qemu/target/i386/hax-all.c
<<
>>
Prefs
   1/*
   2 * QEMU HAX support
   3 *
   4 * Copyright IBM, Corp. 2008
   5 *           Red Hat, Inc. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *  Glauber Costa     <gcosta@redhat.com>
  10 *
  11 * Copyright (c) 2011 Intel Corporation
  12 *  Written by:
  13 *  Jiang Yunhong<yunhong.jiang@intel.com>
  14 *  Xin Xiaohui<xiaohui.xin@intel.com>
  15 *  Zhang Xiantao<xiantao.zhang@intel.com>
  16 *
  17 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  18 * See the COPYING file in the top-level directory.
  19 *
  20 */
  21
  22/*
  23 * HAX common code for both windows and darwin
  24 */
  25
  26#include "qemu/osdep.h"
  27#include "cpu.h"
  28#include "exec/address-spaces.h"
  29
  30#include "qemu-common.h"
  31#include "hax-i386.h"
  32#include "sysemu/accel.h"
  33#include "sysemu/reset.h"
  34#include "sysemu/runstate.h"
  35#include "qemu/main-loop.h"
  36#include "hw/boards.h"
  37
  38#define DEBUG_HAX 0
  39
  40#define DPRINTF(fmt, ...) \
  41    do { \
  42        if (DEBUG_HAX) { \
  43            fprintf(stdout, fmt, ## __VA_ARGS__); \
  44        } \
  45    } while (0)
  46
  47/* Current version */
  48const uint32_t hax_cur_version = 0x4; /* API v4: unmapping and MMIO moves */
  49/* Minimum HAX kernel version */
  50const uint32_t hax_min_version = 0x4; /* API v4: supports unmapping */
  51
  52static bool hax_allowed;
  53
  54struct hax_state hax_global;
  55
  56static void hax_vcpu_sync_state(CPUArchState *env, int modified);
  57static int hax_arch_get_registers(CPUArchState *env);
  58
  59int hax_enabled(void)
  60{
  61    return hax_allowed;
  62}
  63
  64int valid_hax_tunnel_size(uint16_t size)
  65{
  66    return size >= sizeof(struct hax_tunnel);
  67}
  68
  69hax_fd hax_vcpu_get_fd(CPUArchState *env)
  70{
  71    struct hax_vcpu_state *vcpu = env_cpu(env)->hax_vcpu;
  72    if (!vcpu) {
  73        return HAX_INVALID_FD;
  74    }
  75    return vcpu->fd;
  76}
  77
  78static int hax_get_capability(struct hax_state *hax)
  79{
  80    int ret;
  81    struct hax_capabilityinfo capinfo, *cap = &capinfo;
  82
  83    ret = hax_capability(hax, cap);
  84    if (ret) {
  85        return ret;
  86    }
  87
  88    if ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) == HAX_CAP_STATUS_NOTWORKING) {
  89        if (cap->winfo & HAX_CAP_FAILREASON_VT) {
  90            DPRINTF
  91                ("VTX feature is not enabled, HAX driver will not work.\n");
  92        } else if (cap->winfo & HAX_CAP_FAILREASON_NX) {
  93            DPRINTF
  94                ("NX feature is not enabled, HAX driver will not work.\n");
  95        }
  96        return -ENXIO;
  97
  98    }
  99
 100    if (!(cap->winfo & HAX_CAP_UG)) {
 101        fprintf(stderr, "UG mode is not supported by the hardware.\n");
 102        return -ENOTSUP;
 103    }
 104
 105    hax->supports_64bit_ramblock = !!(cap->winfo & HAX_CAP_64BIT_RAMBLOCK);
 106
 107    if (cap->wstatus & HAX_CAP_MEMQUOTA) {
 108        if (cap->mem_quota < hax->mem_quota) {
 109            fprintf(stderr, "The VM memory needed exceeds the driver limit.\n");
 110            return -ENOSPC;
 111        }
 112    }
 113    return 0;
 114}
 115
 116static int hax_version_support(struct hax_state *hax)
 117{
 118    int ret;
 119    struct hax_module_version version;
 120
 121    ret = hax_mod_version(hax, &version);
 122    if (ret < 0) {
 123        return 0;
 124    }
 125
 126    if (hax_min_version > version.cur_version) {
 127        fprintf(stderr, "Incompatible HAX module version %d,",
 128                version.cur_version);
 129        fprintf(stderr, "requires minimum version %d\n", hax_min_version);
 130        return 0;
 131    }
 132    if (hax_cur_version < version.compat_version) {
 133        fprintf(stderr, "Incompatible QEMU HAX API version %x,",
 134                hax_cur_version);
 135        fprintf(stderr, "requires minimum HAX API version %x\n",
 136                version.compat_version);
 137        return 0;
 138    }
 139
 140    return 1;
 141}
 142
 143int hax_vcpu_create(int id)
 144{
 145    struct hax_vcpu_state *vcpu = NULL;
 146    int ret;
 147
 148    if (!hax_global.vm) {
 149        fprintf(stderr, "vcpu %x created failed, vm is null\n", id);
 150        return -1;
 151    }
 152
 153    if (hax_global.vm->vcpus[id]) {
 154        fprintf(stderr, "vcpu %x allocated already\n", id);
 155        return 0;
 156    }
 157
 158    vcpu = g_new0(struct hax_vcpu_state, 1);
 159
 160    ret = hax_host_create_vcpu(hax_global.vm->fd, id);
 161    if (ret) {
 162        fprintf(stderr, "Failed to create vcpu %x\n", id);
 163        goto error;
 164    }
 165
 166    vcpu->vcpu_id = id;
 167    vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id);
 168    if (hax_invalid_fd(vcpu->fd)) {
