qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu-common.h"
  24#include "target/arm/idau.h"
  25#include "qemu/module.h"
  26#include "qapi/error.h"
  27#include "qapi/visitor.h"
  28#include "cpu.h"
  29#include "internals.h"
  30#include "exec/exec-all.h"
  31#include "hw/qdev-properties.h"
  32#if !defined(CONFIG_USER_ONLY)
  33#include "hw/loader.h"
  34#include "hw/boards.h"
  35#endif
  36#include "sysemu/sysemu.h"
  37#include "sysemu/tcg.h"
  38#include "sysemu/hw_accel.h"
  39#include "kvm_arm.h"
  40#include "disas/capstone.h"
  41#include "fpu/softfloat.h"
  42
  43static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  44{
  45    ARMCPU *cpu = ARM_CPU(cs);
  46    CPUARMState *env = &cpu->env;
  47
  48    if (is_a64(env)) {
  49        env->pc = value;
  50        env->thumb = 0;
  51    } else {
  52        env->regs[15] = value & ~1;
  53        env->thumb = value & 1;
  54    }
  55}
  56
  57static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
  58{
  59    ARMCPU *cpu = ARM_CPU(cs);
  60    CPUARMState *env = &cpu->env;
  61
  62    /*
  63     * It's OK to look at env for the current mode here, because it's
  64     * never possible for an AArch64 TB to chain to an AArch32 TB.
  65     */
  66    if (is_a64(env)) {
  67        env->pc = tb->pc;
  68    } else {
  69        env->regs[15] = tb->pc;
  70    }
  71}
  72
  73static bool arm_cpu_has_work(CPUState *cs)
  74{
  75    ARMCPU *cpu = ARM_CPU(cs);
  76
  77    return (cpu->power_state != PSCI_OFF)
  78        && cs->interrupt_request &
  79        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  80         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  81         | CPU_INTERRUPT_EXITTB);
  82}
  83
  84void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  85                                 void *opaque)
  86{
  87    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  88
  89    entry->hook = hook;
  90    entry->opaque = opaque;
  91
  92    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
  93}
  94
  95void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  96                                 void *opaque)
  97{
  98    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  99
 100    entry->hook = hook;
 101    entry->opaque = opaque;
 102
 103    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 104}
 105
 106static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 107{
 108    /* Reset a single ARMCPRegInfo register */
 109    ARMCPRegInfo *ri = value;
 110    ARMCPU *cpu = opaque;
 111
 112    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
 113        return;
 114    }
 115
 116    if (ri->resetfn) {
 117        ri->resetfn(&cpu->env, ri);
 118        return;
 119    }
 120
 121    /* A zero offset is never possible as it would be regs[0]
 122     * so we use it to indicate that reset is being handled elsewhere.
 123     * This is basically only used for fields in non-core coprocessors
 124     * (like the pxa2xx ones).
 125     */
 126    if (!ri->fieldoffset) {
 127        return;
 128    }
 129
 130    if (cpreg_field_is_64bit(ri)) {
 131        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 132    } else {
 133        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 134    }
 135}
 136
 137static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 138{
 139    /* Purely an assertion check: we've already done reset once,
 140     * so now check that running the reset for the cpreg doesn't
 141     * change its value. This traps bugs where two different cpregs
 142     * both try to reset the same state field but to different values.
 143     */
 144    ARMCPRegInfo *ri = value;
 145    ARMCPU *cpu = opaque;
 146    uint64_t oldvalue, newvalue;
 147
 148    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 149        return;
 150    }
 151
 152    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 153    cp_reg_reset(key, value, opaque);
 154    newvalue = read_raw_cp_reg(&cpu->env, ri);
 155    assert(oldvalue == newvalue);
 156}
 157
 158/* CPUClass::reset() */
 159static void arm_cpu_reset(CPUState *s)
 160{
 161    ARMCPU *cpu = ARM_CPU(s);
 162    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 163    CPUARMState *env = &cpu->env;
 164
 165    acc->parent_reset(s);
 166
 167    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 168
 169    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 170    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 171
 172    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 173    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 174    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 175    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 176
 177    cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
 178    s->halted = cpu->start_powered_off;
 179
 180    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 181        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 182    }
 183
 184    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 185        /* 64 bit CPUs always start in 64 bit mode */
 186        env->aarch64 = 1;
 187#if defined(CONFIG_USER_ONLY)
 188        env->pstate = PSTATE_MODE_EL0t;
 189        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 190        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 191        /* Enable all PAC keys.  */
 192        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 193                                  SCTLR_EnDA | SCTLR_EnDB);
 194        /* Enable all PAC instructions */
 195        env->cp15.hcr_el2 |= HCR_API;
 196        env->cp15.scr_el3 |= SCR_API;
 197        /* and to the FP/Neon instructions */
 198        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 199        /* and to the SVE instructions */
 200        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 201        env->cp15.cptr_el[3] |= CPTR_EZ;
 202        /* with maximum vector length */
 203        env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
 204                             cpu->sve_max_vq - 1 : 0;
 205        env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
 206        env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
 207        /*
 208         * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
 209         * turning on both here will produce smaller code and otherwise
 210         * make no difference to the user-level emulation.
 211         */
 212        env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
 213#else
 214        /* Reset into the highest available EL */
 215        if (arm_feature(env, ARM_FEATURE_EL3)) {
 216            env->pstate = PSTATE_MODE_EL3h;
 217        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 218            env->pstate = PSTATE_MODE_EL2h;
 219        } else {
 220            env->pstate = PSTATE_MODE_EL1h;
 221        }
 222        env->pc = cpu->rvbar;
 223#endif
 224    } else {
 225#if defined(CONFIG_USER_ONLY)
 226        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 227        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 228#endif
 229    }
 230
 231#if defined(CONFIG_USER_ONLY)
 232    env->uncached_cpsr = ARM_CPU_MODE_USR;
 233    /* For user mode we must enable access to coprocessors */
 234    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 235    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 236        env->cp15.c15_cpar = 3;
 237    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 238        env->cp15.c15_cpar = 1;
 239    }
 240#else
 241
 242    /*
 243     * If the highest available EL is EL2, AArch32 will start in Hyp
 244     * mode; otherwise it starts in SVC. Note that if we start in
 245     * AArch64 then these values in the uncached_cpsr will be ignored.
 246     */
 247    if (arm_feature(env, ARM_FEATURE_EL2) &&
 248        !arm_feature(env, ARM_FEATURE_EL3)) {
 249        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 250    } else {
 251        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 252    }
 253    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 254
 255    if (arm_feature(env, ARM_FEATURE_M)) {
 256        uint32_t initial_msp; /* Loaded from 0x0 */
 257        uint32_t initial_pc; /* Loaded from 0x4 */
 258        uint8_t *rom;
 259        uint32_t vecbase;
 260
 261        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 262            env->v7m.secure = true;
 263        } else {
 264            /* This bit resets to 0 if security is supported, but 1 if
 265             * it is not. The bit is not present in v7M, but we set it
 266             * here so we can avoid having to make checks on it conditional
 267             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 268             */
 269            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 270            /*
 271             * Set NSACR to indicate "NS access permitted to everything";
 272             * this avoids having to have all the tests of it being
 273             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 274             * v8.1M the guest-visible value of NSACR in a CPU without the
 275             * Security Extension is 0xcff.
 276             */
 277            env->v7m.nsacr = 0xcff;
 278        }
 279
 280        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 281         * that it resets to 1, so QEMU always does that rather than making
 282         * it dependent on CPU model. In v8M it is RES1.
 283         */
 284        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 285        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 286        if (arm_feature(env, ARM_FEATURE_V8)) {
 287            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 288            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 289            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 290        }
 291        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 292            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 293            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 294        }
 295
 296        if (arm_feature(env, ARM_FEATURE_VFP)) {
 297            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 298            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 299                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 300        }
 301        /* Unlike A/R profile, M profile defines the reset LR value */
 302        env->regs[14] = 0xffffffff;
 303
 304        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 305
 306        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 307        vecbase = env->v7m.vecbase[env->v7m.secure];
 308        rom = rom_ptr(vecbase, 8);
 309        if (rom) {
 310            /* Address zero is covered by ROM which hasn't yet been
 311             * copied into physical memory.
 312             */
 313            initial_msp = ldl_p(rom);
 314            initial_pc = ldl_p(rom + 4);
 315        } else {
 316            /* Address zero not covered by a ROM blob, or the ROM blob
 317             * is in non-modifiable memory and this is a second reset after
 318             * it got copied into memory. In the latter case, rom_ptr
 319             * will return a NULL pointer and we should use ldl_phys instead.
 320             */
 321            initial_msp = ldl_phys(s->as, vecbase);
 322            initial_pc = ldl_phys(s->as, vecbase + 4);
 323        }
 324
 325        env->regs[13] = initial_msp & 0xFFFFFFFC;
 326        env->regs[15] = initial_pc & ~1;
 327        env->thumb = initial_pc & 1;
 328    }
 329
 330    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 331     * executing as AArch32 then check if highvecs are enabled and
 332     * adjust the PC accordingly.
 333     */
 334    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 335        env->regs[15] = 0xFFFF0000;
 336    }
 337
 338    /* M profile requires that reset clears the exclusive monitor;
 339     * A profile does not, but clearing it makes more sense than having it
 340     * set with an exclusive access on address zero.
 341     */
 342    arm_clear_exclusive(env);
 343
 344    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 345#endif
 346
 347    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 348        if (cpu->pmsav7_dregion > 0) {
 349            if (arm_feature(env, ARM_FEATURE_V8)) {
 350                memset(env->pmsav8.rbar[M_REG_NS], 0,
 351                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 352                       * cpu->pmsav7_dregion);
 353                memset(env->pmsav8.rlar[M_REG_NS], 0,
 354                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 355                       * cpu->pmsav7_dregion);
 356                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 357                    memset(env->pmsav8.rbar[M_REG_S], 0,
 358                           sizeof(*env->pmsav8.rbar[M_REG_S])
 359                           * cpu->pmsav7_dregion);
 360                    memset(env->pmsav8.rlar[M_REG_S], 0,
 361                           sizeof(*env->pmsav8.rlar[M_REG_S])
 362                           * cpu->pmsav7_dregion);
 363                }
 364            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 365                memset(env->pmsav7.drbar, 0,
 366                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 367                memset(env->pmsav7.drsr, 0,
 368                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 369                memset(env->pmsav7.dracr, 0,
 370                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 371            }
 372        }
 373        env->pmsav7.rnr[M_REG_NS] = 0;
 374        env->pmsav7.rnr[M_REG_S] = 0;
 375        env->pmsav8.mair0[M_REG_NS] = 0;
 376        env->pmsav8.mair0[M_REG_S] = 0;
 377        env->pmsav8.mair1[M_REG_NS] = 0;
 378        env->pmsav8.mair1[M_REG_S] = 0;
 379    }
 380
 381    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 382        if (cpu->sau_sregion > 0) {
 383            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 384            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 385        }
 386        env->sau.rnr = 0;
 387        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 388         * the Cortex-M33 does.
