qemu/migration/qemu-file.c
<<
>>
Prefs
   1/*
   2 * QEMU System Emulator
   3 *
   4 * Copyright (c) 2003-2008 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include <zlib.h>
  26#include "qemu/error-report.h"
  27#include "qemu/iov.h"
  28#include "migration.h"
  29#include "qemu-file.h"
  30#include "trace.h"
  31#include "qapi/error.h"
  32
  33#define IO_BUF_SIZE 32768
  34#define MAX_IOV_SIZE MIN(IOV_MAX, 64)
  35
  36struct QEMUFile {
  37    const QEMUFileOps *ops;
  38    const QEMUFileHooks *hooks;
  39    void *opaque;
  40
  41    int64_t bytes_xfer;
  42    int64_t xfer_limit;
  43
  44    int64_t pos; /* start of buffer when writing, end of buffer
  45                    when reading */
  46    int buf_index;
  47    int buf_size; /* 0 when writing */
  48    uint8_t buf[IO_BUF_SIZE];
  49
  50    DECLARE_BITMAP(may_free, MAX_IOV_SIZE);
  51    struct iovec iov[MAX_IOV_SIZE];
  52    unsigned int iovcnt;
  53
  54    int last_error;
  55    Error *last_error_obj;
  56};
  57
  58/*
  59 * Stop a file from being read/written - not all backing files can do this
  60 * typically only sockets can.
  61 */
  62int qemu_file_shutdown(QEMUFile *f)
  63{
  64    if (!f->ops->shut_down) {
  65        return -ENOSYS;
  66    }
  67    return f->ops->shut_down(f->opaque, true, true, NULL);
  68}
  69
  70/*
  71 * Result: QEMUFile* for a 'return path' for comms in the opposite direction
  72 *         NULL if not available
  73 */
  74QEMUFile *qemu_file_get_return_path(QEMUFile *f)
  75{
  76    if (!f->ops->get_return_path) {
  77        return NULL;
  78    }
  79    return f->ops->get_return_path(f->opaque);
  80}
  81
  82bool qemu_file_mode_is_not_valid(const char *mode)
  83{
  84    if (mode == NULL ||
  85        (mode[0] != 'r' && mode[0] != 'w') ||
  86        mode[1] != 'b' || mode[2] != 0) {
  87        fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
  88        return true;
  89    }
  90
  91    return false;
  92}
  93
  94QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
  95{
  96    QEMUFile *f;
  97
  98    f = g_new0(QEMUFile, 1);
  99
 100    f->opaque = opaque;
 101    f->ops = ops;
 102    return f;
 103}
 104
 105
 106void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks)
 107{
 108    f->hooks = hooks;
 109}
 110
 111/*
 112 * Get last error for stream f with optional Error*
 113 *
 114 * Return negative error value if there has been an error on previous
 115 * operations, return 0 if no error happened.
 116 * Optional, it returns Error* in errp, but it may be NULL even if return value
 117 * is not 0.
 118 *
 119 */
 120int qemu_file_get_error_obj(QEMUFile *f, Error **errp)
 121{
 122    if (errp) {
 123        *errp = f->last_error_obj ? error_copy(f->last_error_obj) : NULL;
 124    }
 125    return f->last_error;
 126}
 127
 128/*
 129 * Set the last error for stream f with optional Error*
 130 */
 131void qemu_file_set_error_obj(QEMUFile *f, int ret, Error *err)
 132{
 133    if (f->last_error == 0 && ret) {
 134        f->last_error = ret;
 135        error_propagate(&f->last_error_obj, err);
 136    } else if (err) {
 137        error_report_err(err);
 138    }
 139}
 140
 141/*
 142 * Get last error for stream f
 143 *
 144 * Return negative error value if there has been an error on previous
 145 * operations, return 0 if no error happened.