 169        fprintf(stderr, "Failed to open the vcpu\n");
 170        ret = -ENODEV;
 171        goto error;
 172    }
 173
 174    hax_global.vm->vcpus[id] = vcpu;
 175
 176    ret = hax_host_setup_vcpu_channel(vcpu);
 177    if (ret) {
 178        fprintf(stderr, "Invalid hax tunnel size\n");
 179        ret = -EINVAL;
 180        goto error;
 181    }
 182    return 0;
 183
 184  error:
 185    /* vcpu and tunnel will be closed automatically */
 186    if (vcpu && !hax_invalid_fd(vcpu->fd)) {
 187        hax_close_fd(vcpu->fd);
 188    }
 189
 190    hax_global.vm->vcpus[id] = NULL;
 191    g_free(vcpu);
 192    return -1;
 193}
 194
 195int hax_vcpu_destroy(CPUState *cpu)
 196{
 197    struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
 198
 199    if (!hax_global.vm) {
 200        fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id);
 201        return -1;
 202    }
 203
 204    if (!vcpu) {
 205        return 0;
 206    }
 207
 208    /*
 209     * 1. The hax_tunnel is also destroyed when vcpu is destroyed
 210     * 2. close fd will cause hax module vcpu be cleaned
 211     */
 212    hax_close_fd(vcpu->fd);
 213    hax_global.vm->vcpus[vcpu->vcpu_id] = NULL;
 214    g_free(vcpu);
 215    return 0;
 216}
 217
 218int hax_init_vcpu(CPUState *cpu)
 219{
 220    int ret;
 221
 222    ret = hax_vcpu_create(cpu->cpu_index);
 223    if (ret < 0) {
 224        fprintf(stderr, "Failed to create HAX vcpu\n");
 225        exit(-1);
 226    }
 227
 228    cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index];
 229    cpu->vcpu_dirty = true;
 230    qemu_register_reset(hax_reset_vcpu_state, (CPUArchState *) (cpu->env_ptr));
 231
 232    return ret;
 233}
 234
 235struct hax_vm *hax_vm_create(struct hax_state *hax)
 236{
 237    struct hax_vm *vm;
 238    int vm_id = 0, ret;
 239
 240    if (hax_invalid_fd(hax->fd)) {
 241        return NULL;
 242    }
 243
 244    if (hax->vm) {
 245        return hax->vm;
 246    }
 247
 248    vm = g_new0(struct hax_vm, 1);
 249
 250    ret = hax_host_create_vm(hax, &vm_id);
 251    if (ret) {
 252        fprintf(stderr, "Failed to create vm %x\n", ret);
 253        goto error;
 254    }
 255    vm->id = vm_id;
 256    vm->fd = hax_host_open_vm(hax, vm_id);
 257    if (hax_invalid_fd(vm->fd)) {
 258        fprintf(stderr, "Failed to open vm %d\n", vm_id);
 259        goto error;
 260    }
 261
 262    hax->vm = vm;
 263    return vm;
 264
 265  error:
 266    g_free(vm);
 267    hax->vm = NULL;
 268    return NULL;
 269}
 270
 271int hax_vm_destroy(struct hax_vm *vm)
 272{
 273    int i;
 274
 275    for (i = 0; i < HAX_MAX_VCPU; i++)
 276        if (vm->vcpus[i]) {
 277            fprintf(stderr, "VCPU should be cleaned before vm clean\n");
 278            return -1;
 279        }
 280    hax_close_fd(vm->fd);
 281    g_free(vm);
 282    hax_global.vm = NULL;
 283    return 0;
 284}
 285
 286static void hax_handle_interrupt(CPUState *cpu, int mask)
 287{
 288    cpu->interrupt_request |= mask;
 289
 290    if (!qemu_cpu_is_self(cpu)) {
 291        qemu_cpu_kick(cpu);
 292    }
 293}
 294
 295static int hax_init(ram_addr_t ram_size)
 296{
 297    struct hax_state *hax = NULL;
 298    struct hax_qemu_version qversion;
 299    int ret;
 300
 301    hax = &hax_global;
 302
 303    memset(hax, 0, sizeof(struct hax_state));
 304    hax->mem_quota = ram_size;
 305
 306    hax->fd = hax_mod_open();
 307    if (hax_invalid_fd(hax->fd)) {
 308        hax->fd = 0;
 309        ret = -ENODEV;
 310        goto error;
 311    }
 312
 313    ret = hax_get_capability(hax);
 314
 315    if (ret) {
 316        if (ret != -ENOSPC) {
 317            ret = -EINVAL;
 318        }
 319        goto error;
 320    }
 321
 322    if (!hax_version_support(hax)) {
 323        ret = -EINVAL;
 324        goto error;
 325    }
 326
 327    hax->vm = hax_vm_create(hax);
 328    if (!hax->vm) {
 329        fprintf(stderr, "Failed to create HAX VM\n");
 330        ret = -EINVAL;
 331        goto error;
 332    }
 333
 334    hax_memory_init();
 335
 336    qversion.cur_version = hax_cur_version;
 337    qversion.min_version = hax_min_version;
 338    hax_notify_qemu_version(hax->vm->fd, &qversion);
 339    cpu_interrupt_handler = hax_handle_interrupt;
 340
 341    return ret;
 342  error:
 343    if (hax->vm) {
 344        hax_vm_destroy(hax->vm);
 345    }
 346    if (hax->fd) {
 347        hax_mod_close(hax);
 348    }
 349
 350    return ret;
 351}
 352
 353static int hax_accel_init(MachineState *ms)
 354{
 355    int ret = hax_init(ms->ram_size);
 356
 357    if (ret && (ret != -ENOSPC)) {
 358        fprintf(stderr, "No accelerator found.\n");
 359    } else {
 360        fprintf(stdout, "HAX is %s and emulator runs in %s mode.\n",
 361                !ret ? "working" : "not working",
 362                !ret ? "fast virt" : "emulation");
 363    }
