qemu/linux-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4#include "hostdep.h"
   5#include "cpu.h"
   6#include "exec/exec-all.h"
   7#include "exec/cpu_ldst.h"
   8
   9#undef DEBUG_REMAP
  10#ifdef DEBUG_REMAP
  11#endif /* DEBUG_REMAP */
  12
  13#include "exec/user/abitypes.h"
  14
  15#include "exec/user/thunk.h"
  16#include "syscall_defs.h"
  17#include "target_syscall.h"
  18#include "exec/gdbstub.h"
  19
  20/* This is the size of the host kernel's sigset_t, needed where we make
  21 * direct system calls that take a sigset_t pointer and a size.
  22 */
  23#define SIGSET_T_SIZE (_NSIG / 8)
  24
  25/* This struct is used to hold certain information about the image.
  26 * Basically, it replicates in user space what would be certain
  27 * task_struct fields in the kernel
  28 */
  29struct image_info {
  30        abi_ulong       load_bias;
  31        abi_ulong       load_addr;
  32        abi_ulong       start_code;
  33        abi_ulong       end_code;
  34        abi_ulong       start_data;
  35        abi_ulong       end_data;
  36        abi_ulong       start_brk;
  37        abi_ulong       brk;
  38        abi_ulong       start_mmap;
  39        abi_ulong       start_stack;
  40        abi_ulong       stack_limit;
  41        abi_ulong       entry;
  42        abi_ulong       code_offset;
  43        abi_ulong       data_offset;
  44        abi_ulong       saved_auxv;
  45        abi_ulong       auxv_len;
  46        abi_ulong       arg_start;
  47        abi_ulong       arg_end;
  48        abi_ulong       arg_strings;
  49        abi_ulong       env_strings;
  50        abi_ulong       file_string;
  51        uint32_t        elf_flags;
  52        int             personality;
  53        abi_ulong       alignment;
  54
  55        /* The fields below are used in FDPIC mode.  */
  56        abi_ulong       loadmap_addr;
  57        uint16_t        nsegs;
  58        void           *loadsegs;
  59        abi_ulong       pt_dynamic_addr;
  60        abi_ulong       interpreter_loadmap_addr;
  61        abi_ulong       interpreter_pt_dynamic_addr;
  62        struct image_info *other_info;
  63#ifdef TARGET_MIPS
  64        int             fp_abi;
  65        int             interp_fp_abi;
  66#endif
  67};
  68
  69#ifdef TARGET_I386
  70/* Information about the current linux thread */
  71struct vm86_saved_state {
  72    uint32_t eax; /* return code */
  73    uint32_t ebx;
  74    uint32_t ecx;
  75    uint32_t edx;
  76    uint32_t esi;
  77    uint32_t edi;
  78    uint32_t ebp;
  79    uint32_t esp;
  80    uint32_t eflags;
  81    uint32_t eip;
  82    uint16_t cs, ss, ds, es, fs, gs;
  83};
  84#endif
  85
  86#if defined(TARGET_ARM) && defined(TARGET_ABI32)
  87/* FPU emulator */
  88#include "nwfpe/fpa11.h"
  89#endif
  90
  91#define MAX_SIGQUEUE_SIZE 1024
  92
  93struct emulated_sigtable {
  94    int pending; /* true if signal is pending */
  95    target_siginfo_t info;
  96};
  97
  98/* NOTE: we force a big alignment so that the stack stored after is
  99   aligned too */
 100typedef struct TaskState {
 101    pid_t ts_tid;     /* tid (or pid) of this task */
 102#ifdef TARGET_ARM
 103# ifdef TARGET_ABI32
 104    /* FPA state */
 105    FPA11 fpa;
 106# endif
 107    int swi_errno;
 108#endif
 109#if defined(TARGET_I386) && !defined(TARGET_X86_64)
 110    abi_ulong target_v86;
 111    struct vm86_saved_state vm86_saved_regs;
 112    struct target_vm86plus_struct vm86plus;
 113    uint32_t v86flags;
 114    uint32_t v86mask;
 115#endif
 116    abi_ulong child_tidptr;
 117#ifdef TARGET_M68K
 118    abi_ulong tp_value;
 119#endif
 120#if defined(TARGET_ARM) || defined(TARGET_M68K)
 121    /* Extra fields for semihosted binaries.  */
 122    abi_ulong heap_base;
 123    abi_ulong heap_limit;
 124#endif
 125    abi_ulong stack_base;
 126    int used; /* non zero if used */
 127    struct image_info *info;
 128    struct linux_binprm *bprm;
 129
 130    struct emulated_sigtable sync_signal;
 131    struct emulated_sigtable sigtab[TARGET_NSIG];
 132    /* This thread's signal mask, as requested by the guest program.
