qemu/target/sparc/mmu_helper.c
<<
>>
Prefs
   1/*
   2 *  Sparc MMU helpers
   3 *
   4 *  Copyright (c) 2003-2005 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/exec-all.h"
  23#include "qemu/qemu-print.h"
  24#include "trace.h"
  25
  26/* Sparc MMU emulation */
  27
  28#if defined(CONFIG_USER_ONLY)
  29
  30bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
  31                        MMUAccessType access_type, int mmu_idx,
  32                        bool probe, uintptr_t retaddr)
  33{
  34    SPARCCPU *cpu = SPARC_CPU(cs);
  35    CPUSPARCState *env = &cpu->env;
  36
  37    if (access_type == MMU_INST_FETCH) {
  38        cs->exception_index = TT_TFAULT;
  39    } else {
  40        cs->exception_index = TT_DFAULT;
  41#ifdef TARGET_SPARC64
  42        env->dmmu.mmuregs[4] = address;
  43#else
  44        env->mmuregs[4] = address;
  45#endif
  46    }
  47    cpu_loop_exit_restore(cs, retaddr);
  48}
  49
  50#else
  51
  52#ifndef TARGET_SPARC64
  53/*
  54 * Sparc V8 Reference MMU (SRMMU)
  55 */
  56static const int access_table[8][8] = {
  57    { 0, 0, 0, 0, 8, 0, 12, 12 },
  58    { 0, 0, 0, 0, 8, 0, 0, 0 },
  59    { 8, 8, 0, 0, 0, 8, 12, 12 },
  60    { 8, 8, 0, 0, 0, 8, 0, 0 },
  61    { 8, 0, 8, 0, 8, 8, 12, 12 },
  62    { 8, 0, 8, 0, 8, 0, 8, 0 },
  63    { 8, 8, 8, 0, 8, 8, 12, 12 },
  64    { 8, 8, 8, 0, 8, 8, 8, 0 }
  65};
  66
  67static const int perm_table[2][8] = {
  68    {
  69        PAGE_READ,
  70        PAGE_READ | PAGE_WRITE,
  71        PAGE_READ | PAGE_EXEC,
  72        PAGE_READ | PAGE_WRITE | PAGE_EXEC,
  73        PAGE_EXEC,
  74        PAGE_READ | PAGE_WRITE,
  75        PAGE_READ | PAGE_EXEC,
  76        PAGE_READ | PAGE_WRITE | PAGE_EXEC
  77    },
  78    {
  79        PAGE_READ,
  80        PAGE_READ | PAGE_WRITE,
  81        PAGE_READ | PAGE_EXEC,
  82        PAGE_READ | PAGE_WRITE | PAGE_EXEC,
  83        PAGE_EXEC,
  84        PAGE_READ,
  85        0,
  86        0,
  87    }
  88};
  89
  90static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
  91                                int *prot, int *access_index, MemTxAttrs *attrs,
  92                                target_ulong address, int rw, int mmu_idx,
  93                                target_ulong *page_size)
  94{
  95    int access_perms = 0;
  96    hwaddr pde_ptr;
  97    uint32_t pde;
  98    int error_code = 0, is_dirty, is_user;
  99    unsigned long page_offset;
 100    CPUState *cs = env_cpu(env);
 101    MemTxResult result;
 102
 103    is_user = mmu_idx == MMU_USER_IDX;
 104
 105    if (mmu_idx == MMU_PHYS_IDX) {
 106        *page_size = TARGET_PAGE_SIZE;
 107        /* Boot mode: instruction fetches are taken from PROM */
 108        if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
 109            *physical = env->prom_addr | (address & 0x7ffffULL);
 110            *prot = PAGE_READ | PAGE_EXEC;
 111            return 0;
 112        }
 113        *physical = address;
 114        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 115        return 0;
 116    }
 117
 118    *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
 119    *physical = 0xffffffffffff0000ULL;
 120
 121    /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
 122    /* Context base + context number */
 123    pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
 124    pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
 125    if (result != MEMTX_OK) {
 126        return 4 << 2; /* Translation fault, L = 0 */
 127    }
 128
 129    /* Ctx pde */
 130    switch (pde & PTE_ENTRYTYPE_MASK) {
 131    default:
 132    case 0: /* Invalid */
 133        return 1 << 2;
 134    case 2: /* L0 PTE, maybe should not happen? */
 135    case 3: /* Reserved */
 136        return 4 << 2;
 137    case 1: /* L0 PDE */
 138        pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
 139        pde = address_space_ldl(cs->as, pde_ptr,
 140                                MEMTXATTRS_UNSPECIFIED, &result);
 141        if (result != MEMTX_OK) {
