qemu/target/arm/kvm.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13
  14#include <linux/kvm.h>
  15
  16#include "qemu-common.h"
  17#include "qemu/timer.h"
  18#include "qemu/error-report.h"
  19#include "qemu/main-loop.h"
  20#include "sysemu/sysemu.h"
  21#include "sysemu/kvm.h"
  22#include "sysemu/kvm_int.h"
  23#include "kvm_arm.h"
  24#include "cpu.h"
  25#include "trace.h"
  26#include "internals.h"
  27#include "hw/pci/pci.h"
  28#include "exec/memattrs.h"
  29#include "exec/address-spaces.h"
  30#include "hw/boards.h"
  31#include "hw/irq.h"
  32#include "qemu/log.h"
  33
  34const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  35    KVM_CAP_LAST_INFO
  36};
  37
  38static bool cap_has_mp_state;
  39static bool cap_has_inject_serror_esr;
  40
  41static ARMHostCPUFeatures arm_host_cpu_features;
  42
  43int kvm_arm_vcpu_init(CPUState *cs)
  44{
  45    ARMCPU *cpu = ARM_CPU(cs);
  46    struct kvm_vcpu_init init;
  47
  48    init.target = cpu->kvm_target;
  49    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
  50
  51    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
  52}
  53
  54int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
  55{
  56    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
  57}
  58
  59void kvm_arm_init_serror_injection(CPUState *cs)
  60{
  61    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
  62                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
  63}
  64
  65bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
  66                                      int *fdarray,
  67                                      struct kvm_vcpu_init *init)
  68{
  69    int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
  70
  71    kvmfd = qemu_open("/dev/kvm", O_RDWR);
  72    if (kvmfd < 0) {
  73        goto err;
  74    }
  75    vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
  76    if (vmfd < 0) {
  77        goto err;
  78    }
  79    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
  80    if (cpufd < 0) {
  81        goto err;
  82    }
  83
  84    if (!init) {
  85        /* Caller doesn't want the VCPU to be initialized, so skip it */
  86        goto finish;
  87    }
  88
  89    if (init->target == -1) {
  90        struct kvm_vcpu_init preferred;
  91
  92        ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
  93        if (!ret) {
  94            init->target = preferred.target;
  95        }
  96    }
  97    if (ret >= 0) {
  98        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  99        if (ret < 0) {
 100            goto err;
 101        }
 102    } else if (cpus_to_try) {
 103        /* Old kernel which doesn't know about the
 104         * PREFERRED_TARGET ioctl: we know it will only support
 105         * creating one kind of guest CPU which is its preferred
 106         * CPU type.
 107         */
 108        struct kvm_vcpu_init try;
 109
 110        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
 111            try.target = *cpus_to_try++;
 112            memcpy(try.features, init->features, sizeof(init->features));
 113            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
 114            if (ret >= 0) {
 115                break;
 116            }
 117        }
 118        if (ret < 0) {
 119            goto err;
 120        }
 121        init->target = try.target;
 122    } else {
 123        /* Treat a NULL cpus_to_try argument the same as an empty
 124         * list, which means we will fail the call since this must
 125         * be an old kernel which doesn't support PREFERRED_TARGET.
 126         */
 127        goto err;
 128    }
 129
 130finish:
 131    fdarray[0] = kvmfd;
 132    fdarray[1] = vmfd;
 133    fdarray[2] = cpufd;
 134
 135    return true;
 136
 137err:
 138    if (cpufd >= 0) {
 139        close(cpufd);
 140    }
 141    if (vmfd >= 0) {
 142        close(vmfd);
 143    }
 144    if (kvmfd >= 0) {
 145        close(kvmfd);
 146    }
 147
 148    return false;
 149}
 150
 151void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 152{
 153    int i;
 154
 155    for (i = 2; i >= 0; i--) {
 156        close(fdarray[i]);
 157    }
 158}
 159
 160void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 161{
 162    CPUARMState *env = &cpu->env;
 163
 164    if (!arm_host_cpu_features.dtb_compatible) {
 165        if (!kvm_enabled() ||
 166            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
 167            /* We can't report this error yet, so flag that we need to
 168             * in arm_cpu_realizefn().