 364    return ret;
 365}
 366
 367static int hax_handle_fastmmio(CPUArchState *env, struct hax_fastmmio *hft)
 368{
 369    if (hft->direction < 2) {
 370        cpu_physical_memory_rw(hft->gpa, (uint8_t *) &hft->value, hft->size,
 371                               hft->direction);
 372    } else {
 373        /*
 374         * HAX API v4 supports transferring data between two MMIO addresses,
 375         * hft->gpa and hft->gpa2 (instructions such as MOVS require this):
 376         *  hft->direction == 2: gpa ==> gpa2
 377         */
 378        uint64_t value;
 379        cpu_physical_memory_rw(hft->gpa, (uint8_t *) &value, hft->size, 0);
 380        cpu_physical_memory_rw(hft->gpa2, (uint8_t *) &value, hft->size, 1);
 381    }
 382
 383    return 0;
 384}
 385
 386static int hax_handle_io(CPUArchState *env, uint32_t df, uint16_t port,
 387                         int direction, int size, int count, void *buffer)
 388{
 389    uint8_t *ptr;
 390    int i;
 391    MemTxAttrs attrs = { 0 };
 392
 393    if (!df) {
 394        ptr = (uint8_t *) buffer;
 395    } else {
 396        ptr = buffer + size * count - size;
 397    }
 398    for (i = 0; i < count; i++) {
 399        address_space_rw(&address_space_io, port, attrs,
 400                         ptr, size, direction == HAX_EXIT_IO_OUT);
 401        if (!df) {
 402            ptr += size;
 403        } else {
 404            ptr -= size;
 405        }
 406    }
 407
 408    return 0;
 409}
 410
 411static int hax_vcpu_interrupt(CPUArchState *env)
 412{
 413    CPUState *cpu = env_cpu(env);
 414    struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
 415    struct hax_tunnel *ht = vcpu->tunnel;
 416
 417    /*
 418     * Try to inject an interrupt if the guest can accept it
 419     * Unlike KVM, HAX kernel check for the eflags, instead of qemu
 420     */
 421    if (ht->ready_for_interrupt_injection &&
 422        (cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
 423        int irq;
 424
 425        irq = cpu_get_pic_interrupt(env);
 426        if (irq >= 0) {
 427            hax_inject_interrupt(env, irq);
 428            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
 429        }
 430    }
 431
 432    /* If we have an interrupt but the guest is not ready to receive an
 433     * interrupt, request an interrupt window exit.  This will
 434     * cause a return to userspace as soon as the guest is ready to
 435     * receive interrupts. */
 436    if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
 437        ht->request_interrupt_window = 1;
 438    } else {
 439        ht->request_interrupt_window = 0;
 440    }
 441    return 0;
 442}
 443
 444void hax_raise_event(CPUState *cpu)
 445{
 446    struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
 447
 448    if (!vcpu) {
 449        return;
 450    }
 451    vcpu->tunnel->user_event_pending = 1;
 452}
 453
 454/*
 455 * Ask hax kernel module to run the CPU for us till:
 456 * 1. Guest crash or shutdown
 457 * 2. Need QEMU's emulation like guest execute MMIO instruction
 458 * 3. Guest execute HLT
 459 * 4. QEMU have Signal/event pending
 460 * 5. An unknown VMX exit happens
 461 */
 462static int hax_vcpu_hax_exec(CPUArchState *env)
 463{
 464    int ret = 0;
 465    CPUState *cpu = env_cpu(env);
 466    X86CPU *x86_cpu = X86_CPU(cpu);
 467    struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
 468    struct hax_tunnel *ht = vcpu->tunnel;
 469
 470    if (!hax_enabled()) {
 471        DPRINTF("Trying to vcpu execute at eip:" TARGET_FMT_lx "\n", env->eip);
 472        return 0;
 473    }
 474
 475    if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
 476        cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
 477        apic_poll_irq(x86_cpu->apic_state);
 478    }
 479
 480    /* After a vcpu is halted (either because it is an AP and has just been
 481     * reset, or because it has executed the HLT instruction), it will not be
 482     * run (hax_vcpu_run()) until it is unhalted. The next few if blocks check
 483     * for events that may change the halted state of this vcpu:
 484     *  a) Maskable interrupt, when RFLAGS.IF is 1;
 485     *     Note: env->eflags may not reflect the current RFLAGS state, because
 486     *           it is not updated after each hax_vcpu_run(). We cannot afford
 487     *           to fail to recognize any unhalt-by-maskable-interrupt event
 488     *           (in which case the vcpu will halt forever), and yet we cannot
 489     *           afford the overhead of hax_vcpu_sync_state(). The current
 490     *           solution is to err on the side of caution and have the HLT
 491     *           handler (see case HAX_EXIT_HLT below) unconditionally set the
 492     *           IF_MASK bit in env->eflags, which, in effect, disables the
 493     *           RFLAGS.IF check.
