) {
3142        /* Replace "pci" with "pci@800000020000000" */
3143        return g_strdup_printf("pci@%"PRIX64, phb->buid);
3144    }
3145
3146    if (vsc) {
3147        /* Same logic as virtio above */
3148        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3149        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3150    }
3151
3152    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3153        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3154        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3155        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3156    }
3157
3158    return NULL;
3159}
3160
3161static char *spapr_get_kvm_type(Object *obj, Error **errp)
3162{
3163    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3164
3165    return g_strdup(spapr->kvm_type);
3166}
3167
3168static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3169{
3170    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3171
3172    g_free(spapr->kvm_type);
3173    spapr->kvm_type = g_strdup(value);
3174}
3175
3176static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3177{
3178    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3179
3180    return spapr->use_hotplug_event_source;
3181}
3182
3183static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3184                                            Error **errp)
3185{
3186    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3187
3188    spapr->use_hotplug_event_source = value;
3189}
3190
3191static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3192{
3193    return true;
3194}
3195
3196static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3197{
3198    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3199
3200    switch (spapr->resize_hpt) {
3201    case SPAPR_RESIZE_HPT_DEFAULT:
3202        return g_strdup("default");
3203    case SPAPR_RESIZE_HPT_DISABLED:
3204        return g_strdup("disabled");
3205    case SPAPR_RESIZE_HPT_ENABLED:
3206        return g_strdup("enabled");
3207    case SPAPR_RESIZE_HPT_REQUIRED:
3208        return g_strdup("required");
3209    }
3210    g_assert_not_reached();
3211}
3212
3213static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3214{
3215    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3216
3217    if (strcmp(value, "default") == 0) {
3218        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3219    } else if (strcmp(value, "disabled") == 0) {
3220        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3221    } else if (strcmp(value, "enabled") == 0) {
3222        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3223    } else if (strcmp(value, "required") == 0) {
3224        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3225    } else {
3226        error_setg(errp, "Bad value for \"resize-hpt\" property");
3227    }
3228}
3229
3230static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3231                                   void *opaque, Error **errp)
3232{
3233    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3234}
3235
3236static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3237                                   void *opaque, Error **errp)
3238{
3239    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3240}
3241
3242static char *spapr_get_ic_mode(Object *obj, Error **errp)
3243{
3244    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3245
3246    if (spapr->irq == &spapr_irq_xics_legacy) {
3247        return g_strdup("legacy");
3248    } else if (spapr->irq == &spapr_irq_xics) {
3249        return g_strdup("xics");
3250    } else if (spapr->irq == &spapr_irq_xive) {
3251        return g_strdup("xive");
3252    } else if (spapr->irq == &spapr_irq_dual) {
3253        return g_strdup("dual");
3254    }
3255    g_assert_not_reached();
3256}
3257
3258static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3259{
3260    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3261
3262    if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3263        error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3264        return;
3265    }
3266
3267    /* The legacy IRQ backend can not be set */
3268    if (strcmp(value, "xics") == 0) {
3269        spapr->irq = &spapr_irq_xics;
3270    } else if (strcmp(value, "xive") == 0) {
3271        spapr->irq = &spapr_irq_xive;
3272    } else if (strcmp(value, "dual") == 0) {
3273        spapr->irq = &spapr_irq_dual;
3274    } else {
3275        error_setg(errp, "Bad value for \"ic-mode\" property");
3276    }
3277}
3278
3279static char *spapr_get_host_model(Object *obj, Error **errp)
3280{
3281    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3282
3283    return g_strdup(spapr->host_model);
3284}
3285
3286static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3287{
3288    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3289
3290    g_free(spapr->host_model);
3291    spapr->host_model = g_strdup(value);
3292}
3293
3294static char *spapr_get_host_serial(Object *obj, Error **errp)
3295{
3296    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3297
3298    return g_strdup(spapr->host_serial);
3299}
3300
3301static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3302{
3303    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3304
3305    g_free(spapr->host_serial);
3306    spapr->host_serial = g_strdup(value);
3307}
3308
3309static void spapr_instance_init(Object *obj)
3310{
3311    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3312    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3313
3314    spapr->htab_fd = -1;
3315    spapr->use_hotplug_event_source = true;
3316    object_property_add_str(obj, "kvm-type",
3317                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3318    object_property_set_description(obj, "kvm-type",
3319                                    "Specifies the KVM virtualization mode (HV, PR)",
3320                                    NULL);
3321    object_property_add_bool(obj, "modern-hotplug-events",
3322                            spapr_get_modern_hotplug_events,
3323                            spapr_set_modern_hotplug_events,
3324                            NULL);
3325    object_property_set_description(obj, "modern-hotplug-events",
3326                                    "Use dedicated hotplug event mechanism in"
3327                                    " place of standard EPOW events when possible"
3328                                    " (required for memory hot-unplug support)",
3329                                    NULL);
3330    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3331                            "Maximum permitted CPU compatibility mode",
3332                            &error_fatal);
3333
3334    object_property_add_str(obj, "resize-hpt",
3335                            spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3336    object_property_set_description(obj, "resize-hpt",
3337                                    "Resizing of the Hash Page Table (enabled, disabled, required)",
3338                                    NULL);
3339    object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3340                        spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3341    object_property_set_description(obj, "vsmt",
3342                                    "Virtual SMT: KVM behaves as if this were"
3343                                    " the host's SMT mode", &error_abort);