 169             */
 170            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 171            cpu->host_cpu_probe_failed = true;
 172            return;
 173        }
 174    }
 175
 176    cpu->kvm_target = arm_host_cpu_features.target;
 177    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
 178    cpu->isar = arm_host_cpu_features.isar;
 179    env->features = arm_host_cpu_features.features;
 180}
 181
 182bool kvm_arm_pmu_supported(CPUState *cpu)
 183{
 184    KVMState *s = KVM_STATE(current_machine->accelerator);
 185
 186    return kvm_check_extension(s, KVM_CAP_ARM_PMU_V3);
 187}
 188
 189int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
 190{
 191    KVMState *s = KVM_STATE(ms->accelerator);
 192    int ret;
 193
 194    ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
 195    return ret > 0 ? ret : 40;
 196}
 197
 198int kvm_arch_init(MachineState *ms, KVMState *s)
 199{
 200    int ret = 0;
 201    /* For ARM interrupt delivery is always asynchronous,
 202     * whether we are using an in-kernel VGIC or not.
 203     */
 204    kvm_async_interrupts_allowed = true;
 205
 206    /*
 207     * PSCI wakes up secondary cores, so we always need to
 208     * have vCPUs waiting in kernel space
 209     */
 210    kvm_halt_in_kernel_allowed = true;
 211
 212    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 213
 214    if (ms->smp.cpus > 256 &&
 215        !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
 216        error_report("Using more than 256 vcpus requires a host kernel "
 217                     "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
 218        ret = -EINVAL;
 219    }
 220
 221    return ret;
 222}
 223
 224unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 225{
 226    return cpu->cpu_index;
 227}
 228
 229/* We track all the KVM devices which need their memory addresses
 230 * passing to the kernel in a list of these structures.
 231 * When board init is complete we run through the list and
 232 * tell the kernel the base addresses of the memory regions.
 233 * We use a MemoryListener to track mapping and unmapping of
 234 * the regions during board creation, so the board models don't
 235 * need to do anything special for the KVM case.
 236 *
 237 * Sometimes the address must be OR'ed with some other fields
 238 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
 239 * @kda_addr_ormask aims at storing the value of those fields.
 240 */
 241typedef struct KVMDevice {
 242    struct kvm_arm_device_addr kda;
 243    struct kvm_device_attr kdattr;
 244    uint64_t kda_addr_ormask;
 245    MemoryRegion *mr;
 246    QSLIST_ENTRY(KVMDevice) entries;
 247    int dev_fd;
 248} KVMDevice;
 249
 250static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
 251
 252static void kvm_arm_devlistener_add(MemoryListener *listener,
 253                                    MemoryRegionSection *section)
 254{
 255    KVMDevice *kd;
 256
 257    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 258        if (section->mr == kd->mr) {
 259            kd->kda.addr = section->offset_within_address_space;
 260        }
 261    }
 262}
 263
 264static void kvm_arm_devlistener_del(MemoryListener *listener,
 265                                    MemoryRegionSection *section)
 266{
 267    KVMDevice *kd;
 268
 269    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 270        if (section->mr == kd->mr) {
 271            kd->kda.addr = -1;
 272        }
 273    }
 274}
 275
 276static MemoryListener devlistener = {
 277    .region_add = kvm_arm_devlistener_add,
 278    .region_del = kvm_arm_devlistener_del,
 279};
 280
 281static void kvm_arm_set_device_addr(KVMDevice *kd)
 282{
 283    struct kvm_device_attr *attr = &kd->kdattr;
 284    int ret;
 285
 286    /* If the device control API is available and we have a device fd on the
 287     * KVMDevice struct, let's use the newer API
 288     */
 289    if (kd->dev_fd >= 0) {
 290        uint64_t addr = kd->kda.addr;
 291
 292        addr |= kd->kda_addr_ormask;
 293        attr->addr = (uintptr_t)&addr;
 294        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 295    } else {
 296        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 297    }
 298
 299    if (ret < 0) {
 300        fprintf(stderr, "Failed to set device address: %s\n",
 301                strerror(-ret));
 302        abort();
 303    }
 304}
 305
 306static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 307{
 308    KVMDevice *kd, *tkd;
 309
 310    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 311        if (kd->kda.addr != -1) {
 312            kvm_arm_set_device_addr(kd);
 313        }
 314        memory_region_unref(kd->mr);
 315        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
 316        g_free(kd);
 317    }
 318    memory_listener_unregister(&devlistener);
 319}
 320
 321static Notifier notify = {
 322    .notify = kvm_arm_machine_init_done,
 323};
 324
 325void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 326                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
 327{
 328    KVMDevice *kd;
 329
 330    if (!kvm_irqchip_in_kernel()) {
 331        return;
 332    }
 333
 334    if (QSLIST_EMPTY(&kvm_devices_head)) {
 335        memory_listener_register(&devlistener, &address_space_memory);
 336        qemu_add_machine_init_done_notifier(&notify);
 337    }
 338    kd = g_new0(KVMDevice, 1);
 339    kd->mr = mr;
 340    kd->kda.id = devid;
 341    kd->kda.addr = -1;
 342    kd->kdattr.flags = 0;
 343    kd->kdattr.group = group;
 344    kd->kdattr.attr = attr;
 345    kd->dev_fd = dev_fd;
 346    kd->kda_addr_ormask = addr_ormask;
 347    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 348    memory_region_ref(kd->mr);
 349}
 350
 351static int compare_u64(const void *a, const void *b)
 352{
 353    if (*(uint64_t *)a > *(uint64_t *)b) {
 354        return 1;
 355    }
 356    if (*(uint64_t *)a < *(uint64_t *)b) {
 357        return -1;
 358    }
 359    return 0;
 360}
 361
 362/* Initialize the ARMCPU cpreg list according to the kernel's
 363 * definition of what CPU registers it knows about (and throw away
 364 * the previous TCG-created cpreg list).