 389         */
 390        env->sau.ctrl = 0;
 391    }
 392
 393    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 394    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 395    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 396    set_float_detect_tininess(float_tininess_before_rounding,
 397                              &env->vfp.fp_status);
 398    set_float_detect_tininess(float_tininess_before_rounding,
 399                              &env->vfp.standard_fp_status);
 400    set_float_detect_tininess(float_tininess_before_rounding,
 401                              &env->vfp.fp_status_f16);
 402#ifndef CONFIG_USER_ONLY
 403    if (kvm_enabled()) {
 404        kvm_arm_reset_vcpu(cpu);
 405    }
 406#endif
 407
 408    hw_breakpoint_update_all(cpu);
 409    hw_watchpoint_update_all(cpu);
 410    arm_rebuild_hflags(env);
 411}
 412
 413bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 414{
 415    CPUClass *cc = CPU_GET_CLASS(cs);
 416    CPUARMState *env = cs->env_ptr;
 417    uint32_t cur_el = arm_current_el(env);
 418    bool secure = arm_is_secure(env);
 419    uint32_t target_el;
 420    uint32_t excp_idx;
 421    bool ret = false;
 422
 423    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 424        excp_idx = EXCP_FIQ;
 425        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 426        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 427            cs->exception_index = excp_idx;
 428            env->exception.target_el = target_el;
 429            cc->do_interrupt(cs);
 430            ret = true;
 431        }
 432    }
 433    if (interrupt_request & CPU_INTERRUPT_HARD) {
 434        excp_idx = EXCP_IRQ;
 435        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 436        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 437            cs->exception_index = excp_idx;
 438            env->exception.target_el = target_el;
 439            cc->do_interrupt(cs);
 440            ret = true;
 441        }
 442    }
 443    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 444        excp_idx = EXCP_VIRQ;
 445        target_el = 1;
 446        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 447            cs->exception_index = excp_idx;
 448            env->exception.target_el = target_el;
 449            cc->do_interrupt(cs);
 450            ret = true;
 451        }
 452    }
 453    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 454        excp_idx = EXCP_VFIQ;
 455        target_el = 1;
 456        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 457            cs->exception_index = excp_idx;
 458            env->exception.target_el = target_el;
 459            cc->do_interrupt(cs);
 460            ret = true;
 461        }
 462    }
 463
 464    return ret;
 465}
 466
 467#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
 468static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 469{
 470    CPUClass *cc = CPU_GET_CLASS(cs);
 471    ARMCPU *cpu = ARM_CPU(cs);
 472    CPUARMState *env = &cpu->env;
 473    bool ret = false;
 474
 475    /* ARMv7-M interrupt masking works differently than -A or -R.
 476     * There is no FIQ/IRQ distinction. Instead of I and F bits
 477     * masking FIQ and IRQ interrupts, an exception is taken only
 478     * if it is higher priority than the current execution priority
 479     * (which depends on state like BASEPRI, FAULTMASK and the
 480     * currently active exception).
 481     */
 482    if (interrupt_request & CPU_INTERRUPT_HARD
 483        && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
 484        cs->exception_index = EXCP_IRQ;
 485        cc->do_interrupt(cs);
 486        ret = true;
 487    }
 488    return ret;
 489}
 490#endif
 491
 492void arm_cpu_update_virq(ARMCPU *cpu)
 493{
 494    /*
 495     * Update the interrupt level for VIRQ, which is the logical OR of
 496     * the HCR_EL2.VI bit and the input line level from the GIC.
 497     */
 498    CPUARMState *env = &cpu->env;
 499    CPUState *cs = CPU(cpu);
 500
 501    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 502        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 503
 504    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 505        if (new_state) {
 506            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 507        } else {
 508            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 509        }
 510    }
 511}
 512
 513void arm_cpu_update_vfiq(ARMCPU *cpu)
 514{
 515    /*
 516     * Update the interrupt level for VFIQ, which is the logical OR of
 517     * the HCR_EL2.VF bit and the input line level from the GIC.
 518     */
 519    CPUARMState *env = &cpu->env;
 520    CPUState *cs = CPU(cpu);
 521
 522    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 523        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 524
 525    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 526        if (new_state) {
 527            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 528        } else {
 529            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 530        }
 531    }
 532}
 533
 534#ifndef CONFIG_USER_ONLY
 535static void arm_cpu_set_irq(void *opaque, int irq, int level)
 536{
 537    ARMCPU *cpu = opaque;
 538    CPUARMState *env = &cpu->env;
 539    CPUState *cs = CPU(cpu);
 540    static const int mask[] = {
 541        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 542        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 543        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 544        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 545    };
 546
 547    if (level) {
 548        env->irq_line_state |= mask[irq];
 549    } else {
 550        env->irq_line_state &= ~mask[irq];
 551    }
 552
 553    switch (irq) {
 554    case ARM_CPU_VIRQ:
 555        assert(arm_feature(env, ARM_FEATURE_EL2));
 556        arm_cpu_update_virq(cpu);
 557        break;
 558    case ARM_CPU_VFIQ:
 559        assert(arm_feature(env, ARM_FEATURE_EL2));
 560        arm_cpu_update_vfiq(cpu);
 561        break;
 562    case ARM_CPU_IRQ:
 563    case ARM_CPU_FIQ:
 564        if (level) {
 565            cpu_interrupt(cs, mask[irq]);
 566        } else {
 567            cpu_reset_interrupt(cs, mask[irq]);
 568        }
 569        break;
 570    default:
 571        g_assert_not_reached();
 572    }
 573}
 574
 575static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 576{
 577#ifdef CONFIG_KVM
 578    ARMCPU *cpu = opaque;
 579    CPUARMState *env = &cpu->env;
 580    CPUState *cs = CPU(cpu);
 581    uint32_t linestate_bit;
 582    int irq_id;
 583
 584    switch (irq) {
 585    case ARM_CPU_IRQ:
 586        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 587        linestate_bit = CPU_INTERRUPT_HARD;
 588        break;
 589    case ARM_CPU_FIQ:
 590        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 591        linestate_bit = CPU_INTERRUPT_FIQ;
 592        break;
 593    default:
 594        g_assert_not_reached();
 595    }
 596
 597    if (level) {
 598        env->irq_line_state |= linestate_bit;
 599    } else {
 600        env->irq_line_state &= ~linestate_bit;
 601    }
 602    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 603#endif
 604}
 605
 606static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 607{
 608    ARMCPU *cpu = ARM_CPU(cs);
 609    CPUARMState *env = &cpu->env;
 610
 611    cpu_synchronize_state(cs);
 612    return arm_cpu_data_is_big_endian(env);
 613}
 614
 615#endif
 616
 617static inline void set_feature(CPUARMState *env, int feature)
 618{
 619    env->features |= 1ULL << feature;
 620}
 621
 622static inline void unset_feature(CPUARMState *env, int feature)
 623{
 624    env->features &= ~(1ULL << feature);
 625}
 626
 627static int
 628print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 629{
 630  return print_insn_arm(pc | 1, info);
 631}
 632
 633static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 634{
 635    ARMCPU *ac = ARM_CPU(cpu);
 636    CPUARMState *env = &ac->env;
 637    bool sctlr_b;
 638
 639    if (is_a64(env)) {
 640        /* We might not be compiled with the A64 disassembler
 641         * because it needs a C++ compiler. Leave print_insn
 642         * unset in this case to use the caller default behaviour.
 643         */
 644#if defined(CONFIG_ARM_A64_DIS)
 645        info->print_insn = print_insn_arm_a64;
 646#endif
 647        info->cap_arch = CS_ARCH_ARM64;
 648        info->cap_insn_unit = 4;
 649        info->cap_insn_split = 4;
 650    } else {
 651        int cap_mode;
 652        if (env->thumb) {
 653            info->print_insn = print_insn_thumb1;
 654            info->cap_insn_unit = 2;
 655            info->cap_insn_split = 4;
 656            cap_mode = CS_MODE_THUMB;
 657        } else {
 658            info->print_insn = print_insn_arm;
 659            info->cap_insn_unit = 4;
 660            info->cap_insn_split = 4;
 661            cap_mode = CS_MODE_ARM;
 662        }
 663        if (arm_feature(env, ARM_FEATURE_V8)) {
 664            cap_mode |= CS_MODE_V8;
 665        }
 666        if (arm_feature(env, ARM_FEATURE_M)) {
 667            cap_mode |= CS_MODE_MCLASS;
 668        }
 669        info->cap_arch = CS_ARCH_ARM;
 670        info->cap_mode = cap_mode;
 671    }
 672
 673    sctlr_b = arm_sctlr_b(env);
 674    if (bswap_code(sctlr_b)) {
 675#ifdef TARGET_WORDS_BIGENDIAN
 676        info->endian = BFD_ENDIAN_LITTLE;
 677#else
 678        info->endian = BFD_ENDIAN_BIG;
 679#endif
 680    }
 681    info->flags &= ~INSN_ARM_BE32;
 682#ifndef CONFIG_USER_ONLY
 683    if (sctlr_b) {
 684        info->flags |= INSN_ARM_BE32;
 685    }
 686#endif
 687}
 688
 689#ifdef TARGET_AARCH64
 690
 691static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 692{
 693    ARMCPU *cpu = ARM_CPU(cs);
 694    CPUARMState *env = &cpu->env;
 695    uint32_t psr = pstate_read(env);
 696    int i;
 697    int el = arm_current_el(env);
 698    const char *ns_status;
 699
 700    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 701    for (i = 0; i < 32; i++) {
 702        if (i == 31) {
 703            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 704        } else {
 705            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 706                         (i + 2) % 3 ? " " : "\n");
 707        }
 708    }
 709
 710    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 711        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 712    } else {
 713        ns_status = "";
 714    }
 715    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 716                 psr,
 717                 psr & PSTATE_N ? 'N' : '-',
 718                 psr & PSTATE_Z ? 'Z' : '-',
 719                 psr & PSTATE_C ? 'C' : '-',
 720                 psr & PSTATE_V ? 'V' : '-',
 721                 ns_status,
 722                 el,
 723                 psr & PSTATE_SP ? 'h' : 't');
 724
 725    if (cpu_isar_feature(aa64_bti, cpu)) {
 726        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 727    }
 728    if (!(flags & CPU_DUMP_FPU)) {
 729        qemu_fprintf(f, "\n");
 730        return;
 731    }
 732    if (fp_exception_el(env, el) != 0) {
 733        qemu_fprintf(f, "    FPU disabled\n");
 734        return;
 735    }
 736    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 737                 vfp_get_fpcr(env), vfp_get_fpsr(env));
 738
 739    if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
 740        int j, zcr_len = sve_zcr_len_for_el(env, el);
 741
 742        for (i = 0; i <= FFR_PRED_NUM; i++) {
 743            bool eol;
 744            if (i == FFR_PRED_NUM) {
 745                qemu_fprintf(f, "FFR=");
 746                /* It's last, so end the line.  */
 747                eol = true;
 748            } else {
 749                qemu_fprintf(f, "P%02d=", i);
 750                switch (zcr_len) {
 751                case 0:
 752                    eol = i % 8 == 7;
 753                    break;
 754                case 1:
 755                    eol = i % 6 == 5;
 756                    break;
 757                case 2:
 758                case 3:
 759                    eol = i % 3 == 2;
 760                    break;
 761                default:
 762                    /* More than one quadword per predicate.  */
 763                    eol = true;
 764                    break;
 765                }
 766            }
 767            for (j = zcr_len / 4; j >= 0; j--) {
 768                int digits;
 769                if (j * 4 + 4 <= zcr_len + 1) {
 770                    digits = 16;
 771                } else {
 772                    digits = (zcr_len % 4 + 1) * 4;
 773                }
 774                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
 775                             env->vfp.pregs[i].p[j],
 776                             j ? ":" : eol ? "\n" : " ");
 777            }
 778        }
 779
 780        for (i = 0; i < 32; i++) {
 781            if (zcr_len == 0) {
 782                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 783                             i, env->vfp.zregs[i].d[1],
 784                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
 785            } else if (zcr_len == 1) {
 786                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
 787                             ":%016" PRIx64 ":%016" PRIx64 "\n",
 788                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
 789                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
 790            } else {
 791                for (j = zcr_len; j >= 0; j--) {
 792                    bool odd = (zcr_len - j) % 2 != 0;
 793                    if (j == zcr_len) {
 794                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
 795                    } else if (!odd) {
