qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "qapi/error.h"
  29#include "qcow2.h"
  30#include "qemu/bswap.h"
  31#include "trace.h"
  32
  33int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
  34{
  35    BDRVQcow2State *s = bs->opaque;
  36    int new_l1_size, i, ret;
  37
  38    if (exact_size >= s->l1_size) {
  39        return 0;
  40    }
  41
  42    new_l1_size = exact_size;
  43
  44#ifdef DEBUG_ALLOC2
  45    fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
  46#endif
  47
  48    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
  49    ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
  50                                       new_l1_size * sizeof(uint64_t),
  51                             (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
  52    if (ret < 0) {
  53        goto fail;
  54    }
  55
  56    ret = bdrv_flush(bs->file->bs);
  57    if (ret < 0) {
  58        goto fail;
  59    }
  60
  61    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
  62    for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
  63        if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
  64            continue;
  65        }
  66        qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
  67                            s->cluster_size, QCOW2_DISCARD_ALWAYS);
  68        s->l1_table[i] = 0;
  69    }
  70    return 0;
  71
  72fail:
  73    /*
  74     * If the write in the l1_table failed the image may contain a partially
  75     * overwritten l1_table. In this case it would be better to clear the
  76     * l1_table in memory to avoid possible image corruption.
  77     */
  78    memset(s->l1_table + new_l1_size, 0,
  79           (s->l1_size - new_l1_size) * sizeof(uint64_t));
  80    return ret;
  81}
  82
  83int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  84                        bool exact_size)
  85{
  86    BDRVQcow2State *s = bs->opaque;
  87    int new_l1_size2, ret, i;
  88    uint64_t *new_l1_table;
  89    int64_t old_l1_table_offset, old_l1_size;
  90    int64_t new_l1_table_offset, new_l1_size;
  91    uint8_t data[12];
  92
  93    if (min_size <= s->l1_size)
  94        return 0;
  95
  96    /* Do a sanity check on min_size before trying to calculate new_l1_size
  97     * (this prevents overflows during the while loop for the calculation of
  98     * new_l1_size) */
  99    if (min_size > INT_MAX / sizeof(uint64_t)) {
 100        return -EFBIG;
 101    }
 102
 103    if (exact_size) {
 104        new_l1_size = min_size;
 105    } else {
 106        /* Bump size up to reduce the number of times we have to grow */
 107        new_l1_size = s->l1_size;
 108        if (new_l1_size == 0) {
 109            new_l1_size = 1;
 110        }
 111        while (min_size > new_l1_size) {
 112            new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
 113        }
 114    }
 115
 116    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
 117    if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
 118        return -EFBIG;
 119    }
 120
 121#ifdef DEBUG_ALLOC2
 122    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
 123            s->l1_size, new_l1_size);
 124#endif
 125
 126    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
 127    new_l1_table = qemu_try_blockalign(bs->file->bs,
 128                                       ROUND_UP(new_l1_size2, 512));
 129    if (new_l1_table == NULL) {
 130        return -ENOMEM;
 131    }
 132    memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
 133
 134    if (s->l1_size) {
 135        memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
 136    }
 137
 138    /* write new table (align to cluster) */
 139    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
 140    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
 141    if (new_l1_table_offset < 0) {
 142        qemu_vfree(new_l1_table);
 143        return new_l1_table_offset;
 144    }
 145
 146    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 147    if (ret < 0) {
 148        goto fail;
 149    }
 150
 151    /* the L1 position has not yet been updated, so these clusters must
 152     * indeed be completely free */
 153    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 154                                        new_l1_size2, false);
 155    if (ret < 0) {
 156        goto fail;
 157    }
 158
 159    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 160    for(i = 0; i < s->l1_size; i++)
 161        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 162    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
 163                           new_l1_table, new_l1_size2);
 164    if (ret < 0)
 165        goto fail;
 166    for(i = 0; i < s->l1_size; i++)
 167        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 168
 169    /* set new table */
 170    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 171    stl_be_p(data, new_l1_size);
 172    stq_be_p(data + 4, new_l1_table_offset);
 173    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 174                           data, sizeof(data));
 175    if (ret < 0) {
 176        goto fail;
 177    }
 178    qemu_vfree(s->l1_table);
 179    old_l1_table_offset = s->l1_table_offset;
 180    s->l1_table_offset = new_l1_table_offset;
 181    s->l1_table = new_l1_table;
 182    old_l1_size = s->l1_size;
 183    s->l1_size = new_l1_size;
 184    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
 185                        QCOW2_DISCARD_OTHER);
 186    return 0;
 187 fail:
 188    qemu_vfree(new_l1_table);
 189    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 190                        QCOW2_DISCARD_OTHER);
 191    return ret;
 192}
 193
 194/*
 195 * l2_load
 196 *
 197 * @bs: The BlockDriverState
 198 * @offset: A guest offset, used to calculate what slice of the L2
 199 *          table to load.
 200 * @l2_offset: Offset to the L2 table in the image file.
 201 * @l2_slice: Location to store the pointer to the L2 slice.
 202 *
 203 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
 204 * that are loaded by the qcow2 cache). If the slice is in the cache,
 205 * the cache is used; otherwise the L2 slice is loaded from the image
 206 * file.
 207 */
 208static int l2_load(BlockDriverState *bs, uint64_t offset,
 209                   uint64_t l2_offset, uint64_t **l2_slice)
 210{
 211    BDRVQcow2State *s = bs->opaque;
 212    int start_of_slice = sizeof(uint64_t) *
 213        (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
 214
 215    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
 216                           (void **)l2_slice);
 217}
 218
 219/*
 220 * Writes one sector of the L1 table to the disk (can't update single entries
 221 * and we really don't want bdrv_pread to perform a read-modify-write)
 222 */
 223#define L1_ENTRIES_PER_SECTOR (512 / 8)
 224int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 225{
 226    BDRVQcow2State *s = bs->opaque;
 227    uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
 228    int l1_start_index;
 229    int i, ret;
 230
 231    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
 232    for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
 233         i++)
 234    {
 235        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 236    }
 237
 238    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 239            s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
 240    if (ret < 0) {
 241        return ret;
 242    }
 243
 244    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 245    ret = bdrv_pwrite_sync(bs->file,
 246                           s->l1_table_offset + 8 * l1_start_index,
 247                           buf, sizeof(buf));
 248    if (ret < 0) {
 249        return ret;
 250    }
 251
 252    return 0;
 253}
 254
 255/*
 256 * l2_allocate
 257 *
 258 * Allocate a new l2 entry in the file. If l1_index points to an already
 259 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 260 * table) copy the contents of the old L2 table into the newly allocated one.
 261 * Otherwise the new table is initialized with zeros.