3344    object_property_add_bool(obj, "vfio-no-msix-emulation",
3345                             spapr_get_msix_emulation, NULL, NULL);
3346
3347    /* The machine class defines the default interrupt controller mode */
3348    spapr->irq = smc->irq;
3349    object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3350                            spapr_set_ic_mode, NULL);
3351    object_property_set_description(obj, "ic-mode",
3352                 "Specifies the interrupt controller mode (xics, xive, dual)",
3353                 NULL);
3354
3355    object_property_add_str(obj, "host-model",
3356        spapr_get_host_model, spapr_set_host_model,
3357        &error_abort);
3358    object_property_set_description(obj, "host-model",
3359        "Host model to advertise in guest device tree", &error_abort);
3360    object_property_add_str(obj, "host-serial",
3361        spapr_get_host_serial, spapr_set_host_serial,
3362        &error_abort);
3363    object_property_set_description(obj, "host-serial",
3364        "Host serial number to advertise in guest device tree", &error_abort);
3365}
3366
3367static void spapr_machine_finalizefn(Object *obj)
3368{
3369    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3370
3371    g_free(spapr->kvm_type);
3372}
3373
3374void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3375{
3376    cpu_synchronize_state(cs);
3377    ppc_cpu_do_system_reset(cs);
3378}
3379
3380static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3381{
3382    CPUState *cs;
3383
3384    CPU_FOREACH(cs) {
3385        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3386    }
3387}
3388
3389int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3390                          void *fdt, int *fdt_start_offset, Error **errp)
3391{
3392    uint64_t addr;
3393    uint32_t node;
3394
3395    addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3396    node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3397                                    &error_abort);
3398    *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3399                                                   SPAPR_MEMORY_BLOCK_SIZE);
3400    return 0;
3401}
3402
3403static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3404                           bool dedicated_hp_event_source, Error **errp)
3405{
3406    SpaprDrc *drc;
3407    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3408    int i;
3409    uint64_t addr = addr_start;
3410    bool hotplugged = spapr_drc_hotplugged(dev);
3411    Error *local_err = NULL;
3412
3413    for (i = 0; i < nr_lmbs; i++) {
3414        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3415                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3416        g_assert(drc);
3417
3418        spapr_drc_attach(drc, dev, &local_err);
3419        if (local_err) {
3420            while (addr > addr_start) {
3421                addr -= SPAPR_MEMORY_BLOCK_SIZE;
3422                drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3423                                      addr / SPAPR_MEMORY_BLOCK_SIZE);
3424                spapr_drc_detach(drc);
3425            }
3426            error_propagate(errp, local_err);
3427            return;
3428        }
3429        if (!hotplugged) {
3430            spapr_drc_reset(drc);
3431        }
3432        addr += SPAPR_MEMORY_BLOCK_SIZE;
3433    }
3434    /* send hotplug notification to the
3435     * guest only in case of hotplugged memory
3436     */
3437    if (hotplugged) {
3438        if (dedicated_hp_event_source) {
3439            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3440                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3441            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3442                                                   nr_lmbs,
3443                                                   spapr_drc_index(drc));
3444        } else {
3445            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3446                                           nr_lmbs);
3447        }
3448    }
3449}
3450
3451static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3452                              Error **errp)
3453{
3454    Error *local_err = NULL;
3455    SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3456    PCDIMMDevice *dimm = PC_DIMM(dev);
3457    uint64_t size, addr;
3458
3459    size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3460
3461    pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3462    if (local_err) {
3463        goto out;
3464    }
3465
3466    addr = object_property_get_uint(OBJECT(dimm),
3467                                    PC_DIMM_ADDR_PROP, &local_err);
3468    if (local_err) {
3469        goto out_unplug;
3470    }
3471
3472    spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3473                   &local_err);
3474    if (local_err) {
3475        goto out_unplug;
3476    }
3477
3478    return;
3479
3480out_unplug:
3481    pc_dimm_unplug(dimm, MACHINE(ms));
3482out:
3483    error_propagate(errp, local_err);
3484}
3485
3486static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3487                                  Error **errp)
3488{
3489    const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3490    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3491    PCDIMMDevice *dimm = PC_DIMM(dev);
3492    Error *local_err = NULL;
3493    uint64_t size;
3494    Object *memdev;
3495    hwaddr pagesize;
3496
3497    if (!smc->dr_lmb_enabled) {
3498        error_setg(errp, "Memory hotplug not supported for this machine");
3499        return;
3500    }
3501
3502    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3503    if (local_err) {
3504        error_propagate(errp, local_err);
3505        return;
3506    }
3507
3508    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3509        error_setg(errp, "Hotplugged memory size must be a multiple of "
3510                      "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3511        return;
3512    }
3513
3514    memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3515                                      &error_abort);
3516    pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3517    spapr_check_pagesize(spapr, pagesize, &local_err);
3518    if (local_err) {
3519        error_propagate(errp, local_err);
3520        return;
3521    }
3522
3523    pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3524}
3525
3526struct SpaprDimmState {
3527    PCDIMMDevice *dimm;
3528    uint32_t nr_lmbs;
3529    QTAILQ_ENTRY(SpaprDimmState) next;
3530};
3531
3532static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3533                                                       PCDIMMDevice *dimm)
3534{
3535    SpaprDimmState *dimm_state = NULL;
3536
3537    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3538        if (dimm_state->dimm == dimm) {
3539            break;
3540        }
3541    }
3542    return dimm_state;
3543}
3544
3545static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3546                                                      uint32_t nr_lmbs,
3547                                                      PCDIMMDevice *dimm)
3548{
3549    SpaprDimmState *ds = NULL;
3550
3551    /*
3552     * If this request is for a DIMM whose removal had failed earlier
3553     * (due to guest's refusal to remove the LMBs), we would have this
3554     * dimm already in the pending_dimm_unplugs list. In that
3555     * case don't add again.