 365 */
 366int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 367{
 368    struct kvm_reg_list rl;
 369    struct kvm_reg_list *rlp;
 370    int i, ret, arraylen;
 371    CPUState *cs = CPU(cpu);
 372
 373    rl.n = 0;
 374    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 375    if (ret != -E2BIG) {
 376        return ret;
 377    }
 378    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 379    rlp->n = rl.n;
 380    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 381    if (ret) {
 382        goto out;
 383    }
 384    /* Sort the list we get back from the kernel, since cpreg_tuples
 385     * must be in strictly ascending order.
 386     */
 387    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 388
 389    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 390        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 391            continue;
 392        }
 393        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 394        case KVM_REG_SIZE_U32:
 395        case KVM_REG_SIZE_U64:
 396            break;
 397        default:
 398            fprintf(stderr, "Can't handle size of register in kernel list\n");
 399            ret = -EINVAL;
 400            goto out;
 401        }
 402
 403        arraylen++;
 404    }
 405
 406    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 407    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 408    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 409                                         arraylen);
 410    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 411                                        arraylen);
 412    cpu->cpreg_array_len = arraylen;
 413    cpu->cpreg_vmstate_array_len = arraylen;
 414
 415    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 416        uint64_t regidx = rlp->reg[i];
 417        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 418            continue;
 419        }
 420        cpu->cpreg_indexes[arraylen] = regidx;
 421        arraylen++;
 422    }
 423    assert(cpu->cpreg_array_len == arraylen);
 424
 425    if (!write_kvmstate_to_list(cpu)) {
 426        /* Shouldn't happen unless kernel is inconsistent about
 427         * what registers exist.
 428         */
 429        fprintf(stderr, "Initial read of kernel register state failed\n");
 430        ret = -EINVAL;
 431        goto out;
 432    }
 433
 434out:
 435    g_free(rlp);
 436    return ret;
 437}
 438
 439bool write_kvmstate_to_list(ARMCPU *cpu)
 440{
 441    CPUState *cs = CPU(cpu);
 442    int i;
 443    bool ok = true;
 444
 445    for (i = 0; i < cpu->cpreg_array_len; i++) {
 446        struct kvm_one_reg r;
 447        uint64_t regidx = cpu->cpreg_indexes[i];
 448        uint32_t v32;
 449        int ret;
 450
 451        r.id = regidx;
 452
 453        switch (regidx & KVM_REG_SIZE_MASK) {
 454        case KVM_REG_SIZE_U32:
 455            r.addr = (uintptr_t)&v32;
 456            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 457            if (!ret) {
 458                cpu->cpreg_values[i] = v32;
 459            }
 460            break;
 461        case KVM_REG_SIZE_U64:
 462            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 463            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 464            break;
 465        default:
 466            abort();
 467        }
 468        if (ret) {
 469            ok = false;
 470        }
 471    }
 472    return ok;
 473}
 474
 475bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 476{
 477    CPUState *cs = CPU(cpu);
 478    int i;
 479    bool ok = true;
 480
 481    for (i = 0; i < cpu->cpreg_array_len; i++) {
 482        struct kvm_one_reg r;
 483        uint64_t regidx = cpu->cpreg_indexes[i];
 484        uint32_t v32;
 485        int ret;
 486
 487        if (kvm_arm_cpreg_level(regidx) > level) {
 488            continue;
 489        }
 490
 491        r.id = regidx;
 492        switch (regidx & KVM_REG_SIZE_MASK) {
 493        case KVM_REG_SIZE_U32:
 494            v32 = cpu->cpreg_values[i];
 495            r.addr = (uintptr_t)&v32;
 496            break;
 497        case KVM_REG_SIZE_U64:
 498            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 499            break;
 500        default:
 501            abort();
 502        }
 503        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 504        if (ret) {
 505            /* We might fail for "unknown register" and also for
 506             * "you tried to set a register which is constant with
 507             * a different value from what it actually contains".