 133     * The actual signal mask of this thread may differ:
 134     *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
 135     *  + sometimes we block all signals to avoid races
 136     */
 137    sigset_t signal_mask;
 138    /* The signal mask imposed by a guest sigsuspend syscall, if we are
 139     * currently in the middle of such a syscall
 140     */
 141    sigset_t sigsuspend_mask;
 142    /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
 143    int in_sigsuspend;
 144
 145    /* Nonzero if process_pending_signals() needs to do something (either
 146     * handle a pending signal or unblock signals).
 147     * This flag is written from a signal handler so should be accessed via
 148     * the atomic_read() and atomic_set() functions. (It is not accessed
 149     * from multiple threads.)
 150     */
 151    int signal_pending;
 152
 153    /* This thread's sigaltstack, if it has one */
 154    struct target_sigaltstack sigaltstack_used;
 155} __attribute__((aligned(16))) TaskState;
 156
 157extern char *exec_path;
 158void init_task_state(TaskState *ts);
 159void task_settid(TaskState *);
 160void stop_all_tasks(void);
 161extern const char *qemu_uname_release;
 162extern unsigned long mmap_min_addr;
 163
 164/* ??? See if we can avoid exposing so much of the loader internals.  */
 165
 166/* Read a good amount of data initially, to hopefully get all the
 167   program headers loaded.  */
 168#define BPRM_BUF_SIZE  1024
 169
 170/*
 171 * This structure is used to hold the arguments that are
 172 * used when loading binaries.
 173 */
 174struct linux_binprm {
 175        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 176        abi_ulong p;
 177        int fd;
 178        int e_uid, e_gid;
 179        int argc, envc;
 180        char **argv;
 181        char **envp;
 182        char * filename;        /* Name of binary */
 183        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 184};
 185
 186void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 187abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 188                              abi_ulong stringp, int push_ptr);
 189int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 190             struct target_pt_regs * regs, struct image_info *infop,
 191             struct linux_binprm *);
 192
 193/* Returns true if the image uses the FDPIC ABI. If this is the case,
 194 * we have to provide some information (loadmap, pt_dynamic_info) such
 195 * that the program can be relocated adequately. This is also useful
 196 * when handling signals.
 197 */
 198int info_is_fdpic(struct image_info *info);
 199
 200uint32_t get_elf_eflags(int fd);
 201int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 202int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 203
 204abi_long memcpy_to_target(abi_ulong dest, const void *src,
 205                          unsigned long len);
 206void target_set_brk(abi_ulong new_brk);
 207abi_long do_brk(abi_ulong new_brk);
 208void syscall_init(void);
 209abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 210                    abi_long arg2, abi_long arg3, abi_long arg4,
 211                    abi_long arg5, abi_long arg6, abi_long arg7,
 212                    abi_long arg8);
 213void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
 214extern __thread CPUState *thread_cpu;
 215void cpu_loop(CPUArchState *env);
 216const char *target_strerror(int err);
 217int get_osversion(void);
 218void init_qemu_uname_release(void);
 219void fork_start(void);
 220void fork_end(int child);
 221
 222/* Creates the initial guest address space in the host memory space using
 223 * the given host start address hint and size.  The guest_start parameter
 224 * specifies the start address of the guest space.  guest_base will be the
 225 * difference between the host start address computed by this function and
 226 * guest_start.  If fixed is specified, then the mapped address space must
 227 * start at host_start.  The real start address of the mapped memory space is
 228 * returned or -1 if there was an error.