3556     */
3557    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3558    if (!ds) {
3559        ds = g_malloc0(sizeof(SpaprDimmState));
3560        ds->nr_lmbs = nr_lmbs;
3561        ds->dimm = dimm;
3562        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3563    }
3564    return ds;
3565}
3566
3567static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3568                                              SpaprDimmState *dimm_state)
3569{
3570    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3571    g_free(dimm_state);
3572}
3573
3574static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3575                                                        PCDIMMDevice *dimm)
3576{
3577    SpaprDrc *drc;
3578    uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3579                                                  &error_abort);
3580    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3581    uint32_t avail_lmbs = 0;
3582    uint64_t addr_start, addr;
3583    int i;
3584
3585    addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3586                                         &error_abort);
3587
3588    addr = addr_start;
3589    for (i = 0; i < nr_lmbs; i++) {
3590        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3591                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3592        g_assert(drc);
3593        if (drc->dev) {
3594            avail_lmbs++;
3595        }
3596        addr += SPAPR_MEMORY_BLOCK_SIZE;
3597    }
3598
3599    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3600}
3601
3602/* Callback to be called during DRC release. */
3603void spapr_lmb_release(DeviceState *dev)
3604{
3605    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3606    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3607    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3608
3609    /* This information will get lost if a migration occurs
3610     * during the unplug process. In this case recover it. */
3611    if (ds == NULL) {
3612        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3613        g_assert(ds);
3614        /* The DRC being examined by the caller at least must be counted */
3615        g_assert(ds->nr_lmbs);
3616    }
3617
3618    if (--ds->nr_lmbs) {
3619        return;
3620    }
3621
3622    /*
3623     * Now that all the LMBs have been removed by the guest, call the
3624     * unplug handler chain. This can never fail.
3625     */
3626    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3627    object_unparent(OBJECT(dev));
3628}
3629
3630static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3631{
3632    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3633    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3634
3635    pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3636    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3637    spapr_pending_dimm_unplugs_remove(spapr, ds);
3638}
3639
3640static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3641                                        DeviceState *dev, Error **errp)
3642{
3643    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3644    Error *local_err = NULL;
3645    PCDIMMDevice *dimm = PC_DIMM(dev);
3646    uint32_t nr_lmbs;
3647    uint64_t size, addr_start, addr;
3648    int i;
3649    SpaprDrc *drc;
3650
3651    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3652    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3653
3654    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3655                                         &local_err);
3656    if (local_err) {
3657        goto out;
3658    }
3659
3660    /*
3661     * An existing pending dimm state for this DIMM means that there is an
3662     * unplug operation in progress, waiting for the spapr_lmb_release
3663     * callback to complete the job (BQL can't cover that far). In this case,
3664     * bail out to avoid detaching DRCs that were already released.
3665     */
3666    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3667        error_setg(&local_err,
3668                   "Memory unplug already in progress for device %s",
3669                   dev->id);
3670        goto out;
3671    }
3672
3673    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3674
3675    addr = addr_start;
3676    for (i = 0; i < nr_lmbs; i++) {
3677        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3678                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3679        g_assert(drc);
3680
3681        spapr_drc_detach(drc);
3682        addr += SPAPR_MEMORY_BLOCK_SIZE;
3683    }
3684
3685    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3686                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3687    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3688                                              nr_lmbs, spapr_drc_index(drc));
3689out:
3690    error_propagate(errp, local_err);
3691}
3692
3693/* Callback to be called during DRC release. */
3694void spapr_core_release(DeviceState *dev)
3695{
3696    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3697
3698    /* Call the unplug handler chain. This can never fail. */
3699    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3700    object_unparent(OBJECT(dev));
3701}
3702
3703static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3704{
3705    MachineState *ms = MACHINE(hotplug_dev);
3706    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3707    CPUCore *cc = CPU_CORE(dev);
3708    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3709
3710    if (smc->pre_2_10_has_unused_icps) {
3711        SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3712        int i;
3713
3714        for (i = 0; i < cc->nr_threads; i++) {
3715            CPUState *cs = CPU(sc->threads[i]);
3716
3717            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3718        }
3719    }
3720
3721    assert(core_slot);
3722    core_slot->cpu = NULL;
3723    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3724}
3725
3726static
3727void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3728                               Error **errp)
3729{
3730    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3731    int index;
3732    SpaprDrc *drc;
3733    CPUCore *cc = CPU_CORE(dev);
3734
3735    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3736        error_setg(errp, "Unable to find CPU core with core-id: %d",
3737                   cc->core_id);
3738        return;
3739    }
3740    if (index == 0) {
3741        error_setg(errp, "Boot CPU core may not be unplugged");
3742        return;
3743    }
3744
3745    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3746                          spapr_vcpu_id(spapr, cc->core_id));
3747    g_assert(drc);
3748
3749    if (!spapr_drc_unplug_requested(drc)) {
3750        spapr_drc_detach(drc);
3751        spapr_hotplug_req_remove_by_index(drc);
3752    }
3753}
3754
3755int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3756                           void *fdt, int *fdt_start_offset, Error **errp)
3757{
3758    SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3759    CPUState *cs = CPU(core->threads[0]);
3760    PowerPCCPU *cpu = POWERPC_CPU(cs);
3761    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3762    int id = spapr_get_vcpu_id(cpu);
3763    char *nodename;
3764    int offset;
3765
3766    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3767    offset = fdt_add_subnode(fdt, 0, nodename);
3768    g_free(nodename);
3769
3770    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3771
3772    *fdt_start_offset = offset;
3773    return 0;
3774}
3775
3776static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3777                            Error **errp)
3778{
3779    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3780    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3781    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3782    SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3783    CPUCore *cc = CPU_CORE(dev);
3784    CPUState *cs;
3785    SpaprDrc *drc;
3786    Error *local_err = NULL;
3787    CPUArchId *core_slot;
3788    int index;
3789    bool hotplugged = spapr_drc_hotplugged(dev);
3790    int i;
3791
3792    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3793    if (!core_slot) {
3794        error_setg(errp, "Unable to find CPU core with core-id: %d",
3795                   cc->core_id);
3796        return;
3797    }
3798    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3799                          spapr_vcpu_id(spapr, cc->core_id));
3800
3801    g_assert(drc || !mc->has_hotpluggable_cpus);
3802
3803    if (drc) {
3804        spapr_drc_attach(drc, dev, &local_err);
3805        if (local_err) {
3806            error_propagate(errp, local_err);
3807            return;
3808        }
3809
3810        if (hotplugged) {
3811            /*
3812             * Send hotplug notification interrupt to the guest only
3813             * in case of hotplugged CPUs.