 142            return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
 143        }
 144
 145        switch (pde & PTE_ENTRYTYPE_MASK) {
 146        default:
 147        case 0: /* Invalid */
 148            return (1 << 8) | (1 << 2);
 149        case 3: /* Reserved */
 150            return (1 << 8) | (4 << 2);
 151        case 1: /* L1 PDE */
 152            pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
 153            pde = address_space_ldl(cs->as, pde_ptr,
 154                                    MEMTXATTRS_UNSPECIFIED, &result);
 155            if (result != MEMTX_OK) {
 156                return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
 157            }
 158
 159            switch (pde & PTE_ENTRYTYPE_MASK) {
 160            default:
 161            case 0: /* Invalid */
 162                return (2 << 8) | (1 << 2);
 163            case 3: /* Reserved */
 164                return (2 << 8) | (4 << 2);
 165            case 1: /* L2 PDE */
 166                pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
 167                pde = address_space_ldl(cs->as, pde_ptr,
 168                                        MEMTXATTRS_UNSPECIFIED, &result);
 169                if (result != MEMTX_OK) {
 170                    return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
 171                }
 172
 173                switch (pde & PTE_ENTRYTYPE_MASK) {
 174                default:
 175                case 0: /* Invalid */
 176                    return (3 << 8) | (1 << 2);
 177                case 1: /* PDE, should not happen */
 178                case 3: /* Reserved */
 179                    return (3 << 8) | (4 << 2);
 180                case 2: /* L3 PTE */
 181                    page_offset = 0;
 182                }
 183                *page_size = TARGET_PAGE_SIZE;
 184                break;
 185            case 2: /* L2 PTE */
 186                page_offset = address & 0x3f000;
 187                *page_size = 0x40000;
 188            }
 189            break;
 190        case 2: /* L1 PTE */
 191            page_offset = address & 0xfff000;
 192            *page_size = 0x1000000;
 193        }
 194    }
 195
 196    /* check access */
 197    access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
 198    error_code = access_table[*access_index][access_perms];
 199    if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
 200        return error_code;
 201    }
 202
 203    /* update page modified and dirty bits */
 204    is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
 205    if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
 206        pde |= PG_ACCESSED_MASK;
 207        if (is_dirty) {
 208            pde |= PG_MODIFIED_MASK;
 209        }
 210        stl_phys_notdirty(cs->as, pde_ptr, pde);
 211    }
 212
 213    /* the page can be put in the TLB */
 214    *prot = perm_table[is_user][access_perms];
 215    if (!(pde & PG_MODIFIED_MASK)) {
 216        /* only set write access if already dirty... otherwise wait
 217           for dirty access */
 218        *prot &= ~PAGE_WRITE;
 219    }
 220
 221    /* Even if large ptes, we map only one 4KB page in the cache to
 222       avoid filling it too fast */
 223    *physical = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
 224    return error_code;
 225}
 226
 227/* Perform address translation */
 228bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 229                        MMUAccessType access_type, int mmu_idx,
 230                        bool probe, uintptr_t retaddr)
 231{
 232    SPARCCPU *cpu = SPARC_CPU(cs);
 233    CPUSPARCState *env = &cpu->env;
 234    hwaddr paddr;
 235    target_ulong vaddr;
 236    target_ulong page_size;
 237    int error_code = 0, prot, access_index;
 238    MemTxAttrs attrs = {};
 239
 240    /*
 241     * TODO: If we ever need tlb_vaddr_to_host for this target,
 242     * then we must figure out how to manipulate FSR and FAR
 243     * when both MMU_NF and probe are set.  In the meantime,
 244     * do not support this use case.