 262 *
 263 */
 264
 265static int l2_allocate(BlockDriverState *bs, int l1_index)
 266{
 267    BDRVQcow2State *s = bs->opaque;
 268    uint64_t old_l2_offset;
 269    uint64_t *l2_slice = NULL;
 270    unsigned slice, slice_size2, n_slices;
 271    int64_t l2_offset;
 272    int ret;
 273
 274    old_l2_offset = s->l1_table[l1_index];
 275
 276    trace_qcow2_l2_allocate(bs, l1_index);
 277
 278    /* allocate a new l2 entry */
 279
 280    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
 281    if (l2_offset < 0) {
 282        ret = l2_offset;
 283        goto fail;
 284    }
 285
 286    /* The offset must fit in the offset field of the L1 table entry */
 287    assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
 288
 289    /* If we're allocating the table at offset 0 then something is wrong */
 290    if (l2_offset == 0) {
 291        qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
 292                                "allocation of L2 table at offset 0");
 293        ret = -EIO;
 294        goto fail;
 295    }
 296
 297    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 298    if (ret < 0) {
 299        goto fail;
 300    }
 301
 302    /* allocate a new entry in the l2 cache */
 303
 304    slice_size2 = s->l2_slice_size * sizeof(uint64_t);
 305    n_slices = s->cluster_size / slice_size2;
 306
 307    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 308    for (slice = 0; slice < n_slices; slice++) {
 309        ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
 310                                    l2_offset + slice * slice_size2,
 311                                    (void **) &l2_slice);
 312        if (ret < 0) {
 313            goto fail;
 314        }
 315
 316        if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 317            /* if there was no old l2 table, clear the new slice */
 318            memset(l2_slice, 0, slice_size2);
 319        } else {
 320            uint64_t *old_slice;
 321            uint64_t old_l2_slice_offset =
 322                (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
 323
 324            /* if there was an old l2 table, read a slice from the disk */
 325            BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 326            ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
 327                                  (void **) &old_slice);
 328            if (ret < 0) {
 329                goto fail;
 330            }
 331
 332            memcpy(l2_slice, old_slice, slice_size2);
 333
 334            qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
 335        }
 336
 337        /* write the l2 slice to the file */
 338        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 339
 340        trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 341        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 342        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 343    }
 344
 345    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 346    if (ret < 0) {
 347        goto fail;
 348    }
 349
 350    /* update the L1 entry */
 351    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 352    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 353    ret = qcow2_write_l1_entry(bs, l1_index);
 354    if (ret < 0) {
 355        goto fail;
 356    }
 357
 358    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 359    return 0;
 360
 361fail:
 362    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 363    if (l2_slice != NULL) {
 364        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 365    }
 366    s->l1_table[l1_index] = old_l2_offset;
 367    if (l2_offset > 0) {
 368        qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 369                            QCOW2_DISCARD_ALWAYS);
 370    }
 371    return ret;
 372}
 373
 374/*
 375 * Checks how many clusters in a given L2 slice are contiguous in the image
 376 * file. As soon as one of the flags in the bitmask stop_flags changes compared
 377 * to the first cluster, the search is stopped and the cluster is not counted
 378 * as contiguous. (This allows it, for example, to stop at the first compressed
 379 * cluster which may require a different handling)
 380 */
 381static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
 382        int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
 383{
 384    int i;
 385    QCow2ClusterType first_cluster_type;
 386    uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
 387    uint64_t first_entry = be64_to_cpu(l2_slice[0]);
 388    uint64_t offset = first_entry & mask;
 389
 390    first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
 391    if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
 392        return 0;
 393    }
 394
 395    /* must be allocated */
 396    assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
 397           first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
 398
 399    for (i = 0; i < nb_clusters; i++) {
 400        uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
 401        if (offset + (uint64_t) i * cluster_size != l2_entry) {
 402            break;
 403        }
 404    }
 405
 406        return i;
 407}
 408
 409/*
 410 * Checks how many consecutive unallocated clusters in a given L2
 411 * slice have the same cluster type.
 412 */
 413static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
 414                                                 int nb_clusters,
 415                                                 uint64_t *l2_slice,
 416                                                 QCow2ClusterType wanted_type)
 417{
 418    int i;
 419
 420    assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
 421           wanted_type == QCOW2_CLUSTER_UNALLOCATED);
 422    for (i = 0; i < nb_clusters; i++) {
 423        uint64_t entry = be64_to_cpu(l2_slice[i]);
 424        QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
 425
 426        if (type != wanted_type) {
 427            break;
 428        }
 429    }
 430
 431    return i;
 432}
 433
 434static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
 435                                            uint64_t src_cluster_offset,
 436                                            unsigned offset_in_cluster,
 437                                            QEMUIOVector *qiov)
 438{
 439    int ret;
 440
 441    if (qiov->size == 0) {
 442        return 0;
 443    }
 444
 445    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 446
 447    if (!bs->drv) {
 448        return -ENOMEDIUM;
 449    }
 450
 451    /* Call .bdrv_co_readv() directly instead of using the public block-layer
 452     * interface.  This avoids double I/O throttling and request tracking,
 453     * which can lead to deadlock when block layer copy-on-read is enabled.
 454     */
 455    ret = bs->drv->bdrv_co_preadv_part(bs,
 456                                       src_cluster_offset + offset_in_cluster,
 457                                       qiov->size, qiov, 0, 0);
 458    if (ret < 0) {
 459        return ret;
 460    }
 461
 462    return 0;
 463}
 464
 465static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
 466                                             uint64_t cluster_offset,
 467                                             unsigned offset_in_cluster,
 468                                             QEMUIOVector *qiov)
 469{
 470    BDRVQcow2State *s = bs->opaque;
 471    int ret;
 472
 473    if (qiov->size == 0) {
 474        return 0;
 475    }
 476
 477    ret = qcow2_pre_write_overlap_check(bs, 0,
 478            cluster_offset + offset_in_cluster, qiov->size, true);
 479    if (ret < 0) {
 480        return ret;
 481    }
 482
 483    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 484    ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
 485                          qiov->size, qiov, 0);
 486    if (ret < 0) {
 487        return ret;
 488    }
 489
 490    return 0;
 491}
 492
 493
 494/*
 495 * get_cluster_offset
 496 *
 497 * For a given offset of the virtual disk, find the cluster type and offset in
 498 * the qcow2 file. The offset is stored in *cluster_offset.
 499 *
 500 * On entry, *bytes is the maximum number of contiguous bytes starting at
 501 * offset that we are interested in.
 502 *
 503 * On exit, *bytes is the number of bytes starting at offset that have the same
 504 * cluster type and (if applicable) are stored contiguously in the image file.
 505 * Compressed clusters are always returned one by one.
 506 *
 507 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
 508 * cases.
