qemu/target/i386/monitor.c
<<
>>
Prefs
   1/*
   2 * QEMU monitor
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "cpu.h"
  27#include "monitor/monitor.h"
  28#include "monitor/hmp-target.h"
  29#include "monitor/hmp.h"
  30#include "qapi/qmp/qdict.h"
  31#include "hw/i386/pc.h"
  32#include "sysemu/kvm.h"
  33#include "sysemu/sev.h"
  34#include "qapi/error.h"
  35#include "sev_i386.h"
  36#include "qapi/qapi-commands-misc-target.h"
  37#include "qapi/qapi-commands-misc.h"
  38
  39/* Perform linear address sign extension */
  40static hwaddr addr_canonical(CPUArchState *env, hwaddr addr)
  41{
  42#ifdef TARGET_X86_64
  43    if (env->cr[4] & CR4_LA57_MASK) {
  44        if (addr & (1ULL << 56)) {
  45            addr |= (hwaddr)-(1LL << 57);
  46        }
  47    } else {
  48        if (addr & (1ULL << 47)) {
  49            addr |= (hwaddr)-(1LL << 48);
  50        }
  51    }
  52#endif
  53    return addr;
  54}
  55
  56static void print_pte(Monitor *mon, CPUArchState *env, hwaddr addr,
  57                      hwaddr pte, hwaddr mask)
  58{
  59    addr = addr_canonical(env, addr);
  60
  61    monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx
  62                   " %c%c%c%c%c%c%c%c%c\n",
  63                   addr,
  64                   pte & mask,
  65                   pte & PG_NX_MASK ? 'X' : '-',
  66                   pte & PG_GLOBAL_MASK ? 'G' : '-',
  67                   pte & PG_PSE_MASK ? 'P' : '-',
  68                   pte & PG_DIRTY_MASK ? 'D' : '-',
  69                   pte & PG_ACCESSED_MASK ? 'A' : '-',
  70                   pte & PG_PCD_MASK ? 'C' : '-',
  71                   pte & PG_PWT_MASK ? 'T' : '-',
  72                   pte & PG_USER_MASK ? 'U' : '-',
  73                   pte & PG_RW_MASK ? 'W' : '-');
  74}
  75
  76static void tlb_info_32(Monitor *mon, CPUArchState *env)
  77{
  78    unsigned int l1, l2;
  79    uint32_t pgd, pde, pte;
  80
  81    pgd = env->cr[3] & ~0xfff;
  82    for(l1 = 0; l1 < 1024; l1++) {
  83        cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
  84        pde = le32_to_cpu(pde);
  85        if (pde & PG_PRESENT_MASK) {
  86            if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
  87                /* 4M pages */
  88                print_pte(mon, env, (l1 << 22), pde, ~((1 << 21) - 1));
  89            } else {
  90                for(l2 = 0; l2 < 1024; l2++) {
  91                    cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
  92                    pte = le32_to_cpu(pte);
  93                    if (pte & PG_PRESENT_MASK) {
  94                        print_pte(mon, env, (l1 << 22) + (l2 << 12),
  95                                  pte & ~PG_PSE_MASK,
  96                                  ~0xfff);
  97                    }
  98                }
  99            }
 100        }
 101    }
 102}
 103
 104static void tlb_info_pae32(Monitor *mon, CPUArchState *env)
 105{
 106    unsigned int l1, l2, l3;
 107    uint64_t pdpe, pde, pte;
 108    uint64_t pdp_addr, pd_addr, pt_addr;
 109
 110    pdp_addr = env->cr[3] & ~0x1f;
 111    for (l1 = 0; l1 < 4; l1++) {
 112        cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
 113        pdpe = le64_to_cpu(pdpe);
 114        if (pdpe & PG_PRESENT_MASK) {
 115            pd_addr = pdpe & 0x3fffffffff000ULL;
 116            for (l2 = 0; l2 < 512; l2++) {
 117                cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
 118                pde = le64_to_cpu(pde);
 119                if (pde & PG_PRESENT_MASK) {
 120                    if (pde & PG_PSE_MASK) {
 121                        /* 2M pages with PAE, CR4.PSE is ignored */
 122                        print_pte(mon, env, (l1 << 30) + (l2 << 21), pde,
 123                                  ~((hwaddr)(1 << 20) - 1));
 124                    } else {
 125                        pt_addr = pde & 0x3fffffffff000ULL;