3814             */
3815            spapr_hotplug_req_add_by_index(drc);
3816        } else {
3817            spapr_drc_reset(drc);
3818        }
3819    }
3820
3821    core_slot->cpu = OBJECT(dev);
3822
3823    if (smc->pre_2_10_has_unused_icps) {
3824        for (i = 0; i < cc->nr_threads; i++) {
3825            cs = CPU(core->threads[i]);
3826            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3827        }
3828    }
3829
3830    /*
3831     * Set compatibility mode to match the boot CPU, which was either set
3832     * by the machine reset code or by CAS.
3833     */
3834    if (hotplugged) {
3835        for (i = 0; i < cc->nr_threads; i++) {
3836            ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3837                           &local_err);
3838            if (local_err) {
3839                error_propagate(errp, local_err);
3840                return;
3841            }
3842        }
3843    }
3844}
3845
3846static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3847                                Error **errp)
3848{
3849    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3850    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3851    Error *local_err = NULL;
3852    CPUCore *cc = CPU_CORE(dev);
3853    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3854    const char *type = object_get_typename(OBJECT(dev));
3855    CPUArchId *core_slot;
3856    int index;
3857    unsigned int smp_threads = machine->smp.threads;
3858
3859    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3860        error_setg(&local_err, "CPU hotplug not supported for this machine");
3861        goto out;
3862    }
3863
3864    if (strcmp(base_core_type, type)) {
3865        error_setg(&local_err, "CPU core type should be %s", base_core_type);
3866        goto out;
3867    }
3868
3869    if (cc->core_id % smp_threads) {
3870        error_setg(&local_err, "invalid core id %d", cc->core_id);
3871        goto out;
3872    }
3873
3874    /*
3875     * In general we should have homogeneous threads-per-core, but old
3876     * (pre hotplug support) machine types allow the last core to have
3877     * reduced threads as a compatibility hack for when we allowed
3878     * total vcpus not a multiple of threads-per-core.
3879     */
3880    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3881        error_setg(&local_err, "invalid nr-threads %d, must be %d",
3882                   cc->nr_threads, smp_threads);
3883        goto out;
3884    }
3885
3886    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3887    if (!core_slot) {
3888        error_setg(&local_err, "core id %d out of range", cc->core_id);
3889        goto out;
3890    }
3891
3892    if (core_slot->cpu) {
3893        error_setg(&local_err, "core %d already populated", cc->core_id);
3894        goto out;
3895    }
3896
3897    numa_cpu_pre_plug(core_slot, dev, &local_err);
3898
3899out:
3900    error_propagate(errp, local_err);
3901}
3902
3903int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3904                          void *fdt, int *fdt_start_offset, Error **errp)
3905{
3906    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3907    int intc_phandle;
3908
3909    intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3910    if (intc_phandle <= 0) {
3911        return -1;
3912    }
3913
3914    if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3915        error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3916        return -1;
3917    }
3918
3919    /* generally SLOF creates these, for hotplug it's up to QEMU */
3920    _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3921
3922    return 0;
3923}
3924
3925static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3926                               Error **errp)
3927{
3928    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3929    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3930    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3931    const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3932
3933    if (dev->hotplugged && !smc->dr_phb_enabled) {
3934        error_setg(errp, "PHB hotplug not supported for this machine");
3935        return;
3936    }
3937
3938    if (sphb->index == (uint32_t)-1) {
3939        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3940        return;
3941    }
3942
3943    /*
3944     * This will check that sphb->index doesn't exceed the maximum number of
3945     * PHBs for the current machine type.
3946     */
3947    smc->phb_placement(spapr, sphb->index,
3948                       &sphb->buid, &sphb->io_win_addr,
3949                       &sphb->mem_win_addr, &sphb->mem64_win_addr,
3950                       windows_supported, sphb->dma_liobn,
3951                       &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3952                       errp);
3953}
3954
3955static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3956                           Error **errp)
3957{
3958    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3959    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3960    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3961    SpaprDrc *drc;
3962    bool hotplugged = spapr_drc_hotplugged(dev);
3963    Error *local_err = NULL;
3964
3965    if (!smc->dr_phb_enabled) {
3966        return;
3967    }
3968
3969    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3970    /* hotplug hooks should check it's enabled before getting this far */
3971    assert(drc);
3972
3973    spapr_drc_attach(drc, DEVICE(dev), &local_err);
3974    if (local_err) {
3975        error_propagate(errp, local_err);
3976        return;
3977    }
3978
3979    if (hotplugged) {
3980        spapr_hotplug_req_add_by_index(drc);
3981    } else {
3982        spapr_drc_reset(drc);
3983    }
3984}
3985
3986void spapr_phb_release(DeviceState *dev)
3987{
3988    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3989
3990    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3991    object_unparent(OBJECT(dev));
3992}
3993
3994static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3995{
3996    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3997}
3998
3999static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4000                                     DeviceState *dev, Error **errp)
4001{
4002    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4003    SpaprDrc *drc;
4004
4005    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4006    assert(drc);
4007
4008    if (!spapr_drc_unplug_requested(drc)) {
4009        spapr_drc_detach(drc);
4010        spapr_hotplug_req_remove_by_index(drc);
4011    }
4012}
4013
4014static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4015                                 Error **errp)
4016{
4017    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4018    SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4019
4020    if (spapr->tpm_proxy != NULL) {
4021        error_setg(errp, "Only one TPM proxy can be specified for this machine");
4022        return;
4023    }
4024
4025    spapr->tpm_proxy = tpm_proxy;
4026}
4027
4028static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4029{
4030    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4031
4032    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4033    object_unparent(OBJECT(dev));
4034    spapr->tpm_proxy = NULL;
4035}
4036
4037static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4038                                      DeviceState *dev, Error **errp)