 796                        if (j > 0) {
 797                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
 798                        } else {
 799                            qemu_fprintf(f, "     [%x]=", j);
 800                        }
 801                    }
 802                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
 803                                 env->vfp.zregs[i].d[j * 2 + 1],
 804                                 env->vfp.zregs[i].d[j * 2],
 805                                 odd || j == 0 ? "\n" : ":");
 806                }
 807            }
 808        }
 809    } else {
 810        for (i = 0; i < 32; i++) {
 811            uint64_t *q = aa64_vfp_qreg(env, i);
 812            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 813                         i, q[1], q[0], (i & 1 ? "\n" : " "));
 814        }
 815    }
 816}
 817
 818#else
 819
 820static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 821{
 822    g_assert_not_reached();
 823}
 824
 825#endif
 826
 827static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 828{
 829    ARMCPU *cpu = ARM_CPU(cs);
 830    CPUARMState *env = &cpu->env;
 831    int i;
 832
 833    if (is_a64(env)) {
 834        aarch64_cpu_dump_state(cs, f, flags);
 835        return;
 836    }
 837
 838    for (i = 0; i < 16; i++) {
 839        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
 840        if ((i % 4) == 3) {
 841            qemu_fprintf(f, "\n");
 842        } else {
 843            qemu_fprintf(f, " ");
 844        }
 845    }
 846
 847    if (arm_feature(env, ARM_FEATURE_M)) {
 848        uint32_t xpsr = xpsr_read(env);
 849        const char *mode;
 850        const char *ns_status = "";
 851
 852        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 853            ns_status = env->v7m.secure ? "S " : "NS ";
 854        }
 855
 856        if (xpsr & XPSR_EXCP) {
 857            mode = "handler";
 858        } else {
 859            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
 860                mode = "unpriv-thread";
 861            } else {
 862                mode = "priv-thread";
 863            }
 864        }
 865
 866        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
 867                     xpsr,
 868                     xpsr & XPSR_N ? 'N' : '-',
 869                     xpsr & XPSR_Z ? 'Z' : '-',
 870                     xpsr & XPSR_C ? 'C' : '-',
 871                     xpsr & XPSR_V ? 'V' : '-',
 872                     xpsr & XPSR_T ? 'T' : 'A',
 873                     ns_status,
 874                     mode);
 875    } else {
 876        uint32_t psr = cpsr_read(env);
 877        const char *ns_status = "";
 878
 879        if (arm_feature(env, ARM_FEATURE_EL3) &&
 880            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
 881            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 882        }
 883
 884        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
 885                     psr,
 886                     psr & CPSR_N ? 'N' : '-',
 887                     psr & CPSR_Z ? 'Z' : '-',
 888                     psr & CPSR_C ? 'C' : '-',
 889                     psr & CPSR_V ? 'V' : '-',
 890                     psr & CPSR_T ? 'T' : 'A',
 891                     ns_status,
 892                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
 893    }
 894
 895    if (flags & CPU_DUMP_FPU) {
 896        int numvfpregs = 0;
 897        if (arm_feature(env, ARM_FEATURE_VFP)) {
 898            numvfpregs += 16;
 899        }
 900        if (arm_feature(env, ARM_FEATURE_VFP3)) {
 901            numvfpregs += 16;
 902        }
 903        for (i = 0; i < numvfpregs; i++) {
 904            uint64_t v = *aa32_vfp_dreg(env, i);
 905            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
 906                         i * 2, (uint32_t)v,
 907                         i * 2 + 1, (uint32_t)(v >> 32),
 908                         i, v);
 909        }
 910        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
 911    }
 912}
 913
 914uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
 915{
 916    uint32_t Aff1 = idx / clustersz;
 917    uint32_t Aff0 = idx % clustersz;
 918    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
 919}
 920
 921static void cpreg_hashtable_data_destroy(gpointer data)
 922{
 923    /*
 924     * Destroy function for cpu->cp_regs hashtable data entries.
 925     * We must free the name string because it was g_strdup()ed in
 926     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
 927     * from r->name because we know we definitely allocated it.
 928     */
 929    ARMCPRegInfo *r = data;
 930
 931    g_free((void *)r->name);
 932    g_free(r);
 933}
 934
 935static void arm_cpu_initfn(Object *obj)
 936{
 937    ARMCPU *cpu = ARM_CPU(obj);
 938
 939    cpu_set_cpustate_pointers(cpu);
 940    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
 941                                         g_free, cpreg_hashtable_data_destroy);
 942
 943    QLIST_INIT(&cpu->pre_el_change_hooks);
 944    QLIST_INIT(&cpu->el_change_hooks);
 945
 946#ifndef CONFIG_USER_ONLY
 947    /* Our inbound IRQ and FIQ lines */
 948    if (kvm_enabled()) {
 949        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
 950         * the same interface as non-KVM CPUs.
 951         */
 952        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
 953    } else {
 954        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
 955    }
 956
 957    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
 958                       ARRAY_SIZE(cpu->gt_timer_outputs));
 959
 960    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
 961                             "gicv3-maintenance-interrupt", 1);
 962    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
 963                             "pmu-interrupt", 1);
 964#endif
 965
 966    /* DTB consumers generally don't in fact care what the 'compatible'
 967     * string is, so always provide some string and trust that a hypothetical
 968     * picky DTB consumer will also provide a helpful error message.
 969     */
 970    cpu->dtb_compatible = "qemu,unknown";
 971    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
 972    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 973
 974    if (tcg_enabled()) {
 975        cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
 976    }
 977}
 978
 979static Property arm_cpu_reset_cbar_property =
 980            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
 981
 982static Property arm_cpu_reset_hivecs_property =
 983            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
 984
 985static Property arm_cpu_rvbar_property =
 986            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
 987
 988static Property arm_cpu_has_el2_property =
 989            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
 990
 991static Property arm_cpu_has_el3_property =
 992            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
 993
 994static Property arm_cpu_cfgend_property =
 995            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
 996
 997static Property arm_cpu_has_vfp_property =
 998            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
 999
1000static Property arm_cpu_has_neon_property =
1001            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1002
1003static Property arm_cpu_has_dsp_property =
1004            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1005
1006static Property arm_cpu_has_mpu_property =
1007            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1008
1009/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1010 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1011 * the right value for that particular CPU type, and we don't want
1012 * to override that with an incorrect constant value.
1013 */
1014static Property arm_cpu_pmsav7_dregion_property =
1015            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1016                                           pmsav7_dregion,
1017                                           qdev_prop_uint32, uint32_t);
1018
1019static bool arm_get_pmu(Object *obj, Error **errp)
1020{
1021    ARMCPU *cpu = ARM_CPU(obj);
1022
1023    return cpu->has_pmu;
1024}
1025
1026static void arm_set_pmu(Object *obj, bool value, Error **errp)
1027{
1028    ARMCPU *cpu = ARM_CPU(obj);
1029
1030    if (value) {
1031        if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1032            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1033            return;
1034        }
1035        set_feature(&cpu->env, ARM_FEATURE_PMU);
1036    } else {
1037        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1038    }
1039    cpu->has_pmu = value;
1040}
1041
1042static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1043                               void *opaque, Error **errp)
1044{
1045    ARMCPU *cpu = ARM_CPU(obj);
1046
1047    visit_type_uint32(v, name, &cpu->init_svtor, errp);
1048}
1049
1050static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1051                               void *opaque, Error **errp)
1052{
1053    ARMCPU *cpu = ARM_CPU(obj);
1054
1055    visit_type_uint32(v, name, &cpu->init_svtor, errp);
1056}
1057
1058void arm_cpu_post_init(Object *obj)
1059{
1060    ARMCPU *cpu = ARM_CPU(obj);
1061
1062    /* M profile implies PMSA. We have to do this here rather than
1063     * in realize with the other feature-implication checks because
1064     * we look at the PMSA bit to see if we should add some properties.
1065     */
1066    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1067        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1068    }
1069    /* Similarly for the VFP feature bits */
1070    if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1071        set_feature(&cpu->env, ARM_FEATURE_VFP3);
1072    }
1073    if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1074        set_feature(&cpu->env, ARM_FEATURE_VFP);
1075    }
1076
1077    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1078        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1079        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1080                                 &error_abort);
1081    }
1082
1083    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1084        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1085                                 &error_abort);
1086    }
1087
1088    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1089        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1090                                 &error_abort);
1091    }
1092
1093    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1094        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1095         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1096         */
1097        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1098                                 &error_abort);
1099
1100#ifndef CONFIG_USER_ONLY
1101        object_property_add_link(obj, "secure-memory",
1102                                 TYPE_MEMORY_REGION,
1103                                 (Object **)&cpu->secure_memory,
1104                                 qdev_prop_allow_set_link_before_realize,
1105                                 OBJ_PROP_LINK_STRONG,
1106                                 &error_abort);
1107#endif
1108    }
1109
1110    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1111        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1112                                 &error_abort);
1113    }
1114
1115    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1116        cpu->has_pmu = true;
1117        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1118                                 &error_abort);
1119    }
1120
1121    /*
1122     * Allow user to turn off VFP and Neon support, but only for TCG --
1123     * KVM does not currently allow us to lie to the guest about its
1124     * ID/feature registers, so the guest always sees what the host has.
1125     */
1126    if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1127        cpu->has_vfp = true;
1128        if (!kvm_enabled()) {
1129            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1130                                     &error_abort);
1131        }
1132    }
1133
1134    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1135        cpu->has_neon = true;
1136        if (!kvm_enabled()) {
1137            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1138                                     &error_abort);
1139        }
1140    }
1141
1142    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1143        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1144        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1145                                 &error_abort);
1146    }
1147
1148    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1149        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1150                                 &error_abort);
1151        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1152            qdev_property_add_static(DEVICE(obj),
1153                                     &arm_cpu_pmsav7_dregion_property,
1154                                     &error_abort);
1155        }
1156    }
1157
1158    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1159        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1160                                 qdev_prop_allow_set_link_before_realize,
1161                                 OBJ_PROP_LINK_STRONG,
1162                                 &error_abort);
1163        /*
1164         * M profile: initial value of the Secure VTOR. We can't just use
1165         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1166         * the property to be set after realize.