 509 */
 510int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
 511                             unsigned int *bytes, uint64_t *cluster_offset)
 512{
 513    BDRVQcow2State *s = bs->opaque;
 514    unsigned int l2_index;
 515    uint64_t l1_index, l2_offset, *l2_slice;
 516    int c;
 517    unsigned int offset_in_cluster;
 518    uint64_t bytes_available, bytes_needed, nb_clusters;
 519    QCow2ClusterType type;
 520    int ret;
 521
 522    offset_in_cluster = offset_into_cluster(s, offset);
 523    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 524
 525    /* compute how many bytes there are between the start of the cluster
 526     * containing offset and the end of the l2 slice that contains
 527     * the entry pointing to it */
 528    bytes_available =
 529        ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
 530        << s->cluster_bits;
 531
 532    if (bytes_needed > bytes_available) {
 533        bytes_needed = bytes_available;
 534    }
 535
 536    *cluster_offset = 0;
 537
 538    /* seek to the l2 offset in the l1 table */
 539
 540    l1_index = offset_to_l1_index(s, offset);
 541    if (l1_index >= s->l1_size) {
 542        type = QCOW2_CLUSTER_UNALLOCATED;
 543        goto out;
 544    }
 545
 546    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 547    if (!l2_offset) {
 548        type = QCOW2_CLUSTER_UNALLOCATED;
 549        goto out;
 550    }
 551
 552    if (offset_into_cluster(s, l2_offset)) {
 553        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 554                                " unaligned (L1 index: %#" PRIx64 ")",
 555                                l2_offset, l1_index);
 556        return -EIO;
 557    }
 558
 559    /* load the l2 slice in memory */
 560
 561    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 562    if (ret < 0) {
 563        return ret;
 564    }
 565
 566    /* find the cluster offset for the given disk offset */
 567
 568    l2_index = offset_to_l2_slice_index(s, offset);
 569    *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
 570
 571    nb_clusters = size_to_clusters(s, bytes_needed);
 572    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 573     * integers; the minimum cluster size is 512, so this assertion is always
 574     * true */
 575    assert(nb_clusters <= INT_MAX);
 576
 577    type = qcow2_get_cluster_type(bs, *cluster_offset);
 578    if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
 579                                type == QCOW2_CLUSTER_ZERO_ALLOC)) {
 580        qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 581                                " in pre-v3 image (L2 offset: %#" PRIx64
 582                                ", L2 index: %#x)", l2_offset, l2_index);
 583        ret = -EIO;
 584        goto fail;
 585    }
 586    switch (type) {
 587    case QCOW2_CLUSTER_COMPRESSED:
 588        if (has_data_file(bs)) {
 589            qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
 590                                    "entry found in image with external data "
 591                                    "file (L2 offset: %#" PRIx64 ", L2 index: "
 592                                    "%#x)", l2_offset, l2_index);
 593            ret = -EIO;
 594            goto fail;
 595        }
 596        /* Compressed clusters can only be processed one by one */
 597        c = 1;
 598        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
 599        break;
 600    case QCOW2_CLUSTER_ZERO_PLAIN:
 601    case QCOW2_CLUSTER_UNALLOCATED:
 602        /* how many empty clusters ? */
 603        c = count_contiguous_clusters_unallocated(bs, nb_clusters,
 604                                                  &l2_slice[l2_index], type);
 605        *cluster_offset = 0;
 606        break;
 607    case QCOW2_CLUSTER_ZERO_ALLOC:
 608    case QCOW2_CLUSTER_NORMAL:
 609        /* how many allocated clusters ? */
 610        c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
 611                                      &l2_slice[l2_index], QCOW_OFLAG_ZERO);
 612        *cluster_offset &= L2E_OFFSET_MASK;
 613        if (offset_into_cluster(s, *cluster_offset)) {
 614            qcow2_signal_corruption(bs, true, -1, -1,
 615                                    "Cluster allocation offset %#"
 616                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 617                                    ", L2 index: %#x)", *cluster_offset,
 618                                    l2_offset, l2_index);
 619            ret = -EIO;
 620            goto fail;
 621        }
 622        if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
 623        {
 624            qcow2_signal_corruption(bs, true, -1, -1,
 625                                    "External data file host cluster offset %#"
 626                                    PRIx64 " does not match guest cluster "
 627                                    "offset: %#" PRIx64
 628                                    ", L2 index: %#x)", *cluster_offset,
 629                                    offset - offset_in_cluster, l2_index);
 630            ret = -EIO;
 631            goto fail;
 632        }
 633        break;
 634    default:
 635        abort();
 636    }
 637
 638    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 639
 640    bytes_available = (int64_t)c * s->cluster_size;
 641
 642out:
 643    if (bytes_available > bytes_needed) {
 644        bytes_available = bytes_needed;
 645    }
 646
 647    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 648     * subtracting offset_in_cluster will therefore definitely yield something
 649     * not exceeding UINT_MAX */
 650    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 651    *bytes = bytes_available - offset_in_cluster;
 652
 653    return type;
 654
 655fail:
 656    qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
 657    return ret;
 658}
 659
 660/*
 661 * get_cluster_table
 662 *
 663 * for a given disk offset, load (and allocate if needed)
 664 * the appropriate slice of its l2 table.
 665 *
 666 * the cluster index in the l2 slice is given to the caller.
 667 *
 668 * Returns 0 on success, -errno in failure case
 669 */
 670static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 671                             uint64_t **new_l2_slice,
 672                             int *new_l2_index)
 673{
 674    BDRVQcow2State *s = bs->opaque;
 675    unsigned int l2_index;
 676    uint64_t l1_index, l2_offset;
 677    uint64_t *l2_slice = NULL;
 678    int ret;
 679
 680    /* seek to the l2 offset in the l1 table */
 681
 682    l1_index = offset_to_l1_index(s, offset);
 683    if (l1_index >= s->l1_size) {
 684        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 685        if (ret < 0) {
 686            return ret;
 687        }
 688    }
 689
 690    assert(l1_index < s->l1_size);
 691    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 692    if (offset_into_cluster(s, l2_offset)) {
 693        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 694                                " unaligned (L1 index: %#" PRIx64 ")",
 695                                l2_offset, l1_index);
 696        return -EIO;
 697    }
 698
 699    if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
 700        /* First allocate a new L2 table (and do COW if needed) */
 701        ret = l2_allocate(bs, l1_index);
 702        if (ret < 0) {
 703            return ret;
 704        }
 705
 706        /* Then decrease the refcount of the old table */
 707        if (l2_offset) {
 708            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 709                                QCOW2_DISCARD_OTHER);
 710        }
 711
 712        /* Get the offset of the newly-allocated l2 table */
 713        l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 714        assert(offset_into_cluster(s, l2_offset) == 0);
 715    }
 716
 717    /* load the l2 slice in memory */
 718    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 719    if (ret < 0) {
 720        return ret;
 721    }
 722
 723    /* find the cluster offset for the given disk offset */
 724
 725    l2_index = offset_to_l2_slice_index(s, offset);
 726
 727    *new_l2_slice = l2_slice;
 728    *new_l2_index = l2_index;
 729
 730    return 0;
 731}
 732
 733/*
 734 * alloc_compressed_cluster_offset
 735 *
 736 * For a given offset on the virtual disk, allocate a new compressed cluster
 737 * and put the host offset of the cluster into *host_offset. If a cluster is
 738 * already allocated at the offset, return an error.
 739 *
 740 * Return 0 on success and -errno in error cases
 741 */
 742int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 743                                          uint64_t offset,
 744                                          int compressed_size,
 745                                          uint64_t *host_offset)
 746{
 747    BDRVQcow2State *s = bs->opaque;
 748    int l2_index, ret;
 749    uint64_t *l2_slice;
 750    int64_t cluster_offset;
 751    int nb_csectors;
 752
 753    if (has_data_file(bs)) {
 754        return 0;
 755    }
 756
 757    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
 758    if (ret < 0) {
 759        return ret;
 760    }
 761
 762    /* Compression can't overwrite anything. Fail if the cluster was already
 763     * allocated. */
 764    cluster_offset = be64_to_cpu(l2_slice[l2_index]);
 765    if (cluster_offset & L2E_OFFSET_MASK) {
 766        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 767        return -EIO;
 768    }
 769
 770    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 771    if (cluster_offset < 0) {
 772        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 773        return cluster_offset;
 774    }
 775
 776    nb_csectors =
 777        (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
 778        (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
 779
 780    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 781                      ((uint64_t)nb_csectors << s->csize_shift);
 782
 783    /* update L2 table */
 784
 785    /* compressed clusters never have the copied flag */
 786
 787    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 788    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 789    l2_slice[l2_index] = cpu_to_be64(cluster_offset);
 790    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 791
 792    *host_offset = cluster_offset & s->cluster_offset_mask;