 229 */
 230unsigned long init_guest_space(unsigned long host_start,
 231                               unsigned long host_size,
 232                               unsigned long guest_start,
 233                               bool fixed);
 234
 235#include "qemu/log.h"
 236
 237/* safe_syscall.S */
 238
 239/**
 240 * safe_syscall:
 241 * @int number: number of system call to make
 242 * ...: arguments to the system call
 243 *
 244 * Call a system call if guest signal not pending.
 245 * This has the same API as the libc syscall() function, except that it
 246 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
 247 *
 248 * Returns: the system call result, or -1 with an error code in errno
 249 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
 250 * with any of the host errno values.)
 251 */
 252
 253/* A guide to using safe_syscall() to handle interactions between guest
 254 * syscalls and guest signals:
 255 *
 256 * Guest syscalls come in two flavours:
 257 *
 258 * (1) Non-interruptible syscalls
 259 *
 260 * These are guest syscalls that never get interrupted by signals and
 261 * so never return EINTR. They can be implemented straightforwardly in
 262 * QEMU: just make sure that if the implementation code has to make any
 263 * blocking calls that those calls are retried if they return EINTR.
 264 * It's also OK to implement these with safe_syscall, though it will be
 265 * a little less efficient if a signal is delivered at the 'wrong' moment.
 266 *
 267 * Some non-interruptible syscalls need to be handled using block_signals()
 268 * to block signals for the duration of the syscall. This mainly applies
 269 * to code which needs to modify the data structures used by the
 270 * host_signal_handler() function and the functions it calls, including
 271 * all syscalls which change the thread's signal mask.
 272 *
 273 * (2) Interruptible syscalls
 274 *
 275 * These are guest syscalls that can be interrupted by signals and
 276 * for which we need to either return EINTR or arrange for the guest
 277 * syscall to be restarted. This category includes both syscalls which
 278 * always restart (and in the kernel return -ERESTARTNOINTR), ones
 279 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
 280 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
 281 * if the handler was registered with SA_RESTART (kernel returns
 282 * -ERESTARTSYS). System calls which are only interruptible in some
 283 * situations (like 'open') also need to be handled this way.
 284 *
 285 * Here it is important that the host syscall is made
 286 * via this safe_syscall() function, and *not* via the host libc.
 287 * If the host libc is used then the implementation will appear to work
 288 * most of the time, but there will be a race condition where a
 289 * signal could arrive just before we make the host syscall inside libc,
 290 * and then then guest syscall will not correctly be interrupted.
 291 * Instead the implementation of the guest syscall can use the safe_syscall
 292 * function but otherwise just return the result or errno in the usual
 293 * way; the main loop code will take care of restarting the syscall
 294 * if appropriate.
 295 *
 296 * (If the implementation needs to make multiple host syscalls this is
 297 * OK; any which might really block must be via safe_syscall(); for those
 298 * which are only technically blocking (ie which we know in practice won't
 299 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
 300 * You must be able to cope with backing out correctly if some safe_syscall
 301 * you make in the implementation returns either -TARGET_ERESTARTSYS or
 302 * EINTR though.)
 303 *
 304 * block_signals() cannot be used for interruptible syscalls.
 305 *
 306 *
 307 * How and why the safe_syscall implementation works:
 308 *
 309 * The basic setup is that we make the host syscall via a known
 310 * section of host native assembly. If a signal occurs, our signal
 311 * handler checks the interrupted host PC against the addresse of that
 312 * known section. If the PC is before or at the address of the syscall
 313 * instruction then we change the PC to point at a "return
 314 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
 315 * (causing the safe_syscall() call to immediately return that value).
 316 * Then in the main.c loop if we see this magic return value we adjust
 317 * the guest PC to wind it back to before the system call, and invoke
 318 * the guest signal handler as usual.
