qemu/migration/ram.c
<<
>>
Prefs
   1/*
   2 * QEMU System Emulator
   3 *
   4 * Copyright (c) 2003-2008 Fabrice Bellard
   5 * Copyright (c) 2011-2015 Red Hat Inc
   6 *
   7 * Authors:
   8 *  Juan Quintela <quintela@redhat.com>
   9 *
  10 * Permission is hereby granted, free of charge, to any person obtaining a copy
  11 * of this software and associated documentation files (the "Software"), to deal
  12 * in the Software without restriction, including without limitation the rights
  13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  14 * copies of the Software, and to permit persons to whom the Software is
  15 * furnished to do so, subject to the following conditions:
  16 *
  17 * The above copyright notice and this permission notice shall be included in
  18 * all copies or substantial portions of the Software.
  19 *
  20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  26 * THE SOFTWARE.
  27 */
  28
  29#include "qemu/osdep.h"
  30#include "cpu.h"
  31#include <zlib.h>
  32#include "qemu/cutils.h"
  33#include "qemu/bitops.h"
  34#include "qemu/bitmap.h"
  35#include "qemu/main-loop.h"
  36#include "qemu/pmem.h"
  37#include "xbzrle.h"
  38#include "ram.h"
  39#include "migration.h"
  40#include "socket.h"
  41#include "migration/register.h"
  42#include "migration/misc.h"
  43#include "qemu-file.h"
  44#include "postcopy-ram.h"
  45#include "page_cache.h"
  46#include "qemu/error-report.h"
  47#include "qapi/error.h"
  48#include "qapi/qapi-events-migration.h"
  49#include "qapi/qmp/qerror.h"
  50#include "trace.h"
  51#include "exec/ram_addr.h"
  52#include "exec/target_page.h"
  53#include "qemu/rcu_queue.h"
  54#include "migration/colo.h"
  55#include "block.h"
  56#include "sysemu/sysemu.h"
  57#include "qemu/uuid.h"
  58#include "savevm.h"
  59#include "qemu/iov.h"
  60
  61/***********************************************************/
  62/* ram save/restore */
  63
  64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
  65 * worked for pages that where filled with the same char.  We switched
  66 * it to only search for the zero value.  And to avoid confusion with
  67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
  68 */
  69
  70#define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
  71#define RAM_SAVE_FLAG_ZERO     0x02
  72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
  73#define RAM_SAVE_FLAG_PAGE     0x08
  74#define RAM_SAVE_FLAG_EOS      0x10
  75#define RAM_SAVE_FLAG_CONTINUE 0x20
  76#define RAM_SAVE_FLAG_XBZRLE   0x40
  77/* 0x80 is reserved in migration.h start with 0x100 next */
  78#define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
  79
  80static inline bool is_zero_range(uint8_t *p, uint64_t size)
  81{
  82    return buffer_is_zero(p, size);
  83}
  84
  85XBZRLECacheStats xbzrle_counters;
  86
  87/* struct contains XBZRLE cache and a static page
  88   used by the compression */
  89static struct {
  90    /* buffer used for XBZRLE encoding */
  91    uint8_t *encoded_buf;
  92    /* buffer for storing page content */
  93    uint8_t *current_buf;
  94    /* Cache for XBZRLE, Protected by lock. */
  95    PageCache *cache;
  96    QemuMutex lock;
  97    /* it will store a page full of zeros */
  98    uint8_t *zero_target_page;
  99    /* buffer used for XBZRLE decoding */
 100    uint8_t *decoded_buf;
 101} XBZRLE;
 102
 103static void XBZRLE_cache_lock(void)
 104{
 105    if (migrate_use_xbzrle())
 106        qemu_mutex_lock(&XBZRLE.lock);
 107}
 108
 109static void XBZRLE_cache_unlock(void)
 110{
 111    if (migrate_use_xbzrle())
 112        qemu_mutex_unlock(&XBZRLE.lock);
 113}
 114
 115/**
 116 * xbzrle_cache_resize: resize the xbzrle cache
 117 *
 118 * This function is called from qmp_migrate_set_cache_size in main
 119 * thread, possibly while a migration is in progress.  A running
 120 * migration may be using the cache and might finish during this call,
 121 * hence changes to the cache are protected by XBZRLE.lock().
 122 *
 123 * Returns 0 for success or -1 for error
 124 *
 125 * @new_size: new cache size
 126 * @errp: set *errp if the check failed, with reason
 127 */
 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
 129{
 130    PageCache *new_cache;
 131    int64_t ret = 0;
 132
 133    /* Check for truncation */
 134    if (new_size != (size_t)new_size) {
 135        error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
 136                   "exceeding address space");
 137        return -1;
 138    }
 139
 140    if (new_size == migrate_xbzrle_cache_size()) {
 141        /* nothing to do */
 142        return 0;
 143    }
 144
 145    XBZRLE_cache_lock();
 146
 147    if (XBZRLE.cache != NULL) {
 148        new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
 149        if (!new_cache) {
 150            ret = -1;
 151            goto out;
 152        }
 153
 154        cache_fini(XBZRLE.cache);
 155        XBZRLE.cache = new_cache;
 156    }
 157out:
 158    XBZRLE_cache_unlock();
 159    return ret;
 160}
 161
 162static bool ramblock_is_ignored(RAMBlock *block)
 163{
 164    return !qemu_ram_is_migratable(block) ||
 165           (migrate_ignore_shared() && qemu_ram_is_shared(block));
 166}
 167
 168/* Should be holding either ram_list.mutex, or the RCU lock. */
 169#define RAMBLOCK_FOREACH_NOT_IGNORED(block)            \
 170    INTERNAL_RAMBLOCK_FOREACH(block)                   \
 171        if (ramblock_is_ignored(block)) {} else
 172
 173#define RAMBLOCK_FOREACH_MIGRATABLE(block)             \
 174    INTERNAL_RAMBLOCK_FOREACH(block)                   \
 175        if (!qemu_ram_is_migratable(block)) {} else
 176
 177#undef RAMBLOCK_FOREACH
 178
 179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
 180{
 181    RAMBlock *block;
 182    int ret = 0;
 183
 184    RCU_READ_LOCK_GUARD();
 185
 186    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 187        ret = func(block, opaque);
 188        if (ret) {
 189            break;
 190        }
 191    }
 192    return ret;
 193}
 194
 195static void ramblock_recv_map_init(void)
 196{
 197    RAMBlock *rb;
 198
 199    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 200        assert(!rb->receivedmap);
 201        rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
 202    }
 203}
 204
 205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
 206{
 207    return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
 208                    rb->receivedmap);
 209}
 210
 211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
 212{
 213    return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
 214}
 215
 216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
 217{
 218    set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
 219}
 220
 221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
 222                                    size_t nr)
 223{
 224    bitmap_set_atomic(rb->receivedmap,
 225                      ramblock_recv_bitmap_offset(host_addr, rb),
 226                      nr);
 227}
 228
 229#define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
 230
 231/*
 232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
 233 *
 234 * Returns >0 if success with sent bytes, or <0 if error.
 235 */
 236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
 237                                  const char *block_name)
 238{
 239    RAMBlock *block = qemu_ram_block_by_name(block_name);
 240    unsigned long *le_bitmap, nbits;
 241    uint64_t size;
 242
 243    if (!block) {
 244        error_report("%s: invalid block name: %s", __func__, block_name);
 245        return -1;
 246    }
 247
 248    nbits = block->used_length >> TARGET_PAGE_BITS;
 249
 250    /*
 251     * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
 252     * machines we may need 4 more bytes for padding (see below
 253     * comment). So extend it a bit before hand.
 254     */
 255    le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
 256
 257    /*
 258     * Always use little endian when sending the bitmap. This is
 259     * required that when source and destination VMs are not using the
 260     * same endianess. (Note: big endian won't work.)
 261     */
 262    bitmap_to_le(le_bitmap, block->receivedmap, nbits);
 263
 264    /* Size of the bitmap, in bytes */
 265    size = DIV_ROUND_UP(nbits, 8);
 266
 267    /*
 268     * size is always aligned to 8 bytes for 64bit machines, but it
 269     * may not be true for 32bit machines. We need this padding to
 270     * make sure the migration can survive even between 32bit and
 271     * 64bit machines.
 272     */
 273    size = ROUND_UP(size, 8);
 274
 275    qemu_put_be64(file, size);
 276    qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
 277    /*
 278     * Mark as an end, in case the middle part is screwed up due to
 279     * some "misterious" reason.
 280     */
 281    qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
 282    qemu_fflush(file);
 283
 284    g_free(le_bitmap);
 285
 286    if (qemu_file_get_error(file)) {
 287        return qemu_file_get_error(file);
 288    }
 289
 290    return size + sizeof(size);
 291}
 292
 293/*
 294 * An outstanding page request, on the source, having been received
 295 * and queued
 296 */
 297struct RAMSrcPageRequest {
 298    RAMBlock *rb;
 299    hwaddr    offset;
 300    hwaddr    len;
 301
 302    QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
 303};
 304
 305/* State of RAM for migration */
 306struct RAMState {
 307    /* QEMUFile used for this migration */
 308    QEMUFile *f;
 309    /* Last block that we have visited searching for dirty pages */
 310    RAMBlock *last_seen_block;
 311    /* Last block from where we have sent data */
 312    RAMBlock *last_sent_block;
 313    /* Last dirty target page we have sent */
 314    ram_addr_t last_page;
 315    /* last ram version we have seen */
 316    uint32_t last_version;
 317    /* We are in the first round */
 318    bool ram_bulk_stage;
 319    /* The free page optimization is enabled */
 320    bool fpo_enabled;
 321    /* How many times we have dirty too many pages */
 322    int dirty_rate_high_cnt;
 323    /* these variables are used for bitmap sync */
 324    /* last time we did a full bitmap_sync */
 325    int64_t time_last_bitmap_sync;
 326    /* bytes transferred at start_time */
 327    uint64_t bytes_xfer_prev;
 328    /* number of dirty pages since start_time */
 329    uint64_t num_dirty_pages_period;
 330    /* xbzrle misses since the beginning of the period */
 331    uint64_t xbzrle_cache_miss_prev;
 332
 333    /* compression statistics since the beginning of the period */
 334    /* amount of count that no free thread to compress data */
 335    uint64_t compress_thread_busy_prev;
 336    /* amount bytes after compression */
 337    uint64_t compressed_size_prev;
 338    /* amount of compressed pages */
 339    uint64_t compress_pages_prev;
 340
 341    /* total handled target pages at the beginning of period */
 342    uint64_t target_page_count_prev;
 343    /* total handled target pages since start */
 344    uint64_t target_page_count;
 345    /* number of dirty bits in the bitmap */
 346    uint64_t migration_dirty_pages;
 347    /* Protects modification of the bitmap and migration dirty pages */
 348    QemuMutex bitmap_mutex;
 349    /* The RAMBlock used in the last src_page_requests */
 350    RAMBlock *last_req_rb;
 351    /* Queue of outstanding page requests from the destination */
 352    QemuMutex src_page_req_mutex;
 353    QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
 354};
 355typedef struct RAMState RAMState;
 356
 357static RAMState *ram_state;
 358
 359static NotifierWithReturnList precopy_notifier_list;
 360
 361void precopy_infrastructure_init(void)
 362{
 363    notifier_with_return_list_init(&precopy_notifier_list);
 364}
 365
 366void precopy_add_notifier(NotifierWithReturn *n)
 367{
 368    notifier_with_return_list_add(&precopy_notifier_list, n);
 369}
 370
 371void precopy_remove_notifier(NotifierWithReturn *n)
 372{
 373    notifier_with_return_remove(n);
 374}
 375
 376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
 377{
 378    PrecopyNotifyData pnd;
 379    pnd.reason = reason;
 380    pnd.errp = errp;
 381
 382    return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
 383}
 384
 385void precopy_enable_free_page_optimization(void)
 386{
 387    if (!ram_state) {
 388        return;
 389    }
 390
 391    ram_state->fpo_enabled = true;
 392}
 393
 394uint64_t ram_bytes_remaining(void)
 395{
 396    return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
 397                       0;
 398}
 399
 400MigrationStats ram_counters;
 401
 402/* used by the search for pages to send */
 403struct PageSearchStatus {
 404    /* Current block being searched */
 405    RAMBlock    *block;
 406    /* Current page to search from */
 407    unsigned long page;
 408    /* Set once we wrap around */
 409    bool         complete_round;
 410};
 411typedef struct PageSearchStatus PageSearchStatus;
 412
 413CompressionStats compression_counters;
 414
 415struct CompressParam {
 416    bool done;
 417    bool quit;
 418    bool zero_page;
 419    QEMUFile *file;
 420    QemuMutex mutex;
 421    QemuCond cond;
 422    RAMBlock *block;
 423    ram_addr_t offset;
 424
 425    /* internally used fields */
 426    z_stream stream;
 427    uint8_t *originbuf;
 428};
 429typedef struct CompressParam CompressParam;
 430
 431struct DecompressParam {
 432    bool done;
 433    bool quit;
 434    QemuMutex mutex;
 435    QemuCond cond;
 436    void *des;
 437    uint8_t *compbuf;
 438    int len;
 439    z_stream stream;
 440};
 441typedef struct DecompressParam DecompressParam;
 442
 443static CompressParam *comp_param;
 444static QemuThread *compress_threads;
 445/* comp_done_cond is used to wake up the migration thread when
 446 * one of the compression threads has finished the compression.
 447 * comp_done_lock is used to co-work with comp_done_cond.
 448 */
 449static QemuMutex comp_done_lock;
 450static QemuCond comp_done_cond;
 451/* The empty QEMUFileOps will be used by file in CompressParam */
 452static const QEMUFileOps empty_ops = { };
 453
 454static QEMUFile *decomp_file;
 455static DecompressParam *decomp_param;
 456static QemuThread *decompress_threads;
 457static QemuMutex decomp_done_lock;
 458static QemuCond decomp_done_cond;
 459
 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
 461                                 ram_addr_t offset, uint8_t *source_buf);
 462
 463static void *do_data_compress(void *opaque)
 464{
 465    CompressParam *param = opaque;
 466    RAMBlock *block;
 467    ram_addr_t offset;
 468    bool zero_page;
 469
 470    qemu_mutex_lock(&param->mutex);
 471    while (!param->quit) {
 472        if (param->block) {
 473            block = param->block;
 474            offset = param->offset;
 475            param->block = NULL;
 476            qemu_mutex_unlock(&param->mutex);
 477
 478            zero_page = do_compress_ram_page(param->file, &param->stream,
 479                                             block, offset, param->originbuf);
 480
 481            qemu_mutex_lock(&comp_done_lock);
 482            param->done = true;
 483            param->zero_page = zero_page;
 484            qemu_cond_signal(&comp_done_cond);
 485            qemu_mutex_unlock(&comp_done_lock);
 486
 487            qemu_mutex_lock(&param->mutex);
 488        } else {
 489            qemu_cond_wait(&param->cond, &param->mutex);
 490        }
 491    }
 492    qemu_mutex_unlock(&param->mutex);
 493
 494    return NULL;
 495}
 496
 497static void compress_threads_save_cleanup(void)
 498{
 499    int i, thread_count;
 500
 501    if (!migrate_use_compression() || !comp_param) {
 502        return;
 503    }
 504
 505    thread_count = migrate_compress_threads();
 506    for (i = 0; i < thread_count; i++) {
 507        /*
 508         * we use it as a indicator which shows if the thread is
 509         * properly init'd or not
 510         */
 511        if (!comp_param[i].file) {
 512            break;
 513        }
 514
 515        qemu_mutex_lock(&comp_param[i].mutex);
 516        comp_param[i].quit = true;
 517        qemu_cond_signal(&comp_param[i].cond);
 518        qemu_mutex_unlock(&comp_param[i].mutex);
 519
 520        qemu_thread_join(compress_threads + i);
 521        qemu_mutex_destroy(&comp_param[i].mutex);
 522        qemu_cond_destroy(&comp_param[i].cond);
 523        deflateEnd(&comp_param[i].stream);
 524        g_free(comp_param[i].originbuf);
 525        qemu_fclose(comp_param[i].file);
 526        comp_param[i].file = NULL;
 527    }
 528    qemu_mutex_destroy(&comp_done_lock);
 529    qemu_cond_destroy(&comp_done_cond);
 530    g_free(compress_threads);
 531    g_free(comp_param);
 532    compress_threads = NULL;
 533    comp_param = NULL;
 534}
 535
 536static int compress_threads_save_setup(void)
 537{
 538    int i, thread_count;
 539
 540    if (!migrate_use_compression()) {
 541        return 0;
 542    }
 543    thread_count = migrate_compress_threads();
 544    compress_threads = g_new0(QemuThread, thread_count);
 545    comp_param = g_new0(CompressParam, thread_count);
 546    qemu_cond_init(&comp_done_cond);
 547    qemu_mutex_init(&comp_done_lock);
 548    for (i = 0; i < thread_count; i++) {
 549        comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
 550        if (!comp_param[i].originbuf) {
 551            goto exit;
 552        }
 553
 554        if (deflateInit(&comp_param[i].stream,
 555                        migrate_compress_level()) != Z_OK) {
 556            g_free(comp_param[i].originbuf);
 557            goto exit;
 558        }
 559
 560        /* comp_param[i].file is just used as a dummy buffer to save data,
 561         * set its ops to empty.