 793    return 0;
 794}
 795
 796static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
 797{
 798    BDRVQcow2State *s = bs->opaque;
 799    Qcow2COWRegion *start = &m->cow_start;
 800    Qcow2COWRegion *end = &m->cow_end;
 801    unsigned buffer_size;
 802    unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
 803    bool merge_reads;
 804    uint8_t *start_buffer, *end_buffer;
 805    QEMUIOVector qiov;
 806    int ret;
 807
 808    assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
 809    assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
 810    assert(start->offset + start->nb_bytes <= end->offset);
 811
 812    if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
 813        return 0;
 814    }
 815
 816    /* If we have to read both the start and end COW regions and the
 817     * middle region is not too large then perform just one read
 818     * operation */
 819    merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
 820    if (merge_reads) {
 821        buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
 822    } else {
 823        /* If we have to do two reads, add some padding in the middle
 824         * if necessary to make sure that the end region is optimally
 825         * aligned. */
 826        size_t align = bdrv_opt_mem_align(bs);
 827        assert(align > 0 && align <= UINT_MAX);
 828        assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
 829               UINT_MAX - end->nb_bytes);
 830        buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
 831    }
 832
 833    /* Reserve a buffer large enough to store all the data that we're
 834     * going to read */
 835    start_buffer = qemu_try_blockalign(bs, buffer_size);
 836    if (start_buffer == NULL) {
 837        return -ENOMEM;
 838    }
 839    /* The part of the buffer where the end region is located */
 840    end_buffer = start_buffer + buffer_size - end->nb_bytes;
 841
 842    qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
 843                                qemu_iovec_subvec_niov(m->data_qiov,
 844                                                       m->data_qiov_offset,
 845                                                       data_bytes)
 846                                : 0));
 847
 848    qemu_co_mutex_unlock(&s->lock);
 849    /* First we read the existing data from both COW regions. We
 850     * either read the whole region in one go, or the start and end
 851     * regions separately. */
 852    if (merge_reads) {
 853        qemu_iovec_add(&qiov, start_buffer, buffer_size);
 854        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 855    } else {
 856        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 857        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 858        if (ret < 0) {
 859            goto fail;
 860        }
 861
 862        qemu_iovec_reset(&qiov);
 863        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 864        ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
 865    }
 866    if (ret < 0) {
 867        goto fail;
 868    }
 869
 870    /* Encrypt the data if necessary before writing it */
 871    if (bs->encrypted) {
 872        ret = qcow2_co_encrypt(bs,
 873                               m->alloc_offset + start->offset,
 874                               m->offset + start->offset,
 875                               start_buffer, start->nb_bytes);
 876        if (ret < 0) {
 877            goto fail;
 878        }
 879
 880        ret = qcow2_co_encrypt(bs,
 881                               m->alloc_offset + end->offset,
 882                               m->offset + end->offset,
 883                               end_buffer, end->nb_bytes);
 884        if (ret < 0) {
 885            goto fail;
 886        }
 887    }
 888
 889    /* And now we can write everything. If we have the guest data we
 890     * can write everything in one single operation */
 891    if (m->data_qiov) {
 892        qemu_iovec_reset(&qiov);
 893        if (start->nb_bytes) {
 894            qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 895        }
 896        qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
 897        if (end->nb_bytes) {
 898            qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 899        }
 900        /* NOTE: we have a write_aio blkdebug event here followed by
 901         * a cow_write one in do_perform_cow_write(), but there's only
 902         * one single I/O operation */
 903        BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
 904        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 905    } else {
 906        /* If there's no guest data then write both COW regions separately */
 907        qemu_iovec_reset(&qiov);
 908        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 909        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 910        if (ret < 0) {
 911            goto fail;
 912        }
 913
 914        qemu_iovec_reset(&qiov);
 915        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 916        ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
 917    }
 918
 919fail:
 920    qemu_co_mutex_lock(&s->lock);
 921
 922    /*
 923     * Before we update the L2 table to actually point to the new cluster, we
 924     * need to be sure that the refcounts have been increased and COW was
 925     * handled.
 926     */
 927    if (ret == 0) {
 928        qcow2_cache_depends_on_flush(s->l2_table_cache);
 929    }
 930
 931    qemu_vfree(start_buffer);
 932    qemu_iovec_destroy(&qiov);
 933    return ret;
 934}
 935
 936int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
 937{
 938    BDRVQcow2State *s = bs->opaque;
 939    int i, j = 0, l2_index, ret;
 940    uint64_t *old_cluster, *l2_slice;
 941    uint64_t cluster_offset = m->alloc_offset;
 942
 943    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
 944    assert(m->nb_clusters > 0);
 945
 946    old_cluster = g_try_new(uint64_t, m->nb_clusters);
 947    if (old_cluster == NULL) {
 948        ret = -ENOMEM;
 949        goto err;
 950    }
 951
 952    /* copy content of unmodified sectors */
 953    ret = perform_cow(bs, m);
 954    if (ret < 0) {
 955        goto err;
 956    }
 957
 958    /* Update L2 table. */
 959    if (s->use_lazy_refcounts) {
 960        qcow2_mark_dirty(bs);
 961    }
 962    if (qcow2_need_accurate_refcounts(s)) {
 963        qcow2_cache_set_dependency(bs, s->l2_table_cache,
 964                                   s->refcount_block_cache);
 965    }
 966
 967    ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
 968    if (ret < 0) {
 969        goto err;
 970    }
 971    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 972
 973    assert(l2_index + m->nb_clusters <= s->l2_slice_size);
 974    for (i = 0; i < m->nb_clusters; i++) {
 975        /* if two concurrent writes happen to the same unallocated cluster
 976         * each write allocates separate cluster and writes data concurrently.
 977         * The first one to complete updates l2 table with pointer to its
 978         * cluster the second one has to do RMW (which is done above by
 979         * perform_cow()), update l2 table with its cluster pointer and free
 980         * old cluster. This is what this loop does */
 981        if (l2_slice[l2_index + i] != 0) {
 982            old_cluster[j++] = l2_slice[l2_index + i];
 983        }
 984
 985        l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
 986                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
 987     }
 988
 989
 990    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 991
 992    /*
 993     * If this was a COW, we need to decrease the refcount of the old cluster.
 994     *
 995     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
 996     * clusters), the next write will reuse them anyway.
 997     */
 998    if (!m->keep_old_clusters && j != 0) {
 999        for (i = 0; i < j; i++) {
1000            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1001                                    QCOW2_DISCARD_NEVER);
1002        }
1003    }
1004
1005    ret = 0;
1006err:
1007    g_free(old_cluster);
1008    return ret;
1009 }
1010
1011/**
1012 * Frees the allocated clusters because the request failed and they won't
1013 * actually be linked.
1014 */
1015void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1016{
1017    BDRVQcow2State *s = bs->opaque;
1018    if (!has_data_file(bs) && !m->keep_old_clusters) {
1019        qcow2_free_clusters(bs, m->alloc_offset,
1020                            m->nb_clusters << s->cluster_bits,
1021                            QCOW2_DISCARD_NEVER);
1022    }
1023}
1024
1025/*
1026 * Returns the number of contiguous clusters that can be used for an allocating
1027 * write, but require COW to be performed (this includes yet unallocated space,
1028 * which must copy from the backing file)
1029 */
1030static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1031    uint64_t *l2_slice, int l2_index)
1032{
1033    int i;
1034
1035    for (i = 0; i < nb_clusters; i++) {
1036        uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1037        QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1038
1039        switch(cluster_type) {
1040        case QCOW2_CLUSTER_NORMAL:
1041            if (l2_entry & QCOW_OFLAG_COPIED) {
1042                goto out;
1043            }
1044            break;
1045        case QCOW2_CLUSTER_UNALLOCATED:
1046        case QCOW2_CLUSTER_COMPRESSED:
1047        case QCOW2_CLUSTER_ZERO_PLAIN:
1048        case QCOW2_CLUSTER_ZERO_ALLOC:
1049            break;
1050        default:
1051            abort();
1052        }
1053    }
1054
1055out:
1056    assert(i <= nb_clusters);
1057    return i;
1058}
1059
1060/*
1061 * Check if there already is an AIO write request in flight which allocates
1062 * the same cluster. In this case we need to wait until the previous
1063 * request has completed and updated the L2 table accordingly.
1064 *
1065 * Returns:
1066 *   0       if there was no dependency. *cur_bytes indicates the number of
1067 *           bytes from guest_offset that can be read before the next
1068 *           dependency must be processed (or the request is complete)
1069 *
1070 *   -EAGAIN if we had to wait for another request, previously gathered
1071 *           information on cluster allocation may be invalid now. The caller
1072 *           must start over anyway, so consider *cur_bytes undefined.