 146 *
 147 */
 148int qemu_file_get_error(QEMUFile *f)
 149{
 150    return qemu_file_get_error_obj(f, NULL);
 151}
 152
 153/*
 154 * Set the last error for stream f
 155 */
 156void qemu_file_set_error(QEMUFile *f, int ret)
 157{
 158    qemu_file_set_error_obj(f, ret, NULL);
 159}
 160
 161bool qemu_file_is_writable(QEMUFile *f)
 162{
 163    return f->ops->writev_buffer;
 164}
 165
 166static void qemu_iovec_release_ram(QEMUFile *f)
 167{
 168    struct iovec iov;
 169    unsigned long idx;
 170
 171    /* Find and release all the contiguous memory ranges marked as may_free. */
 172    idx = find_next_bit(f->may_free, f->iovcnt, 0);
 173    if (idx >= f->iovcnt) {
 174        return;
 175    }
 176    iov = f->iov[idx];
 177
 178    /* The madvise() in the loop is called for iov within a continuous range and
 179     * then reinitialize the iov. And in the end, madvise() is called for the
 180     * last iov.
 181     */
 182    while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) {
 183        /* check for adjacent buffer and coalesce them */
 184        if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) {
 185            iov.iov_len += f->iov[idx].iov_len;
 186            continue;
 187        }
 188        if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
 189            error_report("migrate: madvise DONTNEED failed %p %zd: %s",
 190                         iov.iov_base, iov.iov_len, strerror(errno));
 191        }
 192        iov = f->iov[idx];
 193    }
 194    if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
 195            error_report("migrate: madvise DONTNEED failed %p %zd: %s",
 196                         iov.iov_base, iov.iov_len, strerror(errno));
 197    }
 198    memset(f->may_free, 0, sizeof(f->may_free));
 199}
 200
 201/**
 202 * Flushes QEMUFile buffer
 203 *
 204 * This will flush all pending data. If data was only partially flushed, it
 205 * will set an error state.
 206 */
 207void qemu_fflush(QEMUFile *f)
 208{
 209    ssize_t ret = 0;
 210    ssize_t expect = 0;
 211    Error *local_error = NULL;
 212
 213    if (!qemu_file_is_writable(f)) {
 214        return;
 215    }
 216
 217    if (f->iovcnt > 0) {
 218        expect = iov_size(f->iov, f->iovcnt);
 219        ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos,
 220                                    &local_error);
 221
 222        qemu_iovec_release_ram(f);
 223    }
 224
 225    if (ret >= 0) {
 226        f->pos += ret;
 227    }
 228    /* We expect the QEMUFile write impl to send the full
 229     * data set we requested, so sanity check that.
 230     */
 231    if (ret != expect) {
 232        qemu_file_set_error_obj(f, ret < 0 ? ret : -EIO, local_error);
 233    }
 234    f->buf_index = 0;
 235    f->iovcnt = 0;
 236}
 237
 238void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
 239{
 240    int ret = 0;
 241
 242    if (f->hooks && f->hooks->before_ram_iterate) {
 243        ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL);
 244        if (ret < 0) {
 245            qemu_file_set_error(f, ret);
 246        }
 247    }
 248}
 249
 250void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
 251{
 252    int ret = 0;
 253
 254    if (f->hooks && f->hooks->after_ram_iterate) {
 255        ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL);
 256        if (ret < 0) {
 257            qemu_file_set_error(f, ret);
 258        }
 259    }
 260}
 261
 262void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data)
 263{
 264    int ret = -EINVAL;
 265
 266    if (f->hooks && f->hooks->hook_ram_load) {
 267        ret = f->hooks->hook_ram_load(f, f->opaque, flags, data);
 268        if (ret < 0) {
 269            qemu_file_set_error(f, ret);
 270        }
 271    } else {
 272        /*
 273         * Hook is a hook specifically requested by the source sending a flag
 274         * that expects there to be a hook on the destination.