 562         */
 563        comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
 564        comp_param[i].done = true;
 565        comp_param[i].quit = false;
 566        qemu_mutex_init(&comp_param[i].mutex);
 567        qemu_cond_init(&comp_param[i].cond);
 568        qemu_thread_create(compress_threads + i, "compress",
 569                           do_data_compress, comp_param + i,
 570                           QEMU_THREAD_JOINABLE);
 571    }
 572    return 0;
 573
 574exit:
 575    compress_threads_save_cleanup();
 576    return -1;
 577}
 578
 579/* Multiple fd's */
 580
 581#define MULTIFD_MAGIC 0x11223344U
 582#define MULTIFD_VERSION 1
 583
 584#define MULTIFD_FLAG_SYNC (1 << 0)
 585
 586/* This value needs to be a multiple of qemu_target_page_size() */
 587#define MULTIFD_PACKET_SIZE (512 * 1024)
 588
 589typedef struct {
 590    uint32_t magic;
 591    uint32_t version;
 592    unsigned char uuid[16]; /* QemuUUID */
 593    uint8_t id;
 594    uint8_t unused1[7];     /* Reserved for future use */
 595    uint64_t unused2[4];    /* Reserved for future use */
 596} __attribute__((packed)) MultiFDInit_t;
 597
 598typedef struct {
 599    uint32_t magic;
 600    uint32_t version;
 601    uint32_t flags;
 602    /* maximum number of allocated pages */
 603    uint32_t pages_alloc;
 604    uint32_t pages_used;
 605    /* size of the next packet that contains pages */
 606    uint32_t next_packet_size;
 607    uint64_t packet_num;
 608    uint64_t unused[4];    /* Reserved for future use */
 609    char ramblock[256];
 610    uint64_t offset[];
 611} __attribute__((packed)) MultiFDPacket_t;
 612
 613typedef struct {
 614    /* number of used pages */
 615    uint32_t used;
 616    /* number of allocated pages */
 617    uint32_t allocated;
 618    /* global number of generated multifd packets */
 619    uint64_t packet_num;
 620    /* offset of each page */
 621    ram_addr_t *offset;
 622    /* pointer to each page */
 623    struct iovec *iov;
 624    RAMBlock *block;
 625} MultiFDPages_t;
 626
 627typedef struct {
 628    /* this fields are not changed once the thread is created */
 629    /* channel number */
 630    uint8_t id;
 631    /* channel thread name */
 632    char *name;
 633    /* channel thread id */
 634    QemuThread thread;
 635    /* communication channel */
 636    QIOChannel *c;
 637    /* sem where to wait for more work */
 638    QemuSemaphore sem;
 639    /* this mutex protects the following parameters */
 640    QemuMutex mutex;
 641    /* is this channel thread running */
 642    bool running;
 643    /* should this thread finish */
 644    bool quit;
 645    /* thread has work to do */
 646    int pending_job;
 647    /* array of pages to sent */
 648    MultiFDPages_t *pages;
 649    /* packet allocated len */
 650    uint32_t packet_len;
 651    /* pointer to the packet */
 652    MultiFDPacket_t *packet;
 653    /* multifd flags for each packet */
 654    uint32_t flags;
 655    /* size of the next packet that contains pages */
 656    uint32_t next_packet_size;
 657    /* global number of generated multifd packets */
 658    uint64_t packet_num;
 659    /* thread local variables */
 660    /* packets sent through this channel */
 661    uint64_t num_packets;
 662    /* pages sent through this channel */
 663    uint64_t num_pages;
 664    /* syncs main thread and channels */
 665    QemuSemaphore sem_sync;
 666}  MultiFDSendParams;
 667
 668typedef struct {
 669    /* this fields are not changed once the thread is created */
 670    /* channel number */
 671    uint8_t id;
 672    /* channel thread name */
 673    char *name;
 674    /* channel thread id */
 675    QemuThread thread;
 676    /* communication channel */
 677    QIOChannel *c;
 678    /* this mutex protects the following parameters */
 679    QemuMutex mutex;
 680    /* is this channel thread running */
 681    bool running;
 682    /* should this thread finish */
 683    bool quit;
 684    /* array of pages to receive */
 685    MultiFDPages_t *pages;
 686    /* packet allocated len */
 687    uint32_t packet_len;
 688    /* pointer to the packet */
 689    MultiFDPacket_t *packet;
 690    /* multifd flags for each packet */
 691    uint32_t flags;
 692    /* global number of generated multifd packets */
 693    uint64_t packet_num;
 694    /* thread local variables */
 695    /* size of the next packet that contains pages */
 696    uint32_t next_packet_size;
 697    /* packets sent through this channel */
 698    uint64_t num_packets;
 699    /* pages sent through this channel */
 700    uint64_t num_pages;
 701    /* syncs main thread and channels */
 702    QemuSemaphore sem_sync;
 703} MultiFDRecvParams;
 704
 705static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
 706{
 707    MultiFDInit_t msg;
 708    int ret;
 709
 710    msg.magic = cpu_to_be32(MULTIFD_MAGIC);
 711    msg.version = cpu_to_be32(MULTIFD_VERSION);
 712    msg.id = p->id;
 713    memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
 714
 715    ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
 716    if (ret != 0) {
 717        return -1;
 718    }
 719    return 0;
 720}
 721
 722static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
 723{
 724    MultiFDInit_t msg;
 725    int ret;
 726
 727    ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
 728    if (ret != 0) {
 729        return -1;
 730    }
 731
 732    msg.magic = be32_to_cpu(msg.magic);
 733    msg.version = be32_to_cpu(msg.version);
 734
 735    if (msg.magic != MULTIFD_MAGIC) {
 736        error_setg(errp, "multifd: received packet magic %x "
 737                   "expected %x", msg.magic, MULTIFD_MAGIC);
 738        return -1;
 739    }
 740
 741    if (msg.version != MULTIFD_VERSION) {
 742        error_setg(errp, "multifd: received packet version %d "
 743                   "expected %d", msg.version, MULTIFD_VERSION);
 744        return -1;
 745    }
 746
 747    if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
 748        char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
 749        char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
 750
 751        error_setg(errp, "multifd: received uuid '%s' and expected "
 752                   "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
 753        g_free(uuid);
 754        g_free(msg_uuid);
 755        return -1;
 756    }
 757
 758    if (msg.id > migrate_multifd_channels()) {
 759        error_setg(errp, "multifd: received channel version %d "
 760                   "expected %d", msg.version, MULTIFD_VERSION);
 761        return -1;
 762    }
 763
 764    return msg.id;
 765}
 766
 767static MultiFDPages_t *multifd_pages_init(size_t size)
 768{
 769    MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
 770
 771    pages->allocated = size;
 772    pages->iov = g_new0(struct iovec, size);
 773    pages->offset = g_new0(ram_addr_t, size);
 774
 775    return pages;
 776}
 777
 778static void multifd_pages_clear(MultiFDPages_t *pages)
 779{
 780    pages->used = 0;
 781    pages->allocated = 0;
 782    pages->packet_num = 0;
 783    pages->block = NULL;
 784    g_free(pages->iov);
 785    pages->iov = NULL;
 786    g_free(pages->offset);
 787    pages->offset = NULL;
 788    g_free(pages);
 789}
 790
 791static void multifd_send_fill_packet(MultiFDSendParams *p)
 792{
 793    MultiFDPacket_t *packet = p->packet;
 794    int i;
 795
 796    packet->flags = cpu_to_be32(p->flags);
 797    packet->pages_alloc = cpu_to_be32(p->pages->allocated);
 798    packet->pages_used = cpu_to_be32(p->pages->used);
 799    packet->next_packet_size = cpu_to_be32(p->next_packet_size);
 800    packet->packet_num = cpu_to_be64(p->packet_num);
 801
 802    if (p->pages->block) {
 803        strncpy(packet->ramblock, p->pages->block->idstr, 256);
 804    }
 805
 806    for (i = 0; i < p->pages->used; i++) {
 807        packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
 808    }
 809}
 810
 811static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
 812{
 813    MultiFDPacket_t *packet = p->packet;
 814    uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
 815    RAMBlock *block;
 816    int i;
 817
 818    packet->magic = be32_to_cpu(packet->magic);
 819    if (packet->magic != MULTIFD_MAGIC) {
 820        error_setg(errp, "multifd: received packet "
 821                   "magic %x and expected magic %x",
 822                   packet->magic, MULTIFD_MAGIC);
 823        return -1;
 824    }
 825
 826    packet->version = be32_to_cpu(packet->version);
 827    if (packet->version != MULTIFD_VERSION) {
 828        error_setg(errp, "multifd: received packet "
 829                   "version %d and expected version %d",
 830                   packet->version, MULTIFD_VERSION);
 831        return -1;
 832    }
 833
 834    p->flags = be32_to_cpu(packet->flags);
 835
 836    packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
 837    /*
 838     * If we received a packet that is 100 times bigger than expected
 839     * just stop migration.  It is a magic number.
 840     */
 841    if (packet->pages_alloc > pages_max * 100) {
 842        error_setg(errp, "multifd: received packet "
 843                   "with size %d and expected a maximum size of %d",
 844                   packet->pages_alloc, pages_max * 100) ;
 845        return -1;
 846    }
 847    /*
 848     * We received a packet that is bigger than expected but inside
 849     * reasonable limits (see previous comment).  Just reallocate.
 850     */
 851    if (packet->pages_alloc > p->pages->allocated) {
 852        multifd_pages_clear(p->pages);
 853        p->pages = multifd_pages_init(packet->pages_alloc);
 854    }
 855
 856    p->pages->used = be32_to_cpu(packet->pages_used);
 857    if (p->pages->used > packet->pages_alloc) {
 858        error_setg(errp, "multifd: received packet "
 859                   "with %d pages and expected maximum pages are %d",
 860                   p->pages->used, packet->pages_alloc) ;
 861        return -1;
 862    }
 863
 864    p->next_packet_size = be32_to_cpu(packet->next_packet_size);
 865    p->packet_num = be64_to_cpu(packet->packet_num);
 866
 867    if (p->pages->used) {
 868        /* make sure that ramblock is 0 terminated */
 869        packet->ramblock[255] = 0;
 870        block = qemu_ram_block_by_name(packet->ramblock);
 871        if (!block) {
 872            error_setg(errp, "multifd: unknown ram block %s",
 873                       packet->ramblock);
 874            return -1;
 875        }
 876    }
 877
 878    for (i = 0; i < p->pages->used; i++) {
 879        ram_addr_t offset = be64_to_cpu(packet->offset[i]);
 880
 881        if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
 882            error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
 883                       " (max " RAM_ADDR_FMT ")",
 884                       offset, block->max_length);
 885            return -1;
 886        }
 887        p->pages->iov[i].iov_base = block->host + offset;
 888        p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
 889    }
 890
 891    return 0;
 892}
 893
 894struct {
 895    MultiFDSendParams *params;
 896    /* array of pages to sent */
 897    MultiFDPages_t *pages;
 898    /* global number of generated multifd packets */
 899    uint64_t packet_num;
 900    /* send channels ready */
 901    QemuSemaphore channels_ready;
 902} *multifd_send_state;
 903
 904/*
 905 * How we use multifd_send_state->pages and channel->pages?
 906 *
 907 * We create a pages for each channel, and a main one.  Each time that
 908 * we need to send a batch of pages we interchange the ones between
 909 * multifd_send_state and the channel that is sending it.  There are
 910 * two reasons for that:
 911 *    - to not have to do so many mallocs during migration
 912 *    - to make easier to know what to free at the end of migration
 913 *
 914 * This way we always know who is the owner of each "pages" struct,
 915 * and we don't need any locking.  It belongs to the migration thread
 916 * or to the channel thread.  Switching is safe because the migration
 917 * thread is using the channel mutex when changing it, and the channel
 918 * have to had finish with its own, otherwise pending_job can't be
 919 * false.
 920 */
 921
 922static int multifd_send_pages(RAMState *rs)
 923{
 924    int i;
 925    static int next_channel;
 926    MultiFDSendParams *p = NULL; /* make happy gcc */
 927    MultiFDPages_t *pages = multifd_send_state->pages;
 928    uint64_t transferred;
 929
 930    qemu_sem_wait(&multifd_send_state->channels_ready);
 931    for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
 932        p = &multifd_send_state->params[i];
 933
 934        qemu_mutex_lock(&p->mutex);
 935        if (p->quit) {
 936            error_report("%s: channel %d has already quit!", __func__, i);
 937            qemu_mutex_unlock(&p->mutex);
 938            return -1;
 939        }
 940        if (!p->pending_job) {
 941            p->pending_job++;
 942            next_channel = (i + 1) % migrate_multifd_channels();
 943            break;
 944        }
 945        qemu_mutex_unlock(&p->mutex);
 946    }
 947    p->pages->used = 0;
 948
 949    p->packet_num = multifd_send_state->packet_num++;
 950    p->pages->block = NULL;
 951    multifd_send_state->pages = p->pages;
 952    p->pages = pages;
 953    transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
 954    qemu_file_update_transfer(rs->f, transferred);
 955    ram_counters.multifd_bytes += transferred;
 956    ram_counters.transferred += transferred;;
 957    qemu_mutex_unlock(&p->mutex);
 958    qemu_sem_post(&p->sem);
 959
 960    return 1;
 961}
 962
 963static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
 964{
 965    MultiFDPages_t *pages = multifd_send_state->pages;
 966
 967    if (!pages->block) {
 968        pages->block = block;
 969    }
 970
 971    if (pages->block == block) {
 972        pages->offset[pages->used] = offset;
 973        pages->iov[pages->used].iov_base = block->host + offset;
 974        pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
 975        pages->used++;
 976
 977        if (pages->used < pages->allocated) {
 978            return 1;
 979        }
 980    }
 981
 982    if (multifd_send_pages(rs) < 0) {
 983        return -1;
 984    }
 985
 986    if (pages->block != block) {
 987        return  multifd_queue_page(rs, block, offset);
 988    }
 989
 990    return 1;
 991}
 992
 993static void multifd_send_terminate_threads(Error *err)
 994{
 995    int i;
 996
 997    trace_multifd_send_terminate_threads(err != NULL);
 998
 999    if (err) {
1000        MigrationState *s = migrate_get_current();
1001        migrate_set_error(s, err);
1002        if (s->state == MIGRATION_STATUS_SETUP ||
1003            s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1004            s->state == MIGRATION_STATUS_DEVICE ||
1005            s->state == MIGRATION_STATUS_ACTIVE) {
1006            migrate_set_state(&s->state, s->state,
1007                              MIGRATION_STATUS_FAILED);
1008        }
1009    }
1010
1011    for (i = 0; i < migrate_multifd_channels(); i++) {
1012        MultiFDSendParams *p = &multifd_send_state->params[i];
1013
1014        qemu_mutex_lock(&p->mutex);
1015        p->quit = true;
1016        qemu_sem_post(&p->sem);
1017        qemu_mutex_unlock(&p->mutex);
1018    }
1019}
1020
1021void multifd_save_cleanup(void)
1022{
1023    int i;
1024
1025    if (!migrate_use_multifd()) {
1026        return;
1027    }
1028    multifd_send_terminate_threads(NULL);
1029    for (i = 0; i < migrate_multifd_channels(); i++) {
1030        MultiFDSendParams *p = &multifd_send_state->params[i];
1031
1032        if (p->running) {
1033            qemu_thread_join(&p->thread);
1034        }
1035        socket_send_channel_destroy(p->c);
1036        p->c = NULL;
1037        qemu_mutex_destroy(&p->mutex);
1038        qemu_sem_destroy(&p->sem);
1039        qemu_sem_destroy(&p->sem_sync);
1040        g_free(p->name);
1041        p->name = NULL;
1042        multifd_pages_clear(p->pages);
1043        p->pages = NULL;
1044        p->packet_len = 0;
1045        g_free(p->packet);
1046        p->packet = NULL;
1047    }
1048    qemu_sem_destroy(&multifd_send_state->channels_ready);
1049    g_free(multifd_send_state->params);
1050    multifd_send_state->params = NULL;
1051    multifd_pages_clear(multifd_send_state->pages);
1052    multifd_send_state->pages = NULL;
1053    g_free(multifd_send_state);
1054    multifd_send_state = NULL;
1055}
1056
1057static void multifd_send_sync_main(RAMState *rs)
1058{
1059    int i;
1060
1061    if (!migrate_use_multifd()) {
1062        return;
1063    }
1064    if (multifd_send_state->pages->used) {
1065        if (multifd_send_pages(rs) < 0) {
1066            error_report("%s: multifd_send_pages fail", __func__);
1067            return;
1068        }
1069    }
1070    for (i = 0; i < migrate_multifd_channels(); i++) {
1071        MultiFDSendParams *p = &multifd_send_state->params[i];
1072
1073        trace_multifd_send_sync_main_signal(p->id);
1074
1075        qemu_mutex_lock(&p->mutex);
1076
1077        if (p->quit) {
1078            error_report("%s: channel %d has already quit", __func__, i);
1079            qemu_mutex_unlock(&p->mutex);
1080            return;
1081        }
1082
1083        p->packet_num = multifd_send_state->packet_num++;
1084        p->flags |= MULTIFD_FLAG_SYNC;
1085        p->pending_job++;
1086        qemu_file_update_transfer(rs->f, p->packet_len);
1087        ram_counters.multifd_bytes += p->packet_len;
1088        ram_counters.transferred += p->packet_len;
1089        qemu_mutex_unlock(&p->mutex);
1090        qemu_sem_post(&p->sem);
1091    }
1092    for (i = 0; i < migrate_multifd_channels(); i++) {
1093        MultiFDSendParams *p = &multifd_send_state->params[i];
1094
1095        trace_multifd_send_sync_main_wait(p->id);
1096        qemu_sem_wait(&p->sem_sync);
1097    }
1098    trace_multifd_send_sync_main(multifd_send_state->packet_num);
1099}
1100
1101static void *multifd_send_thread(void *opaque)
1102{
1103    MultiFDSendParams *p = opaque;
1104    Error *local_err = NULL;
1105    int ret = 0;
1106    uint32_t flags = 0;
1107
1108    trace_multifd_send_thread_start(p->id);
1109    rcu_register_thread();
1110
1111    if (multifd_send_initial_packet(p, &local_err) < 0) {
1112        ret = -1;
1113        goto out;
1114    }
1115    /* initial packet */
1116    p->num_packets = 1;
1117
1118    while (true) {
1119        qemu_sem_wait(&p->sem);
1120        qemu_mutex_lock(&p->mutex);
1121
1122        if (p->pending_job) {
1123            uint32_t used = p->pages->used;
1124            uint64_t packet_num = p->packet_num;
1125            flags = p->flags;
1126
1127            p->next_packet_size = used * qemu_target_page_size();
1128            multifd_send_fill_packet(p);
1129            p->flags = 0;
1130            p->num_packets++;
1131            p->num_pages += used;
1132            qemu_mutex_unlock(&p->mutex);
1133
1134            trace_multifd_send(p->id, packet_num, used, flags,
1135                               p->next_packet_size);
1136
1137            ret = qio_channel_write_all(p->c, (void *)p->packet,
1138                                        p->packet_len, &local_err);
1139            if (ret != 0) {
1140                break;
1141            }
1142
1143            if (used) {
1144                ret = qio_channel_writev_all(p->c, p->pages->iov,
1145                                             used, &local_err);
1146                if (ret != 0) {
1147                    break;
1148                }
1149            }
1150
1151            qemu_mutex_lock(&p->mutex);
1152            p->pending_job--;
1153            qemu_mutex_unlock(&p->mutex);
1154
1155            if (flags & MULTIFD_FLAG_SYNC) {
1156                qemu_sem_post(&p->sem_sync);
1157            }
1158            qemu_sem_post(&multifd_send_state->channels_ready);
1159        } else if (p->quit) {
1160            qemu_mutex_unlock(&p->mutex);
1161            break;
1162        } else {
1163            qemu_mutex_unlock(&p->mutex);
1164            /* sometimes there are spurious wakeups */
1165        }
1166    }
1167
1168out:
1169    if (local_err) {
1170        trace_multifd_send_error(p->id);
1171        multifd_send_terminate_threads(local_err);
1172    }
1173
1174    /*
1175     * Error happen, I will exit, but I can't just leave, tell
1176     * who pay attention to me.
