qemu/include/hw/core/cpu.h
<<
>>
Prefs
   1/*
   2 * QEMU CPU model
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20#ifndef QEMU_CPU_H
  21#define QEMU_CPU_H
  22
  23#include "hw/qdev-core.h"
  24#include "disas/dis-asm.h"
  25#include "exec/hwaddr.h"
  26#include "exec/memattrs.h"
  27#include "qapi/qapi-types-run-state.h"
  28#include "qemu/bitmap.h"
  29#include "qemu/rcu_queue.h"
  30#include "qemu/queue.h"
  31#include "qemu/thread.h"
  32#include "qemu/plugin.h"
  33
  34typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
  35                                     void *opaque);
  36
  37/**
  38 * vaddr:
  39 * Type wide enough to contain any #target_ulong virtual address.
  40 */
  41typedef uint64_t vaddr;
  42#define VADDR_PRId PRId64
  43#define VADDR_PRIu PRIu64
  44#define VADDR_PRIo PRIo64
  45#define VADDR_PRIx PRIx64
  46#define VADDR_PRIX PRIX64
  47#define VADDR_MAX UINT64_MAX
  48
  49/**
  50 * SECTION:cpu
  51 * @section_id: QEMU-cpu
  52 * @title: CPU Class
  53 * @short_description: Base class for all CPUs
  54 */
  55
  56#define TYPE_CPU "cpu"
  57
  58/* Since this macro is used a lot in hot code paths and in conjunction with
  59 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
  60 * an unchecked cast.
  61 */
  62#define CPU(obj) ((CPUState *)(obj))
  63
  64#define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
  65#define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
  66
  67typedef enum MMUAccessType {
  68    MMU_DATA_LOAD  = 0,
  69    MMU_DATA_STORE = 1,
  70    MMU_INST_FETCH = 2
  71} MMUAccessType;
  72
  73typedef struct CPUWatchpoint CPUWatchpoint;
  74
  75struct TranslationBlock;
  76
  77/**
  78 * CPUClass:
  79 * @class_by_name: Callback to map -cpu command line model name to an
  80 * instantiatable CPU type.
  81 * @parse_features: Callback to parse command line arguments.
  82 * @reset: Callback to reset the #CPUState to its initial state.
  83 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
  84 * @has_work: Callback for checking if there is work to do.
  85 * @do_interrupt: Callback for interrupt handling.
  86 * @do_unaligned_access: Callback for unaligned access handling, if
  87 * the target defines #TARGET_ALIGNED_ONLY.
  88 * @do_transaction_failed: Callback for handling failed memory transactions
  89 * (ie bus faults or external aborts; not MMU faults)
  90 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
  91 * runtime configurable endianness is currently big-endian. Non-configurable
  92 * CPUs can use the default implementation of this method. This method should
  93 * not be used by any callers other than the pre-1.0 virtio devices.
  94 * @memory_rw_debug: Callback for GDB memory access.
  95 * @dump_state: Callback for dumping state.
  96 * @dump_statistics: Callback for dumping statistics.
  97 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
  98 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
  99 * @get_memory_mapping: Callback for obtaining the memory mappings.
 100 * @set_pc: Callback for setting the Program Counter register. This
 101 *       should have the semantics used by the target architecture when
 102 *       setting the PC from a source such as an ELF file entry point;
 103 *       for example on Arm it will also set the Thumb mode bit based
 104 *       on the least significant bit of the new PC value.
 105 *       If the target behaviour here is anything other than "set
 106 *       the PC register to the value passed in" then the target must
 107 *       also implement the synchronize_from_tb hook.
 108 * @synchronize_from_tb: Callback for synchronizing state from a TCG
 109 *       #TranslationBlock. This is called when we abandon execution
 110 *       of a TB before starting it, and must set all parts of the CPU
 111 *       state which the previous TB in the chain may not have updated.
 112 *       This always includes at least the program counter; some targets
 113 *       will need to do more. If this hook is not implemented then the
 114 *       default is to call @set_pc(tb->pc).
 115 * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
 116 *       address fault.  For system mode, if the access is valid, call
 117 *       tlb_set_page and return true; if the access is invalid, and
 118 *       probe is true, return false; otherwise raise an exception and
 119 *       do not return.  For user-only mode, always raise an exception
 120 *       and do not return.
 121 * @get_phys_page_debug: Callback for obtaining a physical address.
 122 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
 123 *       associated memory transaction attributes to use for the access.
 124 *       CPUs which use memory transaction attributes should implement this
 125 *       instead of get_phys_page_debug.
 126 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
 127 *       a memory access with the specified memory transaction attributes.
 128 * @gdb_read_register: Callback for letting GDB read a register.
 129 * @gdb_write_register: Callback for letting GDB write a register.