1167         */
1168        object_property_add(obj, "init-svtor", "uint32",
1169                            arm_get_init_svtor, arm_set_init_svtor,
1170                            NULL, NULL, &error_abort);
1171    }
1172
1173    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1174                             &error_abort);
1175}
1176
1177static void arm_cpu_finalizefn(Object *obj)
1178{
1179    ARMCPU *cpu = ARM_CPU(obj);
1180    ARMELChangeHook *hook, *next;
1181
1182    g_hash_table_destroy(cpu->cp_regs);
1183
1184    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1185        QLIST_REMOVE(hook, node);
1186        g_free(hook);
1187    }
1188    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1189        QLIST_REMOVE(hook, node);
1190        g_free(hook);
1191    }
1192#ifndef CONFIG_USER_ONLY
1193    if (cpu->pmu_timer) {
1194        timer_del(cpu->pmu_timer);
1195        timer_deinit(cpu->pmu_timer);
1196        timer_free(cpu->pmu_timer);
1197    }
1198#endif
1199}
1200
1201void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1202{
1203    Error *local_err = NULL;
1204
1205    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1206        arm_cpu_sve_finalize(cpu, &local_err);
1207        if (local_err != NULL) {
1208            error_propagate(errp, local_err);
1209            return;
1210        }
1211    }
1212}
1213
1214static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1215{
1216    CPUState *cs = CPU(dev);
1217    ARMCPU *cpu = ARM_CPU(dev);
1218    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1219    CPUARMState *env = &cpu->env;
1220    int pagebits;
1221    Error *local_err = NULL;
1222    bool no_aa32 = false;
1223
1224    /* If we needed to query the host kernel for the CPU features
1225     * then it's possible that might have failed in the initfn, but
1226     * this is the first point where we can report it.
1227     */
1228    if (cpu->host_cpu_probe_failed) {
1229        if (!kvm_enabled()) {
1230            error_setg(errp, "The 'host' CPU type can only be used with KVM");
1231        } else {
1232            error_setg(errp, "Failed to retrieve host CPU features");
1233        }
1234        return;
1235    }
1236
1237#ifndef CONFIG_USER_ONLY
1238    /* The NVIC and M-profile CPU are two halves of a single piece of
1239     * hardware; trying to use one without the other is a command line
1240     * error and will result in segfaults if not caught here.
1241     */
1242    if (arm_feature(env, ARM_FEATURE_M)) {
1243        if (!env->nvic) {
1244            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1245            return;
1246        }
1247    } else {
1248        if (env->nvic) {
1249            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1250            return;
1251        }
1252    }
1253
1254    cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1255                                           arm_gt_ptimer_cb, cpu);
1256    cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1257                                           arm_gt_vtimer_cb, cpu);
1258    cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1259                                          arm_gt_htimer_cb, cpu);
1260    cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1261                                          arm_gt_stimer_cb, cpu);
1262#endif
1263
1264    cpu_exec_realizefn(cs, &local_err);
1265    if (local_err != NULL) {
1266        error_propagate(errp, local_err);
1267        return;
1268    }
1269
1270    arm_cpu_finalize_features(cpu, &local_err);
1271    if (local_err != NULL) {
1272        error_propagate(errp, local_err);
1273        return;
1274    }
1275
1276    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1277        cpu->has_vfp != cpu->has_neon) {
1278        /*
1279         * This is an architectural requirement for AArch64; AArch32 is
1280         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1281         */
1282        error_setg(errp,
1283                   "AArch64 CPUs must have both VFP and Neon or neither");
1284        return;
1285    }
1286
1287    if (!cpu->has_vfp) {
1288        uint64_t t;
1289        uint32_t u;
1290
1291        unset_feature(env, ARM_FEATURE_VFP);
1292        unset_feature(env, ARM_FEATURE_VFP3);
1293        unset_feature(env, ARM_FEATURE_VFP4);
1294
1295        t = cpu->isar.id_aa64isar1;
1296        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1297        cpu->isar.id_aa64isar1 = t;
1298
1299        t = cpu->isar.id_aa64pfr0;
1300        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1301        cpu->isar.id_aa64pfr0 = t;
1302
1303        u = cpu->isar.id_isar6;
1304        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1305        cpu->isar.id_isar6 = u;
1306
1307        u = cpu->isar.mvfr0;
1308        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1309        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1310        u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1311        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1312        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1313        u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1314        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1315        cpu->isar.mvfr0 = u;
1316
1317        u = cpu->isar.mvfr1;
1318        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1319        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1320        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1321        cpu->isar.mvfr1 = u;
1322
1323        u = cpu->isar.mvfr2;
1324        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1325        cpu->isar.mvfr2 = u;
1326    }
1327
1328    if (!cpu->has_neon) {
1329        uint64_t t;
1330        uint32_t u;
1331
1332        unset_feature(env, ARM_FEATURE_NEON);
1333
1334        t = cpu->isar.id_aa64isar0;
1335        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1336        cpu->isar.id_aa64isar0 = t;
1337
1338        t = cpu->isar.id_aa64isar1;
1339        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1340        cpu->isar.id_aa64isar1 = t;
1341
1342        t = cpu->isar.id_aa64pfr0;
1343        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1344        cpu->isar.id_aa64pfr0 = t;
1345
1346        u = cpu->isar.id_isar5;
1347        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1348        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1349        cpu->isar.id_isar5 = u;
1350
1351        u = cpu->isar.id_isar6;
1352        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1353        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1354        cpu->isar.id_isar6 = u;
1355
1356        u = cpu->isar.mvfr1;
1357        u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1358        u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1359        u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1360        u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1361        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1362        cpu->isar.mvfr1 = u;
1363
1364        u = cpu->isar.mvfr2;
1365        u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1366        cpu->isar.mvfr2 = u;
1367    }
1368
1369    if (!cpu->has_neon && !cpu->has_vfp) {
1370        uint64_t t;
1371        uint32_t u;
1372
1373        t = cpu->isar.id_aa64isar0;
1374        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1375        cpu->isar.id_aa64isar0 = t;
1376
1377        t = cpu->isar.id_aa64isar1;
1378        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1379        cpu->isar.id_aa64isar1 = t;
1380
1381        u = cpu->isar.mvfr0;
1382        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1383        cpu->isar.mvfr0 = u;
1384    }
1385
1386    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1387        uint32_t u;
1388
1389        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1390
1391        u = cpu->isar.id_isar1;
1392        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1393        cpu->isar.id_isar1 = u;
1394
1395        u = cpu->isar.id_isar2;
1396        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1397        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1398        cpu->isar.id_isar2 = u;
1399
1400        u = cpu->isar.id_isar3;
1401        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1402        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1403        cpu->isar.id_isar3 = u;
1404    }
1405
1406    /* Some features automatically imply others: */
1407    if (arm_feature(env, ARM_FEATURE_V8)) {
1408        if (arm_feature(env, ARM_FEATURE_M)) {
1409            set_feature(env, ARM_FEATURE_V7);
1410        } else {
1411            set_feature(env, ARM_FEATURE_V7VE);
1412        }
1413    }
1414
1415    /*
1416     * There exist AArch64 cpus without AArch32 support.  When KVM
1417     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1418     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1419     * As a general principle, we also do not make ID register
1420     * consistency checks anywhere unless using TCG, because only
1421     * for TCG would a consistency-check failure be a QEMU bug.
1422     */
1423    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1424        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1425    }
1426
1427    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1428        /* v7 Virtualization Extensions. In real hardware this implies
1429         * EL2 and also the presence of the Security Extensions.
1430         * For QEMU, for backwards-compatibility we implement some
1431         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1432         * include the various other features that V7VE implies.
1433         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1434         * Security Extensions is ARM_FEATURE_EL3.
1435         */
1436        assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1437        set_feature(env, ARM_FEATURE_LPAE);
1438        set_feature(env, ARM_FEATURE_V7);
1439    }
1440    if (arm_feature(env, ARM_FEATURE_V7)) {
1441        set_feature(env, ARM_FEATURE_VAPA);
1442        set_feature(env, ARM_FEATURE_THUMB2);
1443        set_feature(env, ARM_FEATURE_MPIDR);
1444        if (!arm_feature(env, ARM_FEATURE_M)) {
1445            set_feature(env, ARM_FEATURE_V6K);
1446        } else {
1447            set_feature(env, ARM_FEATURE_V6);
1448        }
1449
1450        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1451         * non-EL3 configs. This is needed by some legacy boards.
1452         */
1453        set_feature(env, ARM_FEATURE_VBAR);
1454    }
1455    if (arm_feature(env, ARM_FEATURE_V6K)) {
1456        set_feature(env, ARM_FEATURE_V6);
1457        set_feature(env, ARM_FEATURE_MVFR);
1458    }
1459    if (arm_feature(env, ARM_FEATURE_V6)) {
1460        set_feature(env, ARM_FEATURE_V5);
1461        if (!arm_feature(env, ARM_FEATURE_M)) {
1462            assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1463            set_feature(env, ARM_FEATURE_AUXCR);
1464        }
1465    }
1466    if (arm_feature(env, ARM_FEATURE_V5)) {
1467        set_feature(env, ARM_FEATURE_V4T);
1468    }
1469    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1470        set_feature(env, ARM_FEATURE_V7MP);
1471        set_feature(env, ARM_FEATURE_PXN);
1472    }
1473    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1474        set_feature(env, ARM_FEATURE_CBAR);
1475    }
1476    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1477        !arm_feature(env, ARM_FEATURE_M)) {
1478        set_feature(env, ARM_FEATURE_THUMB_DSP);
1479    }
1480
1481    /*
1482     * We rely on no XScale CPU having VFP so we can use the same bits in the
1483     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1484     */
1485    assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1486             arm_feature(env, ARM_FEATURE_XSCALE)));
1487
1488    if (arm_feature(env, ARM_FEATURE_V7) &&
1489        !arm_feature(env, ARM_FEATURE_M) &&
1490        !arm_feature(env, ARM_FEATURE_PMSA)) {
1491        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1492         * can use 4K pages.
1493         */
1494        pagebits = 12;
1495    } else {
1496        /* For CPUs which might have tiny 1K pages, or which have an
1497         * MPU and might have small region sizes, stick with 1K pages.
1498         */
1499        pagebits = 10;
1500    }
1501    if (!set_preferred_target_page_bits(pagebits)) {
1502        /* This can only ever happen for hotplugging a CPU, or if
1503         * the board code incorrectly creates a CPU which it has
1504         * promised via minimum_page_size that it will not.
1505         */
1506        error_setg(errp, "This CPU requires a smaller page size than the "
1507                   "system is using");
1508        return;
1509    }
1510
1511    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1512     * We don't support setting cluster ID ([16..23]) (known as Aff2
1513     * in later ARM ARM versions), or any of the higher affinity level fields,
1514     * so these bits always RAZ.
1515     */
1516    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1517        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1518                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1519    }
1520
1521    if (cpu->reset_hivecs) {
1522            cpu->reset_sctlr |= (1 << 13);
1523    }
1524
1525    if (cpu->cfgend) {
1526        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1527            cpu->reset_sctlr |= SCTLR_EE;
1528        } else {
1529            cpu->reset_sctlr |= SCTLR_B;
1530        }
1531    }
1532
1533    if (!cpu->has_el3) {
1534        /* If the has_el3 CPU property is disabled then we need to disable the
1535         * feature.