1177     */
1178    if (ret != 0) {
1179        qemu_sem_post(&p->sem_sync);
1180        qemu_sem_post(&multifd_send_state->channels_ready);
1181    }
1182
1183    qemu_mutex_lock(&p->mutex);
1184    p->running = false;
1185    qemu_mutex_unlock(&p->mutex);
1186
1187    rcu_unregister_thread();
1188    trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1189
1190    return NULL;
1191}
1192
1193static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1194{
1195    MultiFDSendParams *p = opaque;
1196    QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1197    Error *local_err = NULL;
1198
1199    trace_multifd_new_send_channel_async(p->id);
1200    if (qio_task_propagate_error(task, &local_err)) {
1201        migrate_set_error(migrate_get_current(), local_err);
1202        multifd_save_cleanup();
1203    } else {
1204        p->c = QIO_CHANNEL(sioc);
1205        qio_channel_set_delay(p->c, false);
1206        p->running = true;
1207        qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1208                           QEMU_THREAD_JOINABLE);
1209    }
1210}
1211
1212int multifd_save_setup(void)
1213{
1214    int thread_count;
1215    uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1216    uint8_t i;
1217
1218    if (!migrate_use_multifd()) {
1219        return 0;
1220    }
1221    thread_count = migrate_multifd_channels();
1222    multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1223    multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1224    multifd_send_state->pages = multifd_pages_init(page_count);
1225    qemu_sem_init(&multifd_send_state->channels_ready, 0);
1226
1227    for (i = 0; i < thread_count; i++) {
1228        MultiFDSendParams *p = &multifd_send_state->params[i];
1229
1230        qemu_mutex_init(&p->mutex);
1231        qemu_sem_init(&p->sem, 0);
1232        qemu_sem_init(&p->sem_sync, 0);
1233        p->quit = false;
1234        p->pending_job = 0;
1235        p->id = i;
1236        p->pages = multifd_pages_init(page_count);
1237        p->packet_len = sizeof(MultiFDPacket_t)
1238                      + sizeof(ram_addr_t) * page_count;
1239        p->packet = g_malloc0(p->packet_len);
1240        p->packet->magic = cpu_to_be32(MULTIFD_MAGIC);
1241        p->packet->version = cpu_to_be32(MULTIFD_VERSION);
1242        p->name = g_strdup_printf("multifdsend_%d", i);
1243        socket_send_channel_create(multifd_new_send_channel_async, p);
1244    }
1245    return 0;
1246}
1247
1248struct {
1249    MultiFDRecvParams *params;
1250    /* number of created threads */
1251    int count;
1252    /* syncs main thread and channels */
1253    QemuSemaphore sem_sync;
1254    /* global number of generated multifd packets */
1255    uint64_t packet_num;
1256} *multifd_recv_state;
1257
1258static void multifd_recv_terminate_threads(Error *err)
1259{
1260    int i;
1261
1262    trace_multifd_recv_terminate_threads(err != NULL);
1263
1264    if (err) {
1265        MigrationState *s = migrate_get_current();
1266        migrate_set_error(s, err);
1267        if (s->state == MIGRATION_STATUS_SETUP ||
1268            s->state == MIGRATION_STATUS_ACTIVE) {
1269            migrate_set_state(&s->state, s->state,
1270                              MIGRATION_STATUS_FAILED);
1271        }
1272    }
1273
1274    for (i = 0; i < migrate_multifd_channels(); i++) {
1275        MultiFDRecvParams *p = &multifd_recv_state->params[i];
1276
1277        qemu_mutex_lock(&p->mutex);
1278        p->quit = true;
1279        /* We could arrive here for two reasons:
1280           - normal quit, i.e. everything went fine, just finished
1281           - error quit: We close the channels so the channel threads
1282             finish the qio_channel_read_all_eof() */
1283        qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1284        qemu_mutex_unlock(&p->mutex);
1285    }
1286}
1287
1288int multifd_load_cleanup(Error **errp)
1289{
1290    int i;
1291    int ret = 0;
1292
1293    if (!migrate_use_multifd()) {
1294        return 0;
1295    }
1296    multifd_recv_terminate_threads(NULL);
1297    for (i = 0; i < migrate_multifd_channels(); i++) {
1298        MultiFDRecvParams *p = &multifd_recv_state->params[i];
1299
1300        if (p->running) {
1301            p->quit = true;
1302            /*
1303             * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1304             * however try to wakeup it without harm in cleanup phase.
1305             */
1306            qemu_sem_post(&p->sem_sync);
1307            qemu_thread_join(&p->thread);
1308        }
1309        object_unref(OBJECT(p->c));
1310        p->c = NULL;
1311        qemu_mutex_destroy(&p->mutex);
1312        qemu_sem_destroy(&p->sem_sync);
1313        g_free(p->name);
1314        p->name = NULL;
1315        multifd_pages_clear(p->pages);
1316        p->pages = NULL;
1317        p->packet_len = 0;
1318        g_free(p->packet);
1319        p->packet = NULL;
1320    }
1321    qemu_sem_destroy(&multifd_recv_state->sem_sync);
1322    g_free(multifd_recv_state->params);
1323    multifd_recv_state->params = NULL;
1324    g_free(multifd_recv_state);
1325    multifd_recv_state = NULL;
1326
1327    return ret;
1328}
1329
1330static void multifd_recv_sync_main(void)
1331{
1332    int i;
1333
1334    if (!migrate_use_multifd()) {
1335        return;
1336    }
1337    for (i = 0; i < migrate_multifd_channels(); i++) {
1338        MultiFDRecvParams *p = &multifd_recv_state->params[i];
1339
1340        trace_multifd_recv_sync_main_wait(p->id);
1341        qemu_sem_wait(&multifd_recv_state->sem_sync);
1342    }
1343    for (i = 0; i < migrate_multifd_channels(); i++) {
1344        MultiFDRecvParams *p = &multifd_recv_state->params[i];
1345
1346        qemu_mutex_lock(&p->mutex);
1347        if (multifd_recv_state->packet_num < p->packet_num) {
1348            multifd_recv_state->packet_num = p->packet_num;
1349        }
1350        qemu_mutex_unlock(&p->mutex);
1351        trace_multifd_recv_sync_main_signal(p->id);
1352        qemu_sem_post(&p->sem_sync);
1353    }
1354    trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1355}
1356
1357static void *multifd_recv_thread(void *opaque)
1358{
1359    MultiFDRecvParams *p = opaque;
1360    Error *local_err = NULL;
1361    int ret;
1362
1363    trace_multifd_recv_thread_start(p->id);
1364    rcu_register_thread();
1365
1366    while (true) {
1367        uint32_t used;
1368        uint32_t flags;
1369
1370        if (p->quit) {
1371            break;
1372        }
1373
1374        ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1375                                       p->packet_len, &local_err);
1376        if (ret == 0) {   /* EOF */
1377            break;
1378        }
1379        if (ret == -1) {   /* Error */
1380            break;
1381        }
1382
1383        qemu_mutex_lock(&p->mutex);
1384        ret = multifd_recv_unfill_packet(p, &local_err);
1385        if (ret) {
1386            qemu_mutex_unlock(&p->mutex);
1387            break;
1388        }
1389
1390        used = p->pages->used;
1391        flags = p->flags;
1392        trace_multifd_recv(p->id, p->packet_num, used, flags,
1393                           p->next_packet_size);
1394        p->num_packets++;
1395        p->num_pages += used;
1396        qemu_mutex_unlock(&p->mutex);
1397
1398        if (used) {
1399            ret = qio_channel_readv_all(p->c, p->pages->iov,
1400                                        used, &local_err);
1401            if (ret != 0) {
1402                break;
1403            }
1404        }
1405
1406        if (flags & MULTIFD_FLAG_SYNC) {
1407            qemu_sem_post(&multifd_recv_state->sem_sync);
1408            qemu_sem_wait(&p->sem_sync);
1409        }
1410    }
1411
1412    if (local_err) {
1413        multifd_recv_terminate_threads(local_err);
1414    }
1415    qemu_mutex_lock(&p->mutex);
1416    p->running = false;
1417    qemu_mutex_unlock(&p->mutex);
1418
1419    rcu_unregister_thread();
1420    trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1421
1422    return NULL;
1423}
1424
1425int multifd_load_setup(void)
1426{
1427    int thread_count;
1428    uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1429    uint8_t i;
1430
1431    if (!migrate_use_multifd()) {
1432        return 0;
1433    }
1434    thread_count = migrate_multifd_channels();
1435    multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1436    multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1437    atomic_set(&multifd_recv_state->count, 0);
1438    qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1439
1440    for (i = 0; i < thread_count; i++) {
1441        MultiFDRecvParams *p = &multifd_recv_state->params[i];
1442
1443        qemu_mutex_init(&p->mutex);
1444        qemu_sem_init(&p->sem_sync, 0);
1445        p->quit = false;
1446        p->id = i;
1447        p->pages = multifd_pages_init(page_count);
1448        p->packet_len = sizeof(MultiFDPacket_t)
1449                      + sizeof(ram_addr_t) * page_count;
1450        p->packet = g_malloc0(p->packet_len);
1451        p->name = g_strdup_printf("multifdrecv_%d", i);
1452    }
1453    return 0;
1454}
1455
1456bool multifd_recv_all_channels_created(void)
1457{
1458    int thread_count = migrate_multifd_channels();
1459
1460    if (!migrate_use_multifd()) {
1461        return true;
1462    }
1463
1464    return thread_count == atomic_read(&multifd_recv_state->count);
1465}
1466
1467/*
1468 * Try to receive all multifd channels to get ready for the migration.
1469 * - Return true and do not set @errp when correctly receving all channels;
1470 * - Return false and do not set @errp when correctly receiving the current one;
1471 * - Return false and set @errp when failing to receive the current channel.
1472 */
1473bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1474{
1475    MultiFDRecvParams *p;
1476    Error *local_err = NULL;
1477    int id;
1478
1479    id = multifd_recv_initial_packet(ioc, &local_err);
1480    if (id < 0) {
1481        multifd_recv_terminate_threads(local_err);
1482        error_propagate_prepend(errp, local_err,
1483                                "failed to receive packet"
1484                                " via multifd channel %d: ",
1485                                atomic_read(&multifd_recv_state->count));
1486        return false;
1487    }
1488    trace_multifd_recv_new_channel(id);
1489
1490    p = &multifd_recv_state->params[id];
1491    if (p->c != NULL) {
1492        error_setg(&local_err, "multifd: received id '%d' already setup'",
1493                   id);
1494        multifd_recv_terminate_threads(local_err);
1495        error_propagate(errp, local_err);
1496        return false;
1497    }
1498    p->c = ioc;
1499    object_ref(OBJECT(ioc));
1500    /* initial packet */
1501    p->num_packets = 1;
1502
1503    p->running = true;
1504    qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1505                       QEMU_THREAD_JOINABLE);
1506    atomic_inc(&multifd_recv_state->count);
1507    return atomic_read(&multifd_recv_state->count) ==
1508           migrate_multifd_channels();
1509}
1510
1511/**
1512 * save_page_header: write page header to wire
1513 *
1514 * If this is the 1st block, it also writes the block identification
1515 *
1516 * Returns the number of bytes written
1517 *
1518 * @f: QEMUFile where to send the data
1519 * @block: block that contains the page we want to send
1520 * @offset: offset inside the block for the page
1521 *          in the lower bits, it contains flags
1522 */
1523static size_t save_page_header(RAMState *rs, QEMUFile *f,  RAMBlock *block,
1524                               ram_addr_t offset)
1525{
1526    size_t size, len;
1527
1528    if (block == rs->last_sent_block) {
1529        offset |= RAM_SAVE_FLAG_CONTINUE;
1530    }
1531    qemu_put_be64(f, offset);
1532    size = 8;
1533
1534    if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1535        len = strlen(block->idstr);
1536        qemu_put_byte(f, len);
1537        qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1538        size += 1 + len;
1539        rs->last_sent_block = block;
1540    }
1541    return size;
1542}
1543
1544/**
1545 * mig_throttle_guest_down: throotle down the guest
1546 *
1547 * Reduce amount of guest cpu execution to hopefully slow down memory
1548 * writes. If guest dirty memory rate is reduced below the rate at
1549 * which we can transfer pages to the destination then we should be
1550 * able to complete migration. Some workloads dirty memory way too
1551 * fast and will not effectively converge, even with auto-converge.
1552 */
1553static void mig_throttle_guest_down(void)
1554{
1555    MigrationState *s = migrate_get_current();
1556    uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1557    uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1558    int pct_max = s->parameters.max_cpu_throttle;
1559
1560    /* We have not started throttling yet. Let's start it. */
1561    if (!cpu_throttle_active()) {
1562        cpu_throttle_set(pct_initial);
1563    } else {
1564        /* Throttling already on, just increase the rate */
1565        cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1566                         pct_max));
1567    }
1568}
1569
1570/**
1571 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1572 *
1573 * @rs: current RAM state
1574 * @current_addr: address for the zero page
1575 *
1576 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1577 * The important thing is that a stale (not-yet-0'd) page be replaced
1578 * by the new data.
1579 * As a bonus, if the page wasn't in the cache it gets added so that
1580 * when a small write is made into the 0'd page it gets XBZRLE sent.
1581 */
1582static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1583{
1584    if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1585        return;
1586    }
1587
1588    /* We don't care if this fails to allocate a new cache page
1589     * as long as it updated an old one */
1590    cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1591                 ram_counters.dirty_sync_count);
1592}
1593
1594#define ENCODING_FLAG_XBZRLE 0x1
1595
1596/**
1597 * save_xbzrle_page: compress and send current page
1598 *
1599 * Returns: 1 means that we wrote the page
1600 *          0 means that page is identical to the one already sent
1601 *          -1 means that xbzrle would be longer than normal
1602 *
1603 * @rs: current RAM state
1604 * @current_data: pointer to the address of the page contents
1605 * @current_addr: addr of the page
1606 * @block: block that contains the page we want to send
1607 * @offset: offset inside the block for the page
1608 * @last_stage: if we are at the completion stage
1609 */
1610static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1611                            ram_addr_t current_addr, RAMBlock *block,
1612                            ram_addr_t offset, bool last_stage)
1613{
1614    int encoded_len = 0, bytes_xbzrle;
1615    uint8_t *prev_cached_page;
1616
1617    if (!cache_is_cached(XBZRLE.cache, current_addr,
1618                         ram_counters.dirty_sync_count)) {
1619        xbzrle_counters.cache_miss++;
1620        if (!last_stage) {
1621            if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1622                             ram_counters.dirty_sync_count) == -1) {
1623                return -1;
1624            } else {
1625                /* update *current_data when the page has been
1626                   inserted into cache */
1627                *current_data = get_cached_data(XBZRLE.cache, current_addr);
1628            }
1629        }
1630        return -1;
1631    }
1632
1633    prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1634
1635    /* save current buffer into memory */
1636    memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1637
1638    /* XBZRLE encoding (if there is no overflow) */
1639    encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1640                                       TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1641                                       TARGET_PAGE_SIZE);
1642
1643    /*
1644     * Update the cache contents, so that it corresponds to the data
1645     * sent, in all cases except where we skip the page.