4039{
4040    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4041        spapr_memory_plug(hotplug_dev, dev, errp);
4042    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4043        spapr_core_plug(hotplug_dev, dev, errp);
4044    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4045        spapr_phb_plug(hotplug_dev, dev, errp);
4046    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4047        spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4048    }
4049}
4050
4051static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4052                                        DeviceState *dev, Error **errp)
4053{
4054    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4055        spapr_memory_unplug(hotplug_dev, dev);
4056    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4057        spapr_core_unplug(hotplug_dev, dev);
4058    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4059        spapr_phb_unplug(hotplug_dev, dev);
4060    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4061        spapr_tpm_proxy_unplug(hotplug_dev, dev);
4062    }
4063}
4064
4065static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4066                                                DeviceState *dev, Error **errp)
4067{
4068    SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4069    MachineClass *mc = MACHINE_GET_CLASS(sms);
4070    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4071
4072    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4073        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4074            spapr_memory_unplug_request(hotplug_dev, dev, errp);
4075        } else {
4076            /* NOTE: this means there is a window after guest reset, prior to
4077             * CAS negotiation, where unplug requests will fail due to the
4078             * capability not being detected yet. This is a bit different than
4079             * the case with PCI unplug, where the events will be queued and
4080             * eventually handled by the guest after boot
4081             */
4082            error_setg(errp, "Memory hot unplug not supported for this guest");
4083        }
4084    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4085        if (!mc->has_hotpluggable_cpus) {
4086            error_setg(errp, "CPU hot unplug not supported on this machine");
4087            return;
4088        }
4089        spapr_core_unplug_request(hotplug_dev, dev, errp);
4090    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4091        if (!smc->dr_phb_enabled) {
4092            error_setg(errp, "PHB hot unplug not supported on this machine");
4093            return;
4094        }
4095        spapr_phb_unplug_request(hotplug_dev, dev, errp);
4096    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4097        spapr_tpm_proxy_unplug(hotplug_dev, dev);
4098    }
4099}
4100
4101static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4102                                          DeviceState *dev, Error **errp)
4103{
4104    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4105        spapr_memory_pre_plug(hotplug_dev, dev, errp);
4106    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4107        spapr_core_pre_plug(hotplug_dev, dev, errp);
4108    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4109        spapr_phb_pre_plug(hotplug_dev, dev, errp);
4110    }
4111}
4112
4113static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4114                                                 DeviceState *dev)
4115{
4116    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4117        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4118        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4119        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4120        return HOTPLUG_HANDLER(machine);
4121    }
4122    if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4123        PCIDevice *pcidev = PCI_DEVICE(dev);
4124        PCIBus *root = pci_device_root_bus(pcidev);
4125        SpaprPhbState *phb =
4126            (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4127                                                 TYPE_SPAPR_PCI_HOST_BRIDGE);
4128
4129        if (phb) {
4130            return HOTPLUG_HANDLER(phb);
4131        }
4132    }
4133    return NULL;
4134}
4135
4136static CpuInstanceProperties
4137spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4138{
4139    CPUArchId *core_slot;
4140    MachineClass *mc = MACHINE_GET_CLASS(machine);
4141
4142    /* make sure possible_cpu are intialized */
4143    mc->possible_cpu_arch_ids(machine);
4144    /* get CPU core slot containing thread that matches cpu_index */
4145    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4146    assert(core_slot);
4147    return core_slot->props;
4148}
4149
4150static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4151{
4152    return idx / ms->smp.cores % ms->numa_state->num_nodes;
4153}
4154
4155static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4156{
4157    int i;
4158    unsigned int smp_threads = machine->smp.threads;
4159    unsigned int smp_cpus = machine->smp.cpus;
4160    const char *core_type;
4161    int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4162    MachineClass *mc = MACHINE_GET_CLASS(machine);
4163
4164    if (!mc->has_hotpluggable_cpus) {
4165        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4166    }
4167    if (machine->possible_cpus) {
4168        assert(machine->possible_cpus->len == spapr_max_cores);
4169        return machine->possible_cpus;
4170    }
4171
4172    core_type = spapr_get_cpu_core_type(machine->cpu_type);
4173    if (!core_type) {
4174        error_report("Unable to find sPAPR CPU Core definition");
4175        exit(1);
4176    }
4177
4178    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4179                             sizeof(CPUArchId) * spapr_max_cores);
4180    machine->possible_cpus->len = spapr_max_cores;
4181    for (i = 0; i < machine->possible_cpus->len; i++) {
4182        int core_id = i * smp_threads;
4183
4184        machine->possible_cpus->cpus[i].type = core_type;
4185        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4186        machine->possible_cpus->cpus[i].arch_id = core_id;
4187        machine->possible_cpus->cpus[i].props.has_core_id = true;
4188        machine->possible_cpus->cpus[i].props.core_id = core_id;
4189    }
4190    return machine->possible_cpus;
4191}
4192
4193static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4194                                uint64_t *buid, hwaddr *pio,
4195                                hwaddr *mmio32, hwaddr *mmio64,
4196                                unsigned n_dma, uint32_t *liobns,
4197                                hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4198{
4199    /*
4200     * New-style PHB window placement.
4201     *
4202     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4203     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4204     * windows.
4205     *
4206     * Some guest kernels can't work with MMIO windows above 1<<46
4207     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4208     *
4209     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4210     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4211     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4212     * 1TiB 64-bit MMIO windows for each PHB.