 245     */
 246    assert(!probe);
 247
 248    address &= TARGET_PAGE_MASK;
 249    error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
 250                                      address, access_type,
 251                                      mmu_idx, &page_size);
 252    vaddr = address;
 253    if (likely(error_code == 0)) {
 254        qemu_log_mask(CPU_LOG_MMU,
 255                      "Translate at %" VADDR_PRIx " -> "
 256                      TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
 257                      address, paddr, vaddr);
 258        tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
 259        return true;
 260    }
 261
 262    if (env->mmuregs[3]) { /* Fault status register */
 263        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
 264    }
 265    env->mmuregs[3] |= (access_index << 5) | error_code | 2;
 266    env->mmuregs[4] = address; /* Fault address register */
 267
 268    if ((env->mmuregs[0] & MMU_NF) || env->psret == 0)  {
 269        /* No fault mode: if a mapping is available, just override
 270           permissions. If no mapping is available, redirect accesses to
 271           neverland. Fake/overridden mappings will be flushed when
 272           switching to normal mode. */
 273        prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 274        tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
 275        return true;
 276    } else {
 277        if (access_type == MMU_INST_FETCH) {
 278            cs->exception_index = TT_TFAULT;
 279        } else {
 280            cs->exception_index = TT_DFAULT;
 281        }
 282        cpu_loop_exit_restore(cs, retaddr);
 283    }
 284}
 285
 286target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
 287{
 288    CPUState *cs = env_cpu(env);
 289    hwaddr pde_ptr;
 290    uint32_t pde;
 291    MemTxResult result;
 292
 293    /*
 294     * TODO: MMU probe operations are supposed to set the fault
 295     * status registers, but we don't do this.
 296     */
 297
 298    /* Context base + context number */
 299    pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
 300        (env->mmuregs[2] << 2);
 301    pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
 302    if (result != MEMTX_OK) {
 303        return 0;
 304    }
 305
 306    switch (pde & PTE_ENTRYTYPE_MASK) {
 307    default:
 308    case 0: /* Invalid */
 309    case 2: /* PTE, maybe should not happen? */
 310    case 3: /* Reserved */
 311        return 0;
 312    case 1: /* L1 PDE */
 313        if (mmulev == 3) {
 314            return pde;
 315        }
 316        pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
 317        pde = address_space_ldl(cs->as, pde_ptr,
 318                                MEMTXATTRS_UNSPECIFIED, &result);
 319        if (result != MEMTX_OK) {
 320            return 0;
 321        }
 322
 323        switch (pde & PTE_ENTRYTYPE_MASK) {
 324        default:
 325        case 0: /* Invalid */
 326        case 3: /* Reserved */
 327            return 0;
 328        case 2: /* L1 PTE */
 329            return pde;
 330        case 1: /* L2 PDE */
 331            if (mmulev == 2) {
 332                return pde;
 333            }
 334            pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
 335            pde = address_space_ldl(cs->as, pde_ptr,
 336                                    MEMTXATTRS_UNSPECIFIED, &result);
 337            if (result != MEMTX_OK) {
 338                return 0;
 339            }
 340
 341            switch (pde & PTE_ENTRYTYPE_MASK) {
 342            default:
 343            case 0: /* Invalid */
 344            case 3: /* Reserved */
 345                return 0;
 346            case 2: /* L2 PTE */
 347                return pde;
 348            case 1: /* L3 PDE */
 349                if (mmulev == 1) {
 350                    return pde;
 351                }
 352                pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
 353                pde = address_space_ldl(cs->as, pde_ptr,
 354                                        MEMTXATTRS_UNSPECIFIED, &result);
 355                if (result != MEMTX_OK) {
 356                    return 0;
 357                }
 358
 359                switch (pde & PTE_ENTRYTYPE_MASK) {
 360                default:
 361                case 0: /* Invalid */
 362                case 1: /* PDE, should not happen */
 363                case 3: /* Reserved */
 364                    return 0;
 365                case 2: /* L3 PTE */
 366                    return pde;
 367                }
 368            }
 369        }
 370    }
 371    return 0;
 372}
 373
 374void dump_mmu(CPUSPARCState *env)
 375{
 376    CPUState *cs = env_cpu(env);
 377    target_ulong va, va1, va2;
 378    unsigned int n, m, o;
 379    hwaddr pa;
 380    uint32_t pde;
 381
 382    qemu_printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
 383                (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
 384    for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
 385        pde = mmu_probe(env, va, 2);
 386        if (pde) {
 387            pa = cpu_get_phys_page_debug(cs, va);
 388            qemu_printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
 389                        " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
 390            for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
 391                pde = mmu_probe(env, va1, 1);
 392                if (pde) {
 393                    pa = cpu_get_phys_page_debug(cs, va1);
 394                    qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
 395                                TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
 396                                va1, pa, pde);
 397                    for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
 398                        pde = mmu_probe(env, va2, 0);
 399                        if (pde) {
 400                            pa = cpu_get_phys_page_debug(cs, va2);
 401                            qemu_printf("  VA: " TARGET_FMT_lx ", PA: "
 402                                        TARGET_FMT_plx " PTE: "
 403                                        TARGET_FMT_lx "\n",
 404                                        va2, pa, pde);
 405                        }
 406                    }
 407                }
 408            }
 409        }
 410    }
 411}
 412
 413/* Gdb expects all registers windows to be flushed in ram. This function handles
 414 * reads (and only reads) in stack frames as if windows were flushed. We assume
 415 * that the sparc ABI is followed.