1536         */
1537        unset_feature(env, ARM_FEATURE_EL3);
1538
1539        /* Disable the security extension feature bits in the processor feature
1540         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1541         */
1542        cpu->id_pfr1 &= ~0xf0;
1543        cpu->isar.id_aa64pfr0 &= ~0xf000;
1544    }
1545
1546    if (!cpu->has_el2) {
1547        unset_feature(env, ARM_FEATURE_EL2);
1548    }
1549
1550    if (!cpu->has_pmu) {
1551        unset_feature(env, ARM_FEATURE_PMU);
1552    }
1553    if (arm_feature(env, ARM_FEATURE_PMU)) {
1554        pmu_init(cpu);
1555
1556        if (!kvm_enabled()) {
1557            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1558            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1559        }
1560
1561#ifndef CONFIG_USER_ONLY
1562        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1563                cpu);
1564#endif
1565    } else {
1566        cpu->id_aa64dfr0 &= ~0xf00;
1567        cpu->id_dfr0 &= ~(0xf << 24);
1568        cpu->pmceid0 = 0;
1569        cpu->pmceid1 = 0;
1570    }
1571
1572    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1573        /* Disable the hypervisor feature bits in the processor feature
1574         * registers if we don't have EL2. These are id_pfr1[15:12] and
1575         * id_aa64pfr0_el1[11:8].
1576         */
1577        cpu->isar.id_aa64pfr0 &= ~0xf00;
1578        cpu->id_pfr1 &= ~0xf000;
1579    }
1580
1581    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1582     * to false or by setting pmsav7-dregion to 0.
1583     */
1584    if (!cpu->has_mpu) {
1585        cpu->pmsav7_dregion = 0;
1586    }
1587    if (cpu->pmsav7_dregion == 0) {
1588        cpu->has_mpu = false;
1589    }
1590
1591    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1592        arm_feature(env, ARM_FEATURE_V7)) {
1593        uint32_t nr = cpu->pmsav7_dregion;
1594
1595        if (nr > 0xff) {
1596            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1597            return;
1598        }
1599
1600        if (nr) {
1601            if (arm_feature(env, ARM_FEATURE_V8)) {
1602                /* PMSAv8 */
1603                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1604                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1605                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1606                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1607                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1608                }
1609            } else {
1610                env->pmsav7.drbar = g_new0(uint32_t, nr);
1611                env->pmsav7.drsr = g_new0(uint32_t, nr);
1612                env->pmsav7.dracr = g_new0(uint32_t, nr);
1613            }
1614        }
1615    }
1616
1617    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1618        uint32_t nr = cpu->sau_sregion;
1619
1620        if (nr > 0xff) {
1621            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1622            return;
1623        }
1624
1625        if (nr) {
1626            env->sau.rbar = g_new0(uint32_t, nr);
1627            env->sau.rlar = g_new0(uint32_t, nr);
1628        }
1629    }
1630
1631    if (arm_feature(env, ARM_FEATURE_EL3)) {
1632        set_feature(env, ARM_FEATURE_VBAR);
1633    }
1634
1635    register_cp_regs_for_features(cpu);
1636    arm_cpu_register_gdb_regs_for_features(cpu);
1637
1638    init_cpreg_list(cpu);
1639
1640#ifndef CONFIG_USER_ONLY
1641    MachineState *ms = MACHINE(qdev_get_machine());
1642    unsigned int smp_cpus = ms->smp.cpus;
1643
1644    if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1645        cs->num_ases = 2;
1646
1647        if (!cpu->secure_memory) {
1648            cpu->secure_memory = cs->memory;
1649        }
1650        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1651                               cpu->secure_memory);
1652    } else {
1653        cs->num_ases = 1;
1654    }
1655    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1656
1657    /* No core_count specified, default to smp_cpus. */
1658    if (cpu->core_count == -1) {
1659        cpu->core_count = smp_cpus;
1660    }
1661#endif
1662
1663    qemu_init_vcpu(cs);
1664    cpu_reset(cs);
1665
1666    acc->parent_realize(dev, errp);
1667}
1668
1669static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1670{
1671    ObjectClass *oc;
1672    char *typename;
1673    char **cpuname;
1674    const char *cpunamestr;
1675
1676    cpuname = g_strsplit(cpu_model, ",", 1);
1677    cpunamestr = cpuname[0];
1678#ifdef CONFIG_USER_ONLY
1679    /* For backwards compatibility usermode emulation allows "-cpu any",
1680     * which has the same semantics as "-cpu max".
1681     */
1682    if (!strcmp(cpunamestr, "any")) {
1683        cpunamestr = "max";
1684    }
1685#endif
1686    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1687    oc = object_class_by_name(typename);
1688    g_strfreev(cpuname);
1689    g_free(typename);
1690    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1691        object_class_is_abstract(oc)) {
1692        return NULL;
1693    }
1694    return oc;
1695}
1696
1697/* CPU models. These are not needed for the AArch64 linux-user build. */
1698#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1699
1700static void arm926_initfn(Object *obj)
1701{
1702    ARMCPU *cpu = ARM_CPU(obj);
1703
1704    cpu->dtb_compatible = "arm,arm926";
1705    set_feature(&cpu->env, ARM_FEATURE_V5);
1706    set_feature(&cpu->env, ARM_FEATURE_VFP);
1707    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1708    set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1709    cpu->midr = 0x41069265;
1710    cpu->reset_fpsid = 0x41011090;
1711    cpu->ctr = 0x1dd20d2;
1712    cpu->reset_sctlr = 0x00090078;
1713
1714    /*
1715     * ARMv5 does not have the ID_ISAR registers, but we can still
1716     * set the field to indicate Jazelle support within QEMU.
1717     */
1718    cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1719    /*
1720     * Similarly, we need to set MVFR0 fields to enable double precision
1721     * and short vector support even though ARMv5 doesn't have this register.
1722     */
1723    cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1724    cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1725}
1726
1727static void arm946_initfn(Object *obj)
1728{
1729    ARMCPU *cpu = ARM_CPU(obj);
1730
1731    cpu->dtb_compatible = "arm,arm946";
1732    set_feature(&cpu->env, ARM_FEATURE_V5);
1733    set_feature(&cpu->env, ARM_FEATURE_PMSA);
1734    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1735    cpu->midr = 0x41059461;
1736    cpu->ctr = 0x0f004006;
1737    cpu->reset_sctlr = 0x00000078;
1738}
1739
1740static void arm1026_initfn(Object *obj)
1741{
1742    ARMCPU *cpu = ARM_CPU(obj);
1743
1744    cpu->dtb_compatible = "arm,arm1026";
1745    set_feature(&cpu->env, ARM_FEATURE_V5);
1746    set_feature(&cpu->env, ARM_FEATURE_VFP);
1747    set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1748    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1749    set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1750    cpu->midr = 0x4106a262;
1751    cpu->reset_fpsid = 0x410110a0;
1752    cpu->ctr = 0x1dd20d2;
1753    cpu->reset_sctlr = 0x00090078;
1754    cpu->reset_auxcr = 1;
1755
1756    /*
1757     * ARMv5 does not have the ID_ISAR registers, but we can still
1758     * set the field to indicate Jazelle support within QEMU.
1759     */
1760    cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1761    /*
1762     * Similarly, we need to set MVFR0 fields to enable double precision
1763     * and short vector support even though ARMv5 doesn't have this register.
1764     */
1765    cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1766    cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1767
1768    {
1769        /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1770        ARMCPRegInfo ifar = {
1771            .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1772            .access = PL1_RW,
1773            .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1774            .resetvalue = 0
1775        };
1776        define_one_arm_cp_reg(cpu, &ifar);
1777    }
1778}
1779
1780static void arm1136_r2_initfn(Object *obj)
1781{
1782    ARMCPU *cpu = ARM_CPU(obj);
1783    /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1784     * older core than plain "arm1136". In particular this does not
1785     * have the v6K features.
1786     * These ID register values are correct for 1136 but may be wrong
1787     * for 1136_r2 (in particular r0p2 does not actually implement most
1788     * of the ID registers).
1789     */
1790
1791    cpu->dtb_compatible = "arm,arm1136";
1792    set_feature(&cpu->env, ARM_FEATURE_V6);
1793    set_feature(&cpu->env, ARM_FEATURE_VFP);
1794    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1795    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1796    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1797    cpu->midr = 0x4107b362;
1798    cpu->reset_fpsid = 0x410120b4;
1799    cpu->isar.mvfr0 = 0x11111111;
1800    cpu->isar.mvfr1 = 0x00000000;
1801    cpu->ctr = 0x1dd20d2;
1802    cpu->reset_sctlr = 0x00050078;
1803    cpu->id_pfr0 = 0x111;
1804    cpu->id_pfr1 = 0x1;
1805    cpu->id_dfr0 = 0x2;
1806    cpu->id_afr0 = 0x3;
1807    cpu->id_mmfr0 = 0x01130003;
1808    cpu->id_mmfr1 = 0x10030302;
1809    cpu->id_mmfr2 = 0x01222110;
1810    cpu->isar.id_isar0 = 0x00140011;
1811    cpu->isar.id_isar1 = 0x12002111;
1812    cpu->isar.id_isar2 = 0x11231111;
1813    cpu->isar.id_isar3 = 0x01102131;
1814    cpu->isar.id_isar4 = 0x141;
1815    cpu->reset_auxcr = 7;
1816}
1817
1818static void arm1136_initfn(Object *obj)
1819{
1820    ARMCPU *cpu = ARM_CPU(obj);
1821
1822    cpu->dtb_compatible = "arm,arm1136";
1823    set_feature(&cpu->env, ARM_FEATURE_V6K);
1824    set_feature(&cpu->env, ARM_FEATURE_V6);
1825    set_feature(&cpu->env, ARM_FEATURE_VFP);
1826    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1827    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1828    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1829    cpu->midr = 0x4117b363;
1830    cpu->reset_fpsid = 0x410120b4;
1831    cpu->isar.mvfr0 = 0x11111111;
1832    cpu->isar.mvfr1 = 0x00000000;
1833    cpu->ctr = 0x1dd20d2;
1834    cpu->reset_sctlr = 0x00050078;
1835    cpu->id_pfr0 = 0x111;
1836    cpu->id_pfr1 = 0x1;
1837    cpu->id_dfr0 = 0x2;
1838    cpu->id_afr0 = 0x3;
1839    cpu->id_mmfr0 = 0x01130003;
1840    cpu->id_mmfr1 = 0x10030302;
1841    cpu->id_mmfr2 = 0x01222110;
1842    cpu->isar.id_isar0 = 0x00140011;
1843    cpu->isar.id_isar1 = 0x12002111;
1844    cpu->isar.id_isar2 = 0x11231111;
1845    cpu->isar.id_isar3 = 0x01102131;
1846    cpu->isar.id_isar4 = 0x141;
1847    cpu->reset_auxcr = 7;
1848}
1849
1850static void arm1176_initfn(Object *obj)
1851{
1852    ARMCPU *cpu = ARM_CPU(obj);
1853
1854    cpu->dtb_compatible = "arm,arm1176";
1855    set_feature(&cpu->env, ARM_FEATURE_V6K);
1856    set_feature(&cpu->env, ARM_FEATURE_VFP);
1857    set_feature(&cpu->env, ARM_FEATURE_VAPA);
1858    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1859    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1860    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1861    set_feature(&cpu->env, ARM_FEATURE_EL3);
