qemu/target/mips/helper.c
<<
>>
Prefs
   1/*
   2 *  MIPS emulation helpers for qemu.
   3 *
   4 *  Copyright (c) 2004-2005 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20
  21#include "cpu.h"
  22#include "internal.h"
  23#include "exec/exec-all.h"
  24#include "exec/cpu_ldst.h"
  25#include "exec/log.h"
  26#include "hw/mips/cpudevs.h"
  27#include "qapi/qapi-commands-machine-target.h"
  28
  29enum {
  30    TLBRET_XI = -6,
  31    TLBRET_RI = -5,
  32    TLBRET_DIRTY = -4,
  33    TLBRET_INVALID = -3,
  34    TLBRET_NOMATCH = -2,
  35    TLBRET_BADADDR = -1,
  36    TLBRET_MATCH = 0
  37};
  38
  39#if !defined(CONFIG_USER_ONLY)
  40
  41/* no MMU emulation */
  42int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
  43                       target_ulong address, int rw, int access_type)
  44{
  45    *physical = address;
  46    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
  47    return TLBRET_MATCH;
  48}
  49
  50/* fixed mapping MMU emulation */
  51int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
  52                          target_ulong address, int rw, int access_type)
  53{
  54    if (address <= (int32_t)0x7FFFFFFFUL) {
  55        if (!(env->CP0_Status & (1 << CP0St_ERL))) {
  56            *physical = address + 0x40000000UL;
  57        } else {
  58            *physical = address;
  59        }
  60    } else if (address <= (int32_t)0xBFFFFFFFUL) {
  61        *physical = address & 0x1FFFFFFF;
  62    } else {
  63        *physical = address;
  64    }
  65
  66    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
  67    return TLBRET_MATCH;
  68}
  69
  70/* MIPS32/MIPS64 R4000-style MMU emulation */
  71int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
  72                    target_ulong address, int rw, int access_type)
  73{
  74    uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
  75    int i;
  76
  77    for (i = 0; i < env->tlb->tlb_in_use; i++) {
  78        r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
  79        /* 1k pages are not supported. */
  80        target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
  81        target_ulong tag = address & ~mask;
  82        target_ulong VPN = tlb->VPN & ~mask;
  83#if defined(TARGET_MIPS64)
  84        tag &= env->SEGMask;
  85#endif
  86
  87        /* Check ASID, virtual page number & size */
  88        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
  89            /* TLB match */
  90            int n = !!(address & mask & ~(mask >> 1));
  91            /* Check access rights */
  92            if (!(n ? tlb->V1 : tlb->V0)) {
  93                return TLBRET_INVALID;
  94            }
  95            if (rw == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
  96                return TLBRET_XI;
  97            }
  98            if (rw == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
  99                return TLBRET_RI;
 100            }
 101            if (rw != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
 102                *physical = tlb->PFN[n] | (address & (mask >> 1));
 103                *prot = PAGE_READ;
 104                if (n ? tlb->D1 : tlb->D0) {
 105                    *prot |= PAGE_WRITE;
 106                }
 107                if (!(n ? tlb->XI1 : tlb->XI0)) {
 108                    *prot |= PAGE_EXEC;
 109                }
 110                return TLBRET_MATCH;
 111            }
 112            return TLBRET_DIRTY;
 113        }
 114    }
 115    return TLBRET_NOMATCH;
 116}
 117
 118static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx)
 119{
 120    /*
 121     * Interpret access control mode and mmu_idx.
 122     *           AdE?     TLB?
 123     *      AM  K S U E  K S U E
 124     * UK    0  0 1 1 0  0 - - 0
 125     * MK    1  0 1 1 0  1 - - !eu
 126     * MSK   2  0 0 1 0  1 1 - !eu
 127     * MUSK  3  0 0 0 0  1 1 1 !eu
 128     * MUSUK 4  0 0 0 0  0 1 1 0
 129     * USK   5  0 0 1 0  0 0 - 0
 130     * -     6  - - - -  - - - -
 131     * UUSK  7  0 0 0 0  0 0 0 0
 132     */
 133    int32_t adetlb_mask;
 134
 135    switch (mmu_idx) {
 136    case 3: /* ERL */
 137        /* If EU is set, always unmapped */
 138        if (eu) {
 139            return 0;
 140        }
 141        /* fall through */
 142    case MIPS_HFLAG_KM:
 143        /* Never AdE, TLB mapped if AM={1,2,3} */
 144        adetlb_mask = 0x70000000;
 145        goto check_tlb;
 146
 147    case MIPS_HFLAG_SM:
 148        /* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */
 149        adetlb_mask = 0xc0380000;
 150        goto check_ade;
 151
 152    case MIPS_HFLAG_UM:
 153        /* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */
 154        adetlb_mask = 0xe4180000;
 155        /* fall through */
 156    check_ade:
 157        /* does this AM cause AdE in current execution mode */
 158        if ((adetlb_mask << am) < 0) {
 159            return TLBRET_BADADDR;
 160        }
 161        adetlb_mask <<= 8;
 162        /* fall through */
 163    check_tlb:
 164        /* is this AM mapped in current execution mode */
 165        return ((adetlb_mask << am) < 0);
 166    default:
 167        assert(0);
 168        return TLBRET_BADADDR;
 169    };
 170}
 171
 172static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical,
 173                                    int *prot, target_ulong real_address,
 174                                    int rw, int access_type, int mmu_idx,
 175                                    unsigned int am, bool eu,
 176                                    target_ulong segmask,
 177                                    hwaddr physical_base)
 178{
 179    int mapped = is_seg_am_mapped(am, eu, mmu_idx);
 180
 181    if (mapped < 0) {
 182        /* is_seg_am_mapped can report TLBRET_BADADDR */
 183        return mapped;
 184    } else if (mapped) {
 185        /* The segment is TLB mapped */
 186        return env->tlb->map_address(env, physical, prot, real_address, rw,
 187                                     access_type);
 188    } else {
 189        /* The segment is unmapped */
 190        *physical = physical_base | (real_address & segmask);
 191        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 192        return TLBRET_MATCH;
 193    }
 194}
 195
 196static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical,
 197                                       int *prot, target_ulong real_address,
 198                                       int rw, int access_type, int mmu_idx,
 199                                       uint16_t segctl, target_ulong segmask)
 200{
 201    unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM;
 202    bool eu = (segctl >> CP0SC_EU) & 1;
 203    hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20;
 204