 319 *
 320 * This winding-back will happen in two cases:
 321 * (1) signal came in just before we took the host syscall (a race);
 322 *   in this case we'll take the guest signal and have another go
 323 *   at the syscall afterwards, and this is indistinguishable for the
 324 *   guest from the timing having been different such that the guest
 325 *   signal really did win the race
 326 * (2) signal came in while the host syscall was blocking, and the
 327 *   host kernel decided the syscall should be restarted;
 328 *   in this case we want to restart the guest syscall also, and so
 329 *   rewinding is the right thing. (Note that "restart" semantics mean
 330 *   "first call the signal handler, then reattempt the syscall".)
 331 * The other situation to consider is when a signal came in while the
 332 * host syscall was blocking, and the host kernel decided that the syscall
 333 * should not be restarted; in this case QEMU's host signal handler will
 334 * be invoked with the PC pointing just after the syscall instruction,
 335 * with registers indicating an EINTR return; the special code in the
 336 * handler will not kick in, and we will return EINTR to the guest as
 337 * we should.
 338 *
 339 * Notice that we can leave the host kernel to make the decision for
 340 * us about whether to do a restart of the syscall or not; we do not
 341 * need to check SA_RESTART flags in QEMU or distinguish the various
 342 * kinds of restartability.
 343 */
 344#ifdef HAVE_SAFE_SYSCALL
 345/* The core part of this function is implemented in assembly */
 346extern long safe_syscall_base(int *pending, long number, ...);
 347
 348#define safe_syscall(...)                                               \
 349    ({                                                                  \
 350        long ret_;                                                      \
 351        int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
 352        ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
 353        if (is_error(ret_)) {                                           \
 354            errno = -ret_;                                              \
 355            ret_ = -1;                                                  \
 356        }                                                               \
 357        ret_;                                                           \
 358    })
 359
 360#else
 361
 362/* Fallback for architectures which don't yet provide a safe-syscall assembly
 363 * fragment; note that this is racy!
 364 * This should go away when all host architectures have been updated.
 365 */
 366#define safe_syscall syscall
 367
 368#endif
 369
 370/* syscall.c */
 371int host_to_target_waitstatus(int status);
 372
 373/* strace.c */
 374void print_syscall(int num,
 375                   abi_long arg1, abi_long arg2, abi_long arg3,
 376                   abi_long arg4, abi_long arg5, abi_long arg6);
 377void print_syscall_ret(int num, abi_long arg1);
 378/**
 379 * print_taken_signal:
 380 * @target_signum: target signal being taken
 381 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
 382 *
 383 * Print strace output indicating that this signal is being taken by the guest,
 384 * in a format similar to:
 385 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
 386 */
 387void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
 388extern int do_strace;
 389
 390/* signal.c */
 391void process_pending_signals(CPUArchState *cpu_env);
 392void signal_init(void);
 393int queue_signal(CPUArchState *env, int sig, int si_type,
 394                 target_siginfo_t *info);
 395void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 396void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 397int target_to_host_signal(int sig);
 398int host_to_target_signal(int sig);
 399long do_sigreturn(CPUArchState *env);
 400long do_rt_sigreturn(CPUArchState *env);
 401abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 402int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 403abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
 404                        abi_ulong unew_ctx, abi_long ctx_size);
 405/**
 406 * block_signals: block all signals while handling this guest syscall
 407 *
 408 * Block all signals, and arrange that the signal mask is returned to
 409 * its correct value for the guest before we resume execution of guest code.
 410 * If this function returns non-zero, then the caller should immediately
 411 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
 412 * signal and restart execution of the syscall.
 413 * If block_signals() returns zero, then the caller can continue with
 414 * emulation of the system call knowing that no signals can be taken
 415 * (and therefore that no race conditions will result).
 416 * This should only be called once, because if it is called a second time
 417 * it will always return non-zero. (Think of it like a mutex that can't
 418 * be recursively locked.)
 419 * Signals will be unblocked again by process_pending_signals().
 420 *
 421 * Return value: non-zero if there was a pending signal, zero if not.