 494     *  b) NMI;
 495     *  c) INIT signal;
 496     *  d) SIPI signal.
 497     */
 498    if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
 499         (env->eflags & IF_MASK)) ||
 500        (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
 501        cpu->halted = 0;
 502    }
 503
 504    if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
 505        DPRINTF("\nhax_vcpu_hax_exec: handling INIT for %d\n",
 506                cpu->cpu_index);
 507        do_cpu_init(x86_cpu);
 508        hax_vcpu_sync_state(env, 1);
 509    }
 510
 511    if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
 512        DPRINTF("hax_vcpu_hax_exec: handling SIPI for %d\n",
 513                cpu->cpu_index);
 514        hax_vcpu_sync_state(env, 0);
 515        do_cpu_sipi(x86_cpu);
 516        hax_vcpu_sync_state(env, 1);
 517    }
 518
 519    if (cpu->halted) {
 520        /* If this vcpu is halted, we must not ask HAXM to run it. Instead, we
 521         * break out of hax_smp_cpu_exec() as if this vcpu had executed HLT.
 522         * That way, this vcpu thread will be trapped in qemu_wait_io_event(),
 523         * until the vcpu is unhalted.
 524         */
 525        cpu->exception_index = EXCP_HLT;
 526        return 0;
 527    }
 528
 529    do {
 530        int hax_ret;
 531
 532        if (cpu->exit_request) {
 533            ret = 1;
 534            break;
 535        }
 536
 537        hax_vcpu_interrupt(env);
 538
 539        qemu_mutex_unlock_iothread();
 540        cpu_exec_start(cpu);
 541        hax_ret = hax_vcpu_run(vcpu);
 542        cpu_exec_end(cpu);
 543        qemu_mutex_lock_iothread();
 544
 545        /* Simply continue the vcpu_run if system call interrupted */
 546        if (hax_ret == -EINTR || hax_ret == -EAGAIN) {
 547            DPRINTF("io window interrupted\n");
 548            continue;
 549        }
 550
 551        if (hax_ret < 0) {
 552            fprintf(stderr, "vcpu run failed for vcpu  %x\n", vcpu->vcpu_id);
 553            abort();
 554        }
 555        switch (ht->_exit_status) {
 556        case HAX_EXIT_IO:
 557            ret = hax_handle_io(env, ht->pio._df, ht->pio._port,
 558                            ht->pio._direction,
 559                            ht->pio._size, ht->pio._count, vcpu->iobuf);
 560            break;
 561        case HAX_EXIT_FAST_MMIO:
 562            ret = hax_handle_fastmmio(env, (struct hax_fastmmio *) vcpu->iobuf);
 563            break;
 564        /* Guest state changed, currently only for shutdown */
 565        case HAX_EXIT_STATECHANGE:
 566            fprintf(stdout, "VCPU shutdown request\n");
 567            qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
 568            hax_vcpu_sync_state(env, 0);
 569            ret = 1;
 570            break;
 571        case HAX_EXIT_UNKNOWN_VMEXIT:
 572            fprintf(stderr, "Unknown VMX exit %x from guest\n",
 573                    ht->_exit_reason);
 574            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 575            hax_vcpu_sync_state(env, 0);
 576            cpu_dump_state(cpu, stderr, 0);
 577            ret = -1;
 578            break;
 579        case HAX_EXIT_HLT:
 580            if (!(cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
 581                !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
 582                /* hlt instruction with interrupt disabled is shutdown */
 583                env->eflags |= IF_MASK;
 584                cpu->halted = 1;
 585                cpu->exception_index = EXCP_HLT;
 586                ret = 1;
 587            }
 588            break;
 589        /* these situations will continue to hax module */
 590        case HAX_EXIT_INTERRUPT:
 591        case HAX_EXIT_PAUSED:
 592            break;
 593        case HAX_EXIT_MMIO:
 594            /* Should not happen on UG system */
 595            fprintf(stderr, "HAX: unsupported MMIO emulation\n");
 596            ret = -1;
 597            break;
 598        case HAX_EXIT_REAL:
 599            /* Should not happen on UG system */
 600            fprintf(stderr, "HAX: unimplemented real mode emulation\n");