1073 */
1074static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1075    uint64_t *cur_bytes, QCowL2Meta **m)
1076{
1077    BDRVQcow2State *s = bs->opaque;
1078    QCowL2Meta *old_alloc;
1079    uint64_t bytes = *cur_bytes;
1080
1081    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1082
1083        uint64_t start = guest_offset;
1084        uint64_t end = start + bytes;
1085        uint64_t old_start = l2meta_cow_start(old_alloc);
1086        uint64_t old_end = l2meta_cow_end(old_alloc);
1087
1088        if (end <= old_start || start >= old_end) {
1089            /* No intersection */
1090        } else {
1091            if (start < old_start) {
1092                /* Stop at the start of a running allocation */
1093                bytes = old_start - start;
1094            } else {
1095                bytes = 0;
1096            }
1097
1098            /* Stop if already an l2meta exists. After yielding, it wouldn't
1099             * be valid any more, so we'd have to clean up the old L2Metas
1100             * and deal with requests depending on them before starting to
1101             * gather new ones. Not worth the trouble. */
1102            if (bytes == 0 && *m) {
1103                *cur_bytes = 0;
1104                return 0;
1105            }
1106
1107            if (bytes == 0) {
1108                /* Wait for the dependency to complete. We need to recheck
1109                 * the free/allocated clusters when we continue. */
1110                qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1111                return -EAGAIN;
1112            }
1113        }
1114    }
1115
1116    /* Make sure that existing clusters and new allocations are only used up to
1117     * the next dependency if we shortened the request above */
1118    *cur_bytes = bytes;
1119
1120    return 0;
1121}
1122
1123/*
1124 * Checks how many already allocated clusters that don't require a copy on
1125 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1126 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1127 * offset are counted.
1128 *
1129 * Note that guest_offset may not be cluster aligned. In this case, the
1130 * returned *host_offset points to exact byte referenced by guest_offset and
1131 * therefore isn't cluster aligned as well.
1132 *
1133 * Returns:
1134 *   0:     if no allocated clusters are available at the given offset.
1135 *          *bytes is normally unchanged. It is set to 0 if the cluster
1136 *          is allocated and doesn't need COW, but doesn't have the right
1137 *          physical offset.
1138 *
1139 *   1:     if allocated clusters that don't require a COW are available at
1140 *          the requested offset. *bytes may have decreased and describes
1141 *          the length of the area that can be written to.
1142 *
1143 *  -errno: in error cases
1144 */
1145static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1146    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1147{
1148    BDRVQcow2State *s = bs->opaque;
1149    int l2_index;
1150    uint64_t cluster_offset;
1151    uint64_t *l2_slice;
1152    uint64_t nb_clusters;
1153    unsigned int keep_clusters;
1154    int ret;
1155
1156    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1157                              *bytes);
1158
1159    assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1160                                      == offset_into_cluster(s, *host_offset));
1161
1162    /*
1163     * Calculate the number of clusters to look for. We stop at L2 slice
1164     * boundaries to keep things simple.
1165     */
1166    nb_clusters =
1167        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1168
1169    l2_index = offset_to_l2_slice_index(s, guest_offset);
1170    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1171    assert(nb_clusters <= INT_MAX);
1172
1173    /* Find L2 entry for the first involved cluster */
1174    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1175    if (ret < 0) {
1176        return ret;
1177    }
1178
1179    cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1180
1181    /* Check how many clusters are already allocated and don't need COW */
1182    if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1183        && (cluster_offset & QCOW_OFLAG_COPIED))
1184    {
1185        /* If a specific host_offset is required, check it */
1186        bool offset_matches =
1187            (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1188
1189        if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1190            qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1191                                    "%#llx unaligned (guest offset: %#" PRIx64
1192                                    ")", cluster_offset & L2E_OFFSET_MASK,
1193                                    guest_offset);
1194            ret = -EIO;
1195            goto out;
1196        }
1197
1198        if (*host_offset != INV_OFFSET && !offset_matches) {
1199            *bytes = 0;
1200            ret = 0;
1201            goto out;
1202        }
1203
1204        /* We keep all QCOW_OFLAG_COPIED clusters */
1205        keep_clusters =
1206            count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1207                                      &l2_slice[l2_index],
1208                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1209        assert(keep_clusters <= nb_clusters);
1210
1211        *bytes = MIN(*bytes,
1212                 keep_clusters * s->cluster_size
1213                 - offset_into_cluster(s, guest_offset));
1214
1215        ret = 1;
1216    } else {
1217        ret = 0;
1218    }
1219
1220    /* Cleanup */
1221out:
1222    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1223
1224    /* Only return a host offset if we actually made progress. Otherwise we
1225     * would make requirements for handle_alloc() that it can't fulfill */
1226    if (ret > 0) {
1227        *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1228                     + offset_into_cluster(s, guest_offset);
1229    }
1230
1231    return ret;
1232}
1233
1234/*
1235 * Allocates new clusters for the given guest_offset.
1236 *
1237 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1238 * contain the number of clusters that have been allocated and are contiguous
1239 * in the image file.
1240 *
1241 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1242 * at which the new clusters must start. *nb_clusters can be 0 on return in
1243 * this case if the cluster at host_offset is already in use. If *host_offset
1244 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1245 *
1246 * *host_offset is updated to contain the offset into the image file at which
1247 * the first allocated cluster starts.
1248 *
1249 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1250 * function has been waiting for another request and the allocation must be
1251 * restarted, but the whole request should not be failed.
1252 */
1253static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1254                                   uint64_t *host_offset, uint64_t *nb_clusters)
1255{
1256    BDRVQcow2State *s = bs->opaque;
1257
1258    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1259                                         *host_offset, *nb_clusters);
1260
1261    if (has_data_file(bs)) {
1262        assert(*host_offset == INV_OFFSET ||
1263               *host_offset == start_of_cluster(s, guest_offset));
1264        *host_offset = start_of_cluster(s, guest_offset);
1265        return 0;
1266    }
1267
1268    /* Allocate new clusters */
1269    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1270    if (*host_offset == INV_OFFSET) {
1271        int64_t cluster_offset =
1272            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1273        if (cluster_offset < 0) {
1274            return cluster_offset;
1275        }
1276        *host_offset = cluster_offset;
1277        return 0;
1278    } else {
1279        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1280        if (ret < 0) {
1281            return ret;
1282        }
1283        *nb_clusters = ret;
1284        return 0;
1285    }
1286}
1287
1288/*
1289 * Allocates new clusters for an area that either is yet unallocated or needs a
1290 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1291 * allocated if the new allocation can match the specified host offset.
1292 *
1293 * Note that guest_offset may not be cluster aligned. In this case, the
1294 * returned *host_offset points to exact byte referenced by guest_offset and
1295 * therefore isn't cluster aligned as well.
1296 *
1297 * Returns:
1298 *   0:     if no clusters could be allocated. *bytes is set to 0,
1299 *          *host_offset is left unchanged.
1300 *
1301 *   1:     if new clusters were allocated. *bytes may be decreased if the
1302 *          new allocation doesn't cover all of the requested area.
1303 *          *host_offset is updated to contain the host offset of the first
1304 *          newly allocated cluster.
1305 *
1306 *  -errno: in error cases
1307 */
1308static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1309    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1310{
1311    BDRVQcow2State *s = bs->opaque;
1312    int l2_index;
1313    uint64_t *l2_slice;
1314    uint64_t entry;
1315    uint64_t nb_clusters;
1316    int ret;
1317    bool keep_old_clusters = false;
1318
1319    uint64_t alloc_cluster_offset = INV_OFFSET;
1320
1321    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1322                             *bytes);
1323    assert(*bytes > 0);
1324
1325    /*
1326     * Calculate the number of clusters to look for. We stop at L2 slice
1327     * boundaries to keep things simple.