 126                        for (l3 = 0; l3 < 512; l3++) {
 127                            cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
 128                            pte = le64_to_cpu(pte);
 129                            if (pte & PG_PRESENT_MASK) {
 130                                print_pte(mon, env, (l1 << 30) + (l2 << 21)
 131                                          + (l3 << 12),
 132                                          pte & ~PG_PSE_MASK,
 133                                          ~(hwaddr)0xfff);
 134                            }
 135                        }
 136                    }
 137                }
 138            }
 139        }
 140    }
 141}
 142
 143#ifdef TARGET_X86_64
 144static void tlb_info_la48(Monitor *mon, CPUArchState *env,
 145        uint64_t l0, uint64_t pml4_addr)
 146{
 147    uint64_t l1, l2, l3, l4;
 148    uint64_t pml4e, pdpe, pde, pte;
 149    uint64_t pdp_addr, pd_addr, pt_addr;
 150
 151    for (l1 = 0; l1 < 512; l1++) {
 152        cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
 153        pml4e = le64_to_cpu(pml4e);
 154        if (!(pml4e & PG_PRESENT_MASK)) {
 155            continue;
 156        }
 157
 158        pdp_addr = pml4e & 0x3fffffffff000ULL;
 159        for (l2 = 0; l2 < 512; l2++) {
 160            cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
 161            pdpe = le64_to_cpu(pdpe);
 162            if (!(pdpe & PG_PRESENT_MASK)) {
 163                continue;
 164            }
 165
 166            if (pdpe & PG_PSE_MASK) {
 167                /* 1G pages, CR4.PSE is ignored */
 168                print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30),
 169                        pdpe, 0x3ffffc0000000ULL);
 170                continue;
 171            }
 172
 173            pd_addr = pdpe & 0x3fffffffff000ULL;
 174            for (l3 = 0; l3 < 512; l3++) {
 175                cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
 176                pde = le64_to_cpu(pde);
 177                if (!(pde & PG_PRESENT_MASK)) {
 178                    continue;
 179                }
 180
 181                if (pde & PG_PSE_MASK) {
 182                    /* 2M pages, CR4.PSE is ignored */
 183                    print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30) +
 184                            (l3 << 21), pde, 0x3ffffffe00000ULL);
 185                    continue;
 186                }
 187
 188                pt_addr = pde & 0x3fffffffff000ULL;
 189                for (l4 = 0; l4 < 512; l4++) {
 190                    cpu_physical_memory_read(pt_addr
 191                            + l4 * 8,
 192                            &pte, 8);
 193                    pte = le64_to_cpu(pte);
 194                    if (pte & PG_PRESENT_MASK) {
 195                        print_pte(mon, env, (l0 << 48) + (l1 << 39) +
 196                                (l2 << 30) + (l3 << 21) + (l4 << 12),
 197                                pte & ~PG_PSE_MASK, 0x3fffffffff000ULL);
 198                    }
 199                }
 200            }
 201        }
 202    }
 203}
 204
 205static void tlb_info_la57(Monitor *mon, CPUArchState *env)
 206{
 207    uint64_t l0;
 208    uint64_t pml5e;
 209    uint64_t pml5_addr;
 210
 211    pml5_addr = env->cr[3] & 0x3fffffffff000ULL;
 212    for (l0 = 0; l0 < 512; l0++) {
 213        cpu_physical_memory_read(pml5_addr + l0 * 8, &pml5e, 8);
 214        pml5e = le64_to_cpu(pml5e);
 215        if (pml5e & PG_PRESENT_MASK) {
 216            tlb_info_la48(mon, env, l0, pml5e & 0x3fffffffff000ULL);
 217        }
 218    }
 219}
 220#endif /* TARGET_X86_64 */
 221
 222void hmp_info_tlb(Monitor *mon, const QDict *qdict)
 223{
 224    CPUArchState *env;
 225
 226    env = mon_get_cpu_env();
 227    if (!env) {
 228        monitor_printf(mon, "No CPU available\n");
 229        return;
 230    }
 231
 232    if (!(env->cr[0] & CR0_PG_MASK)) {