 130 * @debug_check_watchpoint: Callback: return true if the architectural
 131 *       watchpoint whose address has matched should really fire.
 132 * @debug_excp_handler: Callback for handling debug exceptions.
 133 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
 134 * 64-bit VM coredump.
 135 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
 136 * note to a 32-bit VM coredump.
 137 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
 138 * 32-bit VM coredump.
 139 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
 140 * note to a 32-bit VM coredump.
 141 * @vmsd: State description for migration.
 142 * @gdb_num_core_regs: Number of core registers accessible to GDB.
 143 * @gdb_core_xml_file: File name for core registers GDB XML description.
 144 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
 145 *           before the insn which triggers a watchpoint rather than after it.
 146 * @gdb_arch_name: Optional callback that returns the architecture name known
 147 * to GDB. The caller must free the returned string with g_free.
 148 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
 149 *   gdb stub. Returns a pointer to the XML contents for the specified XML file
 150 *   or NULL if the CPU doesn't have a dynamically generated content for it.
 151 * @cpu_exec_enter: Callback for cpu_exec preparation.
 152 * @cpu_exec_exit: Callback for cpu_exec cleanup.
 153 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
 154 * @disas_set_info: Setup architecture specific components of disassembly info
 155 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
 156 * address before attempting to match it against watchpoints.
 157 *
 158 * Represents a CPU family or model.
 159 */
 160typedef struct CPUClass {
 161    /*< private >*/
 162    DeviceClass parent_class;
 163    /*< public >*/
 164
 165    ObjectClass *(*class_by_name)(const char *cpu_model);
 166    void (*parse_features)(const char *typename, char *str, Error **errp);
 167
 168    void (*reset)(CPUState *cpu);
 169    int reset_dump_flags;
 170    bool (*has_work)(CPUState *cpu);
 171    void (*do_interrupt)(CPUState *cpu);
 172    void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
 173                                MMUAccessType access_type,
 174                                int mmu_idx, uintptr_t retaddr);
 175    void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
 176                                  unsigned size, MMUAccessType access_type,
 177                                  int mmu_idx, MemTxAttrs attrs,
 178                                  MemTxResult response, uintptr_t retaddr);
 179    bool (*virtio_is_big_endian)(CPUState *cpu);
 180    int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
 181                           uint8_t *buf, int len, bool is_write);
 182    void (*dump_state)(CPUState *cpu, FILE *, int flags);
 183    GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
 184    void (*dump_statistics)(CPUState *cpu, int flags);
 185    int64_t (*get_arch_id)(CPUState *cpu);
 186    bool (*get_paging_enabled)(const CPUState *cpu);
 187    void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
 188                               Error **errp);
 189    void (*set_pc)(CPUState *cpu, vaddr value);
 190    void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
 191    bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
 192                     MMUAccessType access_type, int mmu_idx,
 193                     bool probe, uintptr_t retaddr);
 194    hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
 195    hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
 196                                        MemTxAttrs *attrs);
 197    int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
 198    int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
 199    int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
 200    bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
 201    void (*debug_excp_handler)(CPUState *cpu);
 202
 203    int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
 204                            int cpuid, void *opaque);
 205    int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
 206                                void *opaque);
 207    int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
 208                            int cpuid, void *opaque);
 209    int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
 210                                void *opaque);
 211
 212    const VMStateDescription *vmsd;
 213    const char *gdb_core_xml_file;
 214    gchar * (*gdb_arch_name)(CPUState *cpu);
 215    const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
 216    void (*cpu_exec_enter)(CPUState *cpu);
 217    void (*cpu_exec_exit)(CPUState *cpu);
 218    bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
 219
 220    void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
 221    vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
 222    void (*tcg_initialize)(void);
 223
 224    /* Keep non-pointer data at the end to minimize holes.  */
 225    int gdb_num_core_regs;
 226    bool gdb_stop_before_watchpoint;
 227} CPUClass;
 228
 229/*
 230 * Low 16 bits: number of cycles left, used only in icount mode.
 231 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
 232 * for this CPU and return to its top level loop (even in non-icount mode).
 233 * This allows a single read-compare-cbranch-write sequence to test
 234 * for both decrementer underflow and exceptions.