1328     */
1329    nb_clusters =
1330        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1331
1332    l2_index = offset_to_l2_slice_index(s, guest_offset);
1333    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1334    assert(nb_clusters <= INT_MAX);
1335
1336    /* Limit total allocation byte count to INT_MAX */
1337    nb_clusters = MIN(nb_clusters, INT_MAX >> s->cluster_bits);
1338
1339    /* Find L2 entry for the first involved cluster */
1340    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1341    if (ret < 0) {
1342        return ret;
1343    }
1344
1345    entry = be64_to_cpu(l2_slice[l2_index]);
1346    nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1347
1348    /* This function is only called when there were no non-COW clusters, so if
1349     * we can't find any unallocated or COW clusters either, something is
1350     * wrong with our code. */
1351    assert(nb_clusters > 0);
1352
1353    if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1354        (entry & QCOW_OFLAG_COPIED) &&
1355        (*host_offset == INV_OFFSET ||
1356         start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1357    {
1358        int preallocated_nb_clusters;
1359
1360        if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1361            qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1362                                    "cluster offset %#llx unaligned (guest "
1363                                    "offset: %#" PRIx64 ")",
1364                                    entry & L2E_OFFSET_MASK, guest_offset);
1365            ret = -EIO;
1366            goto fail;
1367        }
1368
1369        /* Try to reuse preallocated zero clusters; contiguous normal clusters
1370         * would be fine, too, but count_cow_clusters() above has limited
1371         * nb_clusters already to a range of COW clusters */
1372        preallocated_nb_clusters =
1373            count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1374                                      &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1375        assert(preallocated_nb_clusters > 0);
1376
1377        nb_clusters = preallocated_nb_clusters;
1378        alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1379
1380        /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1381         * should not free them. */
1382        keep_old_clusters = true;
1383    }
1384
1385    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1386
1387    if (alloc_cluster_offset == INV_OFFSET) {
1388        /* Allocate, if necessary at a given offset in the image file */
1389        alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1390                               start_of_cluster(s, *host_offset);
1391        ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1392                                      &nb_clusters);
1393        if (ret < 0) {
1394            goto fail;
1395        }
1396
1397        /* Can't extend contiguous allocation */
1398        if (nb_clusters == 0) {
1399            *bytes = 0;
1400            return 0;
1401        }
1402
1403        assert(alloc_cluster_offset != INV_OFFSET);
1404    }
1405
1406    /*
1407     * Save info needed for meta data update.
1408     *
1409     * requested_bytes: Number of bytes from the start of the first
1410     * newly allocated cluster to the end of the (possibly shortened
1411     * before) write request.
1412     *
1413     * avail_bytes: Number of bytes from the start of the first
1414     * newly allocated to the end of the last newly allocated cluster.
1415     *
1416     * nb_bytes: The number of bytes from the start of the first
1417     * newly allocated cluster to the end of the area that the write
1418     * request actually writes to (excluding COW at the end)
1419     */
1420    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1421    int avail_bytes = nb_clusters << s->cluster_bits;
1422    int nb_bytes = MIN(requested_bytes, avail_bytes);
1423    QCowL2Meta *old_m = *m;
1424
1425    *m = g_malloc0(sizeof(**m));
1426
1427    **m = (QCowL2Meta) {
1428        .next           = old_m,
1429
1430        .alloc_offset   = alloc_cluster_offset,
1431        .offset         = start_of_cluster(s, guest_offset),
1432        .nb_clusters    = nb_clusters,
1433
1434        .keep_old_clusters  = keep_old_clusters,
1435
1436        .cow_start = {
1437            .offset     = 0,
1438            .nb_bytes   = offset_into_cluster(s, guest_offset),
1439        },
1440        .cow_end = {
1441            .offset     = nb_bytes,
1442            .nb_bytes   = avail_bytes - nb_bytes,
1443        },
1444    };
1445    qemu_co_queue_init(&(*m)->dependent_requests);
1446    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1447
1448    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1449    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1450    assert(*bytes != 0);
1451
1452    return 1;
1453
1454fail:
1455    if (*m && (*m)->nb_clusters > 0) {
1456        QLIST_REMOVE(*m, next_in_flight);
1457    }
1458    return ret;
1459}
1460
1461/*
1462 * alloc_cluster_offset
1463 *
1464 * For a given offset on the virtual disk, find the cluster offset in qcow2
1465 * file. If the offset is not found, allocate a new cluster.
1466 *
1467 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1468 * other fields in m are meaningless.
1469 *
1470 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1471 * contiguous clusters that have been allocated. In this case, the other
1472 * fields of m are valid and contain information about the first allocated
1473 * cluster.
1474 *
1475 * If the request conflicts with another write request in flight, the coroutine
1476 * is queued and will be reentered when the dependency has completed.
1477 *
1478 * Return 0 on success and -errno in error cases
1479 */
1480int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1481                               unsigned int *bytes, uint64_t *host_offset,
1482                               QCowL2Meta **m)
1483{
1484    BDRVQcow2State *s = bs->opaque;
1485    uint64_t start, remaining;
1486    uint64_t cluster_offset;
1487    uint64_t cur_bytes;
1488    int ret;
1489
1490    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1491
1492again:
1493    start = offset;
1494    remaining = *bytes;
1495    cluster_offset = INV_OFFSET;
1496    *host_offset = INV_OFFSET;
1497    cur_bytes = 0;
1498    *m = NULL;
1499
1500    while (true) {
1501
1502        if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1503            *host_offset = start_of_cluster(s, cluster_offset);
1504        }
1505
1506        assert(remaining >= cur_bytes);
1507
1508        start           += cur_bytes;
1509        remaining       -= cur_bytes;
1510
1511        if (cluster_offset != INV_OFFSET) {
1512            cluster_offset += cur_bytes;
1513        }
1514
1515        if (remaining == 0) {
1516            break;
1517        }
1518
1519        cur_bytes = remaining;
1520
1521        /*
1522         * Now start gathering as many contiguous clusters as possible:
1523         *
1524         * 1. Check for overlaps with in-flight allocations
1525         *
1526         *      a) Overlap not in the first cluster -> shorten this request and
1527         *         let the caller handle the rest in its next loop iteration.
1528         *
1529         *      b) Real overlaps of two requests. Yield and restart the search
1530         *         for contiguous clusters (the situation could have changed
1531         *         while we were sleeping)
1532         *
1533         *      c) TODO: Request starts in the same cluster as the in-flight
1534         *         allocation ends. Shorten the COW of the in-fight allocation,
1535         *         set cluster_offset to write to the same cluster and set up
1536         *         the right synchronisation between the in-flight request and
1537         *         the new one.
1538         */
1539        ret = handle_dependencies(bs, start, &cur_bytes, m);
1540        if (ret == -EAGAIN) {
1541            /* Currently handle_dependencies() doesn't yield if we already had
1542             * an allocation. If it did, we would have to clean up the L2Meta
1543             * structs before starting over. */
1544            assert(*m == NULL);
1545            goto again;
1546        } else if (ret < 0) {
1547            return ret;
1548        } else if (cur_bytes == 0) {
1549            break;
1550        } else {
1551            /* handle_dependencies() may have decreased cur_bytes (shortened
1552             * the allocations below) so that the next dependency is processed
1553             * correctly during the next loop iteration. */
1554        }
1555
1556        /*
1557         * 2. Count contiguous COPIED clusters.
1558         */
1559        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1560        if (ret < 0) {
1561            return ret;
1562        } else if (ret) {
1563            continue;
1564        } else if (cur_bytes == 0) {
1565            break;
1566        }
1567
1568        /*
1569         * 3. If the request still hasn't completed, allocate new clusters,
1570         *    considering any cluster_offset of steps 1c or 2.