 205    return get_seg_physical_address(env, physical, prot, real_address, rw,
 206                                    access_type, mmu_idx, am, eu, segmask,
 207                                    pa & ~(hwaddr)segmask);
 208}
 209
 210static int get_physical_address(CPUMIPSState *env, hwaddr *physical,
 211                                int *prot, target_ulong real_address,
 212                                int rw, int access_type, int mmu_idx)
 213{
 214    /* User mode can only access useg/xuseg */
 215#if defined(TARGET_MIPS64)
 216    int user_mode = mmu_idx == MIPS_HFLAG_UM;
 217    int supervisor_mode = mmu_idx == MIPS_HFLAG_SM;
 218    int kernel_mode = !user_mode && !supervisor_mode;
 219    int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
 220    int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0;
 221    int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
 222#endif
 223    int ret = TLBRET_MATCH;
 224    /* effective address (modified for KVM T&E kernel segments) */
 225    target_ulong address = real_address;
 226
 227#define USEG_LIMIT      ((target_ulong)(int32_t)0x7FFFFFFFUL)
 228#define KSEG0_BASE      ((target_ulong)(int32_t)0x80000000UL)
 229#define KSEG1_BASE      ((target_ulong)(int32_t)0xA0000000UL)
 230#define KSEG2_BASE      ((target_ulong)(int32_t)0xC0000000UL)
 231#define KSEG3_BASE      ((target_ulong)(int32_t)0xE0000000UL)
 232
 233#define KVM_KSEG0_BASE  ((target_ulong)(int32_t)0x40000000UL)
 234#define KVM_KSEG2_BASE  ((target_ulong)(int32_t)0x60000000UL)
 235
 236    if (mips_um_ksegs_enabled()) {
 237        /* KVM T&E adds guest kernel segments in useg */
 238        if (real_address >= KVM_KSEG0_BASE) {
 239            if (real_address < KVM_KSEG2_BASE) {
 240                /* kseg0 */
 241                address += KSEG0_BASE - KVM_KSEG0_BASE;
 242            } else if (real_address <= USEG_LIMIT) {
 243                /* kseg2/3 */
 244                address += KSEG2_BASE - KVM_KSEG2_BASE;
 245            }
 246        }
 247    }
 248
 249    if (address <= USEG_LIMIT) {
 250        /* useg */
 251        uint16_t segctl;
 252
 253        if (address >= 0x40000000UL) {
 254            segctl = env->CP0_SegCtl2;
 255        } else {
 256            segctl = env->CP0_SegCtl2 >> 16;
 257        }
 258        ret = get_segctl_physical_address(env, physical, prot,
 259                                          real_address, rw, access_type,
 260                                          mmu_idx, segctl, 0x3FFFFFFF);
 261#if defined(TARGET_MIPS64)
 262    } else if (address < 0x4000000000000000ULL) {
 263        /* xuseg */
 264        if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) {
 265            ret = env->tlb->map_address(env, physical, prot,
 266                                        real_address, rw, access_type);
 267        } else {
 268            ret = TLBRET_BADADDR;
 269        }
 270    } else if (address < 0x8000000000000000ULL) {
 271        /* xsseg */
 272        if ((supervisor_mode || kernel_mode) &&
 273            SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) {
 274            ret = env->tlb->map_address(env, physical, prot,
 275                                        real_address, rw, access_type);
 276        } else {
 277            ret = TLBRET_BADADDR;
 278        }
 279    } else if (address < 0xC000000000000000ULL) {
 280        /* xkphys */
 281        if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) {
 282            /* KX/SX/UX bit to check for each xkphys EVA access mode */
 283            static const uint8_t am_ksux[8] = {
 284                [CP0SC_AM_UK]    = (1u << CP0St_KX),
 285                [CP0SC_AM_MK]    = (1u << CP0St_KX),
 286                [CP0SC_AM_MSK]   = (1u << CP0St_SX),
 287                [CP0SC_AM_MUSK]  = (1u << CP0St_UX),
 288                [CP0SC_AM_MUSUK] = (1u << CP0St_UX),
 289                [CP0SC_AM_USK]   = (1u << CP0St_SX),
 290                [6]              = (1u << CP0St_KX),
 291                [CP0SC_AM_UUSK]  = (1u << CP0St_UX),
 292            };
 293            unsigned int am = CP0SC_AM_UK;
 294            unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR;
 295
 296            if (xr & (1 << ((address >> 59) & 0x7))) {
 297                am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM;
 298            }
 299            /* Does CP0_Status.KX/SX/UX permit the access mode (am) */
 300            if (env->CP0_Status & am_ksux[am]) {
 301                ret = get_seg_physical_address(env, physical, prot,
 302                                               real_address, rw, access_type,
 303                                               mmu_idx, am, false, env->PAMask,
 304                                               0);
 305            } else {
 306                ret = TLBRET_BADADDR;
 307            }
 308        } else {
 309            ret = TLBRET_BADADDR;
 310        }
 311    } else if (address < 0xFFFFFFFF80000000ULL) {
 312        /* xkseg */
 313        if (kernel_mode && KX &&
 314            address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) {
 315            ret = env->tlb->map_address(env, physical, prot,
 316                                        real_address, rw, access_type);
 317        } else {
 318            ret = TLBRET_BADADDR;
 319        }
 320#endif
 321    } else if (address < KSEG1_BASE) {
 322        /* kseg0 */
 323        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
 324                                          access_type, mmu_idx,
 325                                          env->CP0_SegCtl1 >> 16, 0x1FFFFFFF);
 326    } else if (address < KSEG2_BASE) {
 327        /* kseg1 */
 328        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
 329                                          access_type, mmu_idx,
 330                                          env->CP0_SegCtl1, 0x1FFFFFFF);
 331    } else if (address < KSEG3_BASE) {
 332        /* sseg (kseg2) */
 333        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
 334                                          access_type, mmu_idx,
 335                                          env->CP0_SegCtl0 >> 16, 0x1FFFFFFF);
 336    } else {
 337        /*
 338         * kseg3
 339         * XXX: debug segment is not emulated
 340         */
 341        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
 342                                          access_type, mmu_idx,
 343                                          env->CP0_SegCtl0, 0x1FFFFFFF);
 344    }
 345    return ret;
 346}
 347
 348void cpu_mips_tlb_flush(CPUMIPSState *env)
 349{
 350    /* Flush qemu's TLB and discard all shadowed entries.  */
 351    tlb_flush(env_cpu(env));
 352    env->tlb->tlb_in_use = env->tlb->nb_tlb;
 353}
 354
 355/* Called for updates to CP0_Status.  */