 601            ret = -1;
 602            break;
 603        default:
 604            fprintf(stderr, "Unknown exit %x from HAX\n", ht->_exit_status);
 605            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 606            hax_vcpu_sync_state(env, 0);
 607            cpu_dump_state(cpu, stderr, 0);
 608            ret = 1;
 609            break;
 610        }
 611    } while (!ret);
 612
 613    if (cpu->exit_request) {
 614        cpu->exit_request = 0;
 615        cpu->exception_index = EXCP_INTERRUPT;
 616    }
 617    return ret < 0;
 618}
 619
 620static void do_hax_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
 621{
 622    CPUArchState *env = cpu->env_ptr;
 623
 624    hax_arch_get_registers(env);
 625    cpu->vcpu_dirty = true;
 626}
 627
 628void hax_cpu_synchronize_state(CPUState *cpu)
 629{
 630    if (!cpu->vcpu_dirty) {
 631        run_on_cpu(cpu, do_hax_cpu_synchronize_state, RUN_ON_CPU_NULL);
 632    }
 633}
 634
 635static void do_hax_cpu_synchronize_post_reset(CPUState *cpu,
 636                                              run_on_cpu_data arg)
 637{
 638    CPUArchState *env = cpu->env_ptr;
 639
 640    hax_vcpu_sync_state(env, 1);
 641    cpu->vcpu_dirty = false;
 642}
 643
 644void hax_cpu_synchronize_post_reset(CPUState *cpu)
 645{
 646    run_on_cpu(cpu, do_hax_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
 647}
 648
 649static void do_hax_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
 650{
 651    CPUArchState *env = cpu->env_ptr;
 652
 653    hax_vcpu_sync_state(env, 1);
 654    cpu->vcpu_dirty = false;
 655}
 656
 657void hax_cpu_synchronize_post_init(CPUState *cpu)
 658{
 659    run_on_cpu(cpu, do_hax_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
 660}
 661
 662static void do_hax_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
 663{
 664    cpu->vcpu_dirty = true;
 665}
 666
 667void hax_cpu_synchronize_pre_loadvm(CPUState *cpu)
 668{
 669    run_on_cpu(cpu, do_hax_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
 670}
 671
 672int hax_smp_cpu_exec(CPUState *cpu)
 673{
 674    CPUArchState *env = (CPUArchState *) (cpu->env_ptr);
 675    int fatal;
 676    int ret;
 677
 678    while (1) {
 679        if (cpu->exception_index >= EXCP_INTERRUPT) {
 680            ret = cpu->exception_index;
 681            cpu->exception_index = -1;
 682            break;
 683        }
 684
 685        fatal = hax_vcpu_hax_exec(env);
 686
 687        if (fatal) {
 688            fprintf(stderr, "Unsupported HAX vcpu return\n");
 689            abort();
 690        }
 691    }
 692
 693    return ret;
 694}
 695
 696static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
 697{
 698    memset(lhs, 0, sizeof(struct segment_desc_t));
 699    lhs->selector = rhs->selector;
 700    lhs->base = rhs->base;
 701    lhs->limit = rhs->limit;
 702    lhs->type = 3;
 703    lhs->present = 1;
 704    lhs->dpl = 3;
 705    lhs->operand_size = 0;
 706    lhs->desc = 1;
 707    lhs->long_mode = 0;
 708    lhs->granularity = 0;
 709    lhs->available = 0;
 710}
 711
 712static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs)
 713{
 714    lhs->selector = rhs->selector;
 715    lhs->base = rhs->base;
 716    lhs->limit = rhs->limit;
 717    lhs->flags = (rhs->type << DESC_TYPE_SHIFT)
 718        | (rhs->present * DESC_P_MASK)
 719        | (rhs->dpl << DESC_DPL_SHIFT)
 720        | (rhs->operand_size << DESC_B_SHIFT)
 721        | (rhs->desc * DESC_S_MASK)
 722        | (rhs->long_mode << DESC_L_SHIFT)
 723        | (rhs->granularity * DESC_G_MASK) | (rhs->available * DESC_AVL_MASK);
 724}
 725
 726static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
 727{
 728    unsigned flags = rhs->flags;
 729
 730    memset(lhs, 0, sizeof(struct segment_desc_t));
 731    lhs->selector = rhs->selector;
 732    lhs->base = rhs->base;
 733    lhs->limit = rhs->limit;
 734    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
 735    lhs->present = (flags & DESC_P_MASK) != 0;
 736    lhs->dpl = rhs->selector & 3;
 737    lhs->operand_size = (flags >> DESC_B_SHIFT) & 1;