1862    cpu->midr = 0x410fb767;
1863    cpu->reset_fpsid = 0x410120b5;
1864    cpu->isar.mvfr0 = 0x11111111;
1865    cpu->isar.mvfr1 = 0x00000000;
1866    cpu->ctr = 0x1dd20d2;
1867    cpu->reset_sctlr = 0x00050078;
1868    cpu->id_pfr0 = 0x111;
1869    cpu->id_pfr1 = 0x11;
1870    cpu->id_dfr0 = 0x33;
1871    cpu->id_afr0 = 0;
1872    cpu->id_mmfr0 = 0x01130003;
1873    cpu->id_mmfr1 = 0x10030302;
1874    cpu->id_mmfr2 = 0x01222100;
1875    cpu->isar.id_isar0 = 0x0140011;
1876    cpu->isar.id_isar1 = 0x12002111;
1877    cpu->isar.id_isar2 = 0x11231121;
1878    cpu->isar.id_isar3 = 0x01102131;
1879    cpu->isar.id_isar4 = 0x01141;
1880    cpu->reset_auxcr = 7;
1881}
1882
1883static void arm11mpcore_initfn(Object *obj)
1884{
1885    ARMCPU *cpu = ARM_CPU(obj);
1886
1887    cpu->dtb_compatible = "arm,arm11mpcore";
1888    set_feature(&cpu->env, ARM_FEATURE_V6K);
1889    set_feature(&cpu->env, ARM_FEATURE_VFP);
1890    set_feature(&cpu->env, ARM_FEATURE_VAPA);
1891    set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1892    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1893    cpu->midr = 0x410fb022;
1894    cpu->reset_fpsid = 0x410120b4;
1895    cpu->isar.mvfr0 = 0x11111111;
1896    cpu->isar.mvfr1 = 0x00000000;
1897    cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1898    cpu->id_pfr0 = 0x111;
1899    cpu->id_pfr1 = 0x1;
1900    cpu->id_dfr0 = 0;
1901    cpu->id_afr0 = 0x2;
1902    cpu->id_mmfr0 = 0x01100103;
1903    cpu->id_mmfr1 = 0x10020302;
1904    cpu->id_mmfr2 = 0x01222000;
1905    cpu->isar.id_isar0 = 0x00100011;
1906    cpu->isar.id_isar1 = 0x12002111;
1907    cpu->isar.id_isar2 = 0x11221011;
1908    cpu->isar.id_isar3 = 0x01102131;
1909    cpu->isar.id_isar4 = 0x141;
1910    cpu->reset_auxcr = 1;
1911}
1912
1913static void cortex_m0_initfn(Object *obj)
1914{
1915    ARMCPU *cpu = ARM_CPU(obj);
1916    set_feature(&cpu->env, ARM_FEATURE_V6);
1917    set_feature(&cpu->env, ARM_FEATURE_M);
1918
1919    cpu->midr = 0x410cc200;
1920}
1921
1922static void cortex_m3_initfn(Object *obj)
1923{
1924    ARMCPU *cpu = ARM_CPU(obj);
1925    set_feature(&cpu->env, ARM_FEATURE_V7);
1926    set_feature(&cpu->env, ARM_FEATURE_M);
1927    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1928    cpu->midr = 0x410fc231;
1929    cpu->pmsav7_dregion = 8;
1930    cpu->id_pfr0 = 0x00000030;
1931    cpu->id_pfr1 = 0x00000200;
1932    cpu->id_dfr0 = 0x00100000;
1933    cpu->id_afr0 = 0x00000000;
1934    cpu->id_mmfr0 = 0x00000030;
1935    cpu->id_mmfr1 = 0x00000000;
1936    cpu->id_mmfr2 = 0x00000000;
1937    cpu->id_mmfr3 = 0x00000000;
1938    cpu->isar.id_isar0 = 0x01141110;
1939    cpu->isar.id_isar1 = 0x02111000;
1940    cpu->isar.id_isar2 = 0x21112231;
1941    cpu->isar.id_isar3 = 0x01111110;
1942    cpu->isar.id_isar4 = 0x01310102;
1943    cpu->isar.id_isar5 = 0x00000000;
1944    cpu->isar.id_isar6 = 0x00000000;
1945}
1946
1947static void cortex_m4_initfn(Object *obj)
1948{
1949    ARMCPU *cpu = ARM_CPU(obj);
1950
1951    set_feature(&cpu->env, ARM_FEATURE_V7);
1952    set_feature(&cpu->env, ARM_FEATURE_M);
1953    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1954    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1955    set_feature(&cpu->env, ARM_FEATURE_VFP4);
1956    cpu->midr = 0x410fc240; /* r0p0 */
1957    cpu->pmsav7_dregion = 8;
1958    cpu->isar.mvfr0 = 0x10110021;
1959    cpu->isar.mvfr1 = 0x11000011;
1960    cpu->isar.mvfr2 = 0x00000000;
1961    cpu->id_pfr0 = 0x00000030;
1962    cpu->id_pfr1 = 0x00000200;
1963    cpu->id_dfr0 = 0x00100000;
1964    cpu->id_afr0 = 0x00000000;
1965    cpu->id_mmfr0 = 0x00000030;
1966    cpu->id_mmfr1 = 0x00000000;
1967    cpu->id_mmfr2 = 0x00000000;
1968    cpu->id_mmfr3 = 0x00000000;
1969    cpu->isar.id_isar0 = 0x01141110;
1970    cpu->isar.id_isar1 = 0x02111000;
1971    cpu->isar.id_isar2 = 0x21112231;
1972    cpu->isar.id_isar3 = 0x01111110;
1973    cpu->isar.id_isar4 = 0x01310102;
1974    cpu->isar.id_isar5 = 0x00000000;
1975    cpu->isar.id_isar6 = 0x00000000;
1976}
1977
1978static void cortex_m33_initfn(Object *obj)
1979{
1980    ARMCPU *cpu = ARM_CPU(obj);
1981
1982    set_feature(&cpu->env, ARM_FEATURE_V8);
1983    set_feature(&cpu->env, ARM_FEATURE_M);
1984    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1985    set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1986    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1987    set_feature(&cpu->env, ARM_FEATURE_VFP4);
1988    cpu->midr = 0x410fd213; /* r0p3 */
1989    cpu->pmsav7_dregion = 16;
1990    cpu->sau_sregion = 8;
1991    cpu->isar.mvfr0 = 0x10110021;
1992    cpu->isar.mvfr1 = 0x11000011;
1993    cpu->isar.mvfr2 = 0x00000040;
1994    cpu->id_pfr0 = 0x00000030;
1995    cpu->id_pfr1 = 0x00000210;
1996    cpu->id_dfr0 = 0x00200000;
1997    cpu->id_afr0 = 0x00000000;
1998    cpu->id_mmfr0 = 0x00101F40;
1999    cpu->id_mmfr1 = 0x00000000;
2000    cpu->id_mmfr2 = 0x01000000;
2001    cpu->id_mmfr3 = 0x00000000;
2002    cpu->isar.id_isar0 = 0x01101110;
2003    cpu->isar.id_isar1 = 0x02212000;
2004    cpu->isar.id_isar2 = 0x20232232;
2005    cpu->isar.id_isar3 = 0x01111131;
2006    cpu->isar.id_isar4 = 0x01310132;
2007    cpu->isar.id_isar5 = 0x00000000;
2008    cpu->isar.id_isar6 = 0x00000000;
2009    cpu->clidr = 0x00000000;
2010    cpu->ctr = 0x8000c000;
2011}
2012
2013static void arm_v7m_class_init(ObjectClass *oc, void *data)
2014{
2015    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2016    CPUClass *cc = CPU_CLASS(oc);
2017
2018    acc->info = data;
2019#ifndef CONFIG_USER_ONLY
2020    cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2021#endif
2022
2023    cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2024}
2025
2026static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2027    /* Dummy the TCM region regs for the moment */
2028    { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2029      .access = PL1_RW, .type = ARM_CP_CONST },
2030    { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2031      .access = PL1_RW, .type = ARM_CP_CONST },
2032    { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2033      .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2034    REGINFO_SENTINEL
2035};
2036
2037static void cortex_r5_initfn(Object *obj)
2038{
2039    ARMCPU *cpu = ARM_CPU(obj);
2040
2041    set_feature(&cpu->env, ARM_FEATURE_V7);
2042    set_feature(&cpu->env, ARM_FEATURE_V7MP);
2043    set_feature(&cpu->env, ARM_FEATURE_PMSA);
2044    cpu->midr = 0x411fc153; /* r1p3 */
2045    cpu->id_pfr0 = 0x0131;
2046    cpu->id_pfr1 = 0x001;
2047    cpu->id_dfr0 = 0x010400;
2048    cpu->id_afr0 = 0x0;
2049    cpu->id_mmfr0 = 0x0210030;
2050    cpu->id_mmfr1 = 0x00000000;
2051    cpu->id_mmfr2 = 0x01200000;
2052    cpu->id_mmfr3 = 0x0211;
2053    cpu->isar.id_isar0 = 0x02101111;
2054    cpu->isar.id_isar1 = 0x13112111;
2055    cpu->isar.id_isar2 = 0x21232141;
2056    cpu->isar.id_isar3 = 0x01112131;
2057    cpu->isar.id_isar4 = 0x0010142;
2058    cpu->isar.id_isar5 = 0x0;
2059    cpu->isar.id_isar6 = 0x0;
2060    cpu->mp_is_up = true;
2061    cpu->pmsav7_dregion = 16;
2062    define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2063}
2064
2065static void cortex_r5f_initfn(Object *obj)
2066{
2067    ARMCPU *cpu = ARM_CPU(obj);
2068
2069    cortex_r5_initfn(obj);
2070    set_feature(&cpu->env, ARM_FEATURE_VFP3);
2071    cpu->isar.mvfr0 = 0x10110221;
2072    cpu->isar.mvfr1 = 0x00000011;
2073}
2074
2075static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2076    { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2077      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2078    { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2079      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2080    REGINFO_SENTINEL
2081};
2082
2083static void cortex_a8_initfn(Object *obj)
2084{
2085    ARMCPU *cpu = ARM_CPU(obj);
2086
2087    cpu->dtb_compatible = "arm,cortex-a8";
2088    set_feature(&cpu->env, ARM_FEATURE_V7);
2089    set_feature(&cpu->env, ARM_FEATURE_VFP3);
2090    set_feature(&cpu->env, ARM_FEATURE_NEON);
2091    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2092    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2093    set_feature(&cpu->env, ARM_FEATURE_EL3);
2094    cpu->midr = 0x410fc080;
2095    cpu->reset_fpsid = 0x410330c0;
2096    cpu->isar.mvfr0 = 0x11110222;
2097    cpu->isar.mvfr1 = 0x00011111;
2098    cpu->ctr = 0x82048004;
2099    cpu->reset_sctlr = 0x00c50078;
2100    cpu->id_pfr0 = 0x1031;
2101    cpu->id_pfr1 = 0x11;
2102    cpu->id_dfr0 = 0x400;
2103    cpu->id_afr0 = 0;
2104    cpu->id_mmfr0 = 0x31100003;
2105    cpu->id_mmfr1 = 0x20000000;
2106    cpu->id_mmfr2 = 0x01202000;
2107    cpu->id_mmfr3 = 0x11;
2108    cpu->isar.id_isar0 = 0x00101111;
2109    cpu->isar.id_isar1 = 0x12112111;
2110    cpu->isar.id_isar2 = 0x21232031;
2111    cpu->isar.id_isar3 = 0x11112131;
2112    cpu->isar.id_isar4 = 0x00111142;
2113    cpu->dbgdidr = 0x15141000;
2114    cpu->clidr = (1 << 27) | (2 << 24) | 3;
2115    cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2116    cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2117    cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2118    cpu->reset_auxcr = 2;
2119    define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2120}
2121
2122static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2123    /* power_control should be set to maximum latency. Again,
2124     * default to 0 and set by private hook
2125     */
2126    { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2127      .access = PL1_RW, .resetvalue = 0,
2128      .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2129    { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2130      .access = PL1_RW, .resetvalue = 0,
2131      .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2132    { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2133      .access = PL1_RW, .resetvalue = 0,
2134      .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2135    { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2136      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2137    /* TLB lockdown control */
2138    { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2139      .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2140    { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2141      .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2142    { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2143      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2144    { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2145      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2146    { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2147      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2148    REGINFO_SENTINEL
2149};
2150
2151static void cortex_a9_initfn(Object *obj)
2152{
2153    ARMCPU *cpu = ARM_CPU(obj);
2154
2155    cpu->dtb_compatible = "arm,cortex-a9";
2156    set_feature(&cpu->env, ARM_FEATURE_V7);
2157    set_feature(&cpu->env, ARM_FEATURE_VFP3);
2158    set_feature(&cpu->env, ARM_FEATURE_NEON);
2159    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2160    set_feature(&cpu->env, ARM_FEATURE_EL3);
2161    /* Note that A9 supports the MP extensions even for
2162     * A9UP and single-core A9MP (which are both different
2163     * and valid configurations; we don't model A9UP).