 356void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
 357{
 358    int32_t tcstatus, *tcst;
 359    uint32_t v = cpu->CP0_Status;
 360    uint32_t cu, mx, asid, ksu;
 361    uint32_t mask = ((1 << CP0TCSt_TCU3)
 362                       | (1 << CP0TCSt_TCU2)
 363                       | (1 << CP0TCSt_TCU1)
 364                       | (1 << CP0TCSt_TCU0)
 365                       | (1 << CP0TCSt_TMX)
 366                       | (3 << CP0TCSt_TKSU)
 367                       | (0xff << CP0TCSt_TASID));
 368
 369    cu = (v >> CP0St_CU0) & 0xf;
 370    mx = (v >> CP0St_MX) & 0x1;
 371    ksu = (v >> CP0St_KSU) & 0x3;
 372    asid = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
 373
 374    tcstatus = cu << CP0TCSt_TCU0;
 375    tcstatus |= mx << CP0TCSt_TMX;
 376    tcstatus |= ksu << CP0TCSt_TKSU;
 377    tcstatus |= asid;
 378
 379    if (tc == cpu->current_tc) {
 380        tcst = &cpu->active_tc.CP0_TCStatus;
 381    } else {
 382        tcst = &cpu->tcs[tc].CP0_TCStatus;
 383    }
 384
 385    *tcst &= ~mask;
 386    *tcst |= tcstatus;
 387    compute_hflags(cpu);
 388}
 389
 390void cpu_mips_store_status(CPUMIPSState *env, target_ulong val)
 391{
 392    uint32_t mask = env->CP0_Status_rw_bitmask;
 393    target_ulong old = env->CP0_Status;
 394
 395    if (env->insn_flags & ISA_MIPS32R6) {
 396        bool has_supervisor = extract32(mask, CP0St_KSU, 2) == 0x3;
 397#if defined(TARGET_MIPS64)
 398        uint32_t ksux = (1 << CP0St_KX) & val;
 399        ksux |= (ksux >> 1) & val; /* KX = 0 forces SX to be 0 */
 400        ksux |= (ksux >> 1) & val; /* SX = 0 forces UX to be 0 */
 401        val = (val & ~(7 << CP0St_UX)) | ksux;
 402#endif
 403        if (has_supervisor && extract32(val, CP0St_KSU, 2) == 0x3) {
 404            mask &= ~(3 << CP0St_KSU);
 405        }
 406        mask &= ~(((1 << CP0St_SR) | (1 << CP0St_NMI)) & val);
 407    }
 408
 409    env->CP0_Status = (old & ~mask) | (val & mask);
 410#if defined(TARGET_MIPS64)
 411    if ((env->CP0_Status ^ old) & (old & (7 << CP0St_UX))) {
 412        /* Access to at least one of the 64-bit segments has been disabled */
 413        tlb_flush(env_cpu(env));
 414    }
 415#endif
 416    if (env->CP0_Config3 & (1 << CP0C3_MT)) {
 417        sync_c0_status(env, env, env->current_tc);
 418    } else {
 419        compute_hflags(env);
 420    }
 421}
 422
 423void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val)
 424{
 425    uint32_t mask = 0x00C00300;
 426    uint32_t old = env->CP0_Cause;
 427    int i;
 428
 429    if (env->insn_flags & ISA_MIPS32R2) {
 430        mask |= 1 << CP0Ca_DC;
 431    }
 432    if (env->insn_flags & ISA_MIPS32R6) {
 433        mask &= ~((1 << CP0Ca_WP) & val);
 434    }
 435
 436    env->CP0_Cause = (env->CP0_Cause & ~mask) | (val & mask);
 437
 438    if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
 439        if (env->CP0_Cause & (1 << CP0Ca_DC)) {
 440            cpu_mips_stop_count(env);
 441        } else {
 442            cpu_mips_start_count(env);
 443        }
 444    }
 445
 446    /* Set/reset software interrupts */
 447    for (i = 0 ; i < 2 ; i++) {
 448        if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
 449            cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
 450        }
 451    }
 452}
 453#endif
 454
 455static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
 456                                int rw, int tlb_error)
 457{
 458    CPUState *cs = env_cpu(env);
 459    int exception = 0, error_code = 0;
 460
 461    if (rw == MMU_INST_FETCH) {
 462        error_code |= EXCP_INST_NOTAVAIL;
 463    }
 464
 465    switch (tlb_error) {
 466    default:
 467    case TLBRET_BADADDR:
 468        /* Reference to kernel address from user mode or supervisor mode */
 469        /* Reference to supervisor address from user mode */
 470        if (rw == MMU_DATA_STORE) {
 471            exception = EXCP_AdES;
 472        } else {
 473            exception = EXCP_AdEL;
 474        }
 475        break;
 476    case TLBRET_NOMATCH:
 477        /* No TLB match for a mapped address */
 478        if (rw == MMU_DATA_STORE) {
 479            exception = EXCP_TLBS;
 480        } else {
 481            exception = EXCP_TLBL;
 482        }
 483        error_code |= EXCP_TLB_NOMATCH;
 484        break;
 485    case TLBRET_INVALID:
 486        /* TLB match with no valid bit */
 487        if (rw == MMU_DATA_STORE) {
 488            exception = EXCP_TLBS;
 489        } else {
 490            exception = EXCP_TLBL;
 491        }
 492        break;
 493    case TLBRET_DIRTY:
 494        /* TLB match but 'D' bit is cleared */
 495        exception = EXCP_LTLBL;
 496        break;
 497    case TLBRET_XI:
 498        /* Execute-Inhibit Exception */
 499        if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
 500            exception = EXCP_TLBXI;
 501        } else {
 502            exception = EXCP_TLBL;
 503        }
 504        break;
 505    case TLBRET_RI:
 506        /* Read-Inhibit Exception */
 507        if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
 508            exception = EXCP_TLBRI;
 509        } else {
 510            exception = EXCP_TLBL;
 511        }
 512        break;
 513    }
 514    /* Raise exception */
 515    if (!(env->hflags & MIPS_HFLAG_DM)) {
 516        env->CP0_BadVAddr = address;
 517    }
 518    env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
 519                       ((address >> 9) & 0x007ffff0);
 520    env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
 521                       (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
 522                       (address & (TARGET_PAGE_MASK << 1));
 523#if defined(TARGET_MIPS64)
 524    env->CP0_EntryHi &= env->SEGMask;
 525    env->CP0_XContext =
 526        (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
 527        (extract64(address, 62, 2) << (env->SEGBITS - 9)) |     /* R       */
 528        (extract64(address, 13, env->SEGBITS - 13) << 4);       /* BadVPN2 */
 529#endif
 530    cs->exception_index = exception;
 531    env->error_code = error_code;
 532}
 533
 534#if !defined(CONFIG_USER_ONLY)
 535hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 536{
 537    MIPSCPU *cpu = MIPS_CPU(cs);
 538    CPUMIPSState *env = &cpu->env;
 539    hwaddr phys_addr;
 540    int prot;
 541
 542    if (get_physical_address(env, &phys_addr, &prot, addr, 0, ACCESS_INT,
 543                             cpu_mmu_index(env, false)) != 0) {
 544        return -1;
 545    }
 546    return phys_addr;
 547}
 548#endif
 549
 550#if !defined(CONFIG_USER_ONLY)
 551#if !defined(TARGET_MIPS64)
 552
 553/*
 554 * Perform hardware page table walk
 555 *
 556 * Memory accesses are performed using the KERNEL privilege level.