 235 */
 236typedef union IcountDecr {
 237    uint32_t u32;
 238    struct {
 239#ifdef HOST_WORDS_BIGENDIAN
 240        uint16_t high;
 241        uint16_t low;
 242#else
 243        uint16_t low;
 244        uint16_t high;
 245#endif
 246    } u16;
 247} IcountDecr;
 248
 249typedef struct CPUBreakpoint {
 250    vaddr pc;
 251    int flags; /* BP_* */
 252    QTAILQ_ENTRY(CPUBreakpoint) entry;
 253} CPUBreakpoint;
 254
 255struct CPUWatchpoint {
 256    vaddr vaddr;
 257    vaddr len;
 258    vaddr hitaddr;
 259    MemTxAttrs hitattrs;
 260    int flags; /* BP_* */
 261    QTAILQ_ENTRY(CPUWatchpoint) entry;
 262};
 263
 264struct KVMState;
 265struct kvm_run;
 266
 267struct hax_vcpu_state;
 268
 269#define TB_JMP_CACHE_BITS 12
 270#define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
 271
 272/* work queue */
 273
 274/* The union type allows passing of 64 bit target pointers on 32 bit
 275 * hosts in a single parameter
 276 */
 277typedef union {
 278    int           host_int;
 279    unsigned long host_ulong;
 280    void         *host_ptr;
 281    vaddr         target_ptr;
 282} run_on_cpu_data;
 283
 284#define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
 285#define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
 286#define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
 287#define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
 288#define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
 289
 290typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
 291
 292struct qemu_work_item;
 293
 294#define CPU_UNSET_NUMA_NODE_ID -1
 295#define CPU_TRACE_DSTATE_MAX_EVENTS 32
 296
 297/**
 298 * CPUState:
 299 * @cpu_index: CPU index (informative).
 300 * @cluster_index: Identifies which cluster this CPU is in.
 301 *   For boards which don't define clusters or for "loose" CPUs not assigned
 302 *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
 303 *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
 304 *   QOM parent.
 305 * @nr_cores: Number of cores within this CPU package.
 306 * @nr_threads: Number of threads within this CPU.
 307 * @running: #true if CPU is currently running (lockless).
 308 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
 309 * valid under cpu_list_lock.
 310 * @created: Indicates whether the CPU thread has been successfully created.
 311 * @interrupt_request: Indicates a pending interrupt request.
 312 * @halted: Nonzero if the CPU is in suspended state.
 313 * @stop: Indicates a pending stop request.
 314 * @stopped: Indicates the CPU has been artificially stopped.
 315 * @unplug: Indicates a pending CPU unplug request.
 316 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
 317 * @singlestep_enabled: Flags for single-stepping.
 318 * @icount_extra: Instructions until next timer event.
 319 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
 320 * requires that IO only be performed on the last instruction of a TB
 321 * so that interrupts take effect immediately.
 322 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
 323 *            AddressSpaces this CPU has)
 324 * @num_ases: number of CPUAddressSpaces in @cpu_ases
 325 * @as: Pointer to the first AddressSpace, for the convenience of targets which
 326 *      only have a single AddressSpace
 327 * @env_ptr: Pointer to subclass-specific CPUArchState field.
 328 * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
 329 * @gdb_regs: Additional GDB registers.
 330 * @gdb_num_regs: Number of total registers accessible to GDB.
 331 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
 332 * @next_cpu: Next CPU sharing TB cache.
 333 * @opaque: User data.
 334 * @mem_io_pc: Host Program Counter at which the memory was accessed.
 335 * @kvm_fd: vCPU file descriptor for KVM.
 336 * @work_mutex: Lock to prevent multiple access to queued_work_*.
 337 * @queued_work_first: First asynchronous work pending.
 338 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
 339 *                        to @trace_dstate).
 340 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
 341 * @plugin_mask: Plugin event bitmap. Modified only via async work.
 342 * @ignore_memory_transaction_failures: Cached copy of the MachineState
 343 *    flag of the same name: allows the board to suppress calling of the
 344 *    CPU do_transaction_failed hook function.
 345 *
 346 * State of one CPU core or thread.
 347 */
 348struct CPUState {
 349    /*< private >*/
 350    DeviceState parent_obj;
 351    /*< public >*/
 352
 353    int nr_cores;
 354    int nr_threads;
 355
 356    struct QemuThread *thread;
 357#ifdef _WIN32
 358    HANDLE hThread;
 359#endif
 360    int thread_id;
 361    bool running, has_waiter;
 362    struct QemuCond *halt_cond;
 363    bool thread_kicked;
 364    bool created;
 365    bool stop;
 366    bool stopped;
 367    bool unplug;
 368    bool crash_occurred;
 369    bool exit_request;
 370    bool in_exclusive_context;
 371    uint32_t cflags_next_tb;
 372    /* updates protected by BQL */
 373    uint32_t interrupt_request;
 374    int singlestep_enabled;
 375    int64_t icount_budget;
 376    int64_t icount_extra;
 377    uint64_t random_seed;
 378    sigjmp_buf jmp_env;
 379
 380    QemuMutex work_mutex;
 381    struct qemu_work_item *queued_work_first, *queued_work_last;
 382
 383    CPUAddressSpace *cpu_ases;
 384    int num_ases;
 385    AddressSpace *as;
 386    MemoryRegion *memory;
 387
 388    void *env_ptr; /* CPUArchState */
 389    IcountDecr *icount_decr_ptr;
 390
 391    /* Accessed in parallel; all accesses must be atomic */
 392    struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
 393
 394    struct GDBRegisterState *gdb_regs;
 395    int gdb_num_regs;
 396    int gdb_num_g_regs;
 397    QTAILQ_ENTRY(CPUState) node;
 398
 399    /* ice debug support */
 400    QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
 401
 402    QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
 403    CPUWatchpoint *watchpoint_hit;
 404
 405    void *opaque;
 406
 407    /* In order to avoid passing too many arguments to the MMIO helpers,
 408     * we store some rarely used information in the CPU context.