 233        monitor_printf(mon, "PG disabled\n");
 234        return;
 235    }
 236    if (env->cr[4] & CR4_PAE_MASK) {
 237#ifdef TARGET_X86_64
 238        if (env->hflags & HF_LMA_MASK) {
 239            if (env->cr[4] & CR4_LA57_MASK) {
 240                tlb_info_la57(mon, env);
 241            } else {
 242                tlb_info_la48(mon, env, 0, env->cr[3] & 0x3fffffffff000ULL);
 243            }
 244        } else
 245#endif
 246        {
 247            tlb_info_pae32(mon, env);
 248        }
 249    } else {
 250        tlb_info_32(mon, env);
 251    }
 252}
 253
 254static void mem_print(Monitor *mon, CPUArchState *env,
 255                      hwaddr *pstart, int *plast_prot,
 256                      hwaddr end, int prot)
 257{
 258    int prot1;
 259    prot1 = *plast_prot;
 260    if (prot != prot1) {
 261        if (*pstart != -1) {
 262            monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " "
 263                           TARGET_FMT_plx " %c%c%c\n",
 264                           addr_canonical(env, *pstart),
 265                           addr_canonical(env, end),
 266                           addr_canonical(env, end - *pstart),
 267                           prot1 & PG_USER_MASK ? 'u' : '-',
 268                           'r',
 269                           prot1 & PG_RW_MASK ? 'w' : '-');
 270        }
 271        if (prot != 0)
 272            *pstart = end;
 273        else
 274            *pstart = -1;
 275        *plast_prot = prot;
 276    }
 277}
 278
 279static void mem_info_32(Monitor *mon, CPUArchState *env)
 280{
 281    unsigned int l1, l2;
 282    int prot, last_prot;
 283    uint32_t pgd, pde, pte;
 284    hwaddr start, end;
 285
 286    pgd = env->cr[3] & ~0xfff;
 287    last_prot = 0;
 288    start = -1;
 289    for(l1 = 0; l1 < 1024; l1++) {
 290        cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
 291        pde = le32_to_cpu(pde);
 292        end = l1 << 22;
 293        if (pde & PG_PRESENT_MASK) {
 294            if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
 295                prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
 296                mem_print(mon, env, &start, &last_prot, end, prot);
 297            } else {
 298                for(l2 = 0; l2 < 1024; l2++) {
 299                    cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
 300                    pte = le32_to_cpu(pte);
 301                    end = (l1 << 22) + (l2 << 12);
 302                    if (pte & PG_PRESENT_MASK) {
 303                        prot = pte & pde &
 304                            (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
 305                    } else {
 306                        prot = 0;
 307                    }
 308                    mem_print(mon, env, &start, &last_prot, end, prot);
 309                }
 310            }
 311        } else {
 312            prot = 0;
 313            mem_print(mon, env, &start, &last_prot, end, prot);
 314        }
 315    }
 316    /* Flush last range */
 317    mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 32, 0);
 318}
 319
 320static void mem_info_pae32(Monitor *mon, CPUArchState *env)
 321{
 322    unsigned int l1, l2, l3;
 323    int prot, last_prot;
 324    uint64_t pdpe, pde, pte;
 325    uint64_t pdp_addr, pd_addr, pt_addr;
 326    hwaddr start, end;
 327
 328    pdp_addr = env->cr[3] & ~0x1f;
 329    last_prot = 0;
 330    start = -1;
 331    for (l1 = 0; l1 < 4; l1++) {
 332        cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
 333        pdpe = le64_to_cpu(pdpe);
 334        end = l1 << 30;
 335        if (pdpe & PG_PRESENT_MASK) {
 336            pd_addr = pdpe & 0x3fffffffff000ULL;
 337            for (l2 = 0; l2 < 512; l2++) {
 338                cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
 339                pde = le64_to_cpu(pde);
 340                end = (l1 << 30) + (l2 << 21);