 557 * Synchronous exceptions detected on memory accesses cause a silent exit
 558 * from page table walking, resulting in a TLB or XTLB Refill exception.
 559 *
 560 * Implementations are not required to support page table walk memory
 561 * accesses from mapped memory regions. When an unsupported access is
 562 * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
 563 * exception.
 564 *
 565 * Note that if an exception is caused by AddressTranslation or LoadMemory
 566 * functions, the exception is not taken, a silent exit is taken,
 567 * resulting in a TLB or XTLB Refill exception.
 568 */
 569
 570static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
 571        uint64_t *pte)
 572{
 573    if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
 574        return false;
 575    }
 576    if (entry_size == 64) {
 577        *pte = cpu_ldq_code(env, vaddr);
 578    } else {
 579        *pte = cpu_ldl_code(env, vaddr);
 580    }
 581    return true;
 582}
 583
 584static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
 585        int entry_size, int ptei)
 586{
 587    uint64_t result = entry;
 588    uint64_t rixi;
 589    if (ptei > entry_size) {
 590        ptei -= 32;
 591    }
 592    result >>= (ptei - 2);
 593    rixi = result & 3;
 594    result >>= 2;
 595    result |= rixi << CP0EnLo_XI;
 596    return result;
 597}
 598
 599static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
 600        int directory_index, bool *huge_page, bool *hgpg_directory_hit,
 601        uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
 602{
 603    int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
 604    int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
 605    int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
 606    int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
 607    int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
 608    int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
 609    int directory_shift = (ptew > 1) ? -1 :
 610            (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
 611    int leaf_shift = (ptew > 1) ? -1 :
 612            (ptew == 1) ? native_shift + 1 : native_shift;
 613    uint32_t direntry_size = 1 << (directory_shift + 3);
 614    uint32_t leafentry_size = 1 << (leaf_shift + 3);
 615    uint64_t entry;
 616    uint64_t paddr;
 617    int prot;
 618    uint64_t lsb = 0;
 619    uint64_t w = 0;
 620
 621    if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
 622                             ACCESS_INT, cpu_mmu_index(env, false)) !=
 623                             TLBRET_MATCH) {
 624        /* wrong base address */
 625        return 0;
 626    }
 627    if (!get_pte(env, *vaddr, direntry_size, &entry)) {
 628        return 0;
 629    }
 630
 631    if ((entry & (1 << psn)) && hugepg) {
 632        *huge_page = true;
 633        *hgpg_directory_hit = true;
 634        entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
 635        w = directory_index - 1;
 636        if (directory_index & 0x1) {
 637            /* Generate adjacent page from same PTE for odd TLB page */
 638            lsb = (1 << w) >> 6;
 639            *pw_entrylo0 = entry & ~lsb; /* even page */
 640            *pw_entrylo1 = entry | lsb; /* odd page */
 641        } else if (dph) {
 642            int oddpagebit = 1 << leaf_shift;
 643            uint64_t vaddr2 = *vaddr ^ oddpagebit;
 644            if (*vaddr & oddpagebit) {
 645                *pw_entrylo1 = entry;
 646            } else {
 647                *pw_entrylo0 = entry;
 648            }
 649            if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
 650                                     ACCESS_INT, cpu_mmu_index(env, false)) !=
 651                                     TLBRET_MATCH) {
 652                return 0;
 653            }
 654            if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
 655                return 0;
 656            }
 657            entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
 658            if (*vaddr & oddpagebit) {
 659                *pw_entrylo0 = entry;
 660            } else {
 661                *pw_entrylo1 = entry;
 662            }
 663        } else {
 664            return 0;
 665        }
 666        return 1;
 667    } else {
 668        *vaddr = entry;
 669        return 2;
 670    }
 671}
 672
 673static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int rw,
 674        int mmu_idx)
 675{
 676    int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
 677    int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
 678    int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
 679    int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
 680    int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
 681
 682    /* Initial values */
 683    bool huge_page = false;
 684    bool hgpg_bdhit = false;
 685    bool hgpg_gdhit = false;
 686    bool hgpg_udhit = false;
 687    bool hgpg_mdhit = false;
 688
 689    int32_t pw_pagemask = 0;
 690    target_ulong pw_entryhi = 0;
 691    uint64_t pw_entrylo0 = 0;
 692    uint64_t pw_entrylo1 = 0;
 693
 694    /* Native pointer size */
 695    /*For the 32-bit architectures, this bit is fixed to 0.*/
 696    int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
 697
 698    /* Indices from PWField */
 699    int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
 700    int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
 701    int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
 702    int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
 703    int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
 704
 705    /* Indices computed from faulting address */
 706    int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
 707    int uindex = (address >> pf_udw) & ((1 << udw) - 1);
 708    int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
 709    int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
 710
 711    /* Other HTW configs */
 712    int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
 713
 714    /* HTW Shift values (depend on entry size) */
 715    int directory_shift = (ptew > 1) ? -1 :
 716            (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
 717    int leaf_shift = (ptew > 1) ? -1 :
 718            (ptew == 1) ? native_shift + 1 : native_shift;
 719
 720    /* Offsets into tables */
 721    int goffset = gindex << directory_shift;
 722    int uoffset = uindex << directory_shift;
 723    int moffset = mindex << directory_shift;
 724    int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