 409     */
 410    uintptr_t mem_io_pc;
 411
 412    int kvm_fd;
 413    struct KVMState *kvm_state;
 414    struct kvm_run *kvm_run;
 415
 416    /* Used for events with 'vcpu' and *without* the 'disabled' properties */
 417    DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
 418    DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
 419
 420    DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
 421
 422    GArray *plugin_mem_cbs;
 423
 424    /* TODO Move common fields from CPUArchState here. */
 425    int cpu_index;
 426    int cluster_index;
 427    uint32_t halted;
 428    uint32_t can_do_io;
 429    int32_t exception_index;
 430
 431    /* shared by kvm, hax and hvf */
 432    bool vcpu_dirty;
 433
 434    /* Used to keep track of an outstanding cpu throttle thread for migration
 435     * autoconverge
 436     */
 437    bool throttle_thread_scheduled;
 438
 439    bool ignore_memory_transaction_failures;
 440
 441    struct hax_vcpu_state *hax_vcpu;
 442
 443    int hvf_fd;
 444
 445    /* track IOMMUs whose translations we've cached in the TCG TLB */
 446    GArray *iommu_notifiers;
 447};
 448
 449typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
 450extern CPUTailQ cpus;
 451
 452#define first_cpu        QTAILQ_FIRST_RCU(&cpus)
 453#define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
 454#define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
 455#define CPU_FOREACH_SAFE(cpu, next_cpu) \
 456    QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
 457
 458extern __thread CPUState *current_cpu;
 459
 460static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
 461{
 462    unsigned int i;
 463
 464    for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
 465        atomic_set(&cpu->tb_jmp_cache[i], NULL);
 466    }
 467}
 468
 469/**
 470 * qemu_tcg_mttcg_enabled:
 471 * Check whether we are running MultiThread TCG or not.
 472 *
 473 * Returns: %true if we are in MTTCG mode %false otherwise.
 474 */
 475extern bool mttcg_enabled;
 476#define qemu_tcg_mttcg_enabled() (mttcg_enabled)
 477
 478/**
 479 * cpu_paging_enabled:
 480 * @cpu: The CPU whose state is to be inspected.
 481 *
 482 * Returns: %true if paging is enabled, %false otherwise.
 483 */
 484bool cpu_paging_enabled(const CPUState *cpu);
 485
 486/**
 487 * cpu_get_memory_mapping:
 488 * @cpu: The CPU whose memory mappings are to be obtained.
 489 * @list: Where to write the memory mappings to.
 490 * @errp: Pointer for reporting an #Error.
 491 */
 492void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
 493                            Error **errp);
 494
 495/**
 496 * cpu_write_elf64_note:
 497 * @f: pointer to a function that writes memory to a file
 498 * @cpu: The CPU whose memory is to be dumped
 499 * @cpuid: ID number of the CPU
 500 * @opaque: pointer to the CPUState struct
 501 */
 502int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
 503                         int cpuid, void *opaque);
 504
 505/**
 506 * cpu_write_elf64_qemunote:
 507 * @f: pointer to a function that writes memory to a file
 508 * @cpu: The CPU whose memory is to be dumped
 509 * @cpuid: ID number of the CPU
 510 * @opaque: pointer to the CPUState struct
 511 */
 512int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
 513                             void *opaque);
 514
 515/**
 516 * cpu_write_elf32_note:
 517 * @f: pointer to a function that writes memory to a file
 518 * @cpu: The CPU whose memory is to be dumped
 519 * @cpuid: ID number of the CPU
 520 * @opaque: pointer to the CPUState struct
 521 */
 522int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
 523                         int cpuid, void *opaque);
 524
 525/**
 526 * cpu_write_elf32_qemunote:
 527 * @f: pointer to a function that writes memory to a file
 528 * @cpu: The CPU whose memory is to be dumped
 529 * @cpuid: ID number of the CPU
 530 * @opaque: pointer to the CPUState struct
 531 */
 532int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
 533                             void *opaque);
 534
 535/**
 536 * cpu_get_crash_info:
 537 * @cpu: The CPU to get crash information for
 538 *
 539 * Gets the previously saved crash information.