 738    lhs->desc = (flags & DESC_S_MASK) != 0;
 739    lhs->long_mode = (flags >> DESC_L_SHIFT) & 1;
 740    lhs->granularity = (flags & DESC_G_MASK) != 0;
 741    lhs->available = (flags & DESC_AVL_MASK) != 0;
 742}
 743
 744static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set)
 745{
 746    target_ulong reg = *hax_reg;
 747
 748    if (set) {
 749        *hax_reg = *qemu_reg;
 750    } else {
 751        *qemu_reg = reg;
 752    }
 753}
 754
 755/* The sregs has been synced with HAX kernel already before this call */
 756static int hax_get_segments(CPUArchState *env, struct vcpu_state_t *sregs)
 757{
 758    get_seg(&env->segs[R_CS], &sregs->_cs);
 759    get_seg(&env->segs[R_DS], &sregs->_ds);
 760    get_seg(&env->segs[R_ES], &sregs->_es);
 761    get_seg(&env->segs[R_FS], &sregs->_fs);
 762    get_seg(&env->segs[R_GS], &sregs->_gs);
 763    get_seg(&env->segs[R_SS], &sregs->_ss);
 764
 765    get_seg(&env->tr, &sregs->_tr);
 766    get_seg(&env->ldt, &sregs->_ldt);
 767    env->idt.limit = sregs->_idt.limit;
 768    env->idt.base = sregs->_idt.base;
 769    env->gdt.limit = sregs->_gdt.limit;
 770    env->gdt.base = sregs->_gdt.base;
 771    return 0;
 772}
 773
 774static int hax_set_segments(CPUArchState *env, struct vcpu_state_t *sregs)
 775{
 776    if ((env->eflags & VM_MASK)) {
 777        set_v8086_seg(&sregs->_cs, &env->segs[R_CS]);
 778        set_v8086_seg(&sregs->_ds, &env->segs[R_DS]);
 779        set_v8086_seg(&sregs->_es, &env->segs[R_ES]);
 780        set_v8086_seg(&sregs->_fs, &env->segs[R_FS]);
 781        set_v8086_seg(&sregs->_gs, &env->segs[R_GS]);
 782        set_v8086_seg(&sregs->_ss, &env->segs[R_SS]);
 783    } else {
 784        set_seg(&sregs->_cs, &env->segs[R_CS]);
 785        set_seg(&sregs->_ds, &env->segs[R_DS]);
 786        set_seg(&sregs->_es, &env->segs[R_ES]);
 787        set_seg(&sregs->_fs, &env->segs[R_FS]);
 788        set_seg(&sregs->_gs, &env->segs[R_GS]);
 789        set_seg(&sregs->_ss, &env->segs[R_SS]);
 790
 791        if (env->cr[0] & CR0_PE_MASK) {
 792            /* force ss cpl to cs cpl */
 793            sregs->_ss.selector = (sregs->_ss.selector & ~3) |
 794                                  (sregs->_cs.selector & 3);
 795            sregs->_ss.dpl = sregs->_ss.selector & 3;
 796        }
 797    }
 798
 799    set_seg(&sregs->_tr, &env->tr);
 800    set_seg(&sregs->_ldt, &env->ldt);
 801    sregs->_idt.limit = env->idt.limit;
 802    sregs->_idt.base = env->idt.base;
 803    sregs->_gdt.limit = env->gdt.limit;
 804    sregs->_gdt.base = env->gdt.base;
 805    return 0;
 806}
 807
 808static int hax_sync_vcpu_register(CPUArchState *env, int set)
 809{
 810    struct vcpu_state_t regs;
 811    int ret;
 812    memset(&regs, 0, sizeof(struct vcpu_state_t));
 813
 814    if (!set) {
 815        ret = hax_sync_vcpu_state(env, &regs, 0);
 816        if (ret < 0) {
 817            return -1;
 818        }
 819    }
 820
 821    /* generic register */
 822    hax_getput_reg(&regs._rax, &env->regs[R_EAX], set);
 823    hax_getput_reg(&regs._rbx, &env->regs[R_EBX], set);
 824    hax_getput_reg(&regs._rcx, &env->regs[R_ECX], set);
 825    hax_getput_reg(&regs._rdx, &env->regs[R_EDX], set);
 826    hax_getput_reg(&regs._rsi, &env->regs[R_ESI], set);
 827    hax_getput_reg(&regs._rdi, &env->regs[R_EDI], set);
 828    hax_getput_reg(&regs._rsp, &env->regs[R_ESP], set);
 829    hax_getput_reg(&regs._rbp, &env->regs[R_EBP], set);
 830#ifdef TARGET_X86_64
 831    hax_getput_reg(&regs._r8, &env->regs[8], set);
 832    hax_getput_reg(&regs._r9, &env->regs[9], set);
 833    hax_getput_reg(&regs._r10, &env->regs[10], set);
 834    hax_getput_reg(&regs._r11, &env->regs[11], set);
 835    hax_getput_reg(&regs._r12, &env->regs[12], set);
 836    hax_getput_reg(&regs._r13, &env->regs[13], set);
 837    hax_getput_reg(&regs._r14, &env->regs[14], set);
 838    hax_getput_reg(&regs._r15, &env->regs[15], set);
 839#endif
 840    hax_getput_reg(&regs._rflags, &env->eflags, set);
 841    hax_getput_reg(&regs._rip, &env->eip, set);
 842
 843    if (set) {
 844        regs._cr0 = env->cr[0];
 845        regs._cr2 = env->cr[2];