 725    int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
 726
 727    uint32_t leafentry_size = 1 << (leaf_shift + 3);
 728
 729    /* Starting address - Page Table Base */
 730    uint64_t vaddr = env->CP0_PWBase;
 731
 732    uint64_t dir_entry;
 733    uint64_t paddr;
 734    int prot;
 735    int m;
 736
 737    if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
 738        /* walker is unimplemented */
 739        return false;
 740    }
 741    if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
 742        /* walker is disabled */
 743        return false;
 744    }
 745    if (!(gdw > 0 || udw > 0 || mdw > 0)) {
 746        /* no structure to walk */
 747        return false;
 748    }
 749    if ((directory_shift == -1) || (leaf_shift == -1)) {
 750        return false;
 751    }
 752
 753    /* Global Directory */
 754    if (gdw > 0) {
 755        vaddr |= goffset;
 756        switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
 757                               &pw_entrylo0, &pw_entrylo1))
 758        {
 759        case 0:
 760            return false;
 761        case 1:
 762            goto refill;
 763        case 2:
 764        default:
 765            break;
 766        }
 767    }
 768
 769    /* Upper directory */
 770    if (udw > 0) {
 771        vaddr |= uoffset;
 772        switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
 773                               &pw_entrylo0, &pw_entrylo1))
 774        {
 775        case 0:
 776            return false;
 777        case 1:
 778            goto refill;
 779        case 2:
 780        default:
 781            break;
 782        }
 783    }
 784
 785    /* Middle directory */
 786    if (mdw > 0) {
 787        vaddr |= moffset;
 788        switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
 789                               &pw_entrylo0, &pw_entrylo1))
 790        {
 791        case 0:
 792            return false;
 793        case 1:
 794            goto refill;
 795        case 2:
 796        default:
 797            break;
 798        }
 799    }
 800
 801    /* Leaf Level Page Table - First half of PTE pair */
 802    vaddr |= ptoffset0;
 803    if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
 804                             ACCESS_INT, cpu_mmu_index(env, false)) !=
 805                             TLBRET_MATCH) {
 806        return false;
 807    }
 808    if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
 809        return false;
 810    }
 811    dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
 812    pw_entrylo0 = dir_entry;
 813
 814    /* Leaf Level Page Table - Second half of PTE pair */
 815    vaddr |= ptoffset1;
 816    if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
 817                             ACCESS_INT, cpu_mmu_index(env, false)) !=
 818                             TLBRET_MATCH) {
 819        return false;
 820    }
 821    if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
 822        return false;
 823    }
 824    dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
 825    pw_entrylo1 = dir_entry;
 826
 827refill:
 828
 829    m = (1 << pf_ptw) - 1;
 830
 831    if (huge_page) {
 832        switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
 833                hgpg_mdhit)
 834        {
 835        case 4:
 836            m = (1 << pf_gdw) - 1;
 837            if (pf_gdw & 1) {
 838                m >>= 1;
 839            }
 840            break;
 841        case 2:
 842            m = (1 << pf_udw) - 1;
 843            if (pf_udw & 1) {
 844                m >>= 1;
 845            }
 846            break;
 847        case 1:
 848            m = (1 << pf_mdw) - 1;
 849            if (pf_mdw & 1) {
 850                m >>= 1;
 851            }
 852            break;
 853        }
 854    }
 855    pw_pagemask = m >> 12;
 856    update_pagemask(env, pw_pagemask << 13, &pw_pagemask);
 857    pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
 858    {
 859        target_ulong tmp_entryhi = env->CP0_EntryHi;
 860        int32_t tmp_pagemask = env->CP0_PageMask;
 861        uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
 862        uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
 863
 864        env->CP0_EntryHi = pw_entryhi;
 865        env->CP0_PageMask = pw_pagemask;
 866        env->CP0_EntryLo0 = pw_entrylo0;
 867        env->CP0_EntryLo1 = pw_entrylo1;
 868
 869        /*
 870         * The hardware page walker inserts a page into the TLB in a manner
 871         * identical to a TLBWR instruction as executed by the software refill
 872         * handler.
 873         */
 874        r4k_helper_tlbwr(env);
 875
 876        env->CP0_EntryHi = tmp_entryhi;
 877        env->CP0_PageMask = tmp_pagemask;
 878        env->CP0_EntryLo0 = tmp_entrylo0;
 879        env->CP0_EntryLo1 = tmp_entrylo1;
 880    }
 881    return true;
 882}
 883#endif
 884#endif
 885
 886bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 887                       MMUAccessType access_type, int mmu_idx,
 888                       bool probe, uintptr_t retaddr)
 889{
 890    MIPSCPU *cpu = MIPS_CPU(cs);
 891    CPUMIPSState *env = &cpu->env;
 892#if !defined(CONFIG_USER_ONLY)
 893    hwaddr physical;
 894    int prot;
 895    int mips_access_type;
 896#endif
 897    int ret = TLBRET_BADADDR;
 898
 899    /* data access */
 900#if !defined(CONFIG_USER_ONLY)
 901    /* XXX: put correct access by using cpu_restore_state() correctly */
 902    mips_access_type = ACCESS_INT;
 903    ret = get_physical_address(env, &physical, &prot, address,
 904                               access_type, mips_access_type, mmu_idx);
 905    switch (ret) {
 906    case TLBRET_MATCH:
 907        qemu_log_mask(CPU_LOG_MMU,
 908                      "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
 909                      " prot %d\n", __func__, address, physical, prot);
 910        break;
 911    default:
 912        qemu_log_mask(CPU_LOG_MMU,
 913                      "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
 914                      ret);
 915        break;
 916    }
 917    if (ret == TLBRET_MATCH) {
 918        tlb_set_page(cs, address & TARGET_PAGE_MASK,
 919                     physical & TARGET_PAGE_MASK, prot,
 920                     mmu_idx, TARGET_PAGE_SIZE);
 921        return true;
 922    }
 923#if !defined(TARGET_MIPS64)
 924    if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
 925        /*
 926         * Memory reads during hardware page table walking are performed
 927         * as if they were kernel-mode load instructions.