 540 * Caller is responsible for freeing the data.
 541 */
 542GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
 543
 544/**
 545 * CPUDumpFlags:
 546 * @CPU_DUMP_CODE:
 547 * @CPU_DUMP_FPU: dump FPU register state, not just integer
 548 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
 549 */
 550enum CPUDumpFlags {
 551    CPU_DUMP_CODE = 0x00010000,
 552    CPU_DUMP_FPU  = 0x00020000,
 553    CPU_DUMP_CCOP = 0x00040000,
 554};
 555
 556/**
 557 * cpu_dump_state:
 558 * @cpu: The CPU whose state is to be dumped.
 559 * @f: If non-null, dump to this stream, else to current print sink.
 560 *
 561 * Dumps CPU state.
 562 */
 563void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
 564
 565/**
 566 * cpu_dump_statistics:
 567 * @cpu: The CPU whose state is to be dumped.
 568 * @flags: Flags what to dump.
 569 *
 570 * Dump CPU statistics to the current monitor if we have one, else to
 571 * stdout.
 572 */
 573void cpu_dump_statistics(CPUState *cpu, int flags);
 574
 575#ifndef CONFIG_USER_ONLY
 576/**
 577 * cpu_get_phys_page_attrs_debug:
 578 * @cpu: The CPU to obtain the physical page address for.
 579 * @addr: The virtual address.
 580 * @attrs: Updated on return with the memory transaction attributes to use
 581 *         for this access.
 582 *
 583 * Obtains the physical page corresponding to a virtual one, together
 584 * with the corresponding memory transaction attributes to use for the access.
 585 * Use it only for debugging because no protection checks are done.
 586 *
 587 * Returns: Corresponding physical page address or -1 if no page found.
 588 */
 589static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 590                                                   MemTxAttrs *attrs)
 591{
 592    CPUClass *cc = CPU_GET_CLASS(cpu);
 593
 594    if (cc->get_phys_page_attrs_debug) {
 595        return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
 596    }
 597    /* Fallback for CPUs which don't implement the _attrs_ hook */
 598    *attrs = MEMTXATTRS_UNSPECIFIED;
 599    return cc->get_phys_page_debug(cpu, addr);
 600}
 601
 602/**
 603 * cpu_get_phys_page_debug:
 604 * @cpu: The CPU to obtain the physical page address for.
 605 * @addr: The virtual address.
 606 *
 607 * Obtains the physical page corresponding to a virtual one.
 608 * Use it only for debugging because no protection checks are done.
 609 *
 610 * Returns: Corresponding physical page address or -1 if no page found.
 611 */
 612static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
 613{
 614    MemTxAttrs attrs = {};
 615
 616    return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
 617}
 618
 619/** cpu_asidx_from_attrs:
 620 * @cpu: CPU
 621 * @attrs: memory transaction attributes
 622 *
 623 * Returns the address space index specifying the CPU AddressSpace
 624 * to use for a memory access with the given transaction attributes.
 625 */
 626static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
 627{
 628    CPUClass *cc = CPU_GET_CLASS(cpu);
 629    int ret = 0;
 630
 631    if (cc->asidx_from_attrs) {
 632        ret = cc->asidx_from_attrs(cpu, attrs);
 633        assert(ret < cpu->num_ases && ret >= 0);
 634    }
 635    return ret;
 636}
 637#endif
 638
 639/**
 640 * cpu_list_add:
 641 * @cpu: The CPU to be added to the list of CPUs.
 642 */
 643void cpu_list_add(CPUState *cpu);
 644
 645/**
 646 * cpu_list_remove:
 647 * @cpu: The CPU to be removed from the list of CPUs.
 648 */
 649void cpu_list_remove(CPUState *cpu);
 650
 651/**
 652 * cpu_reset:
 653 * @cpu: The CPU whose state is to be reset.
 654 */
 655void cpu_reset(CPUState *cpu);
 656
 657/**
 658 * cpu_class_by_name:
 659 * @typename: The CPU base type.
 660 * @cpu_model: The model string without any parameters.
 661 *
 662 * Looks up a CPU #ObjectClass matching name @cpu_model.
 663 *
 664 * Returns: A #CPUClass or %NULL if not matching class is found.
 665 */
 666ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
 667
 668/**
 669 * cpu_create:
 670 * @typename: The CPU type.
 671 *
 672 * Instantiates a CPU and realizes the CPU.
 673 *
 674 * Returns: A #CPUState or %NULL if an error occurred.
 675 */
 676CPUState *cpu_create(const char *typename);
 677
 678/**
 679 * parse_cpu_option:
 680 * @cpu_option: The -cpu option including optional parameters.