 341                if (pde & PG_PRESENT_MASK) {
 342                    if (pde & PG_PSE_MASK) {
 343                        prot = pde & (PG_USER_MASK | PG_RW_MASK |
 344                                      PG_PRESENT_MASK);
 345                        mem_print(mon, env, &start, &last_prot, end, prot);
 346                    } else {
 347                        pt_addr = pde & 0x3fffffffff000ULL;
 348                        for (l3 = 0; l3 < 512; l3++) {
 349                            cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
 350                            pte = le64_to_cpu(pte);
 351                            end = (l1 << 30) + (l2 << 21) + (l3 << 12);
 352                            if (pte & PG_PRESENT_MASK) {
 353                                prot = pte & pde & (PG_USER_MASK | PG_RW_MASK |
 354                                                    PG_PRESENT_MASK);
 355                            } else {
 356                                prot = 0;
 357                            }
 358                            mem_print(mon, env, &start, &last_prot, end, prot);
 359                        }
 360                    }
 361                } else {
 362                    prot = 0;
 363                    mem_print(mon, env, &start, &last_prot, end, prot);
 364                }
 365            }
 366        } else {
 367            prot = 0;
 368            mem_print(mon, env, &start, &last_prot, end, prot);
 369        }
 370    }
 371    /* Flush last range */
 372    mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 32, 0);
 373}
 374
 375
 376#ifdef TARGET_X86_64
 377static void mem_info_la48(Monitor *mon, CPUArchState *env)
 378{
 379    int prot, last_prot;
 380    uint64_t l1, l2, l3, l4;
 381    uint64_t pml4e, pdpe, pde, pte;
 382    uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
 383
 384    pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
 385    last_prot = 0;
 386    start = -1;
 387    for (l1 = 0; l1 < 512; l1++) {
 388        cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
 389        pml4e = le64_to_cpu(pml4e);
 390        end = l1 << 39;
 391        if (pml4e & PG_PRESENT_MASK) {
 392            pdp_addr = pml4e & 0x3fffffffff000ULL;
 393            for (l2 = 0; l2 < 512; l2++) {
 394                cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
 395                pdpe = le64_to_cpu(pdpe);
 396                end = (l1 << 39) + (l2 << 30);
 397                if (pdpe & PG_PRESENT_MASK) {
 398                    if (pdpe & PG_PSE_MASK) {
 399                        prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
 400                                       PG_PRESENT_MASK);
 401                        prot &= pml4e;
 402                        mem_print(mon, env, &start, &last_prot, end, prot);
 403                    } else {
 404                        pd_addr = pdpe & 0x3fffffffff000ULL;
 405                        for (l3 = 0; l3 < 512; l3++) {
 406                            cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
 407                            pde = le64_to_cpu(pde);
 408                            end = (l1 << 39) + (l2 << 30) + (l3 << 21);
 409                            if (pde & PG_PRESENT_MASK) {
 410                                if (pde & PG_PSE_MASK) {
 411                                    prot = pde & (PG_USER_MASK | PG_RW_MASK |
 412                                                  PG_PRESENT_MASK);
 413                                    prot &= pml4e & pdpe;
 414                                    mem_print(mon, env, &start,
 415                                              &last_prot, end, prot);
 416                                } else {
 417                                    pt_addr = pde & 0x3fffffffff000ULL;
 418                                    for (l4 = 0; l4 < 512; l4++) {
 419                                        cpu_physical_memory_read(pt_addr