4213     */
4214    const uint64_t base_buid = 0x800000020000000ULL;
4215    int i;
4216
4217    /* Sanity check natural alignments */
4218    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4219    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4220    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4221    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4222    /* Sanity check bounds */
4223    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4224                      SPAPR_PCI_MEM32_WIN_SIZE);
4225    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4226                      SPAPR_PCI_MEM64_WIN_SIZE);
4227
4228    if (index >= SPAPR_MAX_PHBS) {
4229        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4230                   SPAPR_MAX_PHBS - 1);
4231        return;
4232    }
4233
4234    *buid = base_buid + index;
4235    for (i = 0; i < n_dma; ++i) {
4236        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4237    }
4238
4239    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4240    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4241    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4242
4243    *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4244    *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4245}
4246
4247static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4248{
4249    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4250
4251    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4252}
4253
4254static void spapr_ics_resend(XICSFabric *dev)
4255{
4256    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4257
4258    ics_resend(spapr->ics);
4259}
4260
4261static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4262{
4263    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4264
4265    return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4266}
4267
4268static void spapr_pic_print_info(InterruptStatsProvider *obj,
4269                                 Monitor *mon)
4270{
4271    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4272
4273    spapr_irq_print_info(spapr, mon);
4274    monitor_printf(mon, "irqchip: %s\n",
4275                   kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4276}
4277
4278int spapr_get_vcpu_id(PowerPCCPU *cpu)
4279{
4280    return cpu->vcpu_id;
4281}
4282
4283void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4284{
4285    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4286    MachineState *ms = MACHINE(spapr);
4287    int vcpu_id;
4288
4289    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4290
4291    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4292        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4293        error_append_hint(errp, "Adjust the number of cpus to %d "
4294                          "or try to raise the number of threads per core\n",
4295                          vcpu_id * ms->smp.threads / spapr->vsmt);
4296        return;
4297    }
4298
4299    cpu->vcpu_id = vcpu_id;
4300}
4301
4302PowerPCCPU *spapr_find_cpu(int vcpu_id)
4303{
4304    CPUState *cs;
4305
4306    CPU_FOREACH(cs) {
4307        PowerPCCPU *cpu = POWERPC_CPU(cs);
4308
4309        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4310            return cpu;
4311        }
4312    }
4313
4314    return NULL;
4315}
4316
4317static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4318{
4319    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4320
4321    /* These are only called by TCG, KVM maintains dispatch state */
4322
4323    spapr_cpu->prod = false;
4324    if (spapr_cpu->vpa_addr) {
4325        CPUState *cs = CPU(cpu);
4326        uint32_t dispatch;
4327
4328        dispatch = ldl_be_phys(cs->as,
4329                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4330        dispatch++;
4331        if ((dispatch & 1) != 0) {
4332            qemu_log_mask(LOG_GUEST_ERROR,
4333                          "VPA: incorrect dispatch counter value for "
4334                          "dispatched partition %u, correcting.\n", dispatch);
4335            dispatch++;
4336        }
4337        stl_be_phys(cs->as,
4338                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4339    }
4340}
4341
4342static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4343{
4344    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4345
4346    if (spapr_cpu->vpa_addr) {
4347        CPUState *cs = CPU(cpu);
4348        uint32_t dispatch;
4349
4350        dispatch = ldl_be_phys(cs->as,
4351                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4352        dispatch++;
4353        if ((dispatch & 1) != 1) {
4354            qemu_log_mask(LOG_GUEST_ERROR,
4355                          "VPA: incorrect dispatch counter value for "
4356                          "preempted partition %u, correcting.\n", dispatch);
4357            dispatch++;
4358        }
4359        stl_be_phys(cs->as,
4360                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4361    }
4362}
4363
4364static void spapr_machine_class_init(ObjectClass *oc, void *data)
4365{
4366    MachineClass *mc = MACHINE_CLASS(oc);
4367    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4368    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4369    NMIClass *nc = NMI_CLASS(oc);
4370    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4371    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4372    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4373    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4374
4375    mc->desc = "pSeries Logical Partition (PAPR compliant)";
4376    mc->ignore_boot_device_suffixes = true;
4377
4378    /*
4379     * We set up the default / latest behaviour here.  The class_init
4380     * functions for the specific versioned machine types can override
4381     * these details for backwards compatibility
4382     */
4383    mc->init = spapr_machine_init;
4384    mc->reset = spapr_machine_reset;
4385    mc->block_default_type = IF_SCSI;
4386    mc->max_cpus = 1024;
4387    mc->no_parallel = 1;
4388    mc->default_boot_order = "";
4389    mc->default_ram_size = 512 * MiB;
4390    mc->default_display = "std";
4391    mc->kvm_type = spapr_kvm_type;
4392    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4393    mc->pci_allow_0_address = true;
4394    assert(!mc->get_hotplug_handler);
4395    mc->get_hotplug_handler = spapr_get_hotplug_handler;
4396    hc->pre_plug = spapr_machine_device_pre_plug;
4397    hc->plug = spapr_machine_device_plug;
4398    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4399    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4400    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4401    hc->unplug_request = spapr_machine_device_unplug_request;
4402    hc->unplug = spapr_machine_device_unplug;
4403
4404    smc->dr_lmb_enabled = true;
4405    smc->update_dt_enabled = true;
4406    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4407    mc->has_hotpluggable_cpus = true;
4408    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4409    fwc->get_dev_path = spapr_get_fw_dev_path;
4410    nc->nmi_monitor_handler = spapr_nmi;
4411    smc->phb_placement = spapr_phb_placement;
4412    vhc->hypercall = emulate_spapr_hypercall;
4413    vhc->hpt_mask = spapr_hpt_mask;
4414    vhc->map_hptes = spapr_map_hptes;
4415    vhc->unmap_hptes = spapr_unmap_hptes;
4416    vhc->hpte_set_c = spapr_hpte_set_c;
4417    vhc->hpte_set_r = spapr_hpte_set_r;
4418    vhc->get_pate = spapr_get_pate;
4419    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4420    vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4421    vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4422    xic->ics_get = spapr_ics_get;