 928         */
 929        int mode = (env->hflags & MIPS_HFLAG_KSU);
 930        bool ret_walker;
 931        env->hflags &= ~MIPS_HFLAG_KSU;
 932        ret_walker = page_table_walk_refill(env, address, access_type, mmu_idx);
 933        env->hflags |= mode;
 934        if (ret_walker) {
 935            ret = get_physical_address(env, &physical, &prot, address,
 936                                       access_type, mips_access_type, mmu_idx);
 937            if (ret == TLBRET_MATCH) {
 938                tlb_set_page(cs, address & TARGET_PAGE_MASK,
 939                             physical & TARGET_PAGE_MASK, prot,
 940                             mmu_idx, TARGET_PAGE_SIZE);
 941                return true;
 942            }
 943        }
 944    }
 945#endif
 946    if (probe) {
 947        return false;
 948    }
 949#endif
 950
 951    raise_mmu_exception(env, address, access_type, ret);
 952    do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
 953}
 954
 955#ifndef CONFIG_USER_ONLY
 956hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
 957                                  int rw)
 958{
 959    hwaddr physical;
 960    int prot;
 961    int access_type;
 962    int ret = 0;
 963
 964    /* data access */
 965    access_type = ACCESS_INT;
 966    ret = get_physical_address(env, &physical, &prot, address, rw, access_type,
 967                               cpu_mmu_index(env, false));
 968    if (ret != TLBRET_MATCH) {
 969        raise_mmu_exception(env, address, rw, ret);
 970        return -1LL;
 971    } else {
 972        return physical;
 973    }
 974}
 975
 976static const char * const excp_names[EXCP_LAST + 1] = {
 977    [EXCP_RESET] = "reset",
 978    [EXCP_SRESET] = "soft reset",
 979    [EXCP_DSS] = "debug single step",
 980    [EXCP_DINT] = "debug interrupt",
 981    [EXCP_NMI] = "non-maskable interrupt",
 982    [EXCP_MCHECK] = "machine check",
 983    [EXCP_EXT_INTERRUPT] = "interrupt",
 984    [EXCP_DFWATCH] = "deferred watchpoint",
 985    [EXCP_DIB] = "debug instruction breakpoint",
 986    [EXCP_IWATCH] = "instruction fetch watchpoint",
 987    [EXCP_AdEL] = "address error load",
 988    [EXCP_AdES] = "address error store",
 989    [EXCP_TLBF] = "TLB refill",
 990    [EXCP_IBE] = "instruction bus error",
 991    [EXCP_DBp] = "debug breakpoint",
 992    [EXCP_SYSCALL] = "syscall",
 993    [EXCP_BREAK] = "break",
 994    [EXCP_CpU] = "coprocessor unusable",
 995    [EXCP_RI] = "reserved instruction",
 996    [EXCP_OVERFLOW] = "arithmetic overflow",
 997    [EXCP_TRAP] = "trap",
 998    [EXCP_FPE] = "floating point",
 999    [EXCP_DDBS] = "debug data break store",
1000    [EXCP_DWATCH] = "data watchpoint",
1001    [EXCP_LTLBL] = "TLB modify",
1002    [EXCP_TLBL] = "TLB load",
1003    [EXCP_TLBS] = "TLB store",
1004    [EXCP_DBE] = "data bus error",
1005    [EXCP_DDBL] = "debug data break load",
1006    [EXCP_THREAD] = "thread",
1007    [EXCP_MDMX] = "MDMX",
1008    [EXCP_C2E] = "precise coprocessor 2",
1009    [EXCP_CACHE] = "cache error",
1010    [EXCP_TLBXI] = "TLB execute-inhibit",
1011    [EXCP_TLBRI] = "TLB read-inhibit",
1012    [EXCP_MSADIS] = "MSA disabled",
1013    [EXCP_MSAFPE] = "MSA floating point",
1014};
1015#endif
1016
1017target_ulong exception_resume_pc(CPUMIPSState *env)
1018{
1019    target_ulong bad_pc;
1020    target_ulong isa_mode;
1021
1022    isa_mode = !!(env->hflags & MIPS_HFLAG_M16);
1023    bad_pc = env->active_tc.PC | isa_mode;
1024    if (env->hflags & MIPS_HFLAG_BMASK) {
1025        /*
1026         * If the exception was raised from a delay slot, come back to
1027         * the jump.
1028         */
1029        bad_pc -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1030    }
1031
1032    return bad_pc;
1033}
1034
1035#if !defined(CONFIG_USER_ONLY)
1036static void set_hflags_for_handler(CPUMIPSState *env)
1037{
1038    /* Exception handlers are entered in 32-bit mode.  */
1039    env->hflags &= ~(MIPS_HFLAG_M16);
1040    /* ...except that microMIPS lets you choose.  */
1041    if (env->insn_flags & ASE_MICROMIPS) {
1042        env->hflags |= (!!(env->CP0_Config3 &
1043                           (1 << CP0C3_ISA_ON_EXC))
1044                        << MIPS_HFLAG_M16_SHIFT);
1045    }
1046}
1047
1048static inline void set_badinstr_registers(CPUMIPSState *env)
1049{
1050    if (env->insn_flags & ISA_NANOMIPS32) {
1051        if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1052            uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1053            if ((instr & 0x10000000) == 0) {
1054                instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1055            }
1056            env->CP0_BadInstr = instr;
1057
1058            if ((instr & 0xFC000000) == 0x60000000) {
1059                instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1060                env->CP0_BadInstrX = instr;
1061            }
1062        }
1063        return;
1064    }
1065
1066    if (env->hflags & MIPS_HFLAG_M16) {
1067        /* TODO: add BadInstr support for microMIPS */
1068        return;
1069    }
1070    if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1071        env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1072    }
1073    if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1074        (env->hflags & MIPS_HFLAG_BMASK)) {
1075        env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1076    }
1077}
1078#endif
1079
1080void mips_cpu_do_interrupt(CPUState *cs)
1081{
1082#if !defined(CONFIG_USER_ONLY)
1083    MIPSCPU *cpu = MIPS_CPU(cs);
1084    CPUMIPSState *env = &cpu->env;
1085    bool update_badinstr = 0;
1086    target_ulong offset;
1087    int cause = -1;
1088    const char *name;
1089
1090    if (qemu_loglevel_mask(CPU_LOG_INT)
1091        && cs->exception_index != EXCP_EXT_INTERRUPT) {
1092        if (cs->exception_index < 0 || cs->exception_index > EXCP_LAST) {
1093            name = "unknown";
1094        } else {
1095            name = excp_names[cs->exception_index];
1096        }
1097
1098        qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1099                 " %s exception\n",
1100                 __func__, env->active_tc.PC, env->CP0_EPC, name);
1101    }
1102    if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1103        (env->hflags & MIPS_HFLAG_DM)) {
1104        cs->exception_index = EXCP_DINT;
1105    }
1106    offset = 0x180;
1107    switch (cs->exception_index) {
1108    case EXCP_DSS:
1109        env->CP0_Debug |= 1 << CP0DB_DSS;
1110        /*
1111         * Debug single step cannot be raised inside a delay slot and
1112         * resume will always occur on the next instruction
1113         * (but we assume the pc has always been updated during
1114         * code translation).