 420                                                                 + l4 * 8,
 421                                                                 &pte, 8);
 422                                        pte = le64_to_cpu(pte);
 423                                        end = (l1 << 39) + (l2 << 30) +
 424                                            (l3 << 21) + (l4 << 12);
 425                                        if (pte & PG_PRESENT_MASK) {
 426                                            prot = pte & (PG_USER_MASK | PG_RW_MASK |
 427                                                          PG_PRESENT_MASK);
 428                                            prot &= pml4e & pdpe & pde;
 429                                        } else {
 430                                            prot = 0;
 431                                        }
 432                                        mem_print(mon, env, &start,
 433                                                  &last_prot, end, prot);
 434                                    }
 435                                }
 436                            } else {
 437                                prot = 0;
 438                                mem_print(mon, env, &start,
 439                                          &last_prot, end, prot);
 440                            }
 441                        }
 442                    }
 443                } else {
 444                    prot = 0;
 445                    mem_print(mon, env, &start, &last_prot, end, prot);
 446                }
 447            }
 448        } else {
 449            prot = 0;
 450            mem_print(mon, env, &start, &last_prot, end, prot);
 451        }
 452    }
 453    /* Flush last range */
 454    mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 48, 0);
 455}
 456
 457static void mem_info_la57(Monitor *mon, CPUArchState *env)
 458{
 459    int prot, last_prot;
 460    uint64_t l0, l1, l2, l3, l4;
 461    uint64_t pml5e, pml4e, pdpe, pde, pte;
 462    uint64_t pml5_addr, pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
 463
 464    pml5_addr = env->cr[3] & 0x3fffffffff000ULL;
 465    last_prot = 0;
 466    start = -1;
 467    for (l0 = 0; l0 < 512; l0++) {
 468        cpu_physical_memory_read(pml5_addr + l0 * 8, &pml5e, 8);
 469        pml5e = le64_to_cpu(pml5e);
 470        end = l0 << 48;
 471        if (!(pml5e & PG_PRESENT_MASK)) {
 472            prot = 0;
 473            mem_print(mon, env, &start, &last_prot, end, prot);
 474            continue;
 475        }
 476
 477        pml4_addr = pml5e & 0x3fffffffff000ULL;
 478        for (l1 = 0; l1 < 512; l1++) {
 479            cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
 480            pml4e = le64_to_cpu(pml4e);
 481            end = (l0 << 48) + (l1 << 39);
 482            if (!(pml4e & PG_PRESENT_MASK)) {
 483                prot = 0;
 484                mem_print(mon, env, &start, &last_prot, end, prot);
 485                continue;
 486            }
 487
 488            pdp_addr = pml4e & 0x3fffffffff000ULL;
 489            for (l2 = 0; l2 < 512; l2++) {
 490                cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
 491                pdpe = le64_to_cpu(pdpe);
 492                end = (l0 << 48) + (l1 << 39) + (l2 << 30);
 493                if (pdpe & PG_PRESENT_MASK) {
 494                    prot = 0;
 495                    mem_print(mon, env, &start, &last_prot, end, prot);
 496                    continue;
 497                }
 498
 499                if (pdpe & PG_PSE_MASK) {
 500                    prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
 501                            PG_PRESENT_MASK);
 502                    prot &= pml5e & pml4e;
 503                    mem_print(mon, env, &start, &last_prot, end, prot);
 504                    continue;
 505                }
 506
 507                pd_addr = pdpe & 0x3fffffffff000ULL;