 275         */
 276        if (flags == RAM_CONTROL_HOOK) {
 277            qemu_file_set_error(f, ret);
 278        }
 279    }
 280}
 281
 282size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
 283                             ram_addr_t offset, size_t size,
 284                             uint64_t *bytes_sent)
 285{
 286    if (f->hooks && f->hooks->save_page) {
 287        int ret = f->hooks->save_page(f, f->opaque, block_offset,
 288                                      offset, size, bytes_sent);
 289        if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
 290            f->bytes_xfer += size;
 291        }
 292
 293        if (ret != RAM_SAVE_CONTROL_DELAYED &&
 294            ret != RAM_SAVE_CONTROL_NOT_SUPP) {
 295            if (bytes_sent && *bytes_sent > 0) {
 296                qemu_update_position(f, *bytes_sent);
 297            } else if (ret < 0) {
 298                qemu_file_set_error(f, ret);
 299            }
 300        }
 301
 302        return ret;
 303    }
 304
 305    return RAM_SAVE_CONTROL_NOT_SUPP;
 306}
 307
 308/*
 309 * Attempt to fill the buffer from the underlying file
 310 * Returns the number of bytes read, or negative value for an error.
 311 *
 312 * Note that it can return a partially full buffer even in a not error/not EOF
 313 * case if the underlying file descriptor gives a short read, and that can
 314 * happen even on a blocking fd.
 315 */
 316static ssize_t qemu_fill_buffer(QEMUFile *f)
 317{
 318    int len;
 319    int pending;
 320    Error *local_error = NULL;
 321
 322    assert(!qemu_file_is_writable(f));
 323
 324    pending = f->buf_size - f->buf_index;
 325    if (pending > 0) {
 326        memmove(f->buf, f->buf + f->buf_index, pending);
 327    }
 328    f->buf_index = 0;
 329    f->buf_size = pending;
 330
 331    len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
 332                             IO_BUF_SIZE - pending, &local_error);
 333    if (len > 0) {
 334        f->buf_size += len;
 335        f->pos += len;
 336    } else if (len == 0) {
 337        qemu_file_set_error_obj(f, -EIO, local_error);
 338    } else if (len != -EAGAIN) {
 339        qemu_file_set_error_obj(f, len, local_error);
 340    } else {
 341        error_free(local_error);
 342    }
 343
 344    return len;
 345}
 346
 347void qemu_update_position(QEMUFile *f, size_t size)
 348{
 349    f->pos += size;
 350}
 351
 352/** Closes the file
 353 *
 354 * Returns negative error value if any error happened on previous operations or
 355 * while closing the file. Returns 0 or positive number on success.
 356 *
 357 * The meaning of return value on success depends on the specific backend
 358 * being used.
 359 */
 360int qemu_fclose(QEMUFile *f)
 361{
 362    int ret;
 363    qemu_fflush(f);
 364    ret = qemu_file_get_error(f);
 365
 366    if (f->ops->close) {
 367        int ret2 = f->ops->close(f->opaque, NULL);
 368        if (ret >= 0) {
 369            ret = ret2;
 370        }
 371    }
 372    /* If any error was spotted before closing, we should report it
 373     * instead of the close() return value.
 374     */
 375    if (f->last_error) {
 376        ret = f->last_error;
 377    }
 378    error_free(f->last_error_obj);
 379    g_free(f);
 380    trace_qemu_file_fclose();
 381    return ret;
 382}
 383
 384/*
 385 * Add buf to iovec. Do flush if iovec is full.