 508             */
 509            ok = false;
 510        }
 511    }
 512    return ok;
 513}
 514
 515void kvm_arm_reset_vcpu(ARMCPU *cpu)
 516{
 517    int ret;
 518
 519    /* Re-init VCPU so that all registers are set to
 520     * their respective reset values.
 521     */
 522    ret = kvm_arm_vcpu_init(CPU(cpu));
 523    if (ret < 0) {
 524        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 525        abort();
 526    }
 527    if (!write_kvmstate_to_list(cpu)) {
 528        fprintf(stderr, "write_kvmstate_to_list failed\n");
 529        abort();
 530    }
 531    /*
 532     * Sync the reset values also into the CPUState. This is necessary
 533     * because the next thing we do will be a kvm_arch_put_registers()
 534     * which will update the list values from the CPUState before copying
 535     * the list values back to KVM. It's OK to ignore failure returns here
 536     * for the same reason we do so in kvm_arch_get_registers().
 537     */
 538    write_list_to_cpustate(cpu);
 539}
 540
 541/*
 542 * Update KVM's MP_STATE based on what QEMU thinks it is
 543 */
 544int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 545{
 546    if (cap_has_mp_state) {
 547        struct kvm_mp_state mp_state = {
 548            .mp_state = (cpu->power_state == PSCI_OFF) ?
 549            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 550        };
 551        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 552        if (ret) {
 553            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 554                    __func__, ret, strerror(-ret));
 555            return -1;
 556        }
 557    }
 558
 559    return 0;
 560}
 561
 562/*
 563 * Sync the KVM MP_STATE into QEMU
 564 */
 565int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 566{
 567    if (cap_has_mp_state) {
 568        struct kvm_mp_state mp_state;
 569        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 570        if (ret) {
 571            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 572                    __func__, ret, strerror(-ret));
 573            abort();
 574        }
 575        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
 576            PSCI_OFF : PSCI_ON;
 577    }
 578
 579    return 0;
 580}
 581
 582int kvm_put_vcpu_events(ARMCPU *cpu)
 583{
 584    CPUARMState *env = &cpu->env;
 585    struct kvm_vcpu_events events;
 586    int ret;
 587
 588    if (!kvm_has_vcpu_events()) {
 589        return 0;
 590    }
 591
 592    memset(&events, 0, sizeof(events));
 593    events.exception.serror_pending = env->serror.pending;
 594
 595    /* Inject SError to guest with specified syndrome if host kernel
 596     * supports it, otherwise inject SError without syndrome.
 597     */
 598    if (cap_has_inject_serror_esr) {
 599        events.exception.serror_has_esr = env->serror.has_esr;
 600        events.exception.serror_esr = env->serror.esr;
 601    }
 602
 603    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
 604    if (ret) {
 605        error_report("failed to put vcpu events");
 606    }
 607
 608    return ret;
 609}
 610
 611int kvm_get_vcpu_events(ARMCPU *cpu)
 612{
 613    CPUARMState *env = &cpu->env;
 614    struct kvm_vcpu_events events;
 615    int ret;
 616
 617    if (!kvm_has_vcpu_events()) {
 618        return 0;
 619    }
 620
 621    memset(&events, 0, sizeof(events));
 622    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
 623    if (ret) {
 624        error_report("failed to get vcpu events");
 625        return ret;
 626    }
 627
 628    env->serror.pending = events.exception.serror_pending;
 629    env->serror.has_esr = events.exception.serror_has_esr;
 630    env->serror.esr = events.exception.serror_esr;
 631
 632    return 0;
 633}
 634
 635void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 636{
 637}
 638
 639MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 640{
 641    ARMCPU *cpu;
 642    uint32_t switched_level;
 643
 644    if (kvm_irqchip_in_kernel()) {
 645        /*
 646         * We only need to sync timer states with user-space interrupt
 647         * controllers, so return early and save cycles if we don't.