2164     */
2165    set_feature(&cpu->env, ARM_FEATURE_V7MP);
2166    set_feature(&cpu->env, ARM_FEATURE_CBAR);
2167    cpu->midr = 0x410fc090;
2168    cpu->reset_fpsid = 0x41033090;
2169    cpu->isar.mvfr0 = 0x11110222;
2170    cpu->isar.mvfr1 = 0x01111111;
2171    cpu->ctr = 0x80038003;
2172    cpu->reset_sctlr = 0x00c50078;
2173    cpu->id_pfr0 = 0x1031;
2174    cpu->id_pfr1 = 0x11;
2175    cpu->id_dfr0 = 0x000;
2176    cpu->id_afr0 = 0;
2177    cpu->id_mmfr0 = 0x00100103;
2178    cpu->id_mmfr1 = 0x20000000;
2179    cpu->id_mmfr2 = 0x01230000;
2180    cpu->id_mmfr3 = 0x00002111;
2181    cpu->isar.id_isar0 = 0x00101111;
2182    cpu->isar.id_isar1 = 0x13112111;
2183    cpu->isar.id_isar2 = 0x21232041;
2184    cpu->isar.id_isar3 = 0x11112131;
2185    cpu->isar.id_isar4 = 0x00111142;
2186    cpu->dbgdidr = 0x35141000;
2187    cpu->clidr = (1 << 27) | (1 << 24) | 3;
2188    cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2189    cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2190    define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2191}
2192
2193#ifndef CONFIG_USER_ONLY
2194static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2195{
2196    MachineState *ms = MACHINE(qdev_get_machine());
2197
2198    /* Linux wants the number of processors from here.
2199     * Might as well set the interrupt-controller bit too.
2200     */
2201    return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2202}
2203#endif
2204
2205static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2206#ifndef CONFIG_USER_ONLY
2207    { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2208      .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2209      .writefn = arm_cp_write_ignore, },
2210#endif
2211    { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2212      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2213    REGINFO_SENTINEL
2214};
2215
2216static void cortex_a7_initfn(Object *obj)
2217{
2218    ARMCPU *cpu = ARM_CPU(obj);
2219
2220    cpu->dtb_compatible = "arm,cortex-a7";
2221    set_feature(&cpu->env, ARM_FEATURE_V7VE);
2222    set_feature(&cpu->env, ARM_FEATURE_VFP4);
2223    set_feature(&cpu->env, ARM_FEATURE_NEON);
2224    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2225    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2226    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2227    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2228    set_feature(&cpu->env, ARM_FEATURE_EL2);
2229    set_feature(&cpu->env, ARM_FEATURE_EL3);
2230    set_feature(&cpu->env, ARM_FEATURE_PMU);
2231    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2232    cpu->midr = 0x410fc075;
2233    cpu->reset_fpsid = 0x41023075;
2234    cpu->isar.mvfr0 = 0x10110222;
2235    cpu->isar.mvfr1 = 0x11111111;
2236    cpu->ctr = 0x84448003;
2237    cpu->reset_sctlr = 0x00c50078;
2238    cpu->id_pfr0 = 0x00001131;
2239    cpu->id_pfr1 = 0x00011011;
2240    cpu->id_dfr0 = 0x02010555;
2241    cpu->id_afr0 = 0x00000000;
2242    cpu->id_mmfr0 = 0x10101105;
2243    cpu->id_mmfr1 = 0x40000000;
2244    cpu->id_mmfr2 = 0x01240000;
2245    cpu->id_mmfr3 = 0x02102211;
2246    /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2247     * table 4-41 gives 0x02101110, which includes the arm div insns.
2248     */
2249    cpu->isar.id_isar0 = 0x02101110;
2250    cpu->isar.id_isar1 = 0x13112111;
2251    cpu->isar.id_isar2 = 0x21232041;
2252    cpu->isar.id_isar3 = 0x11112131;
2253    cpu->isar.id_isar4 = 0x10011142;
2254    cpu->dbgdidr = 0x3515f005;
2255    cpu->clidr = 0x0a200023;
2256    cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2257    cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2258    cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2259    define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2260}
2261
2262static void cortex_a15_initfn(Object *obj)
2263{
2264    ARMCPU *cpu = ARM_CPU(obj);
2265
2266    cpu->dtb_compatible = "arm,cortex-a15";
2267    set_feature(&cpu->env, ARM_FEATURE_V7VE);
2268    set_feature(&cpu->env, ARM_FEATURE_VFP4);
2269    set_feature(&cpu->env, ARM_FEATURE_NEON);
2270    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2271    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2272    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2273    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2274    set_feature(&cpu->env, ARM_FEATURE_EL2);
2275    set_feature(&cpu->env, ARM_FEATURE_EL3);
2276    set_feature(&cpu->env, ARM_FEATURE_PMU);
2277    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2278    cpu->midr = 0x412fc0f1;
2279    cpu->reset_fpsid = 0x410430f0;
2280    cpu->isar.mvfr0 = 0x10110222;
2281    cpu->isar.mvfr1 = 0x11111111;
2282    cpu->ctr = 0x8444c004;
2283    cpu->reset_sctlr = 0x00c50078;
2284    cpu->id_pfr0 = 0x00001131;
2285    cpu->id_pfr1 = 0x00011011;
2286    cpu->id_dfr0 = 0x02010555;
2287    cpu->id_afr0 = 0x00000000;
2288    cpu->id_mmfr0 = 0x10201105;
2289    cpu->id_mmfr1 = 0x20000000;
2290    cpu->id_mmfr2 = 0x01240000;
2291    cpu->id_mmfr3 = 0x02102211;
2292    cpu->isar.id_isar0 = 0x02101110;
2293    cpu->isar.id_isar1 = 0x13112111;
2294    cpu->isar.id_isar2 = 0x21232041;
2295    cpu->isar.id_isar3 = 0x11112131;
2296    cpu->isar.id_isar4 = 0x10011142;
2297    cpu->dbgdidr = 0x3515f021;
2298    cpu->clidr = 0x0a200023;
2299    cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2300    cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2301    cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2302    define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2303}
2304
2305static void ti925t_initfn(Object *obj)
2306{
2307    ARMCPU *cpu = ARM_CPU(obj);
2308    set_feature(&cpu->env, ARM_FEATURE_V4T);
2309    set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2310    cpu->midr = ARM_CPUID_TI925T;
2311    cpu->ctr = 0x5109149;
2312    cpu->reset_sctlr = 0x00000070;
2313}
2314
2315static void sa1100_initfn(Object *obj)
2316{
2317    ARMCPU *cpu = ARM_CPU(obj);
2318
2319    cpu->dtb_compatible = "intel,sa1100";
2320    set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2321    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2322    cpu->midr = 0x4401A11B;
2323    cpu->reset_sctlr = 0x00000070;
2324}
2325
2326static void sa1110_initfn(Object *obj)
2327{
2328    ARMCPU *cpu = ARM_CPU(obj);
2329    set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2330    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2331    cpu->midr = 0x6901B119;
2332    cpu->reset_sctlr = 0x00000070;
2333}
2334
2335static void pxa250_initfn(Object *obj)
2336{
2337    ARMCPU *cpu = ARM_CPU(obj);
2338
2339    cpu->dtb_compatible = "marvell,xscale";
2340    set_feature(&cpu->env, ARM_FEATURE_V5);
2341    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2342    cpu->midr = 0x69052100;
2343    cpu->ctr = 0xd172172;
2344    cpu->reset_sctlr = 0x00000078;
2345}
2346
2347static void pxa255_initfn(Object *obj)
2348{
2349    ARMCPU *cpu = ARM_CPU(obj);
2350
2351    cpu->dtb_compatible = "marvell,xscale";
2352    set_feature(&cpu->env, ARM_FEATURE_V5);
2353    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2354    cpu->midr = 0x69052d00;
2355    cpu->ctr = 0xd172172;
2356    cpu->reset_sctlr = 0x00000078;
2357}
2358
2359static void pxa260_initfn(Object *obj)
2360{
2361    ARMCPU *cpu = ARM_CPU(obj);
2362
2363    cpu->dtb_compatible = "marvell,xscale";
2364    set_feature(&cpu->env, ARM_FEATURE_V5);
2365    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2366    cpu->midr = 0x69052903;
2367    cpu->ctr = 0xd172172;
2368    cpu->reset_sctlr = 0x00000078;
2369}
2370
2371static void pxa261_initfn(Object *obj)
2372{
2373    ARMCPU *cpu = ARM_CPU(obj);
2374
2375    cpu->dtb_compatible = "marvell,xscale";
2376    set_feature(&cpu->env, ARM_FEATURE_V5);
2377    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2378    cpu->midr = 0x69052d05;
2379    cpu->ctr = 0xd172172;
2380    cpu->reset_sctlr = 0x00000078;
2381}
2382
2383static void pxa262_initfn(Object *obj)
2384{
2385    ARMCPU *cpu = ARM_CPU(obj);
2386
2387    cpu->dtb_compatible = "marvell,xscale";
2388    set_feature(&cpu->env, ARM_FEATURE_V5);
2389    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2390    cpu->midr = 0x69052d06;
2391    cpu->ctr = 0xd172172;
2392    cpu->reset_sctlr = 0x00000078;
2393}
2394
2395static void pxa270a0_initfn(Object *obj)
2396{
2397    ARMCPU *cpu = ARM_CPU(obj);
2398
2399    cpu->dtb_compatible = "marvell,xscale";
2400    set_feature(&cpu->env, ARM_FEATURE_V5);
2401    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2402    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2403    cpu->midr = 0x69054110;
2404    cpu->ctr = 0xd172172;
2405    cpu->reset_sctlr = 0x00000078;
2406}
2407
2408static void pxa270a1_initfn(Object *obj)
2409{
2410    ARMCPU *cpu = ARM_CPU(obj);
2411
2412    cpu->dtb_compatible = "marvell,xscale";
2413    set_feature(&cpu->env, ARM_FEATURE_V5);
2414    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2415    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2416    cpu->midr = 0x69054111;
2417    cpu->ctr = 0xd172172;
2418    cpu->reset_sctlr = 0x00000078;
2419}
2420
2421static void pxa270b0_initfn(Object *obj)
2422{
2423    ARMCPU *cpu = ARM_CPU(obj);
2424
2425    cpu->dtb_compatible = "marvell,xscale";
2426    set_feature(&cpu->env, ARM_FEATURE_V5);
2427    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2428    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2429    cpu->midr = 0x69054112;
2430    cpu->ctr = 0xd172172;
2431    cpu->reset_sctlr = 0x00000078;
2432}
2433
2434static void pxa270b1_initfn(Object *obj)
2435{
2436    ARMCPU *cpu = ARM_CPU(obj);
2437
2438    cpu->dtb_compatible = "marvell,xscale";
2439    set_feature(&cpu->env, ARM_FEATURE_V5);
2440    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2441    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2442    cpu->midr = 0x69054113;
2443    cpu->ctr = 0xd172172;
2444    cpu->reset_sctlr = 0x00000078;
2445}
2446
2447static void pxa270c0_initfn(Object *obj)
2448{
2449    ARMCPU *cpu = ARM_CPU(obj);
2450
2451    cpu->dtb_compatible = "marvell,xscale";
2452    set_feature(&cpu->env, ARM_FEATURE_V5);
2453    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2454    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2455    cpu->midr = 0x69054114;
2456    cpu->ctr = 0xd172172;
2457    cpu->reset_sctlr = 0x00000078;
2458}
2459
2460static void pxa270c5_initfn(Object *obj)
2461{
2462    ARMCPU *cpu = ARM_CPU(obj);
2463
2464    cpu->dtb_compatible = "marvell,xscale";
2465    set_feature(&cpu->env, ARM_FEATURE_V5);
2466    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2467    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2468    cpu->midr = 0x69054117;
2469    cpu->ctr = 0xd172172;
2470    cpu->reset_sctlr = 0x00000078;
2471}
2472
2473#ifndef TARGET_AARCH64
2474/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2475 * otherwise, a CPU with as many features enabled as our emulation supports.