 386 *
 387 * Return values:
 388 * 1 iovec is full and flushed
 389 * 0 iovec is not flushed
 390 *
 391 */
 392static int add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size,
 393                        bool may_free)
 394{
 395    /* check for adjacent buffer and coalesce them */
 396    if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
 397        f->iov[f->iovcnt - 1].iov_len &&
 398        may_free == test_bit(f->iovcnt - 1, f->may_free))
 399    {
 400        f->iov[f->iovcnt - 1].iov_len += size;
 401    } else {
 402        if (may_free) {
 403            set_bit(f->iovcnt, f->may_free);
 404        }
 405        f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
 406        f->iov[f->iovcnt++].iov_len = size;
 407    }
 408
 409    if (f->iovcnt >= MAX_IOV_SIZE) {
 410        qemu_fflush(f);
 411        return 1;
 412    }
 413
 414    return 0;
 415}
 416
 417static void add_buf_to_iovec(QEMUFile *f, size_t len)
 418{
 419    if (!add_to_iovec(f, f->buf + f->buf_index, len, false)) {
 420        f->buf_index += len;
 421        if (f->buf_index == IO_BUF_SIZE) {
 422            qemu_fflush(f);
 423        }
 424    }
 425}
 426
 427void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size,
 428                           bool may_free)
 429{
 430    if (f->last_error) {
 431        return;
 432    }
 433
 434    f->bytes_xfer += size;
 435    add_to_iovec(f, buf, size, may_free);
 436}
 437
 438void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size)
 439{
 440    size_t l;
 441
 442    if (f->last_error) {
 443        return;
 444    }
 445
 446    while (size > 0) {
 447        l = IO_BUF_SIZE - f->buf_index;
 448        if (l > size) {
 449            l = size;
 450        }
 451        memcpy(f->buf + f->buf_index, buf, l);
 452        f->bytes_xfer += l;
 453        add_buf_to_iovec(f, l);
 454        if (qemu_file_get_error(f)) {
 455            break;
 456        }
 457        buf += l;
 458        size -= l;
 459    }
 460}
 461
 462void qemu_put_byte(QEMUFile *f, int v)
 463{
 464    if (f->last_error) {
 465        return;
 466    }
 467
 468    f->buf[f->buf_index] = v;
 469    f->bytes_xfer++;
 470    add_buf_to_iovec(f, 1);
 471}
 472
 473void qemu_file_skip(QEMUFile *f, int size)
 474{
 475    if (f->buf_index + size <= f->buf_size) {
 476        f->buf_index += size;
 477    }
 478}
 479
 480/*
 481 * Read 'size' bytes from file (at 'offset') without moving the
 482 * pointer and set 'buf' to point to that data.
 483 *
 484 * It will return size bytes unless there was an error, in which case it will
 485 * return as many as it managed to read (assuming blocking fd's which
 486 * all current QEMUFile are)
 487 */
 488size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset)
 489{
 490    ssize_t pending;
 491    size_t index;
 492
 493    assert(!qemu_file_is_writable(f));
 494    assert(offset < IO_BUF_SIZE);
 495    assert(size <= IO_BUF_SIZE - offset);
 496
 497    /* The 1st byte to read from */
 498    index = f->buf_index + offset;
 499    /* The number of available bytes starting at index */
 500    pending = f->buf_size - index;
 501
 502    /*
 503     * qemu_fill_buffer might return just a few bytes, even when there isn't
 504     * an error, so loop collecting them until we get enough.
 505     */
 506    while (pending < size) {
 507        int received = qemu_fill_buffer(f);
 508
 509        if (received <= 0) {
 510            break;
 511        }
 512
 513        index = f->buf_index + offset;
 514        pending = f->buf_size - index;
 515    }
 516
 517    if (pending <= 0) {
 518        return 0;
 519    }
 520    if (size > pending) {
 521        size = pending;
 522    }
 523
 524    *buf = f->buf + index;
 525    return size;
 526}
 527
 528/*
 529 * Read 'size' bytes of data from the file into buf.
 530 * 'size' can be larger than the internal buffer.
 531 *
 532 * It will return size bytes unless there was an error, in which case it will
 533 * return as many as it managed to read (assuming blocking fd's which
 534 * all current QEMUFile are)
 535 */
 536size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size)
 537{
 538    size_t pending = size;
 539    size_t done = 0;
 540
 541    while (pending > 0) {
 542        size_t res;
 543        uint8_t *src;
 544
 545        res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0);
 546        if (res == 0) {
 547            return done;
 548        }
 549        memcpy(buf, src, res);
 550        qemu_file_skip(f, res);
 551        buf += res;
 552        pending -= res;
 553        done += res;
 554    }
 555    return done;
 556}
 557
 558/*
 559 * Read 'size' bytes of data from the file.
 560 * 'size' can be larger than the internal buffer.
 561 *
 562 * The data:
 563 *   may be held on an internal buffer (in which case *buf is updated
 564 *     to point to it) that is valid until the next qemu_file operation.
 565 * OR
 566 *   will be copied to the *buf that was passed in.
 567 *
 568 * The code tries to avoid the copy if possible.