1646     */
1647    if (!last_stage && encoded_len != 0) {
1648        memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1649        /*
1650         * In the case where we couldn't compress, ensure that the caller
1651         * sends the data from the cache, since the guest might have
1652         * changed the RAM since we copied it.
1653         */
1654        *current_data = prev_cached_page;
1655    }
1656
1657    if (encoded_len == 0) {
1658        trace_save_xbzrle_page_skipping();
1659        return 0;
1660    } else if (encoded_len == -1) {
1661        trace_save_xbzrle_page_overflow();
1662        xbzrle_counters.overflow++;
1663        return -1;
1664    }
1665
1666    /* Send XBZRLE based compressed page */
1667    bytes_xbzrle = save_page_header(rs, rs->f, block,
1668                                    offset | RAM_SAVE_FLAG_XBZRLE);
1669    qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1670    qemu_put_be16(rs->f, encoded_len);
1671    qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1672    bytes_xbzrle += encoded_len + 1 + 2;
1673    xbzrle_counters.pages++;
1674    xbzrle_counters.bytes += bytes_xbzrle;
1675    ram_counters.transferred += bytes_xbzrle;
1676
1677    return 1;
1678}
1679
1680/**
1681 * migration_bitmap_find_dirty: find the next dirty page from start
1682 *
1683 * Returns the page offset within memory region of the start of a dirty page
1684 *
1685 * @rs: current RAM state
1686 * @rb: RAMBlock where to search for dirty pages
1687 * @start: page where we start the search
1688 */
1689static inline
1690unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1691                                          unsigned long start)
1692{
1693    unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1694    unsigned long *bitmap = rb->bmap;
1695    unsigned long next;
1696
1697    if (ramblock_is_ignored(rb)) {
1698        return size;
1699    }
1700
1701    /*
1702     * When the free page optimization is enabled, we need to check the bitmap
1703     * to send the non-free pages rather than all the pages in the bulk stage.
1704     */
1705    if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1706        next = start + 1;
1707    } else {
1708        next = find_next_bit(bitmap, size, start);
1709    }
1710
1711    return next;
1712}
1713
1714static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1715                                                RAMBlock *rb,
1716                                                unsigned long page)
1717{
1718    bool ret;
1719
1720    qemu_mutex_lock(&rs->bitmap_mutex);
1721
1722    /*
1723     * Clear dirty bitmap if needed.  This _must_ be called before we
1724     * send any of the page in the chunk because we need to make sure
1725     * we can capture further page content changes when we sync dirty
1726     * log the next time.  So as long as we are going to send any of
1727     * the page in the chunk we clear the remote dirty bitmap for all.
1728     * Clearing it earlier won't be a problem, but too late will.
1729     */
1730    if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1731        uint8_t shift = rb->clear_bmap_shift;
1732        hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1733        hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1734
1735        /*
1736         * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1737         * can make things easier sometimes since then start address
1738         * of the small chunk will always be 64 pages aligned so the
1739         * bitmap will always be aligned to unsigned long.  We should
1740         * even be able to remove this restriction but I'm simply
1741         * keeping it.
1742         */
1743        assert(shift >= 6);
1744        trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1745        memory_region_clear_dirty_bitmap(rb->mr, start, size);
1746    }
1747
1748    ret = test_and_clear_bit(page, rb->bmap);
1749
1750    if (ret) {
1751        rs->migration_dirty_pages--;
1752    }
1753    qemu_mutex_unlock(&rs->bitmap_mutex);
1754
1755    return ret;
1756}
1757
1758/* Called with RCU critical section */
1759static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1760{
1761    rs->migration_dirty_pages +=
1762        cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1763                                              &rs->num_dirty_pages_period);
1764}
1765
1766/**
1767 * ram_pagesize_summary: calculate all the pagesizes of a VM
1768 *
1769 * Returns a summary bitmap of the page sizes of all RAMBlocks
1770 *
1771 * For VMs with just normal pages this is equivalent to the host page
1772 * size. If it's got some huge pages then it's the OR of all the
1773 * different page sizes.
1774 */
1775uint64_t ram_pagesize_summary(void)
1776{
1777    RAMBlock *block;
1778    uint64_t summary = 0;
1779
1780    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1781        summary |= block->page_size;
1782    }
1783
1784    return summary;
1785}
1786
1787uint64_t ram_get_total_transferred_pages(void)
1788{
1789    return  ram_counters.normal + ram_counters.duplicate +
1790                compression_counters.pages + xbzrle_counters.pages;
1791}
1792
1793static void migration_update_rates(RAMState *rs, int64_t end_time)
1794{
1795    uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1796    double compressed_size;
1797
1798    /* calculate period counters */
1799    ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1800                / (end_time - rs->time_last_bitmap_sync);
1801
1802    if (!page_count) {
1803        return;
1804    }
1805
1806    if (migrate_use_xbzrle()) {
1807        xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1808            rs->xbzrle_cache_miss_prev) / page_count;
1809        rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1810    }
1811
1812    if (migrate_use_compression()) {
1813        compression_counters.busy_rate = (double)(compression_counters.busy -
1814            rs->compress_thread_busy_prev) / page_count;
1815        rs->compress_thread_busy_prev = compression_counters.busy;
1816
1817        compressed_size = compression_counters.compressed_size -
1818                          rs->compressed_size_prev;
1819        if (compressed_size) {
1820            double uncompressed_size = (compression_counters.pages -
1821                                    rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1822
1823            /* Compression-Ratio = Uncompressed-size / Compressed-size */
1824            compression_counters.compression_rate =
1825                                        uncompressed_size / compressed_size;
1826
1827            rs->compress_pages_prev = compression_counters.pages;
1828            rs->compressed_size_prev = compression_counters.compressed_size;
1829        }
1830    }
1831}
1832
1833static void migration_bitmap_sync(RAMState *rs)
1834{
1835    RAMBlock *block;
1836    int64_t end_time;
1837    uint64_t bytes_xfer_now;
1838
1839    ram_counters.dirty_sync_count++;
1840
1841    if (!rs->time_last_bitmap_sync) {
1842        rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1843    }
1844
1845    trace_migration_bitmap_sync_start();
1846    memory_global_dirty_log_sync();
1847
1848    qemu_mutex_lock(&rs->bitmap_mutex);
1849    WITH_RCU_READ_LOCK_GUARD() {
1850        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1851            ramblock_sync_dirty_bitmap(rs, block);
1852        }
1853        ram_counters.remaining = ram_bytes_remaining();
1854    }
1855    qemu_mutex_unlock(&rs->bitmap_mutex);
1856
1857    memory_global_after_dirty_log_sync();
1858    trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1859
1860    end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1861
1862    /* more than 1 second = 1000 millisecons */
1863    if (end_time > rs->time_last_bitmap_sync + 1000) {
1864        bytes_xfer_now = ram_counters.transferred;
1865
1866        /* During block migration the auto-converge logic incorrectly detects
1867         * that ram migration makes no progress. Avoid this by disabling the
1868         * throttling logic during the bulk phase of block migration. */
1869        if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1870            /* The following detection logic can be refined later. For now:
1871               Check to see if the dirtied bytes is 50% more than the approx.
1872               amount of bytes that just got transferred since the last time we
1873               were in this routine. If that happens twice, start or increase
1874               throttling */
1875
1876            if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1877                   (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1878                (++rs->dirty_rate_high_cnt >= 2)) {
1879                    trace_migration_throttle();
1880                    rs->dirty_rate_high_cnt = 0;
1881                    mig_throttle_guest_down();
1882            }
1883        }
1884
1885        migration_update_rates(rs, end_time);
1886
1887        rs->target_page_count_prev = rs->target_page_count;
1888
1889        /* reset period counters */
1890        rs->time_last_bitmap_sync = end_time;
1891        rs->num_dirty_pages_period = 0;
1892        rs->bytes_xfer_prev = bytes_xfer_now;
1893    }
1894    if (migrate_use_events()) {
1895        qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1896    }
1897}
1898
1899static void migration_bitmap_sync_precopy(RAMState *rs)
1900{
1901    Error *local_err = NULL;
1902
1903    /*
1904     * The current notifier usage is just an optimization to migration, so we
1905     * don't stop the normal migration process in the error case.
1906     */
1907    if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1908        error_report_err(local_err);
1909    }
1910
1911    migration_bitmap_sync(rs);
1912
1913    if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1914        error_report_err(local_err);
1915    }
1916}
1917
1918/**
1919 * save_zero_page_to_file: send the zero page to the file
1920 *
1921 * Returns the size of data written to the file, 0 means the page is not
1922 * a zero page
1923 *
1924 * @rs: current RAM state
1925 * @file: the file where the data is saved
1926 * @block: block that contains the page we want to send
1927 * @offset: offset inside the block for the page
1928 */
1929static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1930                                  RAMBlock *block, ram_addr_t offset)
1931{
1932    uint8_t *p = block->host + offset;
1933    int len = 0;
1934
1935    if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1936        len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1937        qemu_put_byte(file, 0);
1938        len += 1;
1939    }
1940    return len;
1941}
1942
1943/**
1944 * save_zero_page: send the zero page to the stream
1945 *
1946 * Returns the number of pages written.
1947 *
1948 * @rs: current RAM state
1949 * @block: block that contains the page we want to send
1950 * @offset: offset inside the block for the page
1951 */
1952static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1953{
1954    int len = save_zero_page_to_file(rs, rs->f, block, offset);
1955
1956    if (len) {
1957        ram_counters.duplicate++;
1958        ram_counters.transferred += len;
1959        return 1;
1960    }
1961    return -1;
1962}
1963
1964static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1965{
1966    if (!migrate_release_ram() || !migration_in_postcopy()) {
1967        return;
1968    }
1969
1970    ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1971}
1972
1973/*
1974 * @pages: the number of pages written by the control path,
1975 *        < 0 - error
1976 *        > 0 - number of pages written
1977 *
1978 * Return true if the pages has been saved, otherwise false is returned.
1979 */
1980static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1981                              int *pages)
1982{
1983    uint64_t bytes_xmit = 0;
1984    int ret;
1985
1986    *pages = -1;
1987    ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1988                                &bytes_xmit);
1989    if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1990        return false;
1991    }
1992
1993    if (bytes_xmit) {
1994        ram_counters.transferred += bytes_xmit;
1995        *pages = 1;
1996    }
1997
1998    if (ret == RAM_SAVE_CONTROL_DELAYED) {
1999        return true;
2000    }
2001
2002    if (bytes_xmit > 0) {
2003        ram_counters.normal++;
2004    } else if (bytes_xmit == 0) {
2005        ram_counters.duplicate++;
2006    }
2007
2008    return true;
2009}
2010
2011/*
2012 * directly send the page to the stream
2013 *
2014 * Returns the number of pages written.
2015 *
2016 * @rs: current RAM state
2017 * @block: block that contains the page we want to send
2018 * @offset: offset inside the block for the page
2019 * @buf: the page to be sent
2020 * @async: send to page asyncly
2021 */
2022static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2023                            uint8_t *buf, bool async)
2024{
2025    ram_counters.transferred += save_page_header(rs, rs->f, block,
2026                                                 offset | RAM_SAVE_FLAG_PAGE);
2027    if (async) {
2028        qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2029                              migrate_release_ram() &
2030                              migration_in_postcopy());
2031    } else {
2032        qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2033    }
2034    ram_counters.transferred += TARGET_PAGE_SIZE;
2035    ram_counters.normal++;
2036    return 1;
2037}
2038
2039/**
2040 * ram_save_page: send the given page to the stream
2041 *
2042 * Returns the number of pages written.
2043 *          < 0 - error
2044 *          >=0 - Number of pages written - this might legally be 0
2045 *                if xbzrle noticed the page was the same.
2046 *
2047 * @rs: current RAM state
2048 * @block: block that contains the page we want to send
2049 * @offset: offset inside the block for the page
2050 * @last_stage: if we are at the completion stage
2051 */
2052static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2053{
2054    int pages = -1;
2055    uint8_t *p;
2056    bool send_async = true;
2057    RAMBlock *block = pss->block;
2058    ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2059    ram_addr_t current_addr = block->offset + offset;
2060
2061    p = block->host + offset;
2062    trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2063
2064    XBZRLE_cache_lock();
2065    if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2066        migrate_use_xbzrle()) {
2067        pages = save_xbzrle_page(rs, &p, current_addr, block,
2068                                 offset, last_stage);
2069        if (!last_stage) {
2070            /* Can't send this cached data async, since the cache page
2071             * might get updated before it gets to the wire
2072             */
2073            send_async = false;
2074        }
2075    }
2076
2077    /* XBZRLE overflow or normal page */
2078    if (pages == -1) {
2079        pages = save_normal_page(rs, block, offset, p, send_async);
2080    }
2081
2082    XBZRLE_cache_unlock();
2083
2084    return pages;
2085}
2086
2087static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2088                                 ram_addr_t offset)
2089{
2090    if (multifd_queue_page(rs, block, offset) < 0) {
2091        return -1;
2092    }
2093    ram_counters.normal++;
2094
2095    return 1;
2096}
2097
2098static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2099                                 ram_addr_t offset, uint8_t *source_buf)
2100{
2101    RAMState *rs = ram_state;
2102    uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2103    bool zero_page = false;
2104    int ret;
2105
2106    if (save_zero_page_to_file(rs, f, block, offset)) {
2107        zero_page = true;
2108        goto exit;
2109    }
2110
2111    save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2112
2113    /*
2114     * copy it to a internal buffer to avoid it being modified by VM
2115     * so that we can catch up the error during compression and
2116     * decompression
2117     */
2118    memcpy(source_buf, p, TARGET_PAGE_SIZE);
2119    ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2120    if (ret < 0) {
2121        qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2122        error_report("compressed data failed!");
2123        return false;
2124    }
2125
2126exit:
2127    ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2128    return zero_page;
2129}
2130
2131static void
2132update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2133{
2134    ram_counters.transferred += bytes_xmit;
2135
2136    if (param->zero_page) {
2137        ram_counters.duplicate++;
2138        return;
2139    }
2140
2141    /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2142    compression_counters.compressed_size += bytes_xmit - 8;
2143    compression_counters.pages++;
2144}
2145
2146static bool save_page_use_compression(RAMState *rs);
2147
2148static void flush_compressed_data(RAMState *rs)
2149{
2150    int idx, len, thread_count;
2151
2152    if (!save_page_use_compression(rs)) {
2153        return;
2154    }
2155    thread_count = migrate_compress_threads();
2156
2157    qemu_mutex_lock(&comp_done_lock);
2158    for (idx = 0; idx < thread_count; idx++) {
2159        while (!comp_param[idx].done) {
2160            qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2161        }
2162    }
2163    qemu_mutex_unlock(&comp_done_lock);
2164
2165    for (idx = 0; idx < thread_count; idx++) {
2166        qemu_mutex_lock(&comp_param[idx].mutex);
2167        if (!comp_param[idx].quit) {
2168            len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2169            /*
2170             * it's safe to fetch zero_page without holding comp_done_lock
2171             * as there is no further request submitted to the thread,
2172             * i.e, the thread should be waiting for a request at this point.
2173             */
2174            update_compress_thread_counts(&comp_param[idx], len);
2175        }
2176        qemu_mutex_unlock(&comp_param[idx].mutex);
2177    }
2178}
2179
2180static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2181                                       ram_addr_t offset)
2182{
2183    param->block = block;
2184    param->offset = offset;
2185}
2186
2187static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2188                                           ram_addr_t offset)
2189{
2190    int idx, thread_count, bytes_xmit = -1, pages = -1;
2191    bool wait = migrate_compress_wait_thread();
2192
2193    thread_count = migrate_compress_threads();
2194    qemu_mutex_lock(&comp_done_lock);
2195retry:
2196    for (idx = 0; idx < thread_count; idx++) {
2197        if (comp_param[idx].done) {
2198            comp_param[idx].done = false;
2199            bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2200            qemu_mutex_lock(&comp_param[idx].mutex);
2201            set_compress_params(&comp_param[idx], block, offset);
2202            qemu_cond_signal(&comp_param[idx].cond);
2203            qemu_mutex_unlock(&comp_param[idx].mutex);
2204            pages = 1;
2205            update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2206            break;
2207        }
2208    }
2209
2210    /*
2211     * wait for the free thread if the user specifies 'compress-wait-thread',
2212     * otherwise we will post the page out in the main thread as normal page.
2213     */
2214    if (pages < 0 && wait) {
2215        qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2216        goto retry;
2217    }
2218    qemu_mutex_unlock(&comp_done_lock);
2219
2220    return pages;
2221}
2222
2223/**
2224 * find_dirty_block: find the next dirty page and update any state
2225 * associated with the search process.
2226 *
2227 * Returns true if a page is found
2228 *
2229 * @rs: current RAM state
2230 * @pss: data about the state of the current dirty page scan
2231 * @again: set to false if the search has scanned the whole of RAM
2232 */
2233static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2234{
2235    pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2236    if (pss->complete_round && pss->block == rs->last_seen_block &&
2237        pss->page >= rs->last_page) {
2238        /*
2239         * We've been once around the RAM and haven't found anything.