 416 */
 417int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
 418                              uint8_t *buf, int len, bool is_write)
 419{
 420    SPARCCPU *cpu = SPARC_CPU(cs);
 421    CPUSPARCState *env = &cpu->env;
 422    target_ulong addr = address;
 423    int i;
 424    int len1;
 425    int cwp = env->cwp;
 426
 427    if (!is_write) {
 428        for (i = 0; i < env->nwindows; i++) {
 429            int off;
 430            target_ulong fp = env->regbase[cwp * 16 + 22];
 431
 432            /* Assume fp == 0 means end of frame.  */
 433            if (fp == 0) {
 434                break;
 435            }
 436
 437            cwp = cpu_cwp_inc(env, cwp + 1);
 438
 439            /* Invalid window ? */
 440            if (env->wim & (1 << cwp)) {
 441                break;
 442            }
 443
 444            /* According to the ABI, the stack is growing downward.  */
 445            if (addr + len < fp) {
 446                break;
 447            }
 448
 449            /* Not in this frame.  */
 450            if (addr > fp + 64) {
 451                continue;
 452            }
 453
 454            /* Handle access before this window.  */
 455            if (addr < fp) {
 456                len1 = fp - addr;
 457                if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
 458                    return -1;
 459                }
 460                addr += len1;
 461                len -= len1;
 462                buf += len1;
 463            }
 464
 465            /* Access byte per byte to registers. Not very efficient but speed
 466             * is not critical.
 467             */
 468            off = addr - fp;
 469            len1 = 64 - off;
 470
 471            if (len1 > len) {
 472                len1 = len;
 473            }
 474
 475            for (; len1; len1--) {
 476                int reg = cwp * 16 + 8 + (off >> 2);
 477                union {
 478                    uint32_t v;
 479                    uint8_t c[4];
 480                } u;
 481                u.v = cpu_to_be32(env->regbase[reg]);
 482                *buf++ = u.c[off & 3];
 483                addr++;
 484                len--;
 485                off++;
 486            }
 487
 488            if (len == 0) {
 489                return 0;
 490            }
 491        }
 492    }
 493    return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
 494}
 495
 496#else /* !TARGET_SPARC64 */
 497
 498/* 41 bit physical address space */
 499static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
 500{
 501    return x & 0x1ffffffffffULL;
 502}
 503
 504/*
 505 * UltraSparc IIi I/DMMUs
 506 */
 507
 508/* Returns true if TTE tag is valid and matches virtual address value
 509   in context requires virtual address mask value calculated from TTE
 510   entry size */
 511static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
 512                                       uint64_t address, uint64_t context,
 513                                       hwaddr *physical)
 514{
 515    uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
 516
 517    /* valid, context match, virtual address match? */
 518    if (TTE_IS_VALID(tlb->tte) &&
 519        (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
 520        && compare_masked(address, tlb->tag, mask)) {
 521        /* decode physical address */
 522        *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
 523        return 1;
 524    }
 525
 526    return 0;
 527}
 528
 529static int get_physical_address_data(CPUSPARCState *env, hwaddr *physical,
 530                                     int *prot, MemTxAttrs *attrs,
 531                                     target_ulong address, int rw, int mmu_idx)
 532{
 533    CPUState *cs = env_cpu(env);
 534    unsigned int i;
 535    uint64_t context;
 536    uint64_t sfsr = 0;
 537    bool is_user = false;
 538
 539    switch (mmu_idx) {
 540    case MMU_PHYS_IDX:
 541        g_assert_not_reached();
 542    case MMU_USER_IDX:
 543        is_user = true;
 544        /* fallthru */
 545    case MMU_KERNEL_IDX:
 546        context = env->dmmu.mmu_primary_context & 0x1fff;
 547        sfsr |= SFSR_CT_PRIMARY;
 548        break;
 549    case MMU_USER_SECONDARY_IDX:
 550        is_user = true;
 551        /* fallthru */
 552    case MMU_KERNEL_SECONDARY_IDX:
 553        context = env->dmmu.mmu_secondary_context & 0x1fff;
 554        sfsr |= SFSR_CT_SECONDARY;
 555        break;
 556    case MMU_NUCLEUS_IDX:
 557        sfsr |= SFSR_CT_NUCLEUS;
 558        /* FALLTHRU */
 559    default:
 560        context = 0;
 561        break;
 562    }
 563
 564    if (rw == 1) {
 565        sfsr |= SFSR_WRITE_BIT;
 566    } else if (rw == 4) {
 567        sfsr |= SFSR_NF_BIT;
 568    }
 569
 570    for (i = 0; i < 64; i++) {
 571        /* ctx match, vaddr match, valid? */
 572        if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
 573            int do_fault = 0;
 574
 575            if (TTE_IS_IE(env->dtlb[i].tte)) {
 576                attrs->byte_swap = true;
 577            }
 578
 579            /* access ok? */
 580            /* multiple bits in SFSR.FT may be set on TT_DFAULT */
 581            if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
 582                do_fault = 1;
 583                sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
 584                trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
 585            }
 586            if (rw == 4) {
 587                if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
 588                    do_fault = 1;
 589                    sfsr |= SFSR_FT_NF_E_BIT;
 590                }
 591            } else {
 592                if (TTE_IS_NFO(env->dtlb[i].tte)) {
 593                    do_fault = 1;
 594                    sfsr |= SFSR_FT_NFO_BIT;
 595                }
 596            }
 597
 598            if (do_fault) {
 599                /* faults above are reported with TT_DFAULT. */
 600                cs->exception_index = TT_DFAULT;
 601            } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
 602                do_fault = 1;
 603                cs->exception_index = TT_DPROT;
 604
 605                trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
 606            }
 607
 608            if (!do_fault) {
 609                *prot = PAGE_READ;
 610                if (TTE_IS_W_OK(env->dtlb[i].tte)) {
 611                    *prot |= PAGE_WRITE;
 612                }
 613
 614                TTE_SET_USED(env->dtlb[i].tte);
 615
 616                return 0;
 617            }
 618
 619            if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
 620                sfsr |= SFSR_OW_BIT; /* overflow (not read before
 621                                        another fault) */
 622            }
 623
 624            if (env->pstate & PS_PRIV) {
 625                sfsr |= SFSR_PR_BIT;
 626            }
 627
 628            /* FIXME: ASI field in SFSR must be set */
 629            env->dmmu.sfsr = sfsr | SFSR_VALID_BIT;
 630
 631            env->dmmu.sfar = address; /* Fault address register */
 632
 633            env->dmmu.tag_access = (address & ~0x1fffULL) | context;
 634
 635            return 1;
 636        }
 637    }
 638
 639    trace_mmu_helper_dmiss(address, context);
 640
 641    /*
 642     * On MMU misses:
 643     * - UltraSPARC IIi: SFSR and SFAR unmodified
 644     * - JPS1: SFAR updated and some fields of SFSR updated
 645     */
 646    env->dmmu.tag_access = (address & ~0x1fffULL) | context;
 647    cs->exception_index = TT_DMISS;
 648    return 1;
 649}
 650
 651static int get_physical_address_code(CPUSPARCState *env, hwaddr *physical,
 652                                     int *prot, MemTxAttrs *attrs,
 653                                     target_ulong address, int mmu_idx)
 654{
 655    CPUState *cs = env_cpu(env);
 656    unsigned int i;
 657    uint64_t context;
 658    bool is_user = false;
 659
 660    switch (mmu_idx) {
 661    case MMU_PHYS_IDX:
 662    case MMU_USER_SECONDARY_IDX:
 663    case MMU_KERNEL_SECONDARY_IDX:
 664        g_assert_not_reached();
 665    case MMU_USER_IDX:
 666        is_user = true;
 667        /* fallthru */
 668    case MMU_KERNEL_IDX:
 669        context = env->dmmu.mmu_primary_context & 0x1fff;
 670        break;
 671    default:
 672        context = 0;
 673        break;
 674    }
 675
 676    if (env->tl == 0) {
 677        /* PRIMARY context */
 678        context = env->dmmu.mmu_primary_context & 0x1fff;
 679    } else {
 680        /* NUCLEUS context */
 681        context = 0;
 682    }
 683
 684    for (i = 0; i < 64; i++) {
 685        /* ctx match, vaddr match, valid? */
 686        if (ultrasparc_tag_match(&env->itlb[i],
 687                                 address, context, physical)) {
 688            /* access ok? */
 689            if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
 690                /* Fault status register */
 691                if (env->immu.sfsr & SFSR_VALID_BIT) {
 692                    env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