1571         */
1572        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1573        if (ret < 0) {
1574            return ret;
1575        } else if (ret) {
1576            continue;
1577        } else {
1578            assert(cur_bytes == 0);
1579            break;
1580        }
1581    }
1582
1583    *bytes -= remaining;
1584    assert(*bytes > 0);
1585    assert(*host_offset != INV_OFFSET);
1586
1587    return 0;
1588}
1589
1590/*
1591 * This discards as many clusters of nb_clusters as possible at once (i.e.
1592 * all clusters in the same L2 slice) and returns the number of discarded
1593 * clusters.
1594 */
1595static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1596                               uint64_t nb_clusters,
1597                               enum qcow2_discard_type type, bool full_discard)
1598{
1599    BDRVQcow2State *s = bs->opaque;
1600    uint64_t *l2_slice;
1601    int l2_index;
1602    int ret;
1603    int i;
1604
1605    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1606    if (ret < 0) {
1607        return ret;
1608    }
1609
1610    /* Limit nb_clusters to one L2 slice */
1611    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1612    assert(nb_clusters <= INT_MAX);
1613
1614    for (i = 0; i < nb_clusters; i++) {
1615        uint64_t old_l2_entry;
1616
1617        old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1618
1619        /*
1620         * If full_discard is false, make sure that a discarded area reads back
1621         * as zeroes for v3 images (we cannot do it for v2 without actually
1622         * writing a zero-filled buffer). We can skip the operation if the
1623         * cluster is already marked as zero, or if it's unallocated and we
1624         * don't have a backing file.
1625         *
1626         * TODO We might want to use bdrv_block_status(bs) here, but we're
1627         * holding s->lock, so that doesn't work today.
1628         *
1629         * If full_discard is true, the sector should not read back as zeroes,
1630         * but rather fall through to the backing file.
1631         */
1632        switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1633        case QCOW2_CLUSTER_UNALLOCATED:
1634            if (full_discard || !bs->backing) {
1635                continue;
1636            }
1637            break;
1638
1639        case QCOW2_CLUSTER_ZERO_PLAIN:
1640            if (!full_discard) {
1641                continue;
1642            }
1643            break;
1644
1645        case QCOW2_CLUSTER_ZERO_ALLOC:
1646        case QCOW2_CLUSTER_NORMAL:
1647        case QCOW2_CLUSTER_COMPRESSED:
1648            break;
1649
1650        default:
1651            abort();
1652        }
1653
1654        /* First remove L2 entries */
1655        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1656        if (!full_discard && s->qcow_version >= 3) {
1657            l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1658        } else {
1659            l2_slice[l2_index + i] = cpu_to_be64(0);
1660        }
1661
1662        /* Then decrease the refcount */
1663        qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1664    }
1665
1666    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1667
1668    return nb_clusters;
1669}
1670
1671int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1672                          uint64_t bytes, enum qcow2_discard_type type,
1673                          bool full_discard)
1674{
1675    BDRVQcow2State *s = bs->opaque;
1676    uint64_t end_offset = offset + bytes;
1677    uint64_t nb_clusters;
1678    int64_t cleared;
1679    int ret;
1680
1681    /* Caller must pass aligned values, except at image end */
1682    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1683    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1684           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1685
1686    nb_clusters = size_to_clusters(s, bytes);
1687
1688    s->cache_discards = true;
1689
1690    /* Each L2 slice is handled by its own loop iteration */
1691    while (nb_clusters > 0) {
1692        cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1693                                      full_discard);
1694        if (cleared < 0) {
1695            ret = cleared;
1696            goto fail;
1697        }
1698
1699        nb_clusters -= cleared;
1700        offset += (cleared * s->cluster_size);
1701    }
1702
1703    ret = 0;
1704fail:
1705    s->cache_discards = false;
1706    qcow2_process_discards(bs, ret);
1707
1708    return ret;
1709}
1710
1711/*
1712 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1713 * all clusters in the same L2 slice) and returns the number of zeroed
1714 * clusters.
1715 */
1716static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1717                            uint64_t nb_clusters, int flags)
1718{
1719    BDRVQcow2State *s = bs->opaque;
1720    uint64_t *l2_slice;
1721    int l2_index;
1722    int ret;
1723    int i;
1724    bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1725
1726    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1727    if (ret < 0) {
1728        return ret;
1729    }
1730
1731    /* Limit nb_clusters to one L2 slice */
1732    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1733    assert(nb_clusters <= INT_MAX);
1734
1735    for (i = 0; i < nb_clusters; i++) {
1736        uint64_t old_offset;
1737        QCow2ClusterType cluster_type;
1738
1739        old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1740
1741        /*
1742         * Minimize L2 changes if the cluster already reads back as
1743         * zeroes with correct allocation.
1744         */
1745        cluster_type = qcow2_get_cluster_type(bs, old_offset);
1746        if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1747            (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1748            continue;
1749        }
1750
1751        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1752        if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1753            l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1754            qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1755        } else {
1756            l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1757        }
1758    }
1759
1760    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1761
1762    return nb_clusters;
1763}
1764
1765int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1766                          uint64_t bytes, int flags)
1767{
1768    BDRVQcow2State *s = bs->opaque;
1769    uint64_t end_offset = offset + bytes;
1770    uint64_t nb_clusters;
1771    int64_t cleared;
1772    int ret;
1773
1774    /* If we have to stay in sync with an external data file, zero out
1775     * s->data_file first. */
1776    if (data_file_is_raw(bs)) {
1777        assert(has_data_file(bs));
1778        ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1779        if (ret < 0) {
1780            return ret;
1781        }
1782    }
1783
1784    /* Caller must pass aligned values, except at image end */
1785    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1786    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1787           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1788
1789    /* The zero flag is only supported by version 3 and newer */
1790    if (s->qcow_version < 3) {
1791        return -ENOTSUP;
1792    }
1793
1794    /* Each L2 slice is handled by its own loop iteration */
1795    nb_clusters = size_to_clusters(s, bytes);
1796
1797    s->cache_discards = true;
1798
1799    while (nb_clusters > 0) {
1800        cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1801        if (cleared < 0) {
1802            ret = cleared;
1803            goto fail;
1804        }
1805
1806        nb_clusters -= cleared;
1807        offset += (cleared * s->cluster_size);
1808    }
1809
1810    ret = 0;
1811fail:
1812    s->cache_discards = false;
1813    qcow2_process_discards(bs, ret);
1814
1815    return ret;
1816}
1817
1818/*
1819 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1820 * non-backed non-pre-allocated zero clusters).
1821 *
1822 * l1_entries and *visited_l1_entries are used to keep track of progress for
1823 * status_cb(). l1_entries contains the total number of L1 entries and
1824 * *visited_l1_entries counts all visited L1 entries.
