qemu/hw/ssi/aspeed_smc.c
<<
>>
Prefs
   1/*
   2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
   3 *
   4 * Copyright (C) 2016 IBM Corp.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "hw/sysbus.h"
  27#include "migration/vmstate.h"
  28#include "qemu/log.h"
  29#include "qemu/module.h"
  30#include "qemu/error-report.h"
  31#include "qapi/error.h"
  32#include "exec/address-spaces.h"
  33#include "qemu/units.h"
  34
  35#include "hw/irq.h"
  36#include "hw/qdev-properties.h"
  37#include "hw/ssi/aspeed_smc.h"
  38
  39/* CE Type Setting Register */
  40#define R_CONF            (0x00 / 4)
  41#define   CONF_LEGACY_DISABLE  (1 << 31)
  42#define   CONF_ENABLE_W4       20
  43#define   CONF_ENABLE_W3       19
  44#define   CONF_ENABLE_W2       18
  45#define   CONF_ENABLE_W1       17
  46#define   CONF_ENABLE_W0       16
  47#define   CONF_FLASH_TYPE4     8
  48#define   CONF_FLASH_TYPE3     6
  49#define   CONF_FLASH_TYPE2     4
  50#define   CONF_FLASH_TYPE1     2
  51#define   CONF_FLASH_TYPE0     0
  52#define      CONF_FLASH_TYPE_NOR   0x0
  53#define      CONF_FLASH_TYPE_NAND  0x1
  54#define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
  55
  56/* CE Control Register */
  57#define R_CE_CTRL            (0x04 / 4)
  58#define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
  59#define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
  60#define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
  61#define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
  62#define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
  63
  64/* Interrupt Control and Status Register */
  65#define R_INTR_CTRL       (0x08 / 4)
  66#define   INTR_CTRL_DMA_STATUS            (1 << 11)
  67#define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
  68#define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
  69#define   INTR_CTRL_DMA_EN                (1 << 3)
  70#define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
  71#define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
  72
  73/* CEx Control Register */
  74#define R_CTRL0           (0x10 / 4)
  75#define   CTRL_IO_QPI              (1 << 31)
  76#define   CTRL_IO_QUAD_DATA        (1 << 30)
  77#define   CTRL_IO_DUAL_DATA        (1 << 29)
  78#define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
  79#define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
  80#define   CTRL_CMD_SHIFT           16
  81#define   CTRL_CMD_MASK            0xff
  82#define   CTRL_DUMMY_HIGH_SHIFT    14
  83#define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
  84#define CE_CTRL_CLOCK_FREQ_SHIFT   8
  85#define CE_CTRL_CLOCK_FREQ_MASK    0xf
  86#define CE_CTRL_CLOCK_FREQ(div)                                         \
  87    (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
  88#define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
  89#define   CTRL_CE_STOP_ACTIVE      (1 << 2)
  90#define   CTRL_CMD_MODE_MASK       0x3
  91#define     CTRL_READMODE          0x0
  92#define     CTRL_FREADMODE         0x1
  93#define     CTRL_WRITEMODE         0x2
  94#define     CTRL_USERMODE          0x3
  95#define R_CTRL1           (0x14 / 4)
  96#define R_CTRL2           (0x18 / 4)
  97#define R_CTRL3           (0x1C / 4)
  98#define R_CTRL4           (0x20 / 4)
  99
 100/* CEx Segment Address Register */
 101#define R_SEG_ADDR0       (0x30 / 4)
 102#define   SEG_END_SHIFT        24   /* 8MB units */
 103#define   SEG_END_MASK         0xff
 104#define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
 105#define   SEG_START_MASK       0xff
 106#define R_SEG_ADDR1       (0x34 / 4)
 107#define R_SEG_ADDR2       (0x38 / 4)
 108#define R_SEG_ADDR3       (0x3C / 4)
 109#define R_SEG_ADDR4       (0x40 / 4)
 110
 111/* Misc Control Register #1 */
 112#define R_MISC_CTRL1      (0x50 / 4)
 113
 114/* SPI dummy cycle data */
 115#define R_DUMMY_DATA      (0x54 / 4)
 116
 117/* DMA Control/Status Register */
 118#define R_DMA_CTRL        (0x80 / 4)
 119#define   DMA_CTRL_DELAY_MASK   0xf
 120#define   DMA_CTRL_DELAY_SHIFT  8
 121#define   DMA_CTRL_FREQ_MASK    0xf
 122#define   DMA_CTRL_FREQ_SHIFT   4
 123#define   DMA_CTRL_CALIB        (1 << 3)
 124#define   DMA_CTRL_CKSUM        (1 << 2)
 125#define   DMA_CTRL_WRITE        (1 << 1)
 126#define   DMA_CTRL_ENABLE       (1 << 0)
 127
 128/* DMA Flash Side Address */
 129#define R_DMA_FLASH_ADDR  (0x84 / 4)
 130
 131/* DMA DRAM Side Address */
 132#define R_DMA_DRAM_ADDR   (0x88 / 4)
 133
 134/* DMA Length Register */
 135#define R_DMA_LEN         (0x8C / 4)
 136
 137/* Checksum Calculation Result */
 138#define R_DMA_CHECKSUM    (0x90 / 4)
 139
 140/* Misc Control Register #2 */
 141#define R_TIMINGS         (0x94 / 4)
 142
 143/* SPI controller registers and bits (AST2400) */
 144#define R_SPI_CONF        (0x00 / 4)
 145#define   SPI_CONF_ENABLE_W0   0
 146#define R_SPI_CTRL0       (0x4 / 4)
 147#define R_SPI_MISC_CTRL   (0x10 / 4)
 148#define R_SPI_TIMINGS     (0x14 / 4)
 149
 150#define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
 151#define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
 152
 153#define ASPEED_SOC_SMC_FLASH_BASE   0x10000000
 154#define ASPEED_SOC_FMC_FLASH_BASE   0x20000000
 155#define ASPEED_SOC_SPI_FLASH_BASE   0x30000000
 156#define ASPEED_SOC_SPI2_FLASH_BASE  0x38000000
 157
 158/*
 159 * DMA DRAM addresses should be 4 bytes aligned and the valid address
 160 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
 161 *          0x80000000 - 0xBFFFFFFF (AST2500)
 162 *
 163 * DMA flash addresses should be 4 bytes aligned and the valid address
 164 * range is 0x20000000 - 0x2FFFFFFF.
 165 *
 166 * DMA length is from 4 bytes to 32MB
 167 *   0: 4 bytes
 168 *   0x7FFFFF: 32M bytes
 169 */
 170#define DMA_DRAM_ADDR(s, val)   ((s)->sdram_base | \
 171                                 ((val) & (s)->ctrl->dma_dram_mask))
 172#define DMA_FLASH_ADDR(s, val)  ((s)->ctrl->flash_window_base | \
 173                                ((val) & (s)->ctrl->dma_flash_mask))
 174#define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
 175
 176/* Flash opcodes. */
 177#define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
 178
 179#define SNOOP_OFF         0xFF
 180#define SNOOP_START       0x0
 181
 182/*
 183 * Default segments mapping addresses and size for each slave per
 184 * controller. These can be changed when board is initialized with the
 185 * Segment Address Registers.
 186 */
 187static const AspeedSegments aspeed_segments_legacy[] = {
 188    { 0x10000000, 32 * 1024 * 1024 },
 189};
 190
 191static const AspeedSegments aspeed_segments_fmc[] = {
 192    { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
 193    { 0x24000000, 32 * 1024 * 1024 },
 194    { 0x26000000, 32 * 1024 * 1024 },
 195    { 0x28000000, 32 * 1024 * 1024 },
 196    { 0x2A000000, 32 * 1024 * 1024 }
 197};
 198
 199static const AspeedSegments aspeed_segments_spi[] = {
 200    { 0x30000000, 64 * 1024 * 1024 },
 201};
 202
 203static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
 204    { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
 205    { 0x28000000,  32 * 1024 * 1024 },
 206    { 0x2A000000,  32 * 1024 * 1024 },
 207};
 208
 209static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
 210    { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
 211    { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
 212};
 213
 214static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
 215    { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
 216    { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
 217};
 218static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
 219                                          const AspeedSegments *seg);
 220static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
 221                                      AspeedSegments *seg);
 222
 223/*
 224 * AST2600 definitions
 225 */
 226#define ASPEED26_SOC_FMC_FLASH_BASE   0x20000000
 227#define ASPEED26_SOC_SPI_FLASH_BASE   0x30000000
 228#define ASPEED26_SOC_SPI2_FLASH_BASE  0x50000000
 229
 230static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
 231    { 0x0, 128 * MiB }, /* start address is readonly */
 232    { 0x0, 0 }, /* disabled */
 233    { 0x0, 0 }, /* disabled */
 234};
 235
 236static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
 237    { 0x0, 128 * MiB }, /* start address is readonly */
 238    { 0x0, 0 }, /* disabled */
 239};
 240
 241static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
 242    { 0x0, 128 * MiB }, /* start address is readonly */
 243    { 0x0, 0 }, /* disabled */
 244    { 0x0, 0 }, /* disabled */
 245};
 246
 247static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
 248                                               const AspeedSegments *seg);
 249static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
 250                                           uint32_t reg, AspeedSegments *seg);
 251
 252static const AspeedSMCController controllers[] = {
 253    {
 254        .name              = "aspeed.smc-ast2400",
 255        .r_conf            = R_CONF,
 256        .r_ce_ctrl         = R_CE_CTRL,
 257        .r_ctrl0           = R_CTRL0,
 258        .r_timings         = R_TIMINGS,
 259        .conf_enable_w0    = CONF_ENABLE_W0,
 260        .max_slaves        = 5,
 261        .segments          = aspeed_segments_legacy,
 262        .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
 263        .flash_window_size = 0x6000000,
 264        .has_dma           = false,
 265        .nregs             = ASPEED_SMC_R_SMC_MAX,
 266        .segment_to_reg    = aspeed_smc_segment_to_reg,
 267        .reg_to_segment    = aspeed_smc_reg_to_segment,
 268    }, {
 269        .name              = "aspeed.fmc-ast2400",
 270        .r_conf            = R_CONF,
 271        .r_ce_ctrl         = R_CE_CTRL,
 272        .r_ctrl0           = R_CTRL0,
 273        .r_timings         = R_TIMINGS,
 274        .conf_enable_w0    = CONF_ENABLE_W0,
 275        .max_slaves        = 5,
 276        .segments          = aspeed_segments_fmc,
 277        .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
 278        .flash_window_size = 0x10000000,
 279        .has_dma           = true,
 280        .dma_flash_mask    = 0x0FFFFFFC,
 281        .dma_dram_mask     = 0x1FFFFFFC,
 282        .nregs             = ASPEED_SMC_R_MAX,
 283        .segment_to_reg    = aspeed_smc_segment_to_reg,
 284        .reg_to_segment    = aspeed_smc_reg_to_segment,
 285    }, {
 286        .name              = "aspeed.spi1-ast2400",
 287        .r_conf            = R_SPI_CONF,
 288        .r_ce_ctrl         = 0xff,
 289        .r_ctrl0           = R_SPI_CTRL0,
 290        .r_timings         = R_SPI_TIMINGS,
 291        .conf_enable_w0    = SPI_CONF_ENABLE_W0,
 292        .max_slaves        = 1,
 293        .segments          = aspeed_segments_spi,
 294        .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
 295        .flash_window_size = 0x10000000,
 296        .has_dma           = false,
 297        .nregs             = ASPEED_SMC_R_SPI_MAX,
 298        .segment_to_reg    = aspeed_smc_segment_to_reg,
 299        .reg_to_segment    = aspeed_smc_reg_to_segment,
 300    }, {
 301        .name              = "aspeed.fmc-ast2500",
 302        .r_conf            = R_CONF,
 303        .r_ce_ctrl         = R_CE_CTRL,
 304        .r_ctrl0           = R_CTRL0,
 305        .r_timings         = R_TIMINGS,
 306        .conf_enable_w0    = CONF_ENABLE_W0,
 307        .max_slaves        = 3,
 308        .segments          = aspeed_segments_ast2500_fmc,
 309        .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
 310        .flash_window_size = 0x10000000,
 311        .has_dma           = true,
 312        .dma_flash_mask    = 0x0FFFFFFC,
 313        .dma_dram_mask     = 0x3FFFFFFC,
 314        .nregs             = ASPEED_SMC_R_MAX,
 315        .segment_to_reg    = aspeed_smc_segment_to_reg,
 316        .reg_to_segment    = aspeed_smc_reg_to_segment,
 317    }, {
 318        .name              = "aspeed.spi1-ast2500",
 319        .r_conf            = R_CONF,
 320        .r_ce_ctrl         = R_CE_CTRL,
 321        .r_ctrl0           = R_CTRL0,
 322        .r_timings         = R_TIMINGS,
 323        .conf_enable_w0    = CONF_ENABLE_W0,
 324        .max_slaves        = 2,
 325        .segments          = aspeed_segments_ast2500_spi1,
 326        .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
 327        .flash_window_size = 0x8000000,
 328        .has_dma           = false,
 329        .nregs             = ASPEED_SMC_R_MAX,
 330        .segment_to_reg    = aspeed_smc_segment_to_reg,
 331        .reg_to_segment    = aspeed_smc_reg_to_segment,
 332    }, {
 333        .name              = "aspeed.spi2-ast2500",
 334        .r_conf            = R_CONF,
 335        .r_ce_ctrl         = R_CE_CTRL,
 336        .r_ctrl0           = R_CTRL0,
 337        .r_timings         = R_TIMINGS,
 338        .conf_enable_w0    = CONF_ENABLE_W0,
 339        .max_slaves        = 2,
 340        .segments          = aspeed_segments_ast2500_spi2,
 341        .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
 342        .flash_window_size = 0x8000000,
 343        .has_dma           = false,
 344        .nregs             = ASPEED_SMC_R_MAX,
 345        .segment_to_reg    = aspeed_smc_segment_to_reg,
 346        .reg_to_segment    = aspeed_smc_reg_to_segment,
 347    }, {
 348        .name              = "aspeed.fmc-ast2600",
 349        .r_conf            = R_CONF,
 350        .r_ce_ctrl         = R_CE_CTRL,
 351        .r_ctrl0           = R_CTRL0,
 352        .r_timings         = R_TIMINGS,
 353        .conf_enable_w0    = CONF_ENABLE_W0,
 354        .max_slaves        = 3,
 355        .segments          = aspeed_segments_ast2600_fmc,
 356        .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
 357        .flash_window_size = 0x10000000,
 358        .has_dma           = true,
 359        .nregs             = ASPEED_SMC_R_MAX,
 360        .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
 361        .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
 362    }, {
 363        .name              = "aspeed.spi1-ast2600",
 364        .r_conf            = R_CONF,
 365        .r_ce_ctrl         = R_CE_CTRL,
 366        .r_ctrl0           = R_CTRL0,
 367        .r_timings         = R_TIMINGS,
 368        .conf_enable_w0    = CONF_ENABLE_W0,
 369        .max_slaves        = 2,
 370        .segments          = aspeed_segments_ast2600_spi1,
 371        .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
 372        .flash_window_size = 0x10000000,
 373        .has_dma           = false,
 374        .nregs             = ASPEED_SMC_R_MAX,
 375        .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
 376        .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
 377    }, {
 378        .name              = "aspeed.spi2-ast2600",
 379        .r_conf            = R_CONF,
 380        .r_ce_ctrl         = R_CE_CTRL,
 381        .r_ctrl0           = R_CTRL0,
 382        .r_timings         = R_TIMINGS,
 383        .conf_enable_w0    = CONF_ENABLE_W0,
 384        .max_slaves        = 3,
 385        .segments          = aspeed_segments_ast2600_spi2,
 386        .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
 387        .flash_window_size = 0x10000000,
 388        .has_dma           = false,
 389        .nregs             = ASPEED_SMC_R_MAX,
 390        .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
 391        .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
 392    },
 393};
 394
 395/*
 396 * The Segment Registers of the AST2400 and AST2500 have a 8MB
 397 * unit. The address range of a flash SPI slave is encoded with
 398 * absolute addresses which should be part of the overall controller
 399 * window.
 400 */
 401static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
 402                                          const AspeedSegments *seg)
 403{
 404    uint32_t reg = 0;
 405    reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
 406    reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
 407    return reg;
 408}
 409
 410static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
 411                                      uint32_t reg, AspeedSegments *seg)
 412{
 413    seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
 414    seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
 415}
 416
 417/*
 418 * The Segment Registers of the AST2600 have a 1MB unit. The address
 419 * range of a flash SPI slave is encoded with offsets in the overall
 420 * controller window. The previous SoC AST2400 and AST2500 used
 421 * absolute addresses. Only bits [27:20] are relevant and the end
 422 * address is an upper bound limit.
 423 */
 424#define AST2600_SEG_ADDR_MASK 0x0ff00000
 425
 426static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
 427                                               const AspeedSegments *seg)
 428{
 429    uint32_t reg = 0;
 430
 431    /* Disabled segments have a nil register */
 432    if (!seg->size) {
 433        return 0;
 434    }
 435
 436    reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
 437    reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
 438    return reg;
 439}
 440
 441static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
 442                                           uint32_t reg, AspeedSegments *seg)
 443{
 444    uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
 445    uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
 446
 447    seg->addr = s->ctrl->flash_window_base + start_offset;
 448    seg->size = end_offset + MiB - start_offset;
 449}
 450
 451static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
 452                                     const AspeedSegments *new,
 453                                     int cs)
 454{
 455    AspeedSegments seg;
 456    int i;
 457
 458    for (i = 0; i < s->ctrl->max_slaves; i++) {
 459        if (i == cs) {
 460            continue;
 461        }
 462
 463        s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
 464
 465        if (new->addr + new->size > seg.addr &&
 466            new->addr < seg.addr + seg.size) {
 467            qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
 468                          HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
 469                          "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
 470                          s->ctrl->name, cs, new->addr, new->addr + new->size,
 471                          i, seg.addr, seg.addr + seg.size);
 472            return true;
 473        }
 474    }
 475    return false;
 476}
 477
 478static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
 479                                         uint64_t new)
 480{
 481    AspeedSMCFlash *fl = &s->flashes[cs];
 482    AspeedSegments seg;
 483
 484    s->ctrl->reg_to_segment(s, new, &seg);
 485
 486    /* The start address of CS0 is read-only */
 487    if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
 488        qemu_log_mask(LOG_GUEST_ERROR,
 489                      "%s: Tried to change CS0 start address to 0x%"
 490                      HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
 491        seg.addr = s->ctrl->flash_window_base;
 492        new = s->ctrl->segment_to_reg(s, &seg);
 493    }
 494
 495    /*
 496     * The end address of the AST2500 spi controllers is also
 497     * read-only.
 498     */
 499    if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
 500         s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
 501        cs == s->ctrl->max_slaves &&
 502        seg.addr + seg.size != s->ctrl->segments[cs].addr +
 503        s->ctrl->segments[cs].size) {
 504        qemu_log_mask(LOG_GUEST_ERROR,
 505                      "%s: Tried to change CS%d end address to 0x%"
 506                      HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
 507        seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
 508            seg.addr;
 509        new = s->ctrl->segment_to_reg(s, &seg);
 510    }
 511
 512    /* Keep the segment in the overall flash window */
 513    if (seg.addr + seg.size <= s->ctrl->flash_window_base ||
 514        seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size) {
 515        qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
 516                      "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
 517                      s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
 518        return;
 519    }
 520
 521    /* Check start address vs. alignment */
 522    if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
 523        qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
 524                      "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
 525                      s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
 526    }
 527
 528    /* And segments should not overlap (in the specs) */
 529    aspeed_smc_flash_overlap(s, &seg, cs);
 530
 531    /* All should be fine now to move the region */
 532    memory_region_transaction_begin();
 533    memory_region_set_size(&fl->mmio, seg.size);
 534    memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
 535    memory_region_set_enabled(&fl->mmio, true);
 536    memory_region_transaction_commit();
 537
 538    s->regs[R_SEG_ADDR0 + cs] = new;
 539}
 540
 541static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
 542                                              unsigned size)
 543{
 544    qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
 545                  PRIx64 "\n", __func__, addr, size);
 546    return 0;
 547}
 548
 549static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
 550                                           uint64_t data, unsigned size)
 551{
 552    qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
 553                  PRIx64 "\n", __func__, addr, size, data);
 554}
 555
 556static const MemoryRegionOps aspeed_smc_flash_default_ops = {
 557    .read = aspeed_smc_flash_default_read,
 558    .write = aspeed_smc_flash_default_write,
 559    .endianness = DEVICE_LITTLE_ENDIAN,
 560    .valid = {
 561        .min_access_size = 1,
 562        .max_access_size = 4,
 563    },
 564};
 565
 566static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
 567{
 568    const AspeedSMCState *s = fl->controller;
 569
 570    return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
 571}
 572
 573static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
 574{
 575    const AspeedSMCState *s = fl->controller;
 576
 577    return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
 578}
 579
 580static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
 581{
 582    const AspeedSMCState *s = fl->controller;
 583    int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
 584
 585    /*
 586     * In read mode, the default SPI command is READ (0x3). In other
 587     * modes, the command should necessarily be defined
 588     *
 589     * TODO: add support for READ4 (0x13) on AST2600
 590     */
 591    if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
 592        cmd = SPI_OP_READ;
 593    }
 594
 595    if (!cmd) {
 596        qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
 597                      __func__, aspeed_smc_flash_mode(fl));
 598    }
 599
 600    return cmd;
 601}
 602
 603static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
 604{
 605    const AspeedSMCState *s = fl->controller;
 606
 607    if (s->ctrl->segments == aspeed_segments_spi) {
 608        return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
 609    } else {
 610        return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
 611    }
 612}
 613
 614static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl)
 615{
 616    const AspeedSMCState *s = fl->controller;
 617
 618    return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE;
 619}
 620
 621static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
 622{
 623    AspeedSMCState *s = fl->controller;
 624
 625    s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE;
 626    qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
 627}
 628
 629static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
 630{
 631    AspeedSMCState *s = fl->controller;
 632
 633    s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE;
 634    qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
 635}
 636
 637static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
 638                                              uint32_t addr)
 639{
 640    const AspeedSMCState *s = fl->controller;
 641    AspeedSegments seg;
 642
 643    s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
 644    if ((addr % seg.size) != addr) {
 645        qemu_log_mask(LOG_GUEST_ERROR,
 646                      "%s: invalid address 0x%08x for CS%d segment : "
 647                      "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
 648                      s->ctrl->name, addr, fl->id, seg.addr,
 649                      seg.addr + seg.size);
 650        addr %= seg.size;
 651    }
 652
 653    return addr;
 654}
 655
 656static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
 657{
 658    const AspeedSMCState *s = fl->controller;
 659    uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
 660    uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
 661    uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
 662    uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
 663
 664    if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
 665        dummies /= 2;
 666    }
 667
 668    return dummies;
 669}
 670
 671static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
 672{
 673    const AspeedSMCState *s = fl->controller;
 674    uint8_t cmd = aspeed_smc_flash_cmd(fl);
 675    int i;
 676
 677    /* Flash access can not exceed CS segment */
 678    addr = aspeed_smc_check_segment_addr(fl, addr);
 679
 680    ssi_transfer(s->spi, cmd);
 681
 682    if (aspeed_smc_flash_is_4byte(fl)) {
 683        ssi_transfer(s->spi, (addr >> 24) & 0xff);
 684    }
 685    ssi_transfer(s->spi, (addr >> 16) & 0xff);
 686    ssi_transfer(s->spi, (addr >> 8) & 0xff);
 687    ssi_transfer(s->spi, (addr & 0xff));
 688
 689    /*
 690     * Use fake transfers to model dummy bytes. The value should
 691     * be configured to some non-zero value in fast read mode and
 692     * zero in read mode. But, as the HW allows inconsistent
 693     * settings, let's check for fast read mode.
 694     */
 695    if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
 696        for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
 697            ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
 698        }
 699    }
 700}
 701
 702static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
 703{
 704    AspeedSMCFlash *fl = opaque;
 705    AspeedSMCState *s = fl->controller;
 706    uint64_t ret = 0;
 707    int i;
 708
 709    switch (aspeed_smc_flash_mode(fl)) {
 710    case CTRL_USERMODE:
 711        for (i = 0; i < size; i++) {
 712            ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
 713        }
 714        break;
 715    case CTRL_READMODE:
 716    case CTRL_FREADMODE:
 717        aspeed_smc_flash_select(fl);
 718        aspeed_smc_flash_setup(fl, addr);
 719
 720        for (i = 0; i < size; i++) {
 721            ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
 722        }
 723
 724        aspeed_smc_flash_unselect(fl);
 725        break;
 726    default:
 727        qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
 728                      __func__, aspeed_smc_flash_mode(fl));
 729    }
 730
 731    return ret;
 732}
 733
 734/*
 735 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
 736 * common include header.
 737 */
 738typedef enum {
 739    READ = 0x3,         READ_4 = 0x13,
 740    FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
 741    DOR = 0x3b,         DOR_4 = 0x3c,
 742    QOR = 0x6b,         QOR_4 = 0x6c,
 743    DIOR = 0xbb,        DIOR_4 = 0xbc,
 744    QIOR = 0xeb,        QIOR_4 = 0xec,
 745
 746    PP = 0x2,           PP_4 = 0x12,
 747    DPP = 0xa2,
 748    QPP = 0x32,         QPP_4 = 0x34,
 749} FlashCMD;
 750
 751static int aspeed_smc_num_dummies(uint8_t command)
 752{
 753    switch (command) { /* check for dummies */
 754    case READ: /* no dummy bytes/cycles */
 755    case PP:
 756    case DPP:
 757    case QPP:
 758    case READ_4:
 759    case PP_4:
 760    case QPP_4:
 761        return 0;
 762    case FAST_READ:
 763    case DOR:
 764    case QOR:
 765    case DOR_4:
 766    case QOR_4:
 767        return 1;
 768    case DIOR:
 769    case FAST_READ_4:
 770    case DIOR_4:
 771        return 2;
 772    case QIOR:
 773    case QIOR_4:
 774        return 4;
 775    default:
 776        return -1;
 777    }
 778}
 779
 780static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
 781                                unsigned size)
 782{
 783    AspeedSMCState *s = fl->controller;
 784    uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
 785
 786    if (s->snoop_index == SNOOP_OFF) {
 787        return false; /* Do nothing */
 788
 789    } else if (s->snoop_index == SNOOP_START) {
 790        uint8_t cmd = data & 0xff;
 791        int ndummies = aspeed_smc_num_dummies(cmd);
 792
 793        /*
 794         * No dummy cycles are expected with the current command. Turn
 795         * off snooping and let the transfer proceed normally.
 796         */
 797        if (ndummies <= 0) {
 798            s->snoop_index = SNOOP_OFF;
 799            return false;
 800        }
 801
 802        s->snoop_dummies = ndummies * 8;
 803
 804    } else if (s->snoop_index >= addr_width + 1) {
 805
 806        /* The SPI transfer has reached the dummy cycles sequence */
 807        for (; s->snoop_dummies; s->snoop_dummies--) {
 808            ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
 809        }
 810
 811        /* If no more dummy cycles are expected, turn off snooping */
 812        if (!s->snoop_dummies) {
 813            s->snoop_index = SNOOP_OFF;
 814        } else {
 815            s->snoop_index += size;
 816        }
 817
 818        /*
 819         * Dummy cycles have been faked already. Ignore the current
 820         * SPI transfer
 821         */
 822        return true;
 823    }
 824
 825    s->snoop_index += size;
 826    return false;
 827}
 828
 829static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
 830                                   unsigned size)
 831{
 832    AspeedSMCFlash *fl = opaque;
 833    AspeedSMCState *s = fl->controller;
 834    int i;
 835
 836    if (!aspeed_smc_is_writable(fl)) {
 837        qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
 838                      HWADDR_PRIx "\n", __func__, addr);
 839        return;
 840    }
 841
 842    switch (aspeed_smc_flash_mode(fl)) {
 843    case CTRL_USERMODE:
 844        if (aspeed_smc_do_snoop(fl, data, size)) {
 845            break;
 846        }
 847
 848        for (i = 0; i < size; i++) {
 849            ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
 850        }
 851        break;
 852    case CTRL_WRITEMODE:
 853        aspeed_smc_flash_select(fl);
 854        aspeed_smc_flash_setup(fl, addr);
 855
 856        for (i = 0; i < size; i++) {
 857            ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
 858        }
 859
 860        aspeed_smc_flash_unselect(fl);
 861        break;
 862    default:
 863        qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
 864                      __func__, aspeed_smc_flash_mode(fl));
 865    }
 866}
 867
 868static const MemoryRegionOps aspeed_smc_flash_ops = {
 869    .read = aspeed_smc_flash_read,
 870    .write = aspeed_smc_flash_write,
 871    .endianness = DEVICE_LITTLE_ENDIAN,
 872    .valid = {
 873        .min_access_size = 1,
 874        .max_access_size = 4,
 875    },
 876};
 877
 878static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl)
 879{
 880    AspeedSMCState *s = fl->controller;
 881
 882    s->snoop_index = aspeed_smc_is_ce_stop_active(fl) ? SNOOP_OFF : SNOOP_START;
 883
 884    qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
 885}
 886
 887static void aspeed_smc_reset(DeviceState *d)
 888{
 889    AspeedSMCState *s = ASPEED_SMC(d);
 890    int i;
 891
 892    memset(s->regs, 0, sizeof s->regs);
 893
 894    /* Unselect all slaves */
 895    for (i = 0; i < s->num_cs; ++i) {
 896        s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
 897        qemu_set_irq(s->cs_lines[i], true);
 898    }
 899
 900    /* setup default segment register values for all */
 901    for (i = 0; i < s->ctrl->max_slaves; ++i) {
 902        s->regs[R_SEG_ADDR0 + i] =
 903            s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]);
 904    }
 905
 906    /* HW strapping flash type for the AST2600 controllers  */
 907    if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
 908        /* flash type is fixed to SPI for all */
 909        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
 910        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
 911        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
 912    }
 913
 914    /* HW strapping flash type for FMC controllers  */
 915    if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
 916        /* flash type is fixed to SPI for CE0 and CE1 */
 917        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
 918        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
 919    }
 920
 921    /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
 922     * configuration of the palmetto-bmc machine */
 923    if (s->ctrl->segments == aspeed_segments_fmc) {
 924        s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
 925    }
 926
 927    s->snoop_index = SNOOP_OFF;
 928    s->snoop_dummies = 0;
 929}
 930
 931static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
 932{
 933    AspeedSMCState *s = ASPEED_SMC(opaque);
 934
 935    addr >>= 2;
 936
 937    if (addr == s->r_conf ||
 938        addr == s->r_timings ||
 939        addr == s->r_ce_ctrl ||
 940        addr == R_INTR_CTRL ||
 941        addr == R_DUMMY_DATA ||
 942        (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
 943        (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
 944        (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
 945        (s->ctrl->has_dma && addr == R_DMA_LEN) ||
 946        (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
 947        (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
 948        (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
 949        return s->regs[addr];
 950    } else {
 951        qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
 952                      __func__, addr);
 953        return -1;
 954    }
 955}
 956
 957static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
 958{
 959    /* HCLK/1 .. HCLK/16 */
 960    const uint8_t hclk_divisors[] = {
 961        15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
 962    };
 963    int i;
 964
 965    for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
 966        if (hclk_mask == hclk_divisors[i]) {
 967            return i + 1;
 968        }
 969    }
 970
 971    qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
 972    return 0;
 973}
 974
 975/*
 976 * When doing calibration, the SPI clock rate in the CE0 Control
 977 * Register and the read delay cycles in the Read Timing Compensation
 978 * Register are set using bit[11:4] of the DMA Control Register.
 979 */
 980static void aspeed_smc_dma_calibration(AspeedSMCState *s)
 981{
 982    uint8_t delay =
 983        (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
 984    uint8_t hclk_mask =
 985        (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
 986    uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
 987    uint32_t hclk_shift = (hclk_div - 1) << 2;
 988    uint8_t cs;
 989
 990    /*
 991     * The Read Timing Compensation Register values apply to all CS on
 992     * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
 993     */
 994    if (hclk_div && hclk_div < 6) {
 995        s->regs[s->r_timings] &= ~(0xf << hclk_shift);
 996        s->regs[s->r_timings] |= delay << hclk_shift;
 997    }
 998
 999    /*
1000     * TODO: compute the CS from the DMA address and the segment
1001     * registers. This is not really a problem for now because the
1002     * Timing Register values apply to all CS and software uses CS0 to
1003     * do calibration.
1004     */
1005    cs = 0;
1006    s->regs[s->r_ctrl0 + cs] &=
1007        ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1008    s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1009}
1010
1011/*
1012 * Emulate read errors in the DMA Checksum Register for high
1013 * frequencies and optimistic settings of the Read Timing Compensation
1014 * Register. This will help in tuning the SPI timing calibration
1015 * algorithm.
1016 */
1017static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1018{
1019    uint8_t delay =
1020        (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1021    uint8_t hclk_mask =
1022        (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1023
1024    /*
1025     * Typical values of a palmetto-bmc machine.
1026     */
1027    switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1028    case 4 ... 16:
1029        return false;
1030    case 3: /* at least one HCLK cycle delay */
1031        return (delay & 0x7) < 1;
1032    case 2: /* at least two HCLK cycle delay */
1033        return (delay & 0x7) < 2;
1034    case 1: /* (> 100MHz) is above the max freq of the controller */
1035        return true;
1036    default:
1037        g_assert_not_reached();
1038    }
1039}
1040
1041/*
1042 * Accumulate the result of the reads to provide a checksum that will
1043 * be used to validate the read timing settings.
1044 */
1045static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1046{
1047    MemTxResult result;
1048    uint32_t data;
1049
1050    if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1051        qemu_log_mask(LOG_GUEST_ERROR,
1052                      "%s: invalid direction for DMA checksum\n",  __func__);
1053        return;
1054    }
1055
1056    if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1057        aspeed_smc_dma_calibration(s);
1058    }
1059
1060    while (s->regs[R_DMA_LEN]) {
1061        data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1062                                    MEMTXATTRS_UNSPECIFIED, &result);
1063        if (result != MEMTX_OK) {
1064            qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1065                          __func__, s->regs[R_DMA_FLASH_ADDR]);
1066            return;
1067        }
1068
1069        /*
1070         * When the DMA is on-going, the DMA registers are updated
1071         * with the current working addresses and length.
1072         */
1073        s->regs[R_DMA_CHECKSUM] += data;
1074        s->regs[R_DMA_FLASH_ADDR] += 4;
1075        s->regs[R_DMA_LEN] -= 4;
1076    }
1077
1078    if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1079        s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1080    }
1081
1082}
1083
1084static void aspeed_smc_dma_rw(AspeedSMCState *s)
1085{
1086    MemTxResult result;
1087    uint32_t data;
1088
1089    while (s->regs[R_DMA_LEN]) {
1090        if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1091            data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1092                                        MEMTXATTRS_UNSPECIFIED, &result);
1093            if (result != MEMTX_OK) {
1094                qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1095                              __func__, s->regs[R_DMA_DRAM_ADDR]);
1096                return;
1097            }
1098
1099            address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1100                                 data, MEMTXATTRS_UNSPECIFIED, &result);
1101            if (result != MEMTX_OK) {
1102                qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1103                              __func__, s->regs[R_DMA_FLASH_ADDR]);
1104                return;
1105            }
1106        } else {
1107            data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1108                                        MEMTXATTRS_UNSPECIFIED, &result);
1109            if (result != MEMTX_OK) {
1110                qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1111                              __func__, s->regs[R_DMA_FLASH_ADDR]);
1112                return;
1113            }
1114
1115            address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1116                                 data, MEMTXATTRS_UNSPECIFIED, &result);
1117            if (result != MEMTX_OK) {
1118                qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1119                              __func__, s->regs[R_DMA_DRAM_ADDR]);
1120                return;
1121            }
1122        }
1123
1124        /*
1125         * When the DMA is on-going, the DMA registers are updated
1126         * with the current working addresses and length.
1127         */
1128        s->regs[R_DMA_FLASH_ADDR] += 4;
1129        s->regs[R_DMA_DRAM_ADDR] += 4;
1130        s->regs[R_DMA_LEN] -= 4;
1131        s->regs[R_DMA_CHECKSUM] += data;
1132    }
1133}
1134
1135static void aspeed_smc_dma_stop(AspeedSMCState *s)
1136{
1137    /*
1138     * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1139     * engine is idle
1140     */
1141    s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1142    s->regs[R_DMA_CHECKSUM] = 0;
1143
1144    /*
1145     * Lower the DMA irq in any case. The IRQ control register could
1146     * have been cleared before disabling the DMA.
1147     */
1148    qemu_irq_lower(s->irq);
1149}
1150
1151/*
1152 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1153 * can start even if the result of the previous was not collected.
1154 */
1155static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1156{
1157    return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1158        !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1159}
1160
1161static void aspeed_smc_dma_done(AspeedSMCState *s)
1162{
1163    s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1164    if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1165        qemu_irq_raise(s->irq);
1166    }
1167}
1168
1169static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1170{
1171    if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1172        s->regs[R_DMA_CTRL] = dma_ctrl;
1173
1174        aspeed_smc_dma_stop(s);
1175        return;
1176    }
1177
1178    if (aspeed_smc_dma_in_progress(s)) {
1179        qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n",  __func__);
1180        return;
1181    }
1182
1183    s->regs[R_DMA_CTRL] = dma_ctrl;
1184
1185    if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1186        aspeed_smc_dma_checksum(s);
1187    } else {
1188        aspeed_smc_dma_rw(s);
1189    }
1190
1191    aspeed_smc_dma_done(s);
1192}
1193
1194static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1195                             unsigned int size)
1196{
1197    AspeedSMCState *s = ASPEED_SMC(opaque);
1198    uint32_t value = data;
1199
1200    addr >>= 2;
1201
1202    if (addr == s->r_conf ||
1203        addr == s->r_timings ||
1204        addr == s->r_ce_ctrl) {
1205        s->regs[addr] = value;
1206    } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1207        int cs = addr - s->r_ctrl0;
1208        s->regs[addr] = value;
1209        aspeed_smc_flash_update_cs(&s->flashes[cs]);
1210    } else if (addr >= R_SEG_ADDR0 &&
1211               addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
1212        int cs = addr - R_SEG_ADDR0;
1213
1214        if (value != s->regs[R_SEG_ADDR0 + cs]) {
1215            aspeed_smc_flash_set_segment(s, cs, value);
1216        }
1217    } else if (addr == R_DUMMY_DATA) {
1218        s->regs[addr] = value & 0xff;
1219    } else if (addr == R_INTR_CTRL) {
1220        s->regs[addr] = value;
1221    } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1222        aspeed_smc_dma_ctrl(s, value);
1223    } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1224        s->regs[addr] = DMA_DRAM_ADDR(s, value);
1225    } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1226        s->regs[addr] = DMA_FLASH_ADDR(s, value);
1227    } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1228        s->regs[addr] = DMA_LENGTH(value);
1229    } else {
1230        qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1231                      __func__, addr);
1232        return;
1233    }
1234}
1235
1236static const MemoryRegionOps aspeed_smc_ops = {
1237    .read = aspeed_smc_read,
1238    .write = aspeed_smc_write,
1239    .endianness = DEVICE_LITTLE_ENDIAN,
1240    .valid.unaligned = true,
1241};
1242
1243
1244/*
1245 * Initialize the custom address spaces for DMAs
1246 */
1247static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1248{
1249    char *name;
1250
1251    if (!s->dram_mr) {
1252        error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1253        return;
1254    }
1255
1256    name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1257    address_space_init(&s->flash_as, &s->mmio_flash, name);
1258    g_free(name);
1259
1260    name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1261    address_space_init(&s->dram_as, s->dram_mr, name);
1262    g_free(name);
1263}
1264
1265static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1266{
1267    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1268    AspeedSMCState *s = ASPEED_SMC(dev);
1269    AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1270    int i;
1271    char name[32];
1272    hwaddr offset = 0;
1273
1274    s->ctrl = mc->ctrl;
1275
1276    /* keep a copy under AspeedSMCState to speed up accesses */
1277    s->r_conf = s->ctrl->r_conf;
1278    s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1279    s->r_ctrl0 = s->ctrl->r_ctrl0;
1280    s->r_timings = s->ctrl->r_timings;
1281    s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1282
1283    /* Enforce some real HW limits */
1284    if (s->num_cs > s->ctrl->max_slaves) {
1285        qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1286                      __func__, s->ctrl->max_slaves);
1287        s->num_cs = s->ctrl->max_slaves;
1288    }
1289
1290    /* DMA irq. Keep it first for the initialization in the SoC */
1291    sysbus_init_irq(sbd, &s->irq);
1292
1293    s->spi = ssi_create_bus(dev, "spi");
1294
1295    /* Setup cs_lines for slaves */
1296    s->cs_lines = g_new0(qemu_irq, s->num_cs);
1297    ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
1298
1299    for (i = 0; i < s->num_cs; ++i) {
1300        sysbus_init_irq(sbd, &s->cs_lines[i]);
1301    }
1302
1303    /* The memory region for the controller registers */
1304    memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1305                          s->ctrl->name, s->ctrl->nregs * 4);
1306    sysbus_init_mmio(sbd, &s->mmio);
1307
1308    /*
1309     * The container memory region representing the address space
1310     * window in which the flash modules are mapped. The size and
1311     * address depends on the SoC model and controller type.
1312     */
1313    snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1314
1315    memory_region_init_io(&s->mmio_flash, OBJECT(s),
1316                          &aspeed_smc_flash_default_ops, s, name,
1317                          s->ctrl->flash_window_size);
1318    sysbus_init_mmio(sbd, &s->mmio_flash);
1319
1320    s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_slaves);
1321
1322    /*
1323     * Let's create a sub memory region for each possible slave. All
1324     * have a configurable memory segment in the overall flash mapping
1325     * window of the controller but, there is not necessarily a flash
1326     * module behind to handle the memory accesses. This depends on
1327     * the board configuration.
1328     */
1329    for (i = 0; i < s->ctrl->max_slaves; ++i) {
1330        AspeedSMCFlash *fl = &s->flashes[i];
1331
1332        snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1333
1334        fl->id = i;
1335        fl->controller = s;
1336        fl->size = s->ctrl->segments[i].size;
1337        memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1338                              fl, name, fl->size);
1339        memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1340        offset += fl->size;
1341    }
1342
1343    /* DMA support */
1344    if (s->ctrl->has_dma) {
1345        aspeed_smc_dma_setup(s, errp);
1346    }
1347}
1348
1349static const VMStateDescription vmstate_aspeed_smc = {
1350    .name = "aspeed.smc",
1351    .version_id = 2,
1352    .minimum_version_id = 2,
1353    .fields = (VMStateField[]) {
1354        VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1355        VMSTATE_UINT8(snoop_index, AspeedSMCState),
1356        VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1357        VMSTATE_END_OF_LIST()
1358    }
1359};
1360
1361static Property aspeed_smc_properties[] = {
1362    DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1363    DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1364    DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1365    DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1366                     TYPE_MEMORY_REGION, MemoryRegion *),
1367    DEFINE_PROP_END_OF_LIST(),
1368};
1369
1370static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1371{
1372    DeviceClass *dc = DEVICE_CLASS(klass);
1373    AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1374
1375    dc->realize = aspeed_smc_realize;
1376    dc->reset = aspeed_smc_reset;
1377    dc->props = aspeed_smc_properties;
1378    dc->vmsd = &vmstate_aspeed_smc;
1379    mc->ctrl = data;
1380}
1381
1382static const TypeInfo aspeed_smc_info = {
1383    .name           = TYPE_ASPEED_SMC,
1384    .parent         = TYPE_SYS_BUS_DEVICE,
1385    .instance_size  = sizeof(AspeedSMCState),
1386    .class_size     = sizeof(AspeedSMCClass),
1387    .abstract       = true,
1388};
1389
1390static void aspeed_smc_register_types(void)
1391{
1392    int i;
1393
1394    type_register_static(&aspeed_smc_info);
1395    for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1396        TypeInfo ti = {
1397            .name       = controllers[i].name,
1398            .parent     = TYPE_ASPEED_SMC,
1399            .class_init = aspeed_smc_class_init,
1400            .class_data = (void *)&controllers[i],
1401        };
1402        type_register(&ti);
1403    }
1404}
1405
1406type_init(aspeed_smc_register_types)
1407