 681 *
 682 * processes optional parameters and registers them as global properties
 683 *
 684 * Returns: type of CPU to create or prints error and terminates process
 685 *          if an error occurred.
 686 */
 687const char *parse_cpu_option(const char *cpu_option);
 688
 689/**
 690 * cpu_has_work:
 691 * @cpu: The vCPU to check.
 692 *
 693 * Checks whether the CPU has work to do.
 694 *
 695 * Returns: %true if the CPU has work, %false otherwise.
 696 */
 697static inline bool cpu_has_work(CPUState *cpu)
 698{
 699    CPUClass *cc = CPU_GET_CLASS(cpu);
 700
 701    g_assert(cc->has_work);
 702    return cc->has_work(cpu);
 703}
 704
 705/**
 706 * qemu_cpu_is_self:
 707 * @cpu: The vCPU to check against.
 708 *
 709 * Checks whether the caller is executing on the vCPU thread.
 710 *
 711 * Returns: %true if called from @cpu's thread, %false otherwise.
 712 */
 713bool qemu_cpu_is_self(CPUState *cpu);
 714
 715/**
 716 * qemu_cpu_kick:
 717 * @cpu: The vCPU to kick.
 718 *
 719 * Kicks @cpu's thread.
 720 */
 721void qemu_cpu_kick(CPUState *cpu);
 722
 723/**
 724 * cpu_is_stopped:
 725 * @cpu: The CPU to check.
 726 *
 727 * Checks whether the CPU is stopped.
 728 *
 729 * Returns: %true if run state is not running or if artificially stopped;
 730 * %false otherwise.
 731 */
 732bool cpu_is_stopped(CPUState *cpu);
 733
 734/**
 735 * do_run_on_cpu:
 736 * @cpu: The vCPU to run on.
 737 * @func: The function to be executed.
 738 * @data: Data to pass to the function.
 739 * @mutex: Mutex to release while waiting for @func to run.
 740 *
 741 * Used internally in the implementation of run_on_cpu.
 742 */
 743void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
 744                   QemuMutex *mutex);
 745
 746/**
 747 * run_on_cpu:
 748 * @cpu: The vCPU to run on.
 749 * @func: The function to be executed.
 750 * @data: Data to pass to the function.
 751 *
 752 * Schedules the function @func for execution on the vCPU @cpu.
 753 */
 754void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 755
 756/**
 757 * async_run_on_cpu:
 758 * @cpu: The vCPU to run on.
 759 * @func: The function to be executed.
 760 * @data: Data to pass to the function.
 761 *
 762 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
 763 */
 764void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 765
 766/**
 767 * async_safe_run_on_cpu:
 768 * @cpu: The vCPU to run on.
 769 * @func: The function to be executed.
 770 * @data: Data to pass to the function.
 771 *
 772 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
 773 * while all other vCPUs are sleeping.
 774 *
 775 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
 776 * BQL.
 777 */
 778void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 779
 780/**
 781 * cpu_in_exclusive_context()
 782 * @cpu: The vCPU to check
 783 *
 784 * Returns true if @cpu is an exclusive context, for example running
 785 * something which has previously been queued via async_safe_run_on_cpu().
 786 */
 787static inline bool cpu_in_exclusive_context(const CPUState *cpu)
 788{
 789    return cpu->in_exclusive_context;
 790}
 791
 792/**
 793 * qemu_get_cpu:
 794 * @index: The CPUState@cpu_index value of the CPU to obtain.
 795 *
 796 * Gets a CPU matching @index.
 797 *
 798 * Returns: The CPU or %NULL if there is no matching CPU.
 799 */
 800CPUState *qemu_get_cpu(int index);
 801
 802/**
 803 * cpu_exists:
 804 * @id: Guest-exposed CPU ID to lookup.
 805 *
 806 * Search for CPU with specified ID.
 807 *
 808 * Returns: %true - CPU is found, %false - CPU isn't found.
 809 */
 810bool cpu_exists(int64_t id);
 811
 812/**
 813 * cpu_by_arch_id:
 814 * @id: Guest-exposed CPU ID of the CPU to obtain.
 815 *
 816 * Get a CPU with matching @id.
 817 *
 818 * Returns: The CPU or %NULL if there is no matching CPU.
 819 */
 820CPUState *cpu_by_arch_id(int64_t id);
 821
 822/**
 823 * cpu_throttle_set:
 824 * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
 825 *
 826 * Throttles all vcpus by forcing them to sleep for the given percentage of
 827 * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
 828 * (example: 10ms sleep for every 30ms awake).
 829 *
 830 * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
 831 * Once the throttling starts, it will remain in effect until cpu_throttle_stop
 832 * is called.