 508                for (l3 = 0; l3 < 512; l3++) {
 509                    cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
 510                    pde = le64_to_cpu(pde);
 511                    end = (l0 << 48) + (l1 << 39) + (l2 << 30) + (l3 << 21);
 512                    if (pde & PG_PRESENT_MASK) {
 513                        prot = 0;
 514                        mem_print(mon, env, &start, &last_prot, end, prot);
 515                        continue;
 516                    }
 517
 518                    if (pde & PG_PSE_MASK) {
 519                        prot = pde & (PG_USER_MASK | PG_RW_MASK |
 520                                PG_PRESENT_MASK);
 521                        prot &= pml5e & pml4e & pdpe;
 522                        mem_print(mon, env, &start, &last_prot, end, prot);
 523                        continue;
 524                    }
 525
 526                    pt_addr = pde & 0x3fffffffff000ULL;
 527                    for (l4 = 0; l4 < 512; l4++) {
 528                        cpu_physical_memory_read(pt_addr + l4 * 8, &pte, 8);
 529                        pte = le64_to_cpu(pte);
 530                        end = (l0 << 48) + (l1 << 39) + (l2 << 30) +
 531                            (l3 << 21) + (l4 << 12);
 532                        if (pte & PG_PRESENT_MASK) {
 533                            prot = pte & (PG_USER_MASK | PG_RW_MASK |
 534                                    PG_PRESENT_MASK);
 535                            prot &= pml5e & pml4e & pdpe & pde;
 536                        } else {
 537                            prot = 0;
 538                        }
 539                        mem_print(mon, env, &start, &last_prot, end, prot);
 540                    }
 541                }
 542            }
 543        }
 544    }
 545    /* Flush last range */
 546    mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 57, 0);
 547}
 548#endif /* TARGET_X86_64 */
 549
 550void hmp_info_mem(Monitor *mon, const QDict *qdict)
 551{
 552    CPUArchState *env;
 553
 554    env = mon_get_cpu_env();
 555    if (!env) {
 556        monitor_printf(mon, "No CPU available\n");
 557        return;
 558    }
 559
 560    if (!(env->cr[0] & CR0_PG_MASK)) {
 561        monitor_printf(mon, "PG disabled\n");
 562        return;
 563    }
 564    if (env->cr[4] & CR4_PAE_MASK) {
 565#ifdef TARGET_X86_64
 566        if (env->hflags & HF_LMA_MASK) {
 567            if (env->cr[4] & CR4_LA57_MASK) {
 568                mem_info_la57(mon, env);
 569            } else {
 570                mem_info_la48(mon, env);
 571            }
 572        } else
 573#endif
 574        {
 575            mem_info_pae32(mon, env);
 576        }
 577    } else {
 578        mem_info_32(mon, env);
 579    }
 580}
 581
 582void hmp_mce(Monitor *mon, const QDict *qdict)
 583{
 584    X86CPU *cpu;
 585    CPUState *cs;
 586    int cpu_index = qdict_get_int(qdict, "cpu_index");
 587    int bank = qdict_get_int(qdict, "bank");
 588    uint64_t status = qdict_get_int(qdict, "status");
 589    uint64_t mcg_status = qdict_get_int(qdict, "mcg_status");
 590    uint64_t addr = qdict_get_int(qdict, "addr");
 591    uint64_t misc = qdict_get_int(qdict, "misc");
 592    int flags = MCE_INJECT_UNCOND_AO;
 593
 594    if (qdict_get_try_bool(qdict, "broadcast", false)) {
 595        flags |= MCE_INJECT_BROADCAST;
 596    }
 597    cs = qemu_get_cpu(cpu_index);
 598    if (cs != NULL) {
 599        cpu = X86_CPU(cs);
 600        cpu_x86_inject_mce(mon, cpu, bank, status, mcg_status, addr, misc,
 601                           flags);
 602    }
 603}
 604
 605static target_long monitor_get_pc(const struct MonitorDef *md, int val)
 606{
 607    CPUArchState *env = mon_get_cpu_env();
 608    return env->eip + env->segs[R_CS].base;
 609}
 610
 611const MonitorDef monitor_defs[] = {
 612#define SEG(name, seg) \
 613    { name, offsetof(CPUX86State, segs[seg].selector), NULL, MD_I32 },\