 846        regs._cr3 = env->cr[3];
 847        regs._cr4 = env->cr[4];
 848        hax_set_segments(env, &regs);
 849    } else {
 850        env->cr[0] = regs._cr0;
 851        env->cr[2] = regs._cr2;
 852        env->cr[3] = regs._cr3;
 853        env->cr[4] = regs._cr4;
 854        hax_get_segments(env, &regs);
 855    }
 856
 857    if (set) {
 858        ret = hax_sync_vcpu_state(env, &regs, 1);
 859        if (ret < 0) {
 860            return -1;
 861        }
 862    }
 863    return 0;
 864}
 865
 866static void hax_msr_entry_set(struct vmx_msr *item, uint32_t index,
 867                              uint64_t value)
 868{
 869    item->entry = index;
 870    item->value = value;
 871}
 872
 873static int hax_get_msrs(CPUArchState *env)
 874{
 875    struct hax_msr_data md;
 876    struct vmx_msr *msrs = md.entries;
 877    int ret, i, n;
 878
 879    n = 0;
 880    msrs[n++].entry = MSR_IA32_SYSENTER_CS;
 881    msrs[n++].entry = MSR_IA32_SYSENTER_ESP;
 882    msrs[n++].entry = MSR_IA32_SYSENTER_EIP;
 883    msrs[n++].entry = MSR_IA32_TSC;
 884#ifdef TARGET_X86_64
 885    msrs[n++].entry = MSR_EFER;
 886    msrs[n++].entry = MSR_STAR;
 887    msrs[n++].entry = MSR_LSTAR;
 888    msrs[n++].entry = MSR_CSTAR;
 889    msrs[n++].entry = MSR_FMASK;
 890    msrs[n++].entry = MSR_KERNELGSBASE;
 891#endif
 892    md.nr_msr = n;
 893    ret = hax_sync_msr(env, &md, 0);
 894    if (ret < 0) {
 895        return ret;
 896    }
 897
 898    for (i = 0; i < md.done; i++) {
 899        switch (msrs[i].entry) {
 900        case MSR_IA32_SYSENTER_CS:
 901            env->sysenter_cs = msrs[i].value;
 902            break;
 903        case MSR_IA32_SYSENTER_ESP:
 904            env->sysenter_esp = msrs[i].value;
 905            break;
 906        case MSR_IA32_SYSENTER_EIP:
 907            env->sysenter_eip = msrs[i].value;
 908            break;
 909        case MSR_IA32_TSC:
 910            env->tsc = msrs[i].value;
 911            break;
 912#ifdef TARGET_X86_64
 913        case MSR_EFER:
 914            env->efer = msrs[i].value;
 915            break;
 916        case MSR_STAR:
 917            env->star = msrs[i].value;
 918            break;
 919        case MSR_LSTAR:
 920            env->lstar = msrs[i].value;
 921            break;
 922        case MSR_CSTAR:
 923            env->cstar = msrs[i].value;
 924            break;
 925        case MSR_FMASK:
 926            env->fmask = msrs[i].value;
 927            break;
 928        case MSR_KERNELGSBASE:
 929            env->kernelgsbase = msrs[i].value;
 930            break;
 931#endif
 932        }
 933    }
 934
 935    return 0;
 936}
 937
 938static int hax_set_msrs(CPUArchState *env)
 939{
 940    struct hax_msr_data md;
 941    struct vmx_msr *msrs;
 942    msrs = md.entries;
 943    int n = 0;
 944
 945    memset(&md, 0, sizeof(struct hax_msr_data));
 946    hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
 947    hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
 948    hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
 949    hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
 950#ifdef TARGET_X86_64
 951    hax_msr_entry_set(&msrs[n++], MSR_EFER, env->efer);
 952    hax_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
 953    hax_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
 954    hax_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
 955    hax_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
 956    hax_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
 957#endif
 958    md.nr_msr = n;
 959    md.done = 0;
 960
 961    return hax_sync_msr(env, &md, 1);
 962}
 963
 964static int hax_get_fpu(CPUArchState *env)
 965{
 966    struct fx_layout fpu;
 967    int i, ret;
 968
 969    ret = hax_sync_fpu(env, &fpu, 0);
 970    if (ret < 0) {
 971        return ret;
 972    }
 973
 974    env->fpstt = (fpu.fsw >> 11) & 7;
 975    env->fpus = fpu.fsw;
 976    env->fpuc = fpu.fcw;
 977    for (i = 0; i < 8; ++i) {
 978        env->fptags[i] = !((fpu.ftw >> i) & 1);
 979    }
 980    memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs));
 981