 422 */
 423int block_signals(void); /* Returns non zero if signal pending */
 424
 425#ifdef TARGET_I386
 426/* vm86.c */
 427void save_v86_state(CPUX86State *env);
 428void handle_vm86_trap(CPUX86State *env, int trapno);
 429void handle_vm86_fault(CPUX86State *env);
 430int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 431#elif defined(TARGET_SPARC64)
 432void sparc64_set_context(CPUSPARCState *env);
 433void sparc64_get_context(CPUSPARCState *env);
 434#endif
 435
 436/* mmap.c */
 437int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 438abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 439                     int flags, int fd, abi_ulong offset);
 440int target_munmap(abi_ulong start, abi_ulong len);
 441abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 442                       abi_ulong new_size, unsigned long flags,
 443                       abi_ulong new_addr);
 444extern unsigned long last_brk;
 445extern abi_ulong mmap_next_start;
 446abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
 447void mmap_fork_start(void);
 448void mmap_fork_end(int child);
 449
 450/* main.c */
 451extern unsigned long guest_stack_size;
 452
 453/* user access */
 454
 455#define VERIFY_READ 0
 456#define VERIFY_WRITE 1 /* implies read access */
 457
 458static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 459{
 460    return guest_addr_valid(addr) &&
 461           (size == 0 || guest_addr_valid(addr + size - 1)) &&
 462           page_check_range((target_ulong)addr, size,
 463                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 464}
 465
 466/* NOTE __get_user and __put_user use host pointers and don't check access.
 467   These are usually used to access struct data members once the struct has
 468   been locked - usually with lock_user_struct.  */
 469
 470/*
 471 * Tricky points:
 472 * - Use __builtin_choose_expr to avoid type promotion from ?:,
 473 * - Invalid sizes result in a compile time error stemming from
 474 *   the fact that abort has no parameters.
 475 * - It's easier to use the endian-specific unaligned load/store
 476 *   functions than host-endian unaligned load/store plus tswapN.
 477 * - The pragmas are necessary only to silence a clang false-positive
 478 *   warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
 479 * - gcc has bugs in its _Pragma() support in some versions, eg
 480 *   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
 481 *   include the warning-suppression pragmas for clang
 482 */
 483#if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
 484#define PRAGMA_DISABLE_PACKED_WARNING                                   \
 485    _Pragma("GCC diagnostic push");                                     \
 486    _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
 487
 488#define PRAGMA_REENABLE_PACKED_WARNING          \
 489    _Pragma("GCC diagnostic pop")
 490
 491#else
 492#define PRAGMA_DISABLE_PACKED_WARNING
 493#define PRAGMA_REENABLE_PACKED_WARNING
 494#endif
 495
 496#define __put_user_e(x, hptr, e)                                            \
 497    do {                                                                    \
 498        PRAGMA_DISABLE_PACKED_WARNING;                                      \
 499        (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                 \
 500        __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,            \
 501        __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,            \
 502        __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))  \
 503            ((hptr), (x)), (void)0);                                        \
 504        PRAGMA_REENABLE_PACKED_WARNING;                                     \
 505    } while (0)
 506
 507#define __get_user_e(x, hptr, e)                                            \
 508    do {                                                                    \
 509        PRAGMA_DISABLE_PACKED_WARNING;                                      \
 510        ((x) = (typeof(*hptr))(                                             \
 511        __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                 \
 512        __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,           \
 513        __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,            \
 514        __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))  \
 515            (hptr)), (void)0);                                              \
 516        PRAGMA_REENABLE_PACKED_WARNING;                                     \
 517    } while (0)
 518
 519
 520#ifdef TARGET_WORDS_BIGENDIAN
 521# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 522# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 523#else
 524# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 525# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 526#endif
 527
 528/* put_user()/get_user() take a guest address and check access */
 529/* These are usually used to access an atomic data type, such as an int,
 530 * that has been passed by address.  These internally perform locking
 531 * and unlocking on the data type.