2240         * Give up.
2241         */
2242        *again = false;
2243        return false;
2244    }
2245    if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2246        /* Didn't find anything in this RAM Block */
2247        pss->page = 0;
2248        pss->block = QLIST_NEXT_RCU(pss->block, next);
2249        if (!pss->block) {
2250            /*
2251             * If memory migration starts over, we will meet a dirtied page
2252             * which may still exists in compression threads's ring, so we
2253             * should flush the compressed data to make sure the new page
2254             * is not overwritten by the old one in the destination.
2255             *
2256             * Also If xbzrle is on, stop using the data compression at this
2257             * point. In theory, xbzrle can do better than compression.
2258             */
2259            flush_compressed_data(rs);
2260
2261            /* Hit the end of the list */
2262            pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2263            /* Flag that we've looped */
2264            pss->complete_round = true;
2265            rs->ram_bulk_stage = false;
2266        }
2267        /* Didn't find anything this time, but try again on the new block */
2268        *again = true;
2269        return false;
2270    } else {
2271        /* Can go around again, but... */
2272        *again = true;
2273        /* We've found something so probably don't need to */
2274        return true;
2275    }
2276}
2277
2278/**
2279 * unqueue_page: gets a page of the queue
2280 *
2281 * Helper for 'get_queued_page' - gets a page off the queue
2282 *
2283 * Returns the block of the page (or NULL if none available)
2284 *
2285 * @rs: current RAM state
2286 * @offset: used to return the offset within the RAMBlock
2287 */
2288static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2289{
2290    RAMBlock *block = NULL;
2291
2292    if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2293        return NULL;
2294    }
2295
2296    qemu_mutex_lock(&rs->src_page_req_mutex);
2297    if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2298        struct RAMSrcPageRequest *entry =
2299                                QSIMPLEQ_FIRST(&rs->src_page_requests);
2300        block = entry->rb;
2301        *offset = entry->offset;
2302
2303        if (entry->len > TARGET_PAGE_SIZE) {
2304            entry->len -= TARGET_PAGE_SIZE;
2305            entry->offset += TARGET_PAGE_SIZE;
2306        } else {
2307            memory_region_unref(block->mr);
2308            QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2309            g_free(entry);
2310            migration_consume_urgent_request();
2311        }
2312    }
2313    qemu_mutex_unlock(&rs->src_page_req_mutex);
2314
2315    return block;
2316}
2317
2318/**
2319 * get_queued_page: unqueue a page from the postcopy requests
2320 *
2321 * Skips pages that are already sent (!dirty)
2322 *
2323 * Returns true if a queued page is found
2324 *
2325 * @rs: current RAM state
2326 * @pss: data about the state of the current dirty page scan
2327 */
2328static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2329{
2330    RAMBlock  *block;
2331    ram_addr_t offset;
2332    bool dirty;
2333
2334    do {
2335        block = unqueue_page(rs, &offset);
2336        /*
2337         * We're sending this page, and since it's postcopy nothing else
2338         * will dirty it, and we must make sure it doesn't get sent again
2339         * even if this queue request was received after the background
2340         * search already sent it.
2341         */
2342        if (block) {
2343            unsigned long page;
2344
2345            page = offset >> TARGET_PAGE_BITS;
2346            dirty = test_bit(page, block->bmap);
2347            if (!dirty) {
2348                trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2349                                                page);
2350            } else {
2351                trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2352            }
2353        }
2354
2355    } while (block && !dirty);
2356
2357    if (block) {
2358        /*
2359         * As soon as we start servicing pages out of order, then we have
2360         * to kill the bulk stage, since the bulk stage assumes
2361         * in (migration_bitmap_find_and_reset_dirty) that every page is
2362         * dirty, that's no longer true.
2363         */
2364        rs->ram_bulk_stage = false;
2365
2366        /*
2367         * We want the background search to continue from the queued page
2368         * since the guest is likely to want other pages near to the page
2369         * it just requested.
2370         */
2371        pss->block = block;
2372        pss->page = offset >> TARGET_PAGE_BITS;
2373
2374        /*
2375         * This unqueued page would break the "one round" check, even is
2376         * really rare.
2377         */
2378        pss->complete_round = false;
2379    }
2380
2381    return !!block;
2382}
2383
2384/**
2385 * migration_page_queue_free: drop any remaining pages in the ram
2386 * request queue
2387 *
2388 * It should be empty at the end anyway, but in error cases there may
2389 * be some left.  in case that there is any page left, we drop it.
2390 *
2391 */
2392static void migration_page_queue_free(RAMState *rs)
2393{
2394    struct RAMSrcPageRequest *mspr, *next_mspr;
2395    /* This queue generally should be empty - but in the case of a failed
2396     * migration might have some droppings in.
2397     */
2398    RCU_READ_LOCK_GUARD();
2399    QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2400        memory_region_unref(mspr->rb->mr);
2401        QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2402        g_free(mspr);
2403    }
2404}
2405
2406/**
2407 * ram_save_queue_pages: queue the page for transmission
2408 *
2409 * A request from postcopy destination for example.
2410 *
2411 * Returns zero on success or negative on error
2412 *
2413 * @rbname: Name of the RAMBLock of the request. NULL means the
2414 *          same that last one.
2415 * @start: starting address from the start of the RAMBlock
2416 * @len: length (in bytes) to send
2417 */
2418int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2419{
2420    RAMBlock *ramblock;
2421    RAMState *rs = ram_state;
2422
2423    ram_counters.postcopy_requests++;
2424    RCU_READ_LOCK_GUARD();
2425
2426    if (!rbname) {
2427        /* Reuse last RAMBlock */
2428        ramblock = rs->last_req_rb;
2429
2430        if (!ramblock) {
2431            /*
2432             * Shouldn't happen, we can't reuse the last RAMBlock if
2433             * it's the 1st request.
2434             */
2435            error_report("ram_save_queue_pages no previous block");
2436            goto err;
2437        }
2438    } else {
2439        ramblock = qemu_ram_block_by_name(rbname);
2440
2441        if (!ramblock) {
2442            /* We shouldn't be asked for a non-existent RAMBlock */
2443            error_report("ram_save_queue_pages no block '%s'", rbname);
2444            goto err;
2445        }
2446        rs->last_req_rb = ramblock;
2447    }
2448    trace_ram_save_queue_pages(ramblock->idstr, start, len);
2449    if (start+len > ramblock->used_length) {
2450        error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2451                     RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2452                     __func__, start, len, ramblock->used_length);
2453        goto err;
2454    }
2455
2456    struct RAMSrcPageRequest *new_entry =
2457        g_malloc0(sizeof(struct RAMSrcPageRequest));
2458    new_entry->rb = ramblock;
2459    new_entry->offset = start;
2460    new_entry->len = len;
2461
2462    memory_region_ref(ramblock->mr);
2463    qemu_mutex_lock(&rs->src_page_req_mutex);
2464    QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2465    migration_make_urgent_request();
2466    qemu_mutex_unlock(&rs->src_page_req_mutex);
2467
2468    return 0;
2469
2470err:
2471    return -1;
2472}
2473
2474static bool save_page_use_compression(RAMState *rs)
2475{
2476    if (!migrate_use_compression()) {
2477        return false;
2478    }
2479
2480    /*
2481     * If xbzrle is on, stop using the data compression after first
2482     * round of migration even if compression is enabled. In theory,
2483     * xbzrle can do better than compression.
2484     */
2485    if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2486        return true;
2487    }
2488
2489    return false;
2490}
2491
2492/*
2493 * try to compress the page before posting it out, return true if the page
2494 * has been properly handled by compression, otherwise needs other
2495 * paths to handle it
2496 */
2497static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2498{
2499    if (!save_page_use_compression(rs)) {
2500        return false;
2501    }
2502
2503    /*
2504     * When starting the process of a new block, the first page of
2505     * the block should be sent out before other pages in the same
2506     * block, and all the pages in last block should have been sent
2507     * out, keeping this order is important, because the 'cont' flag
2508     * is used to avoid resending the block name.
2509     *
2510     * We post the fist page as normal page as compression will take
2511     * much CPU resource.
2512     */
2513    if (block != rs->last_sent_block) {
2514        flush_compressed_data(rs);
2515        return false;
2516    }
2517
2518    if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2519        return true;
2520    }
2521
2522    compression_counters.busy++;
2523    return false;
2524}
2525
2526/**
2527 * ram_save_target_page: save one target page
2528 *
2529 * Returns the number of pages written
2530 *
2531 * @rs: current RAM state
2532 * @pss: data about the page we want to send
2533 * @last_stage: if we are at the completion stage
2534 */
2535static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2536                                bool last_stage)
2537{
2538    RAMBlock *block = pss->block;
2539    ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2540    int res;
2541
2542    if (control_save_page(rs, block, offset, &res)) {
2543        return res;
2544    }
2545
2546    if (save_compress_page(rs, block, offset)) {
2547        return 1;
2548    }
2549
2550    res = save_zero_page(rs, block, offset);
2551    if (res > 0) {
2552        /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2553         * page would be stale
2554         */
2555        if (!save_page_use_compression(rs)) {
2556            XBZRLE_cache_lock();
2557            xbzrle_cache_zero_page(rs, block->offset + offset);
2558            XBZRLE_cache_unlock();
2559        }
2560        ram_release_pages(block->idstr, offset, res);
2561        return res;
2562    }
2563
2564    /*
2565     * do not use multifd for compression as the first page in the new
2566     * block should be posted out before sending the compressed page
2567     */
2568    if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2569        return ram_save_multifd_page(rs, block, offset);
2570    }
2571
2572    return ram_save_page(rs, pss, last_stage);
2573}
2574
2575/**
2576 * ram_save_host_page: save a whole host page
2577 *
2578 * Starting at *offset send pages up to the end of the current host
2579 * page. It's valid for the initial offset to point into the middle of
2580 * a host page in which case the remainder of the hostpage is sent.
2581 * Only dirty target pages are sent. Note that the host page size may
2582 * be a huge page for this block.
2583 * The saving stops at the boundary of the used_length of the block
2584 * if the RAMBlock isn't a multiple of the host page size.
2585 *
2586 * Returns the number of pages written or negative on error
2587 *
2588 * @rs: current RAM state
2589 * @ms: current migration state
2590 * @pss: data about the page we want to send
2591 * @last_stage: if we are at the completion stage
2592 */
2593static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2594                              bool last_stage)
2595{
2596    int tmppages, pages = 0;
2597    size_t pagesize_bits =
2598        qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2599
2600    if (ramblock_is_ignored(pss->block)) {
2601        error_report("block %s should not be migrated !", pss->block->idstr);
2602        return 0;
2603    }
2604
2605    do {
2606        /* Check the pages is dirty and if it is send it */
2607        if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2608            pss->page++;
2609            continue;
2610        }
2611
2612        tmppages = ram_save_target_page(rs, pss, last_stage);
2613        if (tmppages < 0) {
2614            return tmppages;
2615        }
2616
2617        pages += tmppages;
2618        pss->page++;
2619    } while ((pss->page & (pagesize_bits - 1)) &&
2620             offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2621
2622    /* The offset we leave with is the last one we looked at */
2623    pss->page--;
2624    return pages;
2625}
2626
2627/**
2628 * ram_find_and_save_block: finds a dirty page and sends it to f
2629 *
2630 * Called within an RCU critical section.
2631 *
2632 * Returns the number of pages written where zero means no dirty pages,
2633 * or negative on error
2634 *
2635 * @rs: current RAM state
2636 * @last_stage: if we are at the completion stage
2637 *
2638 * On systems where host-page-size > target-page-size it will send all the
2639 * pages in a host page that are dirty.
2640 */
2641
2642static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2643{
2644    PageSearchStatus pss;
2645    int pages = 0;
2646    bool again, found;
2647
2648    /* No dirty page as there is zero RAM */
2649    if (!ram_bytes_total()) {
2650        return pages;
2651    }
2652
2653    pss.block = rs->last_seen_block;
2654    pss.page = rs->last_page;
2655    pss.complete_round = false;
2656
2657    if (!pss.block) {
2658        pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2659    }
2660
2661    do {
2662        again = true;
2663        found = get_queued_page(rs, &pss);
2664
2665        if (!found) {
2666            /* priority queue empty, so just search for something dirty */
2667            found = find_dirty_block(rs, &pss, &again);
2668        }
2669
2670        if (found) {
2671            pages = ram_save_host_page(rs, &pss, last_stage);
2672        }
2673    } while (!pages && again);
2674
2675    rs->last_seen_block = pss.block;
2676    rs->last_page = pss.page;
2677
2678    return pages;
2679}
2680
2681void acct_update_position(QEMUFile *f, size_t size, bool zero)
2682{
2683    uint64_t pages = size / TARGET_PAGE_SIZE;
2684
2685    if (zero) {
2686        ram_counters.duplicate += pages;
2687    } else {
2688        ram_counters.normal += pages;
2689        ram_counters.transferred += size;
2690        qemu_update_position(f, size);
2691    }
2692}
2693
2694static uint64_t ram_bytes_total_common(bool count_ignored)
2695{
2696    RAMBlock *block;
2697    uint64_t total = 0;
2698
2699    RCU_READ_LOCK_GUARD();
2700
2701    if (count_ignored) {
2702        RAMBLOCK_FOREACH_MIGRATABLE(block) {
2703            total += block->used_length;
2704        }
2705    } else {
2706        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2707            total += block->used_length;
2708        }
2709    }
2710    return total;
2711}
2712
2713uint64_t ram_bytes_total(void)
2714{
2715    return ram_bytes_total_common(false);
2716}
2717
2718static void xbzrle_load_setup(void)
2719{
2720    XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2721}
2722
2723static void xbzrle_load_cleanup(void)
2724{
2725    g_free(XBZRLE.decoded_buf);
2726    XBZRLE.decoded_buf = NULL;
2727}
2728
2729static void ram_state_cleanup(RAMState **rsp)
2730{
2731    if (*rsp) {
2732        migration_page_queue_free(*rsp);
2733        qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2734        qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2735        g_free(*rsp);
2736        *rsp = NULL;
2737    }
2738}
2739
2740static void xbzrle_cleanup(void)
2741{
2742    XBZRLE_cache_lock();
2743    if (XBZRLE.cache) {
2744        cache_fini(XBZRLE.cache);
2745        g_free(XBZRLE.encoded_buf);
2746        g_free(XBZRLE.current_buf);
2747        g_free(XBZRLE.zero_target_page);
2748        XBZRLE.cache = NULL;
2749        XBZRLE.encoded_buf = NULL;
2750        XBZRLE.current_buf = NULL;
2751        XBZRLE.zero_target_page = NULL;
2752    }
2753    XBZRLE_cache_unlock();
2754}
2755
2756static void ram_save_cleanup(void *opaque)
2757{
2758    RAMState **rsp = opaque;
2759    RAMBlock *block;
2760
2761    /* caller have hold iothread lock or is in a bh, so there is
2762     * no writing race against the migration bitmap
2763     */
2764    memory_global_dirty_log_stop();
2765
2766    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2767        g_free(block->clear_bmap);
2768        block->clear_bmap = NULL;
2769        g_free(block->bmap);
2770        block->bmap = NULL;
2771    }
2772
2773    xbzrle_cleanup();
2774    compress_threads_save_cleanup();
2775    ram_state_cleanup(rsp);
2776}
2777
2778static void ram_state_reset(RAMState *rs)
2779{
2780    rs->last_seen_block = NULL;
2781    rs->last_sent_block = NULL;
2782    rs->last_page = 0;
2783    rs->last_version = ram_list.version;
2784    rs->ram_bulk_stage = true;
2785    rs->fpo_enabled = false;
2786}
2787
2788#define MAX_WAIT 50 /* ms, half buffered_file limit */
2789
2790/*
2791 * 'expected' is the value you expect the bitmap mostly to be full
2792 * of; it won't bother printing lines that are all this value.
2793 * If 'todump' is null the migration bitmap is dumped.
2794 */
2795void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2796                           unsigned long pages)
2797{
2798    int64_t cur;
2799    int64_t linelen = 128;
2800    char linebuf[129];
2801
2802    for (cur = 0; cur < pages; cur += linelen) {
2803        int64_t curb;
2804        bool found = false;
2805        /*
2806         * Last line; catch the case where the line length
2807         * is longer than remaining ram
2808         */
2809        if (cur + linelen > pages) {
2810            linelen = pages - cur;
2811        }
2812        for (curb = 0; curb < linelen; curb++) {
2813            bool thisbit = test_bit(cur + curb, todump);
2814            linebuf[curb] = thisbit ? '1' : '.';
2815            found = found || (thisbit != expected);
2816        }
2817        if (found) {
2818            linebuf[curb] = '\0';
2819            fprintf(stderr,  "0x%08" PRIx64 " : %s\n", cur, linebuf);
2820        }
2821    }
2822}
2823
2824/* **** functions for postcopy ***** */
2825
2826void ram_postcopy_migrated_memory_release(MigrationState *ms)
2827{
2828    struct RAMBlock *block;
2829
2830    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2831        unsigned long *bitmap = block->bmap;
2832        unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2833        unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2834
2835        while (run_start < range) {
2836            unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2837            ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2838                              (run_end - run_start) << TARGET_PAGE_BITS);
2839            run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2840        }
2841    }
2842}
2843
2844/**
2845 * postcopy_send_discard_bm_ram: discard a RAMBlock
2846 *
2847 * Returns zero on success
2848 *
2849 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2850 *
2851 * @ms: current migration state
2852 * @block: RAMBlock to discard
2853 */
2854static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2855{
2856    unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2857    unsigned long current;
2858    unsigned long *bitmap = block->bmap;
2859
2860    for (current = 0; current < end; ) {
2861        unsigned long one = find_next_bit(bitmap, end, current);
2862        unsigned long zero, discard_length;
2863
2864        if (one >= end) {
2865            break;
2866        }
2867
2868        zero = find_next_zero_bit(bitmap, end, one + 1);
2869
2870        if (zero >= end) {
2871            discard_length = end - one;
2872        } else {
2873            discard_length = zero - one;
2874        }
2875        postcopy_discard_send_range(ms, one, discard_length);
2876        current = one + discard_length;
2877    }
2878
2879    return 0;
2880}
2881
2882/**
2883 * postcopy_each_ram_send_discard: discard all RAMBlocks
2884 *
2885 * Returns 0 for success or negative for error
2886 *
2887 * Utility for the outgoing postcopy code.