 982    for (i = 0; i < 8; i++) {
 983        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.mmx_1[i][0]);
 984        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.mmx_1[i][8]);
 985        if (CPU_NB_REGS > 8) {
 986            env->xmm_regs[i + 8].ZMM_Q(0) = ldq_p(&fpu.mmx_2[i][0]);
 987            env->xmm_regs[i + 8].ZMM_Q(1) = ldq_p(&fpu.mmx_2[i][8]);
 988        }
 989    }
 990    env->mxcsr = fpu.mxcsr;
 991
 992    return 0;
 993}
 994
 995static int hax_set_fpu(CPUArchState *env)
 996{
 997    struct fx_layout fpu;
 998    int i;
 999
1000    memset(&fpu, 0, sizeof(fpu));
1001    fpu.fsw = env->fpus & ~(7 << 11);
1002    fpu.fsw |= (env->fpstt & 7) << 11;
1003    fpu.fcw = env->fpuc;
1004
1005    for (i = 0; i < 8; ++i) {
1006        fpu.ftw |= (!env->fptags[i]) << i;
1007    }
1008
1009    memcpy(fpu.st_mm, env->fpregs, sizeof(env->fpregs));
1010    for (i = 0; i < 8; i++) {
1011        stq_p(&fpu.mmx_1[i][0], env->xmm_regs[i].ZMM_Q(0));
1012        stq_p(&fpu.mmx_1[i][8], env->xmm_regs[i].ZMM_Q(1));
1013        if (CPU_NB_REGS > 8) {
1014            stq_p(&fpu.mmx_2[i][0], env->xmm_regs[i + 8].ZMM_Q(0));
1015            stq_p(&fpu.mmx_2[i][8], env->xmm_regs[i + 8].ZMM_Q(1));
1016        }
1017    }
1018
1019    fpu.mxcsr = env->mxcsr;
1020
1021    return hax_sync_fpu(env, &fpu, 1);
1022}
1023
1024static int hax_arch_get_registers(CPUArchState *env)
1025{
1026    int ret;
1027
1028    ret = hax_sync_vcpu_register(env, 0);
1029    if (ret < 0) {
1030        return ret;
1031    }
1032
1033    ret = hax_get_fpu(env);
1034    if (ret < 0) {
1035        return ret;
1036    }
1037
1038    ret = hax_get_msrs(env);
1039    if (ret < 0) {
1040        return ret;
1041    }
1042
1043    x86_update_hflags(env);
1044    return 0;
1045}
1046
1047static int hax_arch_set_registers(CPUArchState *env)
1048{
1049    int ret;
1050    ret = hax_sync_vcpu_register(env, 1);
1051
1052    if (ret < 0) {
1053        fprintf(stderr, "Failed to sync vcpu reg\n");
1054        return ret;
1055    }
1056    ret = hax_set_fpu(env);
1057    if (ret < 0) {
1058        fprintf(stderr, "FPU failed\n");
1059        return ret;
1060    }
1061    ret = hax_set_msrs(env);
1062    if (ret < 0) {
1063        fprintf(stderr, "MSR failed\n");
1064        return ret;
1065    }
1066
1067    return 0;
1068}
1069
1070static void hax_vcpu_sync_state(CPUArchState *env, int modified)
1071{
1072    if (hax_enabled()) {
1073        if (modified) {
1074            hax_arch_set_registers(env);
1075        } else {
1076            hax_arch_get_registers(env);
1077        }
1078    }
1079}
1080
1081/*
1082 * much simpler than kvm, at least in first stage because:
1083 * We don't need consider the device pass-through, we don't need
1084 * consider the framebuffer, and we may even remove the bios at all
1085 */
1086int hax_sync_vcpus(void)
1087{
1088    if (hax_enabled()) {
1089        CPUState *cpu;
1090
1091        cpu = first_cpu;
1092        if (!cpu) {
1093            return 0;
1094        }
1095
1096        for (; cpu != NULL; cpu = CPU_NEXT(cpu)) {
1097            int ret;
1098
1099            ret = hax_arch_set_registers(cpu->env_ptr);
1100            if (ret < 0) {
1101                return ret;
1102            }
1103        }
1104    }
1105
1106    return 0;
1107}
1108
1109void hax_reset_vcpu_state(void *opaque)
1110{
1111    CPUState *cpu;
1112    for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) {
1113        cpu->hax_vcpu->tunnel->user_event_pending = 0;
1114        cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0;
1115    }
1116}
1117
1118static void hax_accel_class_init(ObjectClass *oc, void *data)
1119{
1120    AccelClass *ac = ACCEL_CLASS(oc);
1121    ac->name = "HAX";
1122    ac->init_machine = hax_accel_init;
1123    ac->allowed = &hax_allowed;
1124}
1125
1126static const TypeInfo hax_accel_type = {
1127    .name = ACCEL_CLASS_NAME("hax"),
1128    .parent = TYPE_ACCEL,
1129    .class_init = hax_accel_class_init,
1130};
1131
1132static void hax_type_init(void)
1133{
1134    type_register_static(&hax_accel_type);
1135}
1136
1137type_init(hax_type_init);
1138