 693                                                     another fault) */
 694                } else {
 695                    env->immu.sfsr = 0;
 696                }
 697                if (env->pstate & PS_PRIV) {
 698                    env->immu.sfsr |= SFSR_PR_BIT;
 699                }
 700                if (env->tl > 0) {
 701                    env->immu.sfsr |= SFSR_CT_NUCLEUS;
 702                }
 703
 704                /* FIXME: ASI field in SFSR must be set */
 705                env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
 706                cs->exception_index = TT_TFAULT;
 707
 708                env->immu.tag_access = (address & ~0x1fffULL) | context;
 709
 710                trace_mmu_helper_tfault(address, context);
 711
 712                return 1;
 713            }
 714            *prot = PAGE_EXEC;
 715            TTE_SET_USED(env->itlb[i].tte);
 716            return 0;
 717        }
 718    }
 719
 720    trace_mmu_helper_tmiss(address, context);
 721
 722    /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
 723    env->immu.tag_access = (address & ~0x1fffULL) | context;
 724    cs->exception_index = TT_TMISS;
 725    return 1;
 726}
 727
 728static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
 729                                int *prot, int *access_index, MemTxAttrs *attrs,
 730                                target_ulong address, int rw, int mmu_idx,
 731                                target_ulong *page_size)
 732{
 733    /* ??? We treat everything as a small page, then explicitly flush
 734       everything when an entry is evicted.  */
 735    *page_size = TARGET_PAGE_SIZE;
 736
 737    /* safety net to catch wrong softmmu index use from dynamic code */
 738    if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
 739        if (rw == 2) {
 740            trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
 741                                                env->dmmu.mmu_primary_context,
 742                                                env->dmmu.mmu_secondary_context,
 743                                                address);
 744        } else {
 745            trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
 746                                                env->dmmu.mmu_primary_context,
 747                                                env->dmmu.mmu_secondary_context,
 748                                                address);
 749        }
 750    }
 751
 752    if (mmu_idx == MMU_PHYS_IDX) {
 753        *physical = ultrasparc_truncate_physical(address);
 754        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 755        return 0;
 756    }
 757
 758    if (rw == 2) {
 759        return get_physical_address_code(env, physical, prot, attrs, address,
 760                                         mmu_idx);
 761    } else {
 762        return get_physical_address_data(env, physical, prot, attrs, address,
 763                                         rw, mmu_idx);
 764    }
 765}
 766
 767/* Perform address translation */
 768bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 769                        MMUAccessType access_type, int mmu_idx,
 770                        bool probe, uintptr_t retaddr)
 771{
 772    SPARCCPU *cpu = SPARC_CPU(cs);
 773    CPUSPARCState *env = &cpu->env;
 774    target_ulong vaddr;
 775    hwaddr paddr;
 776    target_ulong page_size;
 777    MemTxAttrs attrs = {};
 778    int error_code = 0, prot, access_index;
 779
 780    address &= TARGET_PAGE_MASK;
 781    error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
 782                                      address, access_type,
 783                                      mmu_idx, &page_size);
 784    if (likely(error_code == 0)) {
 785        vaddr = address;
 786
 787        trace_mmu_helper_mmu_fault(address, paddr, mmu_idx, env->tl,
 788                                   env->dmmu.mmu_primary_context,
 789                                   env->dmmu.mmu_secondary_context);
 790
 791        tlb_set_page_with_attrs(cs, vaddr, paddr, attrs, prot, mmu_idx,
 792                                page_size);
 793        return true;
 794    }
 795    if (probe) {
 796        return false;
 797    }
 798    cpu_loop_exit_restore(cs, retaddr);
 799}
 800
 801void dump_mmu(CPUSPARCState *env)
 802{
 803    unsigned int i;
 804    const char *mask;
 805
 806    qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
 807                PRId64 "\n",
 808                env->dmmu.mmu_primary_context,