 532 */
 533#define put_user(x, gaddr, target_type)                                 \
 534({                                                                      \
 535    abi_ulong __gaddr = (gaddr);                                        \
 536    target_type *__hptr;                                                \
 537    abi_long __ret = 0;                                                 \
 538    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 539        __put_user((x), __hptr);                                \
 540        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 541    } else                                                              \
 542        __ret = -TARGET_EFAULT;                                         \
 543    __ret;                                                              \
 544})
 545
 546#define get_user(x, gaddr, target_type)                                 \
 547({                                                                      \
 548    abi_ulong __gaddr = (gaddr);                                        \
 549    target_type *__hptr;                                                \
 550    abi_long __ret = 0;                                                 \
 551    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 552        __get_user((x), __hptr);                                \
 553        unlock_user(__hptr, __gaddr, 0);                                \
 554    } else {                                                            \
 555        /* avoid warning */                                             \
 556        (x) = 0;                                                        \
 557        __ret = -TARGET_EFAULT;                                         \
 558    }                                                                   \
 559    __ret;                                                              \
 560})
 561
 562#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 563#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 564#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 565#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 566#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 567#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 568#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 569#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 570#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 571#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 572
 573#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 574#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 575#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 576#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 577#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 578#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 579#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 580#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 581#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 582#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 583
 584/* copy_from_user() and copy_to_user() are usually used to copy data
 585 * buffers between the target and host.  These internally perform
 586 * locking/unlocking of the memory.
 587 */
 588abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 589abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 590
 591/* Functions for accessing guest memory.  The tget and tput functions
 592   read/write single values, byteswapping as necessary.  The lock_user function
 593   gets a pointer to a contiguous area of guest memory, but does not perform
 594   any byteswapping.  lock_user may return either a pointer to the guest
 595   memory, or a temporary buffer.  */
 596
 597/* Lock an area of guest memory into the host.  If copy is true then the
 598   host area will have the same contents as the guest.  */
 599static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 600{
 601    if (!access_ok(type, guest_addr, len))
 602        return NULL;
 603#ifdef DEBUG_REMAP
 604    {
 605        void *addr;
 606        addr = g_malloc(len);
 607        if (copy)
 608            memcpy(addr, g2h(guest_addr), len);
 609        else
 610            memset(addr, 0, len);
 611        return addr;
 612    }
 613#else
 614    return g2h(guest_addr);
 615#endif
 616}
 617
 618/* Unlock an area of guest memory.  The first LEN bytes must be
 619   flushed back to guest memory. host_ptr = NULL is explicitly
 620   allowed and does nothing. */
 621static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 622                               long len)
 623{
 624
 625#ifdef DEBUG_REMAP
 626    if (!host_ptr)
 627        return;
 628    if (host_ptr == g2h(guest_addr))
 629        return;
 630    if (len > 0)
 631        memcpy(g2h(guest_addr), host_ptr, len);
 632    g_free(host_ptr);
 633#endif
 634}
 635
 636/* Return the length of a string in target memory or -TARGET_EFAULT if
 637   access error. */
 638abi_long target_strlen(abi_ulong gaddr);
 639
 640/* Like lock_user but for null terminated strings.  */
 641static inline void *lock_user_string(abi_ulong guest_addr)
 642{
 643    abi_long len;
 644    len = target_strlen(guest_addr);
 645    if (len < 0)
 646        return NULL;
 647    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 648}
 649
 650/* Helper macros for locking/unlocking a target struct.  */
 651#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 652    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 653#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 654    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 655
 656#include <pthread.h>
 657
 658static inline int is_error(abi_long ret)
 659{
 660    return (abi_ulong)ret >= (abi_ulong)(-4096);
 661}
 662
 663/**
 664 * preexit_cleanup: housekeeping before the guest exits
 665 *
 666 * env: the CPU state
 667 * code: the exit code
 668 */
 669void preexit_cleanup(CPUArchState *env, int code);
 670
 671/* Include target-specific struct and function definitions;
 672 * they may need access to the target-independent structures
 673 * above, so include them last.
 674 */
 675#include "target_cpu.h"
 676#include "target_structs.h"
 677
 678#endif /* QEMU_H */
 679