qemu/hw/arm/omap1.c
<<
>>
Prefs
   1/*
   2 * TI OMAP processors emulation.
   3 *
   4 * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation; either version 2 or
   9 * (at your option) version 3 of the License.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/error-report.h"
  22#include "qemu/main-loop.h"
  23#include "qapi/error.h"
  24#include "qemu-common.h"
  25#include "cpu.h"
  26#include "exec/address-spaces.h"
  27#include "hw/boards.h"
  28#include "hw/hw.h"
  29#include "hw/irq.h"
  30#include "hw/qdev-properties.h"
  31#include "hw/arm/boot.h"
  32#include "hw/arm/omap.h"
  33#include "sysemu/blockdev.h"
  34#include "sysemu/sysemu.h"
  35#include "hw/arm/soc_dma.h"
  36#include "sysemu/qtest.h"
  37#include "sysemu/reset.h"
  38#include "sysemu/runstate.h"
  39#include "qemu/range.h"
  40#include "hw/sysbus.h"
  41#include "qemu/cutils.h"
  42#include "qemu/bcd.h"
  43
  44static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
  45{
  46    qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
  47                  funcname, 8 * sz, addr);
  48}
  49
  50/* Should signal the TCMI/GPMC */
  51uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
  52{
  53    uint8_t ret;
  54
  55    omap_log_badwidth(__func__, addr, 1);
  56    cpu_physical_memory_read(addr, &ret, 1);
  57    return ret;
  58}
  59
  60void omap_badwidth_write8(void *opaque, hwaddr addr,
  61                uint32_t value)
  62{
  63    uint8_t val8 = value;
  64
  65    omap_log_badwidth(__func__, addr, 1);
  66    cpu_physical_memory_write(addr, &val8, 1);
  67}
  68
  69uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
  70{
  71    uint16_t ret;
  72
  73    omap_log_badwidth(__func__, addr, 2);
  74    cpu_physical_memory_read(addr, &ret, 2);
  75    return ret;
  76}
  77
  78void omap_badwidth_write16(void *opaque, hwaddr addr,
  79                uint32_t value)
  80{
  81    uint16_t val16 = value;
  82
  83    omap_log_badwidth(__func__, addr, 2);
  84    cpu_physical_memory_write(addr, &val16, 2);
  85}
  86
  87uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
  88{
  89    uint32_t ret;
  90
  91    omap_log_badwidth(__func__, addr, 4);
  92    cpu_physical_memory_read(addr, &ret, 4);
  93    return ret;
  94}
  95
  96void omap_badwidth_write32(void *opaque, hwaddr addr,
  97                uint32_t value)
  98{
  99    omap_log_badwidth(__func__, addr, 4);
 100    cpu_physical_memory_write(addr, &value, 4);
 101}
 102
 103/* MPU OS timers */
 104struct omap_mpu_timer_s {
 105    MemoryRegion iomem;
 106    qemu_irq irq;
 107    omap_clk clk;
 108    uint32_t val;
 109    int64_t time;
 110    QEMUTimer *timer;
 111    QEMUBH *tick;
 112    int64_t rate;
 113    int it_ena;
 114
 115    int enable;
 116    int ptv;
 117    int ar;
 118    int st;
 119    uint32_t reset_val;
 120};
 121
 122static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
 123{
 124    uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
 125
 126    if (timer->st && timer->enable && timer->rate)
 127        return timer->val - muldiv64(distance >> (timer->ptv + 1),
 128                                     timer->rate, NANOSECONDS_PER_SECOND);
 129    else
 130        return timer->val;
 131}
 132
 133static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
 134{
 135    timer->val = omap_timer_read(timer);
 136    timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 137}
 138
 139static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
 140{
 141    int64_t expires;
 142
 143    if (timer->enable && timer->st && timer->rate) {
 144        timer->val = timer->reset_val;  /* Should skip this on clk enable */
 145        expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
 146                           NANOSECONDS_PER_SECOND, timer->rate);
 147
 148        /* If timer expiry would be sooner than in about 1 ms and
 149         * auto-reload isn't set, then fire immediately.  This is a hack
 150         * to make systems like PalmOS run in acceptable time.  PalmOS
 151         * sets the interval to a very low value and polls the status bit
 152         * in a busy loop when it wants to sleep just a couple of CPU
 153         * ticks.  */
 154        if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
 155            timer_mod(timer->timer, timer->time + expires);
 156        } else {
 157            qemu_bh_schedule(timer->tick);
 158        }
 159    } else
 160        timer_del(timer->timer);
 161}
 162