2888 *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2889 *   passing it bitmap indexes and name.
2890 * (qemu_ram_foreach_block ends up passing unscaled lengths
2891 *  which would mean postcopy code would have to deal with target page)
2892 *
2893 * @ms: current migration state
2894 */
2895static int postcopy_each_ram_send_discard(MigrationState *ms)
2896{
2897    struct RAMBlock *block;
2898    int ret;
2899
2900    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2901        postcopy_discard_send_init(ms, block->idstr);
2902
2903        /*
2904         * Postcopy sends chunks of bitmap over the wire, but it
2905         * just needs indexes at this point, avoids it having
2906         * target page specific code.
2907         */
2908        ret = postcopy_send_discard_bm_ram(ms, block);
2909        postcopy_discard_send_finish(ms);
2910        if (ret) {
2911            return ret;
2912        }
2913    }
2914
2915    return 0;
2916}
2917
2918/**
2919 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2920 *
2921 * Helper for postcopy_chunk_hostpages; it's called twice to
2922 * canonicalize the two bitmaps, that are similar, but one is
2923 * inverted.
2924 *
2925 * Postcopy requires that all target pages in a hostpage are dirty or
2926 * clean, not a mix.  This function canonicalizes the bitmaps.
2927 *
2928 * @ms: current migration state
2929 * @block: block that contains the page we want to canonicalize
2930 */
2931static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2932{
2933    RAMState *rs = ram_state;
2934    unsigned long *bitmap = block->bmap;
2935    unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2936    unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2937    unsigned long run_start;
2938
2939    if (block->page_size == TARGET_PAGE_SIZE) {
2940        /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2941        return;
2942    }
2943
2944    /* Find a dirty page */
2945    run_start = find_next_bit(bitmap, pages, 0);
2946
2947    while (run_start < pages) {
2948
2949        /*
2950         * If the start of this run of pages is in the middle of a host
2951         * page, then we need to fixup this host page.
2952         */
2953        if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2954            /* Find the end of this run */
2955            run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2956            /*
2957             * If the end isn't at the start of a host page, then the
2958             * run doesn't finish at the end of a host page
2959             * and we need to discard.
2960             */
2961        }
2962
2963        if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2964            unsigned long page;
2965            unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2966                                                             host_ratio);
2967            run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2968
2969            /* Clean up the bitmap */
2970            for (page = fixup_start_addr;
2971                 page < fixup_start_addr + host_ratio; page++) {
2972                /*
2973                 * Remark them as dirty, updating the count for any pages
2974                 * that weren't previously dirty.
2975                 */
2976                rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2977            }
2978        }
2979
2980        /* Find the next dirty page for the next iteration */
2981        run_start = find_next_bit(bitmap, pages, run_start);
2982    }
2983}
2984
2985/**
2986 * postcopy_chunk_hostpages: discard any partially sent host page
2987 *
2988 * Utility for the outgoing postcopy code.
2989 *
2990 * Discard any partially sent host-page size chunks, mark any partially
2991 * dirty host-page size chunks as all dirty.  In this case the host-page
2992 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2993 *
2994 * Returns zero on success
2995 *
2996 * @ms: current migration state
2997 * @block: block we want to work with
2998 */
2999static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3000{
3001    postcopy_discard_send_init(ms, block->idstr);
3002
3003    /*
3004     * Ensure that all partially dirty host pages are made fully dirty.
3005     */
3006    postcopy_chunk_hostpages_pass(ms, block);
3007
3008    postcopy_discard_send_finish(ms);
3009    return 0;
3010}
3011
3012/**
3013 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3014 *
3015 * Returns zero on success
3016 *
3017 * Transmit the set of pages to be discarded after precopy to the target
3018 * these are pages that:
3019 *     a) Have been previously transmitted but are now dirty again
3020 *     b) Pages that have never been transmitted, this ensures that
3021 *        any pages on the destination that have been mapped by background
3022 *        tasks get discarded (transparent huge pages is the specific concern)
3023 * Hopefully this is pretty sparse
3024 *
3025 * @ms: current migration state
3026 */
3027int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3028{
3029    RAMState *rs = ram_state;
3030    RAMBlock *block;
3031    int ret;
3032
3033    RCU_READ_LOCK_GUARD();
3034
3035    /* This should be our last sync, the src is now paused */
3036    migration_bitmap_sync(rs);
3037
3038    /* Easiest way to make sure we don't resume in the middle of a host-page */
3039    rs->last_seen_block = NULL;
3040    rs->last_sent_block = NULL;
3041    rs->last_page = 0;
3042
3043    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3044        /* Deal with TPS != HPS and huge pages */
3045        ret = postcopy_chunk_hostpages(ms, block);
3046        if (ret) {
3047            return ret;
3048        }
3049
3050#ifdef DEBUG_POSTCOPY
3051        ram_debug_dump_bitmap(block->bmap, true,
3052                              block->used_length >> TARGET_PAGE_BITS);
3053#endif
3054    }
3055    trace_ram_postcopy_send_discard_bitmap();
3056
3057    ret = postcopy_each_ram_send_discard(ms);
3058
3059    return ret;
3060}
3061
3062/**
3063 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3064 *
3065 * Returns zero on success
3066 *
3067 * @rbname: name of the RAMBlock of the request. NULL means the
3068 *          same that last one.
3069 * @start: RAMBlock starting page
3070 * @length: RAMBlock size
3071 */
3072int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3073{
3074    int ret = -1;
3075
3076    trace_ram_discard_range(rbname, start, length);
3077
3078    RCU_READ_LOCK_GUARD();
3079    RAMBlock *rb = qemu_ram_block_by_name(rbname);
3080
3081    if (!rb) {
3082        error_report("ram_discard_range: Failed to find block '%s'", rbname);
3083        goto err;
3084    }
3085
3086    /*
3087     * On source VM, we don't need to update the received bitmap since
3088     * we don't even have one.
3089     */
3090    if (rb->receivedmap) {
3091        bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3092                     length >> qemu_target_page_bits());
3093    }
3094
3095    ret = ram_block_discard_range(rb, start, length);
3096
3097err:
3098    return ret;
3099}
3100
3101/*
3102 * For every allocation, we will try not to crash the VM if the
3103 * allocation failed.
3104 */
3105static int xbzrle_init(void)
3106{
3107    Error *local_err = NULL;
3108
3109    if (!migrate_use_xbzrle()) {
3110        return 0;
3111    }
3112
3113    XBZRLE_cache_lock();
3114
3115    XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3116    if (!XBZRLE.zero_target_page) {
3117        error_report("%s: Error allocating zero page", __func__);
3118        goto err_out;
3119    }
3120
3121    XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3122                              TARGET_PAGE_SIZE, &local_err);
3123    if (!XBZRLE.cache) {
3124        error_report_err(local_err);
3125        goto free_zero_page;
3126    }
3127
3128    XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3129    if (!XBZRLE.encoded_buf) {
3130        error_report("%s: Error allocating encoded_buf", __func__);
3131        goto free_cache;
3132    }
3133
3134    XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3135    if (!XBZRLE.current_buf) {
3136        error_report("%s: Error allocating current_buf", __func__);
3137        goto free_encoded_buf;
3138    }
3139
3140    /* We are all good */
3141    XBZRLE_cache_unlock();
3142    return 0;
3143
3144free_encoded_buf:
3145    g_free(XBZRLE.encoded_buf);
3146    XBZRLE.encoded_buf = NULL;
3147free_cache:
3148    cache_fini(XBZRLE.cache);
3149    XBZRLE.cache = NULL;
3150free_zero_page:
3151    g_free(XBZRLE.zero_target_page);
3152    XBZRLE.zero_target_page = NULL;
3153err_out:
3154    XBZRLE_cache_unlock();
3155    return -ENOMEM;
3156}
3157
3158static int ram_state_init(RAMState **rsp)
3159{
3160    *rsp = g_try_new0(RAMState, 1);
3161
3162    if (!*rsp) {
3163        error_report("%s: Init ramstate fail", __func__);
3164        return -1;
3165    }
3166
3167    qemu_mutex_init(&(*rsp)->bitmap_mutex);
3168    qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3169    QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3170
3171    /*
3172     * Count the total number of pages used by ram blocks not including any
3173     * gaps due to alignment or unplugs.
3174     * This must match with the initial values of dirty bitmap.
3175     */
3176    (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3177    ram_state_reset(*rsp);
3178
3179    return 0;
3180}
3181
3182static void ram_list_init_bitmaps(void)
3183{
3184    MigrationState *ms = migrate_get_current();
3185    RAMBlock *block;
3186    unsigned long pages;
3187    uint8_t shift;
3188
3189    /* Skip setting bitmap if there is no RAM */
3190    if (ram_bytes_total()) {
3191        shift = ms->clear_bitmap_shift;
3192        if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3193            error_report("clear_bitmap_shift (%u) too big, using "
3194                         "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3195            shift = CLEAR_BITMAP_SHIFT_MAX;
3196        } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3197            error_report("clear_bitmap_shift (%u) too small, using "
3198                         "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3199            shift = CLEAR_BITMAP_SHIFT_MIN;
3200        }
3201
3202        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3203            pages = block->max_length >> TARGET_PAGE_BITS;
3204            /*
3205             * The initial dirty bitmap for migration must be set with all
3206             * ones to make sure we'll migrate every guest RAM page to
3207             * destination.
3208             * Here we set RAMBlock.bmap all to 1 because when rebegin a
3209             * new migration after a failed migration, ram_list.
3210             * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3211             * guest memory.
3212             */
3213            block->bmap = bitmap_new(pages);
3214            bitmap_set(block->bmap, 0, pages);
3215            block->clear_bmap_shift = shift;
3216            block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3217        }
3218    }
3219}
3220
3221static void ram_init_bitmaps(RAMState *rs)
3222{
3223    /* For memory_global_dirty_log_start below.  */
3224    qemu_mutex_lock_iothread();
3225    qemu_mutex_lock_ramlist();
3226
3227    WITH_RCU_READ_LOCK_GUARD() {
3228        ram_list_init_bitmaps();
3229        memory_global_dirty_log_start();
3230        migration_bitmap_sync_precopy(rs);
3231    }
3232    qemu_mutex_unlock_ramlist();
3233    qemu_mutex_unlock_iothread();
3234}
3235
3236static int ram_init_all(RAMState **rsp)
3237{
3238    if (ram_state_init(rsp)) {
3239        return -1;
3240    }
3241
3242    if (xbzrle_init()) {
3243        ram_state_cleanup(rsp);
3244        return -1;
3245    }
3246
3247    ram_init_bitmaps(*rsp);
3248
3249    return 0;
3250}
3251
3252static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3253{
3254    RAMBlock *block;
3255    uint64_t pages = 0;
3256
3257    /*
3258     * Postcopy is not using xbzrle/compression, so no need for that.
3259     * Also, since source are already halted, we don't need to care
3260     * about dirty page logging as well.
3261     */
3262
3263    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3264        pages += bitmap_count_one(block->bmap,
3265                                  block->used_length >> TARGET_PAGE_BITS);
3266    }
3267
3268    /* This may not be aligned with current bitmaps. Recalculate. */
3269    rs->migration_dirty_pages = pages;
3270
3271    rs->last_seen_block = NULL;
3272    rs->last_sent_block = NULL;
3273    rs->last_page = 0;
3274    rs->last_version = ram_list.version;
3275    /*
3276     * Disable the bulk stage, otherwise we'll resend the whole RAM no
3277     * matter what we have sent.
3278     */
3279    rs->ram_bulk_stage = false;
3280
3281    /* Update RAMState cache of output QEMUFile */
3282    rs->f = out;
3283
3284    trace_ram_state_resume_prepare(pages);
3285}
3286
3287/*
3288 * This function clears bits of the free pages reported by the caller from the
3289 * migration dirty bitmap. @addr is the host address corresponding to the
3290 * start of the continuous guest free pages, and @len is the total bytes of
3291 * those pages.
3292 */
3293void qemu_guest_free_page_hint(void *addr, size_t len)
3294{
3295    RAMBlock *block;
3296    ram_addr_t offset;
3297    size_t used_len, start, npages;
3298    MigrationState *s = migrate_get_current();
3299
3300    /* This function is currently expected to be used during live migration */
3301    if (!migration_is_setup_or_active(s->state)) {
3302        return;
3303    }
3304
3305    for (; len > 0; len -= used_len, addr += used_len) {
3306        block = qemu_ram_block_from_host(addr, false, &offset);
3307        if (unlikely(!block || offset >= block->used_length)) {
3308            /*
3309             * The implementation might not support RAMBlock resize during
3310             * live migration, but it could happen in theory with future
3311             * updates. So we add a check here to capture that case.
3312             */
3313            error_report_once("%s unexpected error", __func__);
3314            return;
3315        }
3316
3317        if (len <= block->used_length - offset) {
3318            used_len = len;
3319        } else {
3320            used_len = block->used_length - offset;
3321        }
3322
3323        start = offset >> TARGET_PAGE_BITS;
3324        npages = used_len >> TARGET_PAGE_BITS;
3325
3326        qemu_mutex_lock(&ram_state->bitmap_mutex);
3327        ram_state->migration_dirty_pages -=
3328                      bitmap_count_one_with_offset(block->bmap, start, npages);
3329        bitmap_clear(block->bmap, start, npages);
3330        qemu_mutex_unlock(&ram_state->bitmap_mutex);
3331    }
3332}
3333
3334/*
3335 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3336 * long-running RCU critical section.  When rcu-reclaims in the code
3337 * start to become numerous it will be necessary to reduce the
3338 * granularity of these critical sections.
3339 */
3340
3341/**
3342 * ram_save_setup: Setup RAM for migration
3343 *
3344 * Returns zero to indicate success and negative for error
3345 *
3346 * @f: QEMUFile where to send the data
3347 * @opaque: RAMState pointer
3348 */
3349static int ram_save_setup(QEMUFile *f, void *opaque)
3350{
3351    RAMState **rsp = opaque;
3352    RAMBlock *block;
3353
3354    if (compress_threads_save_setup()) {
3355        return -1;
3356    }
3357
3358    /* migration has already setup the bitmap, reuse it. */
3359    if (!migration_in_colo_state()) {
3360        if (ram_init_all(rsp) != 0) {
3361            compress_threads_save_cleanup();
3362            return -1;
3363        }
3364    }
3365    (*rsp)->f = f;
3366
3367    WITH_RCU_READ_LOCK_GUARD() {
3368        qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3369
3370        RAMBLOCK_FOREACH_MIGRATABLE(block) {
3371            qemu_put_byte(f, strlen(block->idstr));
3372            qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3373            qemu_put_be64(f, block->used_length);
3374            if (migrate_postcopy_ram() && block->page_size !=
3375                                          qemu_host_page_size) {
3376                qemu_put_be64(f, block->page_size);
3377            }
3378            if (migrate_ignore_shared()) {
3379                qemu_put_be64(f, block->mr->addr);
3380            }
3381        }
3382    }
3383
3384    ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3385    ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3386
3387    multifd_send_sync_main(*rsp);
3388    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3389    qemu_fflush(f);
3390
3391    return 0;
3392}
3393
3394/**
3395 * ram_save_iterate: iterative stage for migration
3396 *
3397 * Returns zero to indicate success and negative for error
3398 *
3399 * @f: QEMUFile where to send the data
3400 * @opaque: RAMState pointer
3401 */
3402static int ram_save_iterate(QEMUFile *f, void *opaque)
3403{
3404    RAMState **temp = opaque;
3405    RAMState *rs = *temp;
3406    int ret;
3407    int i;
3408    int64_t t0;
3409    int done = 0;
3410
3411    if (blk_mig_bulk_active()) {
3412        /* Avoid transferring ram during bulk phase of block migration as
3413         * the bulk phase will usually take a long time and transferring
3414         * ram updates during that time is pointless. */
3415        goto out;
3416    }
3417
3418    WITH_RCU_READ_LOCK_GUARD() {
3419        if (ram_list.version != rs->last_version) {
3420            ram_state_reset(rs);
3421        }
3422
3423        /* Read version before ram_list.blocks */
3424        smp_rmb();
3425
3426        ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3427
3428        t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3429        i = 0;
3430        while ((ret = qemu_file_rate_limit(f)) == 0 ||
3431                !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3432            int pages;
3433
3434            if (qemu_file_get_error(f)) {
3435                break;
3436            }
3437
3438            pages = ram_find_and_save_block(rs, false);
3439            /* no more pages to sent */
3440            if (pages == 0) {
3441                done = 1;
3442                break;
3443            }
3444
3445            if (pages < 0) {
3446                qemu_file_set_error(f, pages);
3447                break;
3448            }
3449
3450            rs->target_page_count += pages;
3451
3452            /*
3453             * we want to check in the 1st loop, just in case it was the 1st
3454             * time and we had to sync the dirty bitmap.