 569 *
 570 * It will return size bytes unless there was an error, in which case it will
 571 * return as many as it managed to read (assuming blocking fd's which
 572 * all current QEMUFile are)
 573 *
 574 * Note: Since **buf may get changed, the caller should take care to
 575 *       keep a pointer to the original buffer if it needs to deallocate it.
 576 */
 577size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size)
 578{
 579    if (size < IO_BUF_SIZE) {
 580        size_t res;
 581        uint8_t *src;
 582
 583        res = qemu_peek_buffer(f, &src, size, 0);
 584
 585        if (res == size) {
 586            qemu_file_skip(f, res);
 587            *buf = src;
 588            return res;
 589        }
 590    }
 591
 592    return qemu_get_buffer(f, *buf, size);
 593}
 594
 595/*
 596 * Peeks a single byte from the buffer; this isn't guaranteed to work if
 597 * offset leaves a gap after the previous read/peeked data.
 598 */
 599int qemu_peek_byte(QEMUFile *f, int offset)
 600{
 601    int index = f->buf_index + offset;
 602
 603    assert(!qemu_file_is_writable(f));
 604    assert(offset < IO_BUF_SIZE);
 605
 606    if (index >= f->buf_size) {
 607        qemu_fill_buffer(f);
 608        index = f->buf_index + offset;
 609        if (index >= f->buf_size) {
 610            return 0;
 611        }
 612    }
 613    return f->buf[index];
 614}
 615
 616int qemu_get_byte(QEMUFile *f)
 617{
 618    int result;
 619
 620    result = qemu_peek_byte(f, 0);
 621    qemu_file_skip(f, 1);
 622    return result;
 623}
 624
 625int64_t qemu_ftell_fast(QEMUFile *f)
 626{
 627    int64_t ret = f->pos;
 628    int i;
 629
 630    for (i = 0; i < f->iovcnt; i++) {
 631        ret += f->iov[i].iov_len;
 632    }
 633
 634    return ret;
 635}
 636
 637int64_t qemu_ftell(QEMUFile *f)
 638{
 639    qemu_fflush(f);
 640    return f->pos;
 641}
 642
 643int qemu_file_rate_limit(QEMUFile *f)
 644{
 645    if (qemu_file_get_error(f)) {
 646        return 1;
 647    }
 648    if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
 649        return 1;
 650    }
 651    return 0;
 652}
 653
 654int64_t qemu_file_get_rate_limit(QEMUFile *f)
 655{
 656    return f->xfer_limit;
 657}
 658
 659void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
 660{
 661    f->xfer_limit = limit;
 662}
 663
 664void qemu_file_reset_rate_limit(QEMUFile *f)
 665{
 666    f->bytes_xfer = 0;
 667}
 668
 669void qemu_file_update_transfer(QEMUFile *f, int64_t len)
 670{
 671    f->bytes_xfer += len;
 672}
 673
 674void qemu_put_be16(QEMUFile *f, unsigned int v)
 675{
 676    qemu_put_byte(f, v >> 8);
 677    qemu_put_byte(f, v);
 678}
 679
 680void qemu_put_be32(QEMUFile *f, unsigned int v)
 681{
 682    qemu_put_byte(f, v >> 24);
 683    qemu_put_byte(f, v >> 16);
 684    qemu_put_byte(f, v >> 8);
 685    qemu_put_byte(f, v);
 686}
 687
 688void qemu_put_be64(QEMUFile *f, uint64_t v)
 689{
 690    qemu_put_be32(f, v >> 32);
 691    qemu_put_be32(f, v);
 692}
 693
 694unsigned int qemu_get_be16(QEMUFile *f)
 695{
 696    unsigned int v;
 697    v = qemu_get_byte(f) << 8;
 698    v |= qemu_get_byte(f);
 699    return v;
 700}
 701
 702unsigned int qemu_get_be32(QEMUFile *f)
 703{
 704    unsigned int v;
 705    v = (unsigned int)qemu_get_byte(f) << 24;
 706    v |= qemu_get_byte(f) << 16;
 707    v |= qemu_get_byte(f) << 8;
 708    v |= qemu_get_byte(f);
 709    return v;
 710}
 711
 712uint64_t qemu_get_be64(QEMUFile *f)
 713{
 714    uint64_t v;
 715    v = (uint64_t)qemu_get_be32(f) << 32;
 716    v |= qemu_get_be32(f);
 717    return v;
 718}
 719
 720/* return the size after compression, or negative value on error */
 721static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
 722                              const uint8_t *source, size_t source_len)
 723{
 724    int err;
 725
 726    err = deflateReset(stream);
 727    if (err != Z_OK) {
 728        return -1;
 729    }
 730
 731    stream->avail_in = source_len;
 732    stream->next_in = (uint8_t *)source;
 733    stream->avail_out = dest_len;
 734    stream->next_out = dest;
 735
 736    err = deflate(stream, Z_FINISH);
 737    if (err != Z_STREAM_END) {
 738        return -1;
 739    }
 740
 741    return stream->next_out - dest;
 742}
 743
 744/* Compress size bytes of data start at p and store the compressed
 745 * data to the buffer of f.