1115         */
1116        env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1117        goto enter_debug_mode;
1118    case EXCP_DINT:
1119        env->CP0_Debug |= 1 << CP0DB_DINT;
1120        goto set_DEPC;
1121    case EXCP_DIB:
1122        env->CP0_Debug |= 1 << CP0DB_DIB;
1123        goto set_DEPC;
1124    case EXCP_DBp:
1125        env->CP0_Debug |= 1 << CP0DB_DBp;
1126        /* Setup DExcCode - SDBBP instruction */
1127        env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
1128                         (9 << CP0DB_DEC);
1129        goto set_DEPC;
1130    case EXCP_DDBS:
1131        env->CP0_Debug |= 1 << CP0DB_DDBS;
1132        goto set_DEPC;
1133    case EXCP_DDBL:
1134        env->CP0_Debug |= 1 << CP0DB_DDBL;
1135    set_DEPC:
1136        env->CP0_DEPC = exception_resume_pc(env);
1137        env->hflags &= ~MIPS_HFLAG_BMASK;
1138 enter_debug_mode:
1139        if (env->insn_flags & ISA_MIPS3) {
1140            env->hflags |= MIPS_HFLAG_64;
1141            if (!(env->insn_flags & ISA_MIPS64R6) ||
1142                env->CP0_Status & (1 << CP0St_KX)) {
1143                env->hflags &= ~MIPS_HFLAG_AWRAP;
1144            }
1145        }
1146        env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1147        env->hflags &= ~(MIPS_HFLAG_KSU);
1148        /* EJTAG probe trap enable is not implemented... */
1149        if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1150            env->CP0_Cause &= ~(1U << CP0Ca_BD);
1151        }
1152        env->active_tc.PC = env->exception_base + 0x480;
1153        set_hflags_for_handler(env);
1154        break;
1155    case EXCP_RESET:
1156        cpu_reset(CPU(cpu));
1157        break;
1158    case EXCP_SRESET:
1159        env->CP0_Status |= (1 << CP0St_SR);
1160        memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1161        goto set_error_EPC;
1162    case EXCP_NMI:
1163        env->CP0_Status |= (1 << CP0St_NMI);
1164 set_error_EPC:
1165        env->CP0_ErrorEPC = exception_resume_pc(env);
1166        env->hflags &= ~MIPS_HFLAG_BMASK;
1167        env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1168        if (env->insn_flags & ISA_MIPS3) {
1169            env->hflags |= MIPS_HFLAG_64;
1170            if (!(env->insn_flags & ISA_MIPS64R6) ||
1171                env->CP0_Status & (1 << CP0St_KX)) {
1172                env->hflags &= ~MIPS_HFLAG_AWRAP;
1173            }
1174        }
1175        env->hflags |= MIPS_HFLAG_CP0;
1176        env->hflags &= ~(MIPS_HFLAG_KSU);
1177        if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1178            env->CP0_Cause &= ~(1U << CP0Ca_BD);
1179        }
1180        env->active_tc.PC = env->exception_base;
1181        set_hflags_for_handler(env);
1182        break;
1183    case EXCP_EXT_INTERRUPT:
1184        cause = 0;
1185        if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1186            uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1187
1188            if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1189                offset = 0x200;
1190            } else {
1191                uint32_t vector = 0;
1192                uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1193
1194                if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1195                    /*
1196                     * For VEIC mode, the external interrupt controller feeds
1197                     * the vector through the CP0Cause IP lines.
1198                     */
1199                    vector = pending;
1200                } else {
1201                    /*
1202                     * Vectored Interrupts
1203                     * Mask with Status.IM7-IM0 to get enabled interrupts.
1204                     */
1205                    pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1206                    /* Find the highest-priority interrupt. */
1207                    while (pending >>= 1) {
1208                        vector++;
1209                    }
1210                }
1211                offset = 0x200 + (vector * (spacing << 5));
1212            }
1213        }
1214        goto set_EPC;
1215    case EXCP_LTLBL:
1216        cause = 1;
1217        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1218        goto set_EPC;
1219    case EXCP_TLBL:
1220        cause = 2;
1221        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1222        if ((env->error_code & EXCP_TLB_NOMATCH) &&
1223            !(env->CP0_Status & (1 << CP0St_EXL))) {
1224#if defined(TARGET_MIPS64)
1225            int R = env->CP0_BadVAddr >> 62;
1226            int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1227            int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1228
1229            if ((R != 0 || UX) && (R != 3 || KX) &&
1230                (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1231                offset = 0x080;
1232            } else {
1233#endif
1234                offset = 0x000;
1235#if defined(TARGET_MIPS64)
1236            }
1237#endif
1238        }
1239        goto set_EPC;
1240    case EXCP_TLBS:
1241        cause = 3;
1242        update_badinstr = 1;
1243        if ((env->error_code & EXCP_TLB_NOMATCH) &&
1244            !(env->CP0_Status & (1 << CP0St_EXL))) {
1245#if defined(TARGET_MIPS64)
1246            int R = env->CP0_BadVAddr >> 62;
1247            int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1248            int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1249
1250            if ((R != 0 || UX) && (R != 3 || KX) &&
1251                (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1252                offset = 0x080;
1253            } else {
1254#endif
1255                offset = 0x000;
1256#if defined(TARGET_MIPS64)
1257            }
1258#endif
1259        }
1260        goto set_EPC;
1261    case EXCP_AdEL:
1262        cause = 4;
1263        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1264        goto set_EPC;
1265    case EXCP_AdES:
1266        cause = 5;
1267        update_badinstr = 1;
1268        goto set_EPC;
1269    case EXCP_IBE:
1270        cause = 6;
1271        goto set_EPC;
1272    case EXCP_DBE:
1273        cause = 7;
1274        goto set_EPC;
1275    case EXCP_SYSCALL:
1276        cause = 8;
1277        update_badinstr = 1;
1278        goto set_EPC;
1279    case EXCP_BREAK:
1280        cause = 9;
1281        update_badinstr = 1;
1282        goto set_EPC;
1283    case EXCP_RI:
1284        cause = 10;
1285        update_badinstr = 1;
1286        goto set_EPC;
1287    case EXCP_CpU:
1288        cause = 11;
1289        update_badinstr = 1;
1290        env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1291                         (env->error_code << CP0Ca_CE);
1292        goto set_EPC;
1293    case EXCP_OVERFLOW:
1294        cause = 12;
1295        update_badinstr = 1;
1296        goto set_EPC;
1297    case EXCP_TRAP:
1298        cause = 13;
1299        update_badinstr = 1;
1300        goto set_EPC;
1301    case EXCP_MSAFPE:
1302        cause = 14;
1303        update_badinstr = 1;
1304        goto set_EPC;
1305    case EXCP_FPE:
1306        cause = 15;
1307        update_badinstr = 1;
1308        goto set_EPC;