3455             * qemu_clock_get_ns() is a bit expensive, so we only check each
3456             * some iterations
3457             */
3458            if ((i & 63) == 0) {
3459                uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3460                              1000000;
3461                if (t1 > MAX_WAIT) {
3462                    trace_ram_save_iterate_big_wait(t1, i);
3463                    break;
3464                }
3465            }
3466            i++;
3467        }
3468    }
3469
3470    /*
3471     * Must occur before EOS (or any QEMUFile operation)
3472     * because of RDMA protocol.
3473     */
3474    ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3475
3476out:
3477    multifd_send_sync_main(rs);
3478    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3479    qemu_fflush(f);
3480    ram_counters.transferred += 8;
3481
3482    ret = qemu_file_get_error(f);
3483    if (ret < 0) {
3484        return ret;
3485    }
3486
3487    return done;
3488}
3489
3490/**
3491 * ram_save_complete: function called to send the remaining amount of ram
3492 *
3493 * Returns zero to indicate success or negative on error
3494 *
3495 * Called with iothread lock
3496 *
3497 * @f: QEMUFile where to send the data
3498 * @opaque: RAMState pointer
3499 */
3500static int ram_save_complete(QEMUFile *f, void *opaque)
3501{
3502    RAMState **temp = opaque;
3503    RAMState *rs = *temp;
3504    int ret = 0;
3505
3506    WITH_RCU_READ_LOCK_GUARD() {
3507        if (!migration_in_postcopy()) {
3508            migration_bitmap_sync_precopy(rs);
3509        }
3510
3511        ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3512
3513        /* try transferring iterative blocks of memory */
3514
3515        /* flush all remaining blocks regardless of rate limiting */
3516        while (true) {
3517            int pages;
3518
3519            pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3520            /* no more blocks to sent */
3521            if (pages == 0) {
3522                break;
3523            }
3524            if (pages < 0) {
3525                ret = pages;
3526                break;
3527            }
3528        }
3529
3530        flush_compressed_data(rs);
3531        ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3532    }
3533
3534    multifd_send_sync_main(rs);
3535    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3536    qemu_fflush(f);
3537
3538    return ret;
3539}
3540
3541static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3542                             uint64_t *res_precopy_only,
3543                             uint64_t *res_compatible,
3544                             uint64_t *res_postcopy_only)
3545{
3546    RAMState **temp = opaque;
3547    RAMState *rs = *temp;
3548    uint64_t remaining_size;
3549
3550    remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3551
3552    if (!migration_in_postcopy() &&
3553        remaining_size < max_size) {
3554        qemu_mutex_lock_iothread();
3555        WITH_RCU_READ_LOCK_GUARD() {
3556            migration_bitmap_sync_precopy(rs);
3557        }
3558        qemu_mutex_unlock_iothread();
3559        remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3560    }
3561
3562    if (migrate_postcopy_ram()) {
3563        /* We can do postcopy, and all the data is postcopiable */
3564        *res_compatible += remaining_size;
3565    } else {
3566        *res_precopy_only += remaining_size;
3567    }
3568}
3569
3570static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3571{
3572    unsigned int xh_len;
3573    int xh_flags;
3574    uint8_t *loaded_data;
3575
3576    /* extract RLE header */
3577    xh_flags = qemu_get_byte(f);
3578    xh_len = qemu_get_be16(f);
3579
3580    if (xh_flags != ENCODING_FLAG_XBZRLE) {
3581        error_report("Failed to load XBZRLE page - wrong compression!");
3582        return -1;
3583    }
3584
3585    if (xh_len > TARGET_PAGE_SIZE) {
3586        error_report("Failed to load XBZRLE page - len overflow!");
3587        return -1;
3588    }
3589    loaded_data = XBZRLE.decoded_buf;
3590    /* load data and decode */
3591    /* it can change loaded_data to point to an internal buffer */
3592    qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3593
3594    /* decode RLE */
3595    if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3596                             TARGET_PAGE_SIZE) == -1) {
3597        error_report("Failed to load XBZRLE page - decode error!");
3598        return -1;
3599    }
3600
3601    return 0;
3602}
3603
3604/**
3605 * ram_block_from_stream: read a RAMBlock id from the migration stream
3606 *
3607 * Must be called from within a rcu critical section.
3608 *
3609 * Returns a pointer from within the RCU-protected ram_list.
3610 *
3611 * @f: QEMUFile where to read the data from
3612 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3613 */
3614static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3615{
3616    static RAMBlock *block = NULL;
3617    char id[256];
3618    uint8_t len;
3619
3620    if (flags & RAM_SAVE_FLAG_CONTINUE) {
3621        if (!block) {
3622            error_report("Ack, bad migration stream!");
3623            return NULL;
3624        }
3625        return block;
3626    }
3627
3628    len = qemu_get_byte(f);
3629    qemu_get_buffer(f, (uint8_t *)id, len);
3630    id[len] = 0;
3631
3632    block = qemu_ram_block_by_name(id);
3633    if (!block) {
3634        error_report("Can't find block %s", id);
3635        return NULL;
3636    }
3637
3638    if (ramblock_is_ignored(block)) {
3639        error_report("block %s should not be migrated !", id);
3640        return NULL;
3641    }
3642
3643    return block;
3644}
3645
3646static inline void *host_from_ram_block_offset(RAMBlock *block,
3647                                               ram_addr_t offset)
3648{
3649    if (!offset_in_ramblock(block, offset)) {
3650        return NULL;
3651    }
3652
3653    return block->host + offset;
3654}
3655
3656static inline void *colo_cache_from_block_offset(RAMBlock *block,
3657                                                 ram_addr_t offset)
3658{
3659    if (!offset_in_ramblock(block, offset)) {
3660        return NULL;
3661    }
3662    if (!block->colo_cache) {
3663        error_report("%s: colo_cache is NULL in block :%s",
3664                     __func__, block->idstr);
3665        return NULL;
3666    }
3667
3668    /*
3669    * During colo checkpoint, we need bitmap of these migrated pages.
3670    * It help us to decide which pages in ram cache should be flushed
3671    * into VM's RAM later.
3672    */
3673    if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3674        ram_state->migration_dirty_pages++;
3675    }
3676    return block->colo_cache + offset;
3677}
3678
3679/**
3680 * ram_handle_compressed: handle the zero page case
3681 *
3682 * If a page (or a whole RDMA chunk) has been
3683 * determined to be zero, then zap it.
3684 *
3685 * @host: host address for the zero page
3686 * @ch: what the page is filled from.  We only support zero
3687 * @size: size of the zero page
3688 */
3689void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3690{
3691    if (ch != 0 || !is_zero_range(host, size)) {
3692        memset(host, ch, size);
3693    }
3694}
3695
3696/* return the size after decompression, or negative value on error */
3697static int
3698qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3699                     const uint8_t *source, size_t source_len)
3700{
3701    int err;
3702
3703    err = inflateReset(stream);
3704    if (err != Z_OK) {
3705        return -1;
3706    }
3707
3708    stream->avail_in = source_len;
3709    stream->next_in = (uint8_t *)source;
3710    stream->avail_out = dest_len;
3711    stream->next_out = dest;
3712
3713    err = inflate(stream, Z_NO_FLUSH);
3714    if (err != Z_STREAM_END) {
3715        return -1;
3716    }
3717
3718    return stream->total_out;
3719}
3720
3721static void *do_data_decompress(void *opaque)
3722{
3723    DecompressParam *param = opaque;
3724    unsigned long pagesize;
3725    uint8_t *des;
3726    int len, ret;
3727
3728    qemu_mutex_lock(&param->mutex);
3729    while (!param->quit) {
3730        if (param->des) {
3731            des = param->des;
3732            len = param->len;
3733            param->des = 0;
3734            qemu_mutex_unlock(&param->mutex);
3735
3736            pagesize = TARGET_PAGE_SIZE;
3737
3738            ret = qemu_uncompress_data(&param->stream, des, pagesize,
3739                                       param->compbuf, len);
3740            if (ret < 0 && migrate_get_current()->decompress_error_check) {
3741                error_report("decompress data failed");
3742                qemu_file_set_error(decomp_file, ret);
3743            }
3744
3745            qemu_mutex_lock(&decomp_done_lock);
3746            param->done = true;
3747            qemu_cond_signal(&decomp_done_cond);
3748            qemu_mutex_unlock(&decomp_done_lock);
3749
3750            qemu_mutex_lock(&param->mutex);
3751        } else {
3752            qemu_cond_wait(&param->cond, &param->mutex);
3753        }
3754    }
3755    qemu_mutex_unlock(&param->mutex);
3756
3757    return NULL;
3758}
3759
3760static int wait_for_decompress_done(void)
3761{
3762    int idx, thread_count;
3763
3764    if (!migrate_use_compression()) {
3765        return 0;
3766    }
3767
3768    thread_count = migrate_decompress_threads();
3769    qemu_mutex_lock(&decomp_done_lock);
3770    for (idx = 0; idx < thread_count; idx++) {
3771        while (!decomp_param[idx].done) {
3772            qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3773        }
3774    }
3775    qemu_mutex_unlock(&decomp_done_lock);
3776    return qemu_file_get_error(decomp_file);
3777}
3778
3779static void compress_threads_load_cleanup(void)
3780{
3781    int i, thread_count;
3782
3783    if (!migrate_use_compression()) {
3784        return;
3785    }
3786    thread_count = migrate_decompress_threads();
3787    for (i = 0; i < thread_count; i++) {
3788        /*
3789         * we use it as a indicator which shows if the thread is
3790         * properly init'd or not
3791         */
3792        if (!decomp_param[i].compbuf) {
3793            break;
3794        }
3795
3796        qemu_mutex_lock(&decomp_param[i].mutex);
3797        decomp_param[i].quit = true;
3798        qemu_cond_signal(&decomp_param[i].cond);
3799        qemu_mutex_unlock(&decomp_param[i].mutex);
3800    }
3801    for (i = 0; i < thread_count; i++) {
3802        if (!decomp_param[i].compbuf) {
3803            break;
3804        }
3805
3806        qemu_thread_join(decompress_threads + i);
3807        qemu_mutex_destroy(&decomp_param[i].mutex);
3808        qemu_cond_destroy(&decomp_param[i].cond);
3809        inflateEnd(&decomp_param[i].stream);
3810        g_free(decomp_param[i].compbuf);
3811        decomp_param[i].compbuf = NULL;
3812    }
3813    g_free(decompress_threads);
3814    g_free(decomp_param);
3815    decompress_threads = NULL;
3816    decomp_param = NULL;
3817    decomp_file = NULL;
3818}
3819
3820static int compress_threads_load_setup(QEMUFile *f)
3821{
3822    int i, thread_count;
3823
3824    if (!migrate_use_compression()) {
3825        return 0;
3826    }
3827
3828    thread_count = migrate_decompress_threads();
3829    decompress_threads = g_new0(QemuThread, thread_count);
3830    decomp_param = g_new0(DecompressParam, thread_count);
3831    qemu_mutex_init(&decomp_done_lock);
3832    qemu_cond_init(&decomp_done_cond);
3833    decomp_file = f;
3834    for (i = 0; i < thread_count; i++) {
3835        if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3836            goto exit;
3837        }
3838
3839        decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3840        qemu_mutex_init(&decomp_param[i].mutex);
3841        qemu_cond_init(&decomp_param[i].cond);
3842        decomp_param[i].done = true;
3843        decomp_param[i].quit = false;
3844        qemu_thread_create(decompress_threads + i, "decompress",
3845                           do_data_decompress, decomp_param + i,
3846                           QEMU_THREAD_JOINABLE);
3847    }
3848    return 0;
3849exit:
3850    compress_threads_load_cleanup();
3851    return -1;
3852}
3853
3854static void decompress_data_with_multi_threads(QEMUFile *f,
3855                                               void *host, int len)
3856{
3857    int idx, thread_count;
3858
3859    thread_count = migrate_decompress_threads();
3860    qemu_mutex_lock(&decomp_done_lock);
3861    while (true) {
3862        for (idx = 0; idx < thread_count; idx++) {
3863            if (decomp_param[idx].done) {
3864                decomp_param[idx].done = false;
3865                qemu_mutex_lock(&decomp_param[idx].mutex);
3866                qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3867                decomp_param[idx].des = host;
3868                decomp_param[idx].len = len;
3869                qemu_cond_signal(&decomp_param[idx].cond);
3870                qemu_mutex_unlock(&decomp_param[idx].mutex);
3871                break;
3872            }
3873        }
3874        if (idx < thread_count) {
3875            break;
3876        } else {
3877            qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3878        }
3879    }
3880    qemu_mutex_unlock(&decomp_done_lock);
3881}
3882
3883/*
3884 * colo cache: this is for secondary VM, we cache the whole
3885 * memory of the secondary VM, it is need to hold the global lock
3886 * to call this helper.
3887 */
3888int colo_init_ram_cache(void)
3889{
3890    RAMBlock *block;
3891
3892    rcu_read_lock();
3893    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3894        block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3895                                                NULL,
3896                                                false);
3897        if (!block->colo_cache) {
3898            error_report("%s: Can't alloc memory for COLO cache of block %s,"
3899                         "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3900                         block->used_length);
3901            RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3902                if (block->colo_cache) {
3903                    qemu_anon_ram_free(block->colo_cache, block->used_length);
3904                    block->colo_cache = NULL;
3905                }
3906            }
3907            return -errno;
3908        }
3909        memcpy(block->colo_cache, block->host, block->used_length);
3910    }
3911    rcu_read_unlock();
3912    /*
3913    * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3914    * with to decide which page in cache should be flushed into SVM's RAM. Here
3915    * we use the same name 'ram_bitmap' as for migration.
3916    */
3917    if (ram_bytes_total()) {
3918        RAMBlock *block;
3919
3920        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3921            unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3922
3923            block->bmap = bitmap_new(pages);
3924            bitmap_set(block->bmap, 0, pages);
3925        }
3926    }
3927    ram_state = g_new0(RAMState, 1);
3928    ram_state->migration_dirty_pages = 0;
3929    qemu_mutex_init(&ram_state->bitmap_mutex);
3930    memory_global_dirty_log_start();
3931
3932    return 0;
3933}
3934
3935/* It is need to hold the global lock to call this helper */
3936void colo_release_ram_cache(void)
3937{
3938    RAMBlock *block;
3939
3940    memory_global_dirty_log_stop();
3941    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3942        g_free(block->bmap);
3943        block->bmap = NULL;
3944    }
3945
3946    WITH_RCU_READ_LOCK_GUARD() {
3947        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3948            if (block->colo_cache) {
3949                qemu_anon_ram_free(block->colo_cache, block->used_length);
3950                block->colo_cache = NULL;
3951            }
3952        }
3953    }
3954    qemu_mutex_destroy(&ram_state->bitmap_mutex);
3955    g_free(ram_state);
3956    ram_state = NULL;
3957}
3958
3959/**
3960 * ram_load_setup: Setup RAM for migration incoming side
3961 *
3962 * Returns zero to indicate success and negative for error
3963 *
3964 * @f: QEMUFile where to receive the data
3965 * @opaque: RAMState pointer
3966 */
3967static int ram_load_setup(QEMUFile *f, void *opaque)
3968{
3969    if (compress_threads_load_setup(f)) {
3970        return -1;
3971    }
3972
3973    xbzrle_load_setup();
3974    ramblock_recv_map_init();
3975
3976    return 0;
3977}
3978
3979static int ram_load_cleanup(void *opaque)
3980{
3981    RAMBlock *rb;
3982
3983    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3984        if (ramblock_is_pmem(rb)) {
3985            pmem_persist(rb->host, rb->used_length);
3986        }
3987    }
3988
3989    xbzrle_load_cleanup();
3990    compress_threads_load_cleanup();
3991
3992    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3993        g_free(rb->receivedmap);
3994        rb->receivedmap = NULL;
3995    }
3996
3997    return 0;
3998}
3999
4000/**
4001 * ram_postcopy_incoming_init: allocate postcopy data structures
4002 *
4003 * Returns 0 for success and negative if there was one error
4004 *
4005 * @mis: current migration incoming state
4006 *
4007 * Allocate data structures etc needed by incoming migration with
4008 * postcopy-ram. postcopy-ram's similarly names
4009 * postcopy_ram_incoming_init does the work.
4010 */
4011int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4012{
4013    return postcopy_ram_incoming_init(mis);
4014}
4015
4016/**
4017 * ram_load_postcopy: load a page in postcopy case
4018 *
4019 * Returns 0 for success or -errno in case of error
4020 *
4021 * Called in postcopy mode by ram_load().
4022 * rcu_read_lock is taken prior to this being called.