4423    xic->ics_resend = spapr_ics_resend;
4424    xic->icp_get = spapr_icp_get;
4425    ispc->print_info = spapr_pic_print_info;
4426    /* Force NUMA node memory size to be a multiple of
4427     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4428     * in which LMBs are represented and hot-added
4429     */
4430    mc->numa_mem_align_shift = 28;
4431    mc->numa_mem_supported = true;
4432    mc->auto_enable_numa = true;
4433
4434    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4435    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4436    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4437    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4438    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4439    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4440    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4441    smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4442    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4443    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4444    spapr_caps_add_properties(smc, &error_abort);
4445    smc->irq = &spapr_irq_dual;
4446    smc->dr_phb_enabled = true;
4447    smc->linux_pci_probe = true;
4448    smc->smp_threads_vsmt = true;
4449    smc->nr_xirqs = SPAPR_NR_XIRQS;
4450}
4451
4452static const TypeInfo spapr_machine_info = {
4453    .name          = TYPE_SPAPR_MACHINE,
4454    .parent        = TYPE_MACHINE,
4455    .abstract      = true,
4456    .instance_size = sizeof(SpaprMachineState),
4457    .instance_init = spapr_instance_init,
4458    .instance_finalize = spapr_machine_finalizefn,
4459    .class_size    = sizeof(SpaprMachineClass),
4460    .class_init    = spapr_machine_class_init,
4461    .interfaces = (InterfaceInfo[]) {
4462        { TYPE_FW_PATH_PROVIDER },
4463        { TYPE_NMI },
4464        { TYPE_HOTPLUG_HANDLER },
4465        { TYPE_PPC_VIRTUAL_HYPERVISOR },
4466        { TYPE_XICS_FABRIC },
4467        { TYPE_INTERRUPT_STATS_PROVIDER },
4468        { }
4469    },
4470};
4471
4472#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4473    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4474                                                    void *data)      \
4475    {                                                                \
4476        MachineClass *mc = MACHINE_CLASS(oc);                        \
4477        spapr_machine_##suffix##_class_options(mc);                  \
4478        if (latest) {                                                \
4479            mc->alias = "pseries";                                   \
4480            mc->is_default = 1;                                      \
4481        }                                                            \
4482    }                                                                \
4483    static const TypeInfo spapr_machine_##suffix##_info = {          \
4484        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4485        .parent = TYPE_SPAPR_MACHINE,                                \
4486        .class_init = spapr_machine_##suffix##_class_init,           \
4487    };                                                               \
4488    static void spapr_machine_register_##suffix(void)                \
4489    {                                                                \
4490        type_register(&spapr_machine_##suffix##_info);               \
4491    }                                                                \
4492    type_init(spapr_machine_register_##suffix)
4493
4494/*
4495 * pseries-4.2
4496 */
4497static void spapr_machine_4_2_class_options(MachineClass *mc)
4498{
4499    /* Defaults for the latest behaviour inherited from the base class */
4500}
4501
4502DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4503
4504/*
4505 * pseries-4.1
4506 */
4507static void spapr_machine_4_1_class_options(MachineClass *mc)
4508{
4509    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4510    static GlobalProperty compat[] = {
4511        /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4512        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4513    };
4514
4515    spapr_machine_4_2_class_options(mc);
4516    smc->linux_pci_probe = false;
4517    smc->smp_threads_vsmt = false;
4518    compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4519    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4520}
4521
4522DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4523
4524/*
4525 * pseries-4.0
4526 */
4527static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4528                              uint64_t *buid, hwaddr *pio,
4529                              hwaddr *mmio32, hwaddr *mmio64,
4530                              unsigned n_dma, uint32_t *liobns,
4531                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4532{
4533    spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4534                        nv2gpa, nv2atsd, errp);
4535    *nv2gpa = 0;
4536    *nv2atsd = 0;
4537}
4538
4539static void spapr_machine_4_0_class_options(MachineClass *mc)
4540{
4541    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4542
4543    spapr_machine_4_1_class_options(mc);
4544    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4545    smc->phb_placement = phb_placement_4_0;
4546    smc->irq = &spapr_irq_xics;
4547    smc->pre_4_1_migration = true;
4548}
4549
4550DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4551
4552/*
4553 * pseries-3.1
4554 */
4555static void spapr_machine_3_1_class_options(MachineClass *mc)
4556{
4557    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4558
4559    spapr_machine_4_0_class_options(mc);
4560    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4561
4562    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4563    smc->update_dt_enabled = false;
4564    smc->dr_phb_enabled = false;
4565    smc->broken_host_serial_model = true;
4566    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4567    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4568    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4569    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4570}
4571
4572DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4573
4574/*
4575 * pseries-3.0
4576 */
4577
4578static void spapr_machine_3_0_class_options(MachineClass *mc)
4579{
4580    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4581
4582    spapr_machine_3_1_class_options(mc);
4583    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4584
4585    smc->legacy_irq_allocation = true;
4586    smc->nr_xirqs = 0x400;
4587    smc->irq = &spapr_irq_xics_legacy;
4588}
4589
4590DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4591
4592/*
4593 * pseries-2.12
4594 */
4595static void spapr_machine_2_12_class_options(MachineClass *mc)
4596{
4597    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4598    static GlobalProperty compat[] = {
4599        { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4600        { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4601    };
4602
4603    spapr_machine_3_0_class_options(mc);
4604    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4605    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4606
4607    /* We depend on kvm_enabled() to choose a default value for the
4608     * hpt-max-page-size capability. Of course we can't do it here
4609     * because this is too early and the HW accelerator isn't initialzed
4610     * yet. Postpone this to machine init (see default_caps_with_cpu()).