 809                env->dmmu.mmu_secondary_context);
 810    qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
 811                "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
 812    if ((env->lsu & DMMU_E) == 0) {
 813        qemu_printf("DMMU disabled\n");
 814    } else {
 815        qemu_printf("DMMU dump\n");
 816        for (i = 0; i < 64; i++) {
 817            switch (TTE_PGSIZE(env->dtlb[i].tte)) {
 818            default:
 819            case 0x0:
 820                mask = "  8k";
 821                break;
 822            case 0x1:
 823                mask = " 64k";
 824                break;
 825            case 0x2:
 826                mask = "512k";
 827                break;
 828            case 0x3:
 829                mask = "  4M";
 830                break;
 831            }
 832            if (TTE_IS_VALID(env->dtlb[i].tte)) {
 833                qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
 834                            ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
 835                            i,
 836                            env->dtlb[i].tag & (uint64_t)~0x1fffULL,
 837                            TTE_PA(env->dtlb[i].tte),
 838                            mask,
 839                            TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
 840                            TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
 841                            TTE_IS_LOCKED(env->dtlb[i].tte) ?
 842                            "locked" : "unlocked",
 843                            TTE_IS_IE(env->dtlb[i].tte) ?
 844                            "yes" : "no",
 845                            env->dtlb[i].tag & (uint64_t)0x1fffULL,
 846                            TTE_IS_GLOBAL(env->dtlb[i].tte) ?
 847                            "global" : "local");
 848            }
 849        }
 850    }
 851    if ((env->lsu & IMMU_E) == 0) {
 852        qemu_printf("IMMU disabled\n");
 853    } else {
 854        qemu_printf("IMMU dump\n");
 855        for (i = 0; i < 64; i++) {
 856            switch (TTE_PGSIZE(env->itlb[i].tte)) {
 857            default:
 858            case 0x0:
 859                mask = "  8k";
 860                break;
 861            case 0x1:
 862                mask = " 64k";
 863                break;
 864            case 0x2:
 865                mask = "512k";
 866                break;
 867            case 0x3:
 868                mask = "  4M";
 869                break;
 870            }
 871            if (TTE_IS_VALID(env->itlb[i].tte)) {
 872                qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
 873                            ", %s, %s, %s, ctx %" PRId64 " %s\n",
 874                            i,
 875                            env->itlb[i].tag & (uint64_t)~0x1fffULL,
 876                            TTE_PA(env->itlb[i].tte),
 877                            mask,
 878                            TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
 879                            TTE_IS_LOCKED(env->itlb[i].tte) ?
 880                            "locked" : "unlocked",
 881                            env->itlb[i].tag & (uint64_t)0x1fffULL,
 882                            TTE_IS_GLOBAL(env->itlb[i].tte) ?
 883                            "global" : "local");
 884            }
 885        }
 886    }
 887}
 888
 889#endif /* TARGET_SPARC64 */
 890
 891static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
 892                                   target_ulong addr, int rw, int mmu_idx)
 893{
 894    target_ulong page_size;
 895    int prot, access_index;
 896    MemTxAttrs attrs = {};
 897
 898    return get_physical_address(env, phys, &prot, &access_index, &attrs, addr,
 899                                rw, mmu_idx, &page_size);
 900}
 901
 902#if defined(TARGET_SPARC64)
 903hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
 904                                           int mmu_idx)
 905{
 906    hwaddr phys_addr;
 907
 908    if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
 909        return -1;
 910    }
 911    return phys_addr;
 912}
 913#endif
 914
 915hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 916{
 917    SPARCCPU *cpu = SPARC_CPU(cs);
 918    CPUSPARCState *env = &cpu->env;
 919    hwaddr phys_addr;
 920    int mmu_idx = cpu_mmu_index(env, false);
 921
 922    if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
 923        if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
 924            return -1;
 925        }
 926    }
 927    return phys_addr;
 928}
 929#endif
 930