4023 *
4024 * @f: QEMUFile where to send the data
4025 */
4026static int ram_load_postcopy(QEMUFile *f)
4027{
4028    int flags = 0, ret = 0;
4029    bool place_needed = false;
4030    bool matches_target_page_size = false;
4031    MigrationIncomingState *mis = migration_incoming_get_current();
4032    /* Temporary page that is later 'placed' */
4033    void *postcopy_host_page = mis->postcopy_tmp_page;
4034    void *last_host = NULL;
4035    bool all_zero = false;
4036
4037    while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4038        ram_addr_t addr;
4039        void *host = NULL;
4040        void *page_buffer = NULL;
4041        void *place_source = NULL;
4042        RAMBlock *block = NULL;
4043        uint8_t ch;
4044
4045        addr = qemu_get_be64(f);
4046
4047        /*
4048         * If qemu file error, we should stop here, and then "addr"
4049         * may be invalid
4050         */
4051        ret = qemu_file_get_error(f);
4052        if (ret) {
4053            break;
4054        }
4055
4056        flags = addr & ~TARGET_PAGE_MASK;
4057        addr &= TARGET_PAGE_MASK;
4058
4059        trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4060        place_needed = false;
4061        if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4062            block = ram_block_from_stream(f, flags);
4063
4064            host = host_from_ram_block_offset(block, addr);
4065            if (!host) {
4066                error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4067                ret = -EINVAL;
4068                break;
4069            }
4070            matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4071            /*
4072             * Postcopy requires that we place whole host pages atomically;
4073             * these may be huge pages for RAMBlocks that are backed by
4074             * hugetlbfs.
4075             * To make it atomic, the data is read into a temporary page
4076             * that's moved into place later.
4077             * The migration protocol uses,  possibly smaller, target-pages
4078             * however the source ensures it always sends all the components
4079             * of a host page in order.
4080             */
4081            page_buffer = postcopy_host_page +
4082                          ((uintptr_t)host & (block->page_size - 1));
4083            /* If all TP are zero then we can optimise the place */
4084            if (!((uintptr_t)host & (block->page_size - 1))) {
4085                all_zero = true;
4086            } else {
4087                /* not the 1st TP within the HP */
4088                if (host != (last_host + TARGET_PAGE_SIZE)) {
4089                    error_report("Non-sequential target page %p/%p",
4090                                  host, last_host);
4091                    ret = -EINVAL;
4092                    break;
4093                }
4094            }
4095
4096
4097            /*
4098             * If it's the last part of a host page then we place the host
4099             * page
4100             */
4101            place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4102                                     (block->page_size - 1)) == 0;
4103            place_source = postcopy_host_page;
4104        }
4105        last_host = host;
4106
4107        switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4108        case RAM_SAVE_FLAG_ZERO:
4109            ch = qemu_get_byte(f);
4110            memset(page_buffer, ch, TARGET_PAGE_SIZE);
4111            if (ch) {
4112                all_zero = false;
4113            }
4114            break;
4115
4116        case RAM_SAVE_FLAG_PAGE:
4117            all_zero = false;
4118            if (!matches_target_page_size) {
4119                /* For huge pages, we always use temporary buffer */
4120                qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4121            } else {
4122                /*
4123                 * For small pages that matches target page size, we
4124                 * avoid the qemu_file copy.  Instead we directly use
4125                 * the buffer of QEMUFile to place the page.  Note: we
4126                 * cannot do any QEMUFile operation before using that
4127                 * buffer to make sure the buffer is valid when
4128                 * placing the page.
4129                 */
4130                qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4131                                         TARGET_PAGE_SIZE);
4132            }
4133            break;
4134        case RAM_SAVE_FLAG_EOS:
4135            /* normal exit */
4136            multifd_recv_sync_main();
4137            break;
4138        default:
4139            error_report("Unknown combination of migration flags: %#x"
4140                         " (postcopy mode)", flags);
4141            ret = -EINVAL;
4142            break;
4143        }
4144
4145        /* Detect for any possible file errors */
4146        if (!ret && qemu_file_get_error(f)) {
4147            ret = qemu_file_get_error(f);
4148        }
4149
4150        if (!ret && place_needed) {
4151            /* This gets called at the last target page in the host page */
4152            void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4153
4154            if (all_zero) {
4155                ret = postcopy_place_page_zero(mis, place_dest,
4156                                               block);
4157            } else {
4158                ret = postcopy_place_page(mis, place_dest,
4159                                          place_source, block);
4160            }
4161        }
4162    }
4163
4164    return ret;
4165}
4166
4167static bool postcopy_is_advised(void)
4168{
4169    PostcopyState ps = postcopy_state_get();
4170    return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4171}
4172
4173static bool postcopy_is_running(void)
4174{
4175    PostcopyState ps = postcopy_state_get();
4176    return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4177}
4178
4179/*
4180 * Flush content of RAM cache into SVM's memory.
4181 * Only flush the pages that be dirtied by PVM or SVM or both.
4182 */
4183static void colo_flush_ram_cache(void)
4184{
4185    RAMBlock *block = NULL;
4186    void *dst_host;
4187    void *src_host;
4188    unsigned long offset = 0;
4189
4190    memory_global_dirty_log_sync();
4191    WITH_RCU_READ_LOCK_GUARD() {
4192        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4193            ramblock_sync_dirty_bitmap(ram_state, block);
4194        }
4195    }
4196
4197    trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4198    WITH_RCU_READ_LOCK_GUARD() {
4199        block = QLIST_FIRST_RCU(&ram_list.blocks);
4200
4201        while (block) {
4202            offset = migration_bitmap_find_dirty(ram_state, block, offset);
4203
4204            if (offset << TARGET_PAGE_BITS >= block->used_length) {
4205                offset = 0;
4206                block = QLIST_NEXT_RCU(block, next);
4207            } else {
4208                migration_bitmap_clear_dirty(ram_state, block, offset);
4209                dst_host = block->host + (offset << TARGET_PAGE_BITS);
4210                src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4211                memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4212            }
4213        }
4214    }
4215    trace_colo_flush_ram_cache_end();
4216}
4217
4218/**
4219 * ram_load_precopy: load pages in precopy case
4220 *
4221 * Returns 0 for success or -errno in case of error
4222 *
4223 * Called in precopy mode by ram_load().
4224 * rcu_read_lock is taken prior to this being called.
4225 *
4226 * @f: QEMUFile where to send the data
4227 */
4228static int ram_load_precopy(QEMUFile *f)
4229{
4230    int flags = 0, ret = 0, invalid_flags = 0, len = 0;
4231    /* ADVISE is earlier, it shows the source has the postcopy capability on */
4232    bool postcopy_advised = postcopy_is_advised();
4233    if (!migrate_use_compression()) {
4234        invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4235    }
4236
4237    while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4238        ram_addr_t addr, total_ram_bytes;
4239        void *host = NULL;
4240        uint8_t ch;
4241
4242        addr = qemu_get_be64(f);
4243        flags = addr & ~TARGET_PAGE_MASK;
4244        addr &= TARGET_PAGE_MASK;
4245
4246        if (flags & invalid_flags) {
4247            if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4248                error_report("Received an unexpected compressed page");
4249            }
4250
4251            ret = -EINVAL;
4252            break;
4253        }
4254
4255        if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4256                     RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4257            RAMBlock *block = ram_block_from_stream(f, flags);
4258
4259            /*
4260             * After going into COLO, we should load the Page into colo_cache.
4261             */
4262            if (migration_incoming_in_colo_state()) {
4263                host = colo_cache_from_block_offset(block, addr);
4264            } else {
4265                host = host_from_ram_block_offset(block, addr);
4266            }
4267            if (!host) {
4268                error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4269                ret = -EINVAL;
4270                break;
4271            }
4272
4273            if (!migration_incoming_in_colo_state()) {
4274                ramblock_recv_bitmap_set(block, host);
4275            }
4276
4277            trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4278        }
4279
4280        switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4281        case RAM_SAVE_FLAG_MEM_SIZE:
4282            /* Synchronize RAM block list */
4283            total_ram_bytes = addr;
4284            while (!ret && total_ram_bytes) {
4285                RAMBlock *block;
4286                char id[256];
4287                ram_addr_t length;
4288
4289                len = qemu_get_byte(f);
4290                qemu_get_buffer(f, (uint8_t *)id, len);
4291                id[len] = 0;
4292                length = qemu_get_be64(f);
4293
4294                block = qemu_ram_block_by_name(id);
4295                if (block && !qemu_ram_is_migratable(block)) {
4296                    error_report("block %s should not be migrated !", id);
4297                    ret = -EINVAL;
4298                } else if (block) {
4299                    if (length != block->used_length) {
4300                        Error *local_err = NULL;
4301
4302                        ret = qemu_ram_resize(block, length,
4303                                              &local_err);
4304                        if (local_err) {
4305                            error_report_err(local_err);
4306                        }
4307                    }
4308                    /* For postcopy we need to check hugepage sizes match */
4309                    if (postcopy_advised &&
4310                        block->page_size != qemu_host_page_size) {
4311                        uint64_t remote_page_size = qemu_get_be64(f);
4312                        if (remote_page_size != block->page_size) {
4313                            error_report("Mismatched RAM page size %s "
4314                                         "(local) %zd != %" PRId64,
4315                                         id, block->page_size,
4316                                         remote_page_size);
4317                            ret = -EINVAL;
4318                        }
4319                    }
4320                    if (migrate_ignore_shared()) {
4321                        hwaddr addr = qemu_get_be64(f);
4322                        if (ramblock_is_ignored(block) &&
4323                            block->mr->addr != addr) {
4324                            error_report("Mismatched GPAs for block %s "
4325                                         "%" PRId64 "!= %" PRId64,
4326                                         id, (uint64_t)addr,
4327                                         (uint64_t)block->mr->addr);
4328                            ret = -EINVAL;
4329                        }
4330                    }
4331                    ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4332                                          block->idstr);
4333                } else {
4334                    error_report("Unknown ramblock \"%s\", cannot "
4335                                 "accept migration", id);
4336                    ret = -EINVAL;
4337                }
4338
4339                total_ram_bytes -= length;
4340            }
4341            break;
4342
4343        case RAM_SAVE_FLAG_ZERO:
4344            ch = qemu_get_byte(f);
4345            ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4346            break;
4347
4348        case RAM_SAVE_FLAG_PAGE:
4349            qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4350            break;
4351
4352        case RAM_SAVE_FLAG_COMPRESS_PAGE:
4353            len = qemu_get_be32(f);
4354            if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4355                error_report("Invalid compressed data length: %d", len);
4356                ret = -EINVAL;
4357                break;
4358            }
4359            decompress_data_with_multi_threads(f, host, len);
4360            break;
4361
4362        case RAM_SAVE_FLAG_XBZRLE:
4363            if (load_xbzrle(f, addr, host) < 0) {
4364                error_report("Failed to decompress XBZRLE page at "
4365                             RAM_ADDR_FMT, addr);
4366                ret = -EINVAL;
4367                break;
4368            }
4369            break;
4370        case RAM_SAVE_FLAG_EOS:
4371            /* normal exit */
4372            multifd_recv_sync_main();
4373            break;
4374        default:
4375            if (flags & RAM_SAVE_FLAG_HOOK) {
4376                ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4377            } else {
4378                error_report("Unknown combination of migration flags: %#x",
4379                             flags);
4380                ret = -EINVAL;
4381            }
4382        }
4383        if (!ret) {
4384            ret = qemu_file_get_error(f);
4385        }
4386    }
4387
4388    return ret;
4389}
4390
4391static int ram_load(QEMUFile *f, void *opaque, int version_id)
4392{
4393    int ret = 0;
4394    static uint64_t seq_iter;
4395    /*
4396     * If system is running in postcopy mode, page inserts to host memory must
4397     * be atomic
4398     */
4399    bool postcopy_running = postcopy_is_running();
4400
4401    seq_iter++;
4402
4403    if (version_id != 4) {
4404        return -EINVAL;
4405    }
4406
4407    /*
4408     * This RCU critical section can be very long running.
4409     * When RCU reclaims in the code start to become numerous,
4410     * it will be necessary to reduce the granularity of this
4411     * critical section.
4412     */
4413    WITH_RCU_READ_LOCK_GUARD() {
4414        if (postcopy_running) {
4415            ret = ram_load_postcopy(f);
4416        } else {
4417            ret = ram_load_precopy(f);
4418        }
4419
4420        ret |= wait_for_decompress_done();
4421    }
4422    trace_ram_load_complete(ret, seq_iter);
4423
4424    if (!ret  && migration_incoming_in_colo_state()) {
4425        colo_flush_ram_cache();
4426    }
4427    return ret;
4428}
4429
4430static bool ram_has_postcopy(void *opaque)
4431{
4432    RAMBlock *rb;
4433    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4434        if (ramblock_is_pmem(rb)) {
4435            info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4436                         "is not supported now!", rb->idstr, rb->host);
4437            return false;
4438        }
4439    }
4440
4441    return migrate_postcopy_ram();
4442}
4443
4444/* Sync all the dirty bitmap with destination VM.  */
4445static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4446{
4447    RAMBlock *block;
4448    QEMUFile *file = s->to_dst_file;
4449    int ramblock_count = 0;
4450
4451    trace_ram_dirty_bitmap_sync_start();
4452
4453    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4454        qemu_savevm_send_recv_bitmap(file, block->idstr);
4455        trace_ram_dirty_bitmap_request(block->idstr);
4456        ramblock_count++;
4457    }
4458
4459    trace_ram_dirty_bitmap_sync_wait();
4460
4461    /* Wait until all the ramblocks' dirty bitmap synced */
4462    while (ramblock_count--) {
4463        qemu_sem_wait(&s->rp_state.rp_sem);
4464    }
4465
4466    trace_ram_dirty_bitmap_sync_complete();
4467
4468    return 0;
4469}
4470
4471static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4472{
4473    qemu_sem_post(&s->rp_state.rp_sem);
4474}
4475
4476/*
4477 * Read the received bitmap, revert it as the initial dirty bitmap.
4478 * This is only used when the postcopy migration is paused but wants
4479 * to resume from a middle point.
4480 */
4481int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4482{
4483    int ret = -EINVAL;
4484    QEMUFile *file = s->rp_state.from_dst_file;
4485    unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4486    uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4487    uint64_t size, end_mark;
4488
4489    trace_ram_dirty_bitmap_reload_begin(block->idstr);
4490
4491    if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4492        error_report("%s: incorrect state %s", __func__,
4493                     MigrationStatus_str(s->state));
4494        return -EINVAL;
4495    }
4496
4497    /*
4498     * Note: see comments in ramblock_recv_bitmap_send() on why we
4499     * need the endianess convertion, and the paddings.
4500     */
4501    local_size = ROUND_UP(local_size, 8);
4502
4503    /* Add paddings */
4504    le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4505
4506    size = qemu_get_be64(file);
4507
4508    /* The size of the bitmap should match with our ramblock */
4509    if (size != local_size) {
4510        error_report("%s: ramblock '%s' bitmap size mismatch "
4511                     "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4512                     block->idstr, size, local_size);
4513        ret = -EINVAL;
4514        goto out;
4515    }
4516
4517    size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4518    end_mark = qemu_get_be64(file);
4519
4520    ret = qemu_file_get_error(file);
4521    if (ret || size != local_size) {
4522        error_report("%s: read bitmap failed for ramblock '%s': %d"
4523                     " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4524                     __func__, block->idstr, ret, local_size, size);
4525        ret = -EIO;
4526        goto out;
4527    }
4528
4529    if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4530        error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4531                     __func__, block->idstr, end_mark);
4532        ret = -EINVAL;
4533        goto out;
4534    }
4535
4536    /*
4537     * Endianess convertion. We are during postcopy (though paused).
4538     * The dirty bitmap won't change. We can directly modify it.
4539     */
4540    bitmap_from_le(block->bmap, le_bitmap, nbits);
4541
4542    /*
4543     * What we received is "received bitmap". Revert it as the initial
4544     * dirty bitmap for this ramblock.
4545     */
4546    bitmap_complement(block->bmap, block->bmap, nbits);
4547
4548    trace_ram_dirty_bitmap_reload_complete(block->idstr);
4549
4550    /*
4551     * We succeeded to sync bitmap for current ramblock. If this is
4552     * the last one to sync, we need to notify the main send thread.
4553     */
4554    ram_dirty_bitmap_reload_notify(s);
4555
4556    ret = 0;
4557out:
4558    g_free(le_bitmap);
4559    return ret;
4560}
4561
4562static int ram_resume_prepare(MigrationState *s, void *opaque)
4563{
4564    RAMState *rs = *(RAMState **)opaque;
4565    int ret;
4566
4567    ret = ram_dirty_bitmap_sync_all(s, rs);
4568    if (ret) {
4569        return ret;
4570    }
4571
4572    ram_state_resume_prepare(rs, s->to_dst_file);
4573
4574    return 0;
4575}
4576
4577static SaveVMHandlers savevm_ram_handlers = {
4578    .save_setup = ram_save_setup,
4579    .save_live_iterate = ram_save_iterate,
4580    .save_live_complete_postcopy = ram_save_complete,
4581    .save_live_complete_precopy = ram_save_complete,
4582    .has_postcopy = ram_has_postcopy,
4583    .save_live_pending = ram_save_pending,
4584    .load_state = ram_load,
4585    .save_cleanup = ram_save_cleanup,
4586    .load_setup = ram_load_setup,
4587    .load_cleanup = ram_load_cleanup,
4588    .resume_prepare = ram_resume_prepare,
4589};
4590
4591void ram_mig_init(void)
4592{
4593    qemu_mutex_init(&XBZRLE.lock);
4594    register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4595}
4596