 833 */
 834void cpu_throttle_set(int new_throttle_pct);
 835
 836/**
 837 * cpu_throttle_stop:
 838 *
 839 * Stops the vcpu throttling started by cpu_throttle_set.
 840 */
 841void cpu_throttle_stop(void);
 842
 843/**
 844 * cpu_throttle_active:
 845 *
 846 * Returns: %true if the vcpus are currently being throttled, %false otherwise.
 847 */
 848bool cpu_throttle_active(void);
 849
 850/**
 851 * cpu_throttle_get_percentage:
 852 *
 853 * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
 854 *
 855 * Returns: The throttle percentage in range 1 to 99.
 856 */
 857int cpu_throttle_get_percentage(void);
 858
 859#ifndef CONFIG_USER_ONLY
 860
 861typedef void (*CPUInterruptHandler)(CPUState *, int);
 862
 863extern CPUInterruptHandler cpu_interrupt_handler;
 864
 865/**
 866 * cpu_interrupt:
 867 * @cpu: The CPU to set an interrupt on.
 868 * @mask: The interrupts to set.
 869 *
 870 * Invokes the interrupt handler.
 871 */
 872static inline void cpu_interrupt(CPUState *cpu, int mask)
 873{
 874    cpu_interrupt_handler(cpu, mask);
 875}
 876
 877#else /* USER_ONLY */
 878
 879void cpu_interrupt(CPUState *cpu, int mask);
 880
 881#endif /* USER_ONLY */
 882
 883#ifdef NEED_CPU_H
 884
 885#ifdef CONFIG_SOFTMMU
 886static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
 887                                        MMUAccessType access_type,
 888                                        int mmu_idx, uintptr_t retaddr)
 889{
 890    CPUClass *cc = CPU_GET_CLASS(cpu);
 891
 892    cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
 893}
 894
 895static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
 896                                          vaddr addr, unsigned size,
 897                                          MMUAccessType access_type,
 898                                          int mmu_idx, MemTxAttrs attrs,
 899                                          MemTxResult response,
 900                                          uintptr_t retaddr)
 901{
 902    CPUClass *cc = CPU_GET_CLASS(cpu);
 903
 904    if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
 905        cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
 906                                  mmu_idx, attrs, response, retaddr);
 907    }
 908}
 909#endif
 910
 911#endif /* NEED_CPU_H */
 912
 913/**
 914 * cpu_set_pc:
 915 * @cpu: The CPU to set the program counter for.
 916 * @addr: Program counter value.
 917 *
 918 * Sets the program counter for a CPU.
 919 */
 920static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
 921{
 922    CPUClass *cc = CPU_GET_CLASS(cpu);
 923
 924    cc->set_pc(cpu, addr);
 925}
 926
 927/**
 928 * cpu_reset_interrupt:
 929 * @cpu: The CPU to clear the interrupt on.
 930 * @mask: The interrupt mask to clear.
 931 *
 932 * Resets interrupts on the vCPU @cpu.
 933 */
 934void cpu_reset_interrupt(CPUState *cpu, int mask);
 935
 936/**
 937 * cpu_exit:
 938 * @cpu: The CPU to exit.
 939 *
 940 * Requests the CPU @cpu to exit execution.
 941 */
 942void cpu_exit(CPUState *cpu);
 943
 944/**
 945 * cpu_resume:
 946 * @cpu: The CPU to resume.
 947 *
 948 * Resumes CPU, i.e. puts CPU into runnable state.
 949 */
 950void cpu_resume(CPUState *cpu);
 951
 952/**
 953 * cpu_remove:
 954 * @cpu: The CPU to remove.
 955 *
 956 * Requests the CPU to be removed.
 957 */
 958void cpu_remove(CPUState *cpu);
 959
 960 /**
 961 * cpu_remove_sync:
 962 * @cpu: The CPU to remove.
 963 *
 964 * Requests the CPU to be removed and waits till it is removed.
 965 */
 966void cpu_remove_sync(CPUState *cpu);
 967
 968/**
 969 * process_queued_cpu_work() - process all items on CPU work queue
 970 * @cpu: The CPU which work queue to process.
 971 */
 972void process_queued_cpu_work(CPUState *cpu);
 973
 974/**
 975 * cpu_exec_start:
 976 * @cpu: The CPU for the current thread.
 977 *
 978 * Record that a CPU has started execution and can be interrupted with
 979 * cpu_exit.
 980 */
 981void cpu_exec_start(CPUState *cpu);
 982
 983/**
 984 * cpu_exec_end:
 985 * @cpu: The CPU for the current thread.
 986 *
 987 * Record that a CPU has stopped execution and exclusive sections
 988 * can be executed without interrupting it.