4611     */
4612    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4613}
4614
4615DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4616
4617static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4618{
4619    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4620
4621    spapr_machine_2_12_class_options(mc);
4622    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4623    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4624    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4625}
4626
4627DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4628
4629/*
4630 * pseries-2.11
4631 */
4632
4633static void spapr_machine_2_11_class_options(MachineClass *mc)
4634{
4635    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4636
4637    spapr_machine_2_12_class_options(mc);
4638    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4639    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4640}
4641
4642DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4643
4644/*
4645 * pseries-2.10
4646 */
4647
4648static void spapr_machine_2_10_class_options(MachineClass *mc)
4649{
4650    spapr_machine_2_11_class_options(mc);
4651    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4652}
4653
4654DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4655
4656/*
4657 * pseries-2.9
4658 */
4659
4660static void spapr_machine_2_9_class_options(MachineClass *mc)
4661{
4662    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4663    static GlobalProperty compat[] = {
4664        { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4665    };
4666
4667    spapr_machine_2_10_class_options(mc);
4668    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4669    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4670    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4671    smc->pre_2_10_has_unused_icps = true;
4672    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4673}
4674
4675DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4676
4677/*
4678 * pseries-2.8
4679 */
4680
4681static void spapr_machine_2_8_class_options(MachineClass *mc)
4682{
4683    static GlobalProperty compat[] = {
4684        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4685    };
4686
4687    spapr_machine_2_9_class_options(mc);
4688    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4689    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4690    mc->numa_mem_align_shift = 23;
4691}
4692
4693DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4694
4695/*
4696 * pseries-2.7
4697 */
4698
4699static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4700                              uint64_t *buid, hwaddr *pio,
4701                              hwaddr *mmio32, hwaddr *mmio64,
4702                              unsigned n_dma, uint32_t *liobns,
4703                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4704{
4705    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4706    const uint64_t base_buid = 0x800000020000000ULL;
4707    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4708    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4709    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4710    const uint32_t max_index = 255;
4711    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4712
4713    uint64_t ram_top = MACHINE(spapr)->ram_size;
4714    hwaddr phb0_base, phb_base;
4715    int i;
4716
4717    /* Do we have device memory? */
4718    if (MACHINE(spapr)->maxram_size > ram_top) {
4719        /* Can't just use maxram_size, because there may be an
4720         * alignment gap between normal and device memory regions
4721         */
4722        ram_top = MACHINE(spapr)->device_memory->base +
4723            memory_region_size(&MACHINE(spapr)->device_memory->mr);
4724    }
4725
4726    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4727
4728    if (index > max_index) {
4729        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4730                   max_index);
4731        return;
4732    }
4733
4734    *buid = base_buid + index;
4735    for (i = 0; i < n_dma; ++i) {
4736        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4737    }
4738
4739    phb_base = phb0_base + index * phb_spacing;
4740    *pio = phb_base + pio_offset;
4741    *mmio32 = phb_base + mmio_offset;
4742    /*
4743     * We don't set the 64-bit MMIO window, relying on the PHB's
4744     * fallback behaviour of automatically splitting a large "32-bit"
4745     * window into contiguous 32-bit and 64-bit windows
4746     */
4747
4748    *nv2gpa = 0;
4749    *nv2atsd = 0;
4750}
4751
4752static void spapr_machine_2_7_class_options(MachineClass *mc)
4753{
4754    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4755    static GlobalProperty compat[] = {
4756        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4757        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4758        { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4759        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4760    };
4761
4762    spapr_machine_2_8_class_options(mc);
4763    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4764    mc->default_machine_opts = "modern-hotplug-events=off";
4765    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4766    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4767    smc->phb_placement = phb_placement_2_7;
4768}
4769
4770DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4771
4772/*
4773 * pseries-2.6
4774 */
4775
4776static void spapr_machine_2_6_class_options(MachineClass *mc)
4777{
4778    static GlobalProperty compat[] = {
4779        { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4780    };
4781
4782    spapr_machine_2_7_class_options(mc);
4783    mc->has_hotpluggable_cpus = false;
4784    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4785    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4786}
4787
4788DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4789
4790/*
4791 * pseries-2.5
4792 */
4793
4794static void spapr_machine_2_5_class_options(MachineClass *mc)
4795{
4796    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4797    static GlobalProperty compat[] = {
4798        { "spapr-vlan", "use-rx-buffer-pools", "off" },
4799    };
4800
4801    spapr_machine_2_6_class_options(mc);
4802    smc->use_ohci_by_default = true;
4803    compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4804    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4805}
4806
4807DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4808
4809/*
4810 * pseries-2.4
4811 */
4812
4813static void spapr_machine_2_4_class_options(MachineClass *mc)
4814{
4815    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4816
4817    spapr_machine_2_5_class_options(mc);
4818    smc->dr_lmb_enabled = false;
4819    compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4820}
4821
4822DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4823
4824/*
4825 * pseries-2.3
4826 */
4827
4828static void spapr_machine_2_3_class_options(MachineClass *mc)
4829{
4830    static GlobalProperty compat[] = {
4831        { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4832    };
4833    spapr_machine_2_4_class_options(mc);
4834    compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4835    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4836}
4837DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4838
4839/*
4840 * pseries-2.2
4841 */
4842
4843static void spapr_machine_2_2_class_options(MachineClass *mc)
4844{
4845    static GlobalProperty compat[] = {
4846        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4847    };
4848
4849    spapr_machine_2_3_class_options(mc);
4850    compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4851    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4852    mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4853}
4854DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4855
4856/*
4857 * pseries-2.1
4858 */
4859
4860static void spapr_machine_2_1_class_options(MachineClass *mc)
4861{
4862    spapr_machine_2_2_class_options(mc);
4863    compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4864}
4865DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4866
4867static void spapr_machine_register_types(void)
4868{
4869    type_register_static(&spapr_machine_info);
4870}
4871
4872type_init(spapr_machine_register_types)
4873