1825 */
1826static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1827                                      int l1_size, int64_t *visited_l1_entries,
1828                                      int64_t l1_entries,
1829                                      BlockDriverAmendStatusCB *status_cb,
1830                                      void *cb_opaque)
1831{
1832    BDRVQcow2State *s = bs->opaque;
1833    bool is_active_l1 = (l1_table == s->l1_table);
1834    uint64_t *l2_slice = NULL;
1835    unsigned slice, slice_size2, n_slices;
1836    int ret;
1837    int i, j;
1838
1839    slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1840    n_slices = s->cluster_size / slice_size2;
1841
1842    if (!is_active_l1) {
1843        /* inactive L2 tables require a buffer to be stored in when loading
1844         * them from disk */
1845        l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1846        if (l2_slice == NULL) {
1847            return -ENOMEM;
1848        }
1849    }
1850
1851    for (i = 0; i < l1_size; i++) {
1852        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1853        uint64_t l2_refcount;
1854
1855        if (!l2_offset) {
1856            /* unallocated */
1857            (*visited_l1_entries)++;
1858            if (status_cb) {
1859                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1860            }
1861            continue;
1862        }
1863
1864        if (offset_into_cluster(s, l2_offset)) {
1865            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1866                                    PRIx64 " unaligned (L1 index: %#x)",
1867                                    l2_offset, i);
1868            ret = -EIO;
1869            goto fail;
1870        }
1871
1872        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1873                                 &l2_refcount);
1874        if (ret < 0) {
1875            goto fail;
1876        }
1877
1878        for (slice = 0; slice < n_slices; slice++) {
1879            uint64_t slice_offset = l2_offset + slice * slice_size2;
1880            bool l2_dirty = false;
1881            if (is_active_l1) {
1882                /* get active L2 tables from cache */
1883                ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1884                                      (void **)&l2_slice);
1885            } else {
1886                /* load inactive L2 tables from disk */
1887                ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1888            }
1889            if (ret < 0) {
1890                goto fail;
1891            }
1892
1893            for (j = 0; j < s->l2_slice_size; j++) {
1894                uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1895                int64_t offset = l2_entry & L2E_OFFSET_MASK;
1896                QCow2ClusterType cluster_type =
1897                    qcow2_get_cluster_type(bs, l2_entry);
1898
1899                if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1900                    cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1901                    continue;
1902                }
1903
1904                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1905                    if (!bs->backing) {
1906                        /* not backed; therefore we can simply deallocate the
1907                         * cluster */
1908                        l2_slice[j] = 0;
1909                        l2_dirty = true;
1910                        continue;
1911                    }
1912
1913                    offset = qcow2_alloc_clusters(bs, s->cluster_size);
1914                    if (offset < 0) {
1915                        ret = offset;
1916                        goto fail;
1917                    }
1918
1919                    if (l2_refcount > 1) {
1920                        /* For shared L2 tables, set the refcount accordingly
1921                         * (it is already 1 and needs to be l2_refcount) */
1922                        ret = qcow2_update_cluster_refcount(
1923                            bs, offset >> s->cluster_bits,
1924                            refcount_diff(1, l2_refcount), false,
1925                            QCOW2_DISCARD_OTHER);
1926                        if (ret < 0) {
1927                            qcow2_free_clusters(bs, offset, s->cluster_size,
1928                                                QCOW2_DISCARD_OTHER);
1929                            goto fail;
1930                        }
1931                    }
1932                }
1933
1934                if (offset_into_cluster(s, offset)) {
1935                    int l2_index = slice * s->l2_slice_size + j;
1936                    qcow2_signal_corruption(
1937                        bs, true, -1, -1,
1938                        "Cluster allocation offset "
1939                        "%#" PRIx64 " unaligned (L2 offset: %#"
1940                        PRIx64 ", L2 index: %#x)", offset,
1941                        l2_offset, l2_index);
1942                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1943                        qcow2_free_clusters(bs, offset, s->cluster_size,
1944                                            QCOW2_DISCARD_ALWAYS);
1945                    }
1946                    ret = -EIO;
1947                    goto fail;
1948                }
1949
1950                ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1951                                                    s->cluster_size, true);
1952                if (ret < 0) {
1953                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1954                        qcow2_free_clusters(bs, offset, s->cluster_size,
1955                                            QCOW2_DISCARD_ALWAYS);
1956                    }
1957                    goto fail;
1958                }
1959
1960                ret = bdrv_pwrite_zeroes(s->data_file, offset,
1961                                         s->cluster_size, 0);
1962                if (ret < 0) {
1963                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1964                        qcow2_free_clusters(bs, offset, s->cluster_size,
1965                                            QCOW2_DISCARD_ALWAYS);
1966                    }
1967                    goto fail;
1968                }
1969
1970                if (l2_refcount == 1) {
1971                    l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1972                } else {
1973                    l2_slice[j] = cpu_to_be64(offset);
1974                }
1975                l2_dirty = true;
1976            }
1977
1978            if (is_active_l1) {
1979                if (l2_dirty) {
1980                    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1981                    qcow2_cache_depends_on_flush(s->l2_table_cache);
1982                }
1983                qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1984            } else {
1985                if (l2_dirty) {
1986                    ret = qcow2_pre_write_overlap_check(
1987                        bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
1988                        slice_offset, slice_size2, false);
1989                    if (ret < 0) {
1990                        goto fail;
1991                    }
1992
1993                    ret = bdrv_pwrite(bs->file, slice_offset,
1994                                      l2_slice, slice_size2);
1995                    if (ret < 0) {
1996                        goto fail;
1997                    }
1998                }
1999            }
2000        }
2001
2002        (*visited_l1_entries)++;
2003        if (status_cb) {
2004            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2005        }
2006    }
2007
2008    ret = 0;
2009
2010fail:
2011    if (l2_slice) {
2012        if (!is_active_l1) {
2013            qemu_vfree(l2_slice);
2014        } else {
2015            qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2016        }
2017    }
2018    return ret;
2019}
2020
2021/*
2022 * For backed images, expands all zero clusters on the image. For non-backed
2023 * images, deallocates all non-pre-allocated zero clusters (and claims the
2024 * allocation for pre-allocated ones). This is important for downgrading to a
2025 * qcow2 version which doesn't yet support metadata zero clusters.
2026 */
2027int qcow2_expand_zero_clusters(BlockDriverState *bs,
2028                               BlockDriverAmendStatusCB *status_cb,
2029                               void *cb_opaque)
2030{
2031    BDRVQcow2State *s = bs->opaque;
2032    uint64_t *l1_table = NULL;
2033    int64_t l1_entries = 0, visited_l1_entries = 0;
2034    int ret;
2035    int i, j;
2036
2037    if (status_cb) {
2038        l1_entries = s->l1_size;
2039        for (i = 0; i < s->nb_snapshots; i++) {
2040            l1_entries += s->snapshots[i].l1_size;
2041        }
2042    }
2043
2044    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2045                                     &visited_l1_entries, l1_entries,
2046                                     status_cb, cb_opaque);
2047    if (ret < 0) {
2048        goto fail;
2049    }
2050
2051    /* Inactive L1 tables may point to active L2 tables - therefore it is
2052     * necessary to flush the L2 table cache before trying to access the L2
2053     * tables pointed to by inactive L1 entries (else we might try to expand
2054     * zero clusters that have already been expanded); furthermore, it is also
2055     * necessary to empty the L2 table cache, since it may contain tables which
2056     * are now going to be modified directly on disk, bypassing the cache.
2057     * qcow2_cache_empty() does both for us. */
2058    ret = qcow2_cache_empty(bs, s->l2_table_cache);
2059    if (ret < 0) {
2060        goto fail;
2061    }
2062
2063    for (i = 0; i < s->nb_snapshots; i++) {
2064        int l1_size2;
2065        uint64_t *new_l1_table;
2066        Error *local_err = NULL;
2067
2068        ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2069                                   s->snapshots[i].l1_size, sizeof(uint64_t),
2070                                   QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2071                                   &local_err);
2072        if (ret < 0) {
2073            error_report_err(local_err);
2074            goto fail;
2075        }
2076
2077        l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2078        new_l1_table = g_try_realloc(l1_table, l1_size2);
2079
2080        if (!new_l1_table) {
2081            ret = -ENOMEM;
2082            goto fail;
2083        }
2084
2085        l1_table = new_l1_table;
2086
2087        ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2088                         l1_table, l1_size2);
2089        if (ret < 0) {
2090            goto fail;
2091        }
2092
2093        for (j = 0; j < s->snapshots[i].l1_size; j++) {
2094            be64_to_cpus(&l1_table[j]);
2095        }
2096
2097        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2098                                         &visited_l1_entries, l1_entries,
2099                                         status_cb, cb_opaque);
2100        if (ret < 0) {
2101            goto fail;
2102        }
2103    }
2104
2105    ret = 0;
2106
2107fail:
2108    g_free(l1_table);
2109    return ret;
2110}
2111