1309    case EXCP_C2E:
1310        cause = 18;
1311        goto set_EPC;
1312    case EXCP_TLBRI:
1313        cause = 19;
1314        update_badinstr = 1;
1315        goto set_EPC;
1316    case EXCP_TLBXI:
1317        cause = 20;
1318        goto set_EPC;
1319    case EXCP_MSADIS:
1320        cause = 21;
1321        update_badinstr = 1;
1322        goto set_EPC;
1323    case EXCP_MDMX:
1324        cause = 22;
1325        goto set_EPC;
1326    case EXCP_DWATCH:
1327        cause = 23;
1328        /* XXX: TODO: manage deferred watch exceptions */
1329        goto set_EPC;
1330    case EXCP_MCHECK:
1331        cause = 24;
1332        goto set_EPC;
1333    case EXCP_THREAD:
1334        cause = 25;
1335        goto set_EPC;
1336    case EXCP_DSPDIS:
1337        cause = 26;
1338        goto set_EPC;
1339    case EXCP_CACHE:
1340        cause = 30;
1341        offset = 0x100;
1342 set_EPC:
1343        if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1344            env->CP0_EPC = exception_resume_pc(env);
1345            if (update_badinstr) {
1346                set_badinstr_registers(env);
1347            }
1348            if (env->hflags & MIPS_HFLAG_BMASK) {
1349                env->CP0_Cause |= (1U << CP0Ca_BD);
1350            } else {
1351                env->CP0_Cause &= ~(1U << CP0Ca_BD);
1352            }
1353            env->CP0_Status |= (1 << CP0St_EXL);
1354            if (env->insn_flags & ISA_MIPS3) {
1355                env->hflags |= MIPS_HFLAG_64;
1356                if (!(env->insn_flags & ISA_MIPS64R6) ||
1357                    env->CP0_Status & (1 << CP0St_KX)) {
1358                    env->hflags &= ~MIPS_HFLAG_AWRAP;
1359                }
1360            }
1361            env->hflags |= MIPS_HFLAG_CP0;
1362            env->hflags &= ~(MIPS_HFLAG_KSU);
1363        }
1364        env->hflags &= ~MIPS_HFLAG_BMASK;
1365        if (env->CP0_Status & (1 << CP0St_BEV)) {
1366            env->active_tc.PC = env->exception_base + 0x200;
1367        } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1368                                    env->CP0_Config5 & (1 << CP0C5_CV))) {
1369            /* Force KSeg1 for cache errors */
1370            env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1371        } else {
1372            env->active_tc.PC = env->CP0_EBase & ~0xfff;
1373        }
1374
1375        env->active_tc.PC += offset;
1376        set_hflags_for_handler(env);
1377        env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
1378                         (cause << CP0Ca_EC);
1379        break;
1380    default:
1381        abort();
1382    }
1383    if (qemu_loglevel_mask(CPU_LOG_INT)
1384        && cs->exception_index != EXCP_EXT_INTERRUPT) {
1385        qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1386                 "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1387                 __func__, env->active_tc.PC, env->CP0_EPC, cause,
1388                 env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1389                 env->CP0_DEPC);
1390    }
1391#endif
1392    cs->exception_index = EXCP_NONE;
1393}
1394
1395bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1396{
1397    if (interrupt_request & CPU_INTERRUPT_HARD) {
1398        MIPSCPU *cpu = MIPS_CPU(cs);
1399        CPUMIPSState *env = &cpu->env;
1400
1401        if (cpu_mips_hw_interrupts_enabled(env) &&
1402            cpu_mips_hw_interrupts_pending(env)) {
1403            /* Raise it */
1404            cs->exception_index = EXCP_EXT_INTERRUPT;
1405            env->error_code = 0;
1406            mips_cpu_do_interrupt(cs);
1407            return true;
1408        }
1409    }
1410    return false;
1411}
1412
1413#if !defined(CONFIG_USER_ONLY)
1414void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
1415{
1416    CPUState *cs = env_cpu(env);
1417    r4k_tlb_t *tlb;
1418    target_ulong addr;
1419    target_ulong end;
1420    uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1421    target_ulong mask;
1422
1423    tlb = &env->tlb->mmu.r4k.tlb[idx];
1424    /*
1425     * The qemu TLB is flushed when the ASID changes, so no need to
1426     * flush these entries again.
1427     */
1428    if (tlb->G == 0 && tlb->ASID != ASID) {
1429        return;
1430    }
1431
1432    if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1433        /*
1434         * For tlbwr, we can shadow the discarded entry into
1435         * a new (fake) TLB entry, as long as the guest can not
1436         * tell that it's there.
1437         */
1438        env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1439        env->tlb->tlb_in_use++;
1440        return;
1441    }
1442
1443    /* 1k pages are not supported. */
1444    mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1445    if (tlb->V0) {
1446        addr = tlb->VPN & ~mask;
1447#if defined(TARGET_MIPS64)
1448        if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1449            addr |= 0x3FFFFF0000000000ULL;
1450        }
1451#endif
1452        end = addr | (mask >> 1);
1453        while (addr < end) {
1454            tlb_flush_page(cs, addr);
1455            addr += TARGET_PAGE_SIZE;
1456        }
1457    }
1458    if (tlb->V1) {
1459        addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1460#if defined(TARGET_MIPS64)
1461        if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1462            addr |= 0x3FFFFF0000000000ULL;
1463        }
1464#endif
1465        end = addr | mask;
1466        while (addr - 1 < end) {
1467            tlb_flush_page(cs, addr);
1468            addr += TARGET_PAGE_SIZE;
1469        }
1470    }
1471}
1472#endif
1473
1474void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
1475                                          uint32_t exception,
1476                                          int error_code,
1477                                          uintptr_t pc)
1478{
1479    CPUState *cs = env_cpu(env);
1480
1481    qemu_log_mask(CPU_LOG_INT, "%s: %d %d\n",
1482                  __func__, exception, error_code);
1483    cs->exception_index = exception;
1484    env->error_code = error_code;
1485
1486    cpu_loop_exit_restore(cs, pc);
1487}
1488
1489static void mips_cpu_add_definition(gpointer data, gpointer user_data)
1490{
1491    ObjectClass *oc = data;
1492    CpuDefinitionInfoList **cpu_list = user_data;
1493    CpuDefinitionInfoList *entry;
1494    CpuDefinitionInfo *info;
1495    const char *typename;
1496
1497    typename = object_class_get_name(oc);
1498    info = g_malloc0(sizeof(*info));
1499    info->name = g_strndup(typename,
1500                           strlen(typename) - strlen("-" TYPE_MIPS_CPU));
1501    info->q_typename = g_strdup(typename);
1502
1503    entry = g_malloc0(sizeof(*entry));
1504    entry->value = info;
1505    entry->next = *cpu_list;
1506    *cpu_list = entry;
1507}
1508
1509CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
1510{
1511    CpuDefinitionInfoList *cpu_list = NULL;
1512    GSList *list;
1513
1514    list = object_class_get_list(TYPE_MIPS_CPU, false);
1515    g_slist_foreach(list, mips_cpu_add_definition, &cpu_list);
1516    g_slist_free(list);
1517
1518    return cpu_list;
1519}
1520