 648         */
 649        return MEMTXATTRS_UNSPECIFIED;
 650    }
 651
 652    cpu = ARM_CPU(cs);
 653
 654    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
 655    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
 656        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 657
 658        qemu_mutex_lock_iothread();
 659
 660        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
 661            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
 662                         !!(run->s.regs.device_irq_level &
 663                            KVM_ARM_DEV_EL1_VTIMER));
 664            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
 665        }
 666
 667        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
 668            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
 669                         !!(run->s.regs.device_irq_level &
 670                            KVM_ARM_DEV_EL1_PTIMER));
 671            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
 672        }
 673
 674        if (switched_level & KVM_ARM_DEV_PMU) {
 675            qemu_set_irq(cpu->pmu_interrupt,
 676                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
 677            switched_level &= ~KVM_ARM_DEV_PMU;
 678        }
 679
 680        if (switched_level) {
 681            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
 682                          __func__, switched_level);
 683        }
 684
 685        /* We also mark unknown levels as processed to not waste cycles */
 686        cpu->device_irq_level = run->s.regs.device_irq_level;
 687        qemu_mutex_unlock_iothread();
 688    }
 689
 690    return MEMTXATTRS_UNSPECIFIED;
 691}
 692
 693
 694int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 695{
 696    int ret = 0;
 697
 698    switch (run->exit_reason) {
 699    case KVM_EXIT_DEBUG:
 700        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
 701            ret = EXCP_DEBUG;
 702        } /* otherwise return to guest */
 703        break;
 704    default:
 705        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
 706                      __func__, run->exit_reason);
 707        break;
 708    }
 709    return ret;
 710}
 711
 712bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 713{
 714    return true;
 715}
 716
 717int kvm_arch_process_async_events(CPUState *cs)
 718{
 719    return 0;
 720}
 721
 722/* The #ifdef protections are until 32bit headers are imported and can
 723 * be removed once both 32 and 64 bit reach feature parity.
 724 */
 725void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 726{
 727#ifdef KVM_GUESTDBG_USE_SW_BP
 728    if (kvm_sw_breakpoints_active(cs)) {
 729        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 730    }
 731#endif
 732#ifdef KVM_GUESTDBG_USE_HW
 733    if (kvm_arm_hw_debug_active(cs)) {
 734        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
 735        kvm_arm_copy_hw_debug_data(&dbg->arch);
 736    }
 737#endif
 738}
 739
 740void kvm_arch_init_irq_routing(KVMState *s)
 741{
 742}
 743
 744int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
 745{
 746     if (machine_kernel_irqchip_split(ms)) {
 747         perror("-machine kernel_irqchip=split is not supported on ARM.");
 748         exit(1);
 749    }
 750
 751    /* If we can create the VGIC using the newer device control API, we
 752     * let the device do this when it initializes itself, otherwise we
 753     * fall back to the old API */
 754    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 755}
 756
 757int kvm_arm_vgic_probe(void)
 758{
 759    if (kvm_create_device(kvm_state,
 760                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 761        return 3;
 762    } else if (kvm_create_device(kvm_state,
 763                                 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 764        return 2;
 765    } else {
 766        return 0;
 767    }
 768}
 769
 770int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
 771{
 772    int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
 773    int cpu_idx1 = cpu % 256;
 774    int cpu_idx2 = cpu / 256;
 775
 776    kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
 777               (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
 778
 779    return kvm_set_irq(kvm_state, kvm_irq, !!level);
 780}
 781
 782int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
 783                             uint64_t address, uint32_t data, PCIDevice *dev)
 784{
 785    AddressSpace *as = pci_device_iommu_address_space(dev);
 786    hwaddr xlat, len, doorbell_gpa;
 787    MemoryRegionSection mrs;
 788    MemoryRegion *mr;
 789    int ret = 1;
 790
 791    if (as == &address_space_memory) {
 792        return 0;
 793    }
 794
 795    /* MSI doorbell address is translated by an IOMMU */
 796
 797    rcu_read_lock();
 798    mr = address_space_translate(as, address, &xlat, &len, true,
 799                                 MEMTXATTRS_UNSPECIFIED);
 800    if (!mr) {
 801        goto unlock;
 802    }
 803    mrs = memory_region_find(mr, xlat, 1);
 804    if (!mrs.mr) {
 805        goto unlock;
 806    }
 807
 808    doorbell_gpa = mrs.offset_within_address_space;
 809    memory_region_unref(mrs.mr);
 810
 811    route->u.msi.address_lo = doorbell_gpa;
 812    route->u.msi.address_hi = doorbell_gpa >> 32;
 813
 814    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
 815
 816    ret = 0;
 817
 818unlock:
 819    rcu_read_unlock();
 820    return ret;
 821}
 822
 823int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
 824                                int vector, PCIDevice *dev)
 825{
 826    return 0;
 827}
 828
 829int kvm_arch_release_virq_post(int virq)
 830{
 831    return 0;
 832}
 833
 834int kvm_arch_msi_data_to_gsi(uint32_t data)
 835{
 836    return (data - 32) & 0xffff;
 837}
 838