 614    { name ".base", offsetof(CPUX86State, segs[seg].base) },\
 615    { name ".limit", offsetof(CPUX86State, segs[seg].limit), NULL, MD_I32 },
 616
 617    { "eax", offsetof(CPUX86State, regs[0]) },
 618    { "ecx", offsetof(CPUX86State, regs[1]) },
 619    { "edx", offsetof(CPUX86State, regs[2]) },
 620    { "ebx", offsetof(CPUX86State, regs[3]) },
 621    { "esp|sp", offsetof(CPUX86State, regs[4]) },
 622    { "ebp|fp", offsetof(CPUX86State, regs[5]) },
 623    { "esi", offsetof(CPUX86State, regs[6]) },
 624    { "edi", offsetof(CPUX86State, regs[7]) },
 625#ifdef TARGET_X86_64
 626    { "r8", offsetof(CPUX86State, regs[8]) },
 627    { "r9", offsetof(CPUX86State, regs[9]) },
 628    { "r10", offsetof(CPUX86State, regs[10]) },
 629    { "r11", offsetof(CPUX86State, regs[11]) },
 630    { "r12", offsetof(CPUX86State, regs[12]) },
 631    { "r13", offsetof(CPUX86State, regs[13]) },
 632    { "r14", offsetof(CPUX86State, regs[14]) },
 633    { "r15", offsetof(CPUX86State, regs[15]) },
 634#endif
 635    { "eflags", offsetof(CPUX86State, eflags) },
 636    { "eip", offsetof(CPUX86State, eip) },
 637    SEG("cs", R_CS)
 638    SEG("ds", R_DS)
 639    SEG("es", R_ES)
 640    SEG("ss", R_SS)
 641    SEG("fs", R_FS)
 642    SEG("gs", R_GS)
 643    { "pc", 0, monitor_get_pc, },
 644    { NULL },
 645};
 646
 647const MonitorDef *target_monitor_defs(void)
 648{
 649    return monitor_defs;
 650}
 651
 652void hmp_info_local_apic(Monitor *mon, const QDict *qdict)
 653{
 654    CPUState *cs;
 655
 656    if (qdict_haskey(qdict, "apic-id")) {
 657        int id = qdict_get_try_int(qdict, "apic-id", 0);
 658        cs = cpu_by_arch_id(id);
 659    } else {
 660        cs = mon_get_cpu();
 661    }
 662
 663
 664    if (!cs) {
 665        monitor_printf(mon, "No CPU available\n");
 666        return;
 667    }
 668    x86_cpu_dump_local_apic_state(cs, CPU_DUMP_FPU);
 669}
 670
 671void hmp_info_io_apic(Monitor *mon, const QDict *qdict)
 672{
 673    monitor_printf(mon, "This command is obsolete and will be "
 674                   "removed soon. Please use 'info pic' instead.\n");
 675}
 676
 677SevInfo *qmp_query_sev(Error **errp)
 678{
 679    SevInfo *info;
 680
 681    info = sev_get_info();
 682    if (!info) {
 683        error_setg(errp, "SEV feature is not available");
 684        return NULL;
 685    }
 686
 687    return info;
 688}
 689
 690void hmp_info_sev(Monitor *mon, const QDict *qdict)
 691{
 692    SevInfo *info = sev_get_info();
 693
 694    if (info && info->enabled) {
 695        monitor_printf(mon, "handle: %d\n", info->handle);
 696        monitor_printf(mon, "state: %s\n", SevState_str(info->state));
 697        monitor_printf(mon, "build: %d\n", info->build_id);
 698        monitor_printf(mon, "api version: %d.%d\n",
 699                       info->api_major, info->api_minor);
 700        monitor_printf(mon, "debug: %s\n",
 701                       info->policy & SEV_POLICY_NODBG ? "off" : "on");
 702        monitor_printf(mon, "key-sharing: %s\n",
 703                       info->policy & SEV_POLICY_NOKS ? "off" : "on");
 704    } else {
 705        monitor_printf(mon, "SEV is not enabled\n");
 706    }
 707
 708    qapi_free_SevInfo(info);
 709}
 710
 711SevLaunchMeasureInfo *qmp_query_sev_launch_measure(Error **errp)
 712{
 713    char *data;
 714    SevLaunchMeasureInfo *info;
 715
 716    data = sev_get_launch_measurement();
 717    if (!data) {
 718        error_setg(errp, "Measurement is not available");
 719        return NULL;
 720    }
 721
 722    info = g_malloc0(sizeof(*info));
 723    info->data = data;
 724
 725    return info;
 726}
 727
 728SevCapability *qmp_query_sev_capabilities(Error **errp)
 729{
 730    SevCapability *data;
 731
 732    data = sev_get_capabilities();
 733    if (!data) {
 734        error_setg(errp, "SEV feature is not available");
 735        return NULL;
 736    }
 737
 738    return data;
 739}
 740