2476 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2477 * this only needs to handle 32 bits.
2478 */
2479static void arm_max_initfn(Object *obj)
2480{
2481    ARMCPU *cpu = ARM_CPU(obj);
2482
2483    if (kvm_enabled()) {
2484        kvm_arm_set_cpu_features_from_host(cpu);
2485    } else {
2486        cortex_a15_initfn(obj);
2487
2488        /* old-style VFP short-vector support */
2489        cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2490
2491#ifdef CONFIG_USER_ONLY
2492        /* We don't set these in system emulation mode for the moment,
2493         * since we don't correctly set (all of) the ID registers to
2494         * advertise them.
2495         */
2496        set_feature(&cpu->env, ARM_FEATURE_V8);
2497        {
2498            uint32_t t;
2499
2500            t = cpu->isar.id_isar5;
2501            t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2502            t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2503            t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2504            t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2505            t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2506            t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2507            cpu->isar.id_isar5 = t;
2508
2509            t = cpu->isar.id_isar6;
2510            t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2511            t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2512            t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2513            t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2514            t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2515            cpu->isar.id_isar6 = t;
2516
2517            t = cpu->isar.mvfr1;
2518            t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2519            cpu->isar.mvfr1 = t;
2520
2521            t = cpu->isar.mvfr2;
2522            t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2523            t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2524            cpu->isar.mvfr2 = t;
2525
2526            t = cpu->id_mmfr4;
2527            t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2528            cpu->id_mmfr4 = t;
2529        }
2530#endif
2531    }
2532}
2533#endif
2534
2535#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2536
2537struct ARMCPUInfo {
2538    const char *name;
2539    void (*initfn)(Object *obj);
2540    void (*class_init)(ObjectClass *oc, void *data);
2541};
2542
2543static const ARMCPUInfo arm_cpus[] = {
2544#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2545    { .name = "arm926",      .initfn = arm926_initfn },
2546    { .name = "arm946",      .initfn = arm946_initfn },
2547    { .name = "arm1026",     .initfn = arm1026_initfn },
2548    /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2549     * older core than plain "arm1136". In particular this does not
2550     * have the v6K features.
2551     */
2552    { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2553    { .name = "arm1136",     .initfn = arm1136_initfn },
2554    { .name = "arm1176",     .initfn = arm1176_initfn },
2555    { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2556    { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2557                             .class_init = arm_v7m_class_init },
2558    { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2559                             .class_init = arm_v7m_class_init },
2560    { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2561                             .class_init = arm_v7m_class_init },
2562    { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2563                             .class_init = arm_v7m_class_init },
2564    { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2565    { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2566    { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2567    { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2568    { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2569    { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2570    { .name = "ti925t",      .initfn = ti925t_initfn },
2571    { .name = "sa1100",      .initfn = sa1100_initfn },
2572    { .name = "sa1110",      .initfn = sa1110_initfn },
2573    { .name = "pxa250",      .initfn = pxa250_initfn },
2574    { .name = "pxa255",      .initfn = pxa255_initfn },
2575    { .name = "pxa260",      .initfn = pxa260_initfn },
2576    { .name = "pxa261",      .initfn = pxa261_initfn },
2577    { .name = "pxa262",      .initfn = pxa262_initfn },
2578    /* "pxa270" is an alias for "pxa270-a0" */
2579    { .name = "pxa270",      .initfn = pxa270a0_initfn },
2580    { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2581    { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2582    { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2583    { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2584    { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2585    { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2586#ifndef TARGET_AARCH64
2587    { .name = "max",         .initfn = arm_max_initfn },
2588#endif
2589#ifdef CONFIG_USER_ONLY
2590    { .name = "any",         .initfn = arm_max_initfn },
2591#endif
2592#endif
2593    { .name = NULL }
2594};
2595
2596static Property arm_cpu_properties[] = {
2597    DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2598    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2599    DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2600    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2601                        mp_affinity, ARM64_AFFINITY_INVALID),
2602    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2603    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2604    DEFINE_PROP_END_OF_LIST()
2605};
2606
2607static gchar *arm_gdb_arch_name(CPUState *cs)
2608{
2609    ARMCPU *cpu = ARM_CPU(cs);
2610    CPUARMState *env = &cpu->env;
2611
2612    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2613        return g_strdup("iwmmxt");
2614    }
2615    return g_strdup("arm");
2616}
2617
2618static void arm_cpu_class_init(ObjectClass *oc, void *data)
2619{
2620    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2621    CPUClass *cc = CPU_CLASS(acc);
2622    DeviceClass *dc = DEVICE_CLASS(oc);
2623
2624    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2625                                    &acc->parent_realize);
2626    dc->props = arm_cpu_properties;
2627
2628    acc->parent_reset = cc->reset;
2629    cc->reset = arm_cpu_reset;
2630
2631    cc->class_by_name = arm_cpu_class_by_name;
2632    cc->has_work = arm_cpu_has_work;
2633    cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2634    cc->dump_state = arm_cpu_dump_state;
2635    cc->set_pc = arm_cpu_set_pc;
2636    cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2637    cc->gdb_read_register = arm_cpu_gdb_read_register;
2638    cc->gdb_write_register = arm_cpu_gdb_write_register;
2639#ifndef CONFIG_USER_ONLY
2640    cc->do_interrupt = arm_cpu_do_interrupt;
2641    cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2642    cc->asidx_from_attrs = arm_asidx_from_attrs;
2643    cc->vmsd = &vmstate_arm_cpu;
2644    cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2645    cc->write_elf64_note = arm_cpu_write_elf64_note;
2646    cc->write_elf32_note = arm_cpu_write_elf32_note;
2647#endif
2648    cc->gdb_num_core_regs = 26;
2649    cc->gdb_core_xml_file = "arm-core.xml";
2650    cc->gdb_arch_name = arm_gdb_arch_name;
2651    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2652    cc->gdb_stop_before_watchpoint = true;
2653    cc->disas_set_info = arm_disas_set_info;
2654#ifdef CONFIG_TCG
2655    cc->tcg_initialize = arm_translate_init;
2656    cc->tlb_fill = arm_cpu_tlb_fill;
2657    cc->debug_excp_handler = arm_debug_excp_handler;
2658    cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2659#if !defined(CONFIG_USER_ONLY)
2660    cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2661    cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2662    cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2663#endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2664#endif
2665}
2666
2667#ifdef CONFIG_KVM
2668static void arm_host_initfn(Object *obj)
2669{
2670    ARMCPU *cpu = ARM_CPU(obj);
2671
2672    kvm_arm_set_cpu_features_from_host(cpu);
2673    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2674        aarch64_add_sve_properties(obj);
2675    }
2676    arm_cpu_post_init(obj);
2677}
2678
2679static const TypeInfo host_arm_cpu_type_info = {
2680    .name = TYPE_ARM_HOST_CPU,
2681#ifdef TARGET_AARCH64
2682    .parent = TYPE_AARCH64_CPU,
2683#else
2684    .parent = TYPE_ARM_CPU,
2685#endif
2686    .instance_init = arm_host_initfn,
2687};
2688
2689#endif
2690
2691static void arm_cpu_instance_init(Object *obj)
2692{
2693    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2694
2695    acc->info->initfn(obj);
2696    arm_cpu_post_init(obj);
2697}
2698
2699static void cpu_register_class_init(ObjectClass *oc, void *data)
2700{
2701    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2702
2703    acc->info = data;
2704}
2705
2706static void cpu_register(const ARMCPUInfo *info)
2707{
2708    TypeInfo type_info = {
2709        .parent = TYPE_ARM_CPU,
2710        .instance_size = sizeof(ARMCPU),
2711        .instance_init = arm_cpu_instance_init,
2712        .class_size = sizeof(ARMCPUClass),
2713        .class_init = info->class_init ?: cpu_register_class_init,
2714        .class_data = (void *)info,
2715    };
2716
2717    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2718    type_register(&type_info);
2719    g_free((void *)type_info.name);
2720}
2721
2722static const TypeInfo arm_cpu_type_info = {
2723    .name = TYPE_ARM_CPU,
2724    .parent = TYPE_CPU,
2725    .instance_size = sizeof(ARMCPU),
2726    .instance_init = arm_cpu_initfn,
2727    .instance_finalize = arm_cpu_finalizefn,
2728    .abstract = true,
2729    .class_size = sizeof(ARMCPUClass),
2730    .class_init = arm_cpu_class_init,
2731};
2732
2733static const TypeInfo idau_interface_type_info = {
2734    .name = TYPE_IDAU_INTERFACE,
2735    .parent = TYPE_INTERFACE,
2736    .class_size = sizeof(IDAUInterfaceClass),
2737};
2738
2739static void arm_cpu_register_types(void)
2740{
2741    const ARMCPUInfo *info = arm_cpus;
2742
2743    type_register_static(&arm_cpu_type_info);
2744    type_register_static(&idau_interface_type_info);
2745
2746    while (info->name) {
2747        cpu_register(info);
2748        info++;
2749    }
2750
2751#ifdef CONFIG_KVM
2752    type_register_static(&host_arm_cpu_type_info);
2753#endif
2754}
2755
2756type_init(arm_cpu_register_types)
2757