 746 *
 747 * When f is not writable, return -1 if f has no space to save the
 748 * compressed data.
 749 * When f is wirtable and it has no space to save the compressed data,
 750 * do fflush first, if f still has no space to save the compressed
 751 * data, return -1.
 752 */
 753ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream,
 754                                  const uint8_t *p, size_t size)
 755{
 756    ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t);
 757
 758    if (blen < compressBound(size)) {
 759        if (!qemu_file_is_writable(f)) {
 760            return -1;
 761        }
 762        qemu_fflush(f);
 763        blen = IO_BUF_SIZE - sizeof(int32_t);
 764        if (blen < compressBound(size)) {
 765            return -1;
 766        }
 767    }
 768
 769    blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t),
 770                              blen, p, size);
 771    if (blen < 0) {
 772        return -1;
 773    }
 774
 775    qemu_put_be32(f, blen);
 776    add_buf_to_iovec(f, blen);
 777    return blen + sizeof(int32_t);
 778}
 779
 780/* Put the data in the buffer of f_src to the buffer of f_des, and
 781 * then reset the buf_index of f_src to 0.
 782 */
 783
 784int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src)
 785{
 786    int len = 0;
 787
 788    if (f_src->buf_index > 0) {
 789        len = f_src->buf_index;
 790        qemu_put_buffer(f_des, f_src->buf, f_src->buf_index);
 791        f_src->buf_index = 0;
 792        f_src->iovcnt = 0;
 793    }
 794    return len;
 795}
 796
 797/*
 798 * Get a string whose length is determined by a single preceding byte
 799 * A preallocated 256 byte buffer must be passed in.
 800 * Returns: len on success and a 0 terminated string in the buffer
 801 *          else 0
 802 *          (Note a 0 length string will return 0 either way)
 803 */
 804size_t qemu_get_counted_string(QEMUFile *f, char buf[256])
 805{
 806    size_t len = qemu_get_byte(f);
 807    size_t res = qemu_get_buffer(f, (uint8_t *)buf, len);
 808
 809    buf[res] = 0;
 810
 811    return res == len ? res : 0;
 812}
 813
 814/*
 815 * Put a string with one preceding byte containing its length. The length of
 816 * the string should be less than 256.
 817 */
 818void qemu_put_counted_string(QEMUFile *f, const char *str)
 819{
 820    size_t len = strlen(str);
 821
 822    assert(len < 256);
 823    qemu_put_byte(f, len);
 824    qemu_put_buffer(f, (const uint8_t *)str, len);
 825}
 826
 827/*
 828 * Set the blocking state of the QEMUFile.
 829 * Note: On some transports the OS only keeps a single blocking state for
 830 *       both directions, and thus changing the blocking on the main
 831 *       QEMUFile can also affect the return path.
 832 */
 833void qemu_file_set_blocking(QEMUFile *f, bool block)
 834{
 835    if (f->ops->set_blocking) {
 836        f->ops->set_blocking(f->opaque, block, NULL);
 837    }
 838}
 839