 989 */
 990void cpu_exec_end(CPUState *cpu);
 991
 992/**
 993 * start_exclusive:
 994 *
 995 * Wait for a concurrent exclusive section to end, and then start
 996 * a section of work that is run while other CPUs are not running
 997 * between cpu_exec_start and cpu_exec_end.  CPUs that are running
 998 * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
 999 * during the exclusive section go to sleep until this CPU calls
1000 * end_exclusive.
1001 */
1002void start_exclusive(void);
1003
1004/**
1005 * end_exclusive:
1006 *
1007 * Concludes an exclusive execution section started by start_exclusive.
1008 */
1009void end_exclusive(void);
1010
1011/**
1012 * qemu_init_vcpu:
1013 * @cpu: The vCPU to initialize.
1014 *
1015 * Initializes a vCPU.
1016 */
1017void qemu_init_vcpu(CPUState *cpu);
1018
1019#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1020#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1021#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1022
1023/**
1024 * cpu_single_step:
1025 * @cpu: CPU to the flags for.
1026 * @enabled: Flags to enable.
1027 *
1028 * Enables or disables single-stepping for @cpu.
1029 */
1030void cpu_single_step(CPUState *cpu, int enabled);
1031
1032/* Breakpoint/watchpoint flags */
1033#define BP_MEM_READ           0x01
1034#define BP_MEM_WRITE          0x02
1035#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1036#define BP_STOP_BEFORE_ACCESS 0x04
1037/* 0x08 currently unused */
1038#define BP_GDB                0x10
1039#define BP_CPU                0x20
1040#define BP_ANY                (BP_GDB | BP_CPU)
1041#define BP_WATCHPOINT_HIT_READ 0x40
1042#define BP_WATCHPOINT_HIT_WRITE 0x80
1043#define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1044
1045int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1046                          CPUBreakpoint **breakpoint);
1047int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1048void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1049void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1050
1051/* Return true if PC matches an installed breakpoint.  */
1052static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1053{
1054    CPUBreakpoint *bp;
1055
1056    if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1057        QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1058            if (bp->pc == pc && (bp->flags & mask)) {
1059                return true;
1060            }
1061        }
1062    }
1063    return false;
1064}
1065
1066#ifdef CONFIG_USER_ONLY
1067static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1068                                        int flags, CPUWatchpoint **watchpoint)
1069{
1070    return -ENOSYS;
1071}
1072
1073static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1074                                        vaddr len, int flags)
1075{
1076    return -ENOSYS;
1077}
1078
1079static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1080                                                CPUWatchpoint *wp)
1081{
1082}
1083
1084static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1085{
1086}
1087
1088static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1089                                        MemTxAttrs atr, int fl, uintptr_t ra)
1090{
1091}
1092
1093static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1094                                                 vaddr addr, vaddr len)
1095{
1096    return 0;
1097}
1098#else
1099int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1100                          int flags, CPUWatchpoint **watchpoint);
1101int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1102                          vaddr len, int flags);
1103void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1104void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1105void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1106                          MemTxAttrs attrs, int flags, uintptr_t ra);
1107int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1108#endif
1109
1110/**
1111 * cpu_get_address_space:
1112 * @cpu: CPU to get address space from
1113 * @asidx: index identifying which address space to get
1114 *
1115 * Return the requested address space of this CPU. @asidx
1116 * specifies which address space to read.
1117 */
1118AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1119
1120void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1121    GCC_FMT_ATTR(2, 3);
1122extern Property cpu_common_props[];
1123void cpu_exec_initfn(CPUState *cpu);
1124void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1125void cpu_exec_unrealizefn(CPUState *cpu);
1126
1127/**
1128 * target_words_bigendian:
1129 * Returns true if the (default) endianness of the target is big endian,
1130 * false otherwise. Note that in target-specific code, you can use
1131 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1132 * code should normally never need to know about the endianness of the
1133 * target, so please do *not* use this function unless you know very well
1134 * what you are doing!
1135 */
1136bool target_words_bigendian(void);
1137
1138#ifdef NEED_CPU_H
1139
1140#ifdef CONFIG_SOFTMMU
1141extern const VMStateDescription vmstate_cpu_common;
1142#else
1143#define vmstate_cpu_common vmstate_dummy
1144#endif
1145
1146#define VMSTATE_CPU() {                                                     \
1147    .name = "parent_obj",                                                   \
1148    .size = sizeof(CPUState),                                               \
1149    .vmsd = &vmstate_cpu_common,                                            \
1150    .flags = VMS_STRUCT,                                                    \
1151    .offset = 0,                                                            \
1152}
1153
1154#endif /* NEED_CPU_H */
1155
1156#define UNASSIGNED_CPU_INDEX -1
1157#define UNASSIGNED_CLUSTER_INDEX -1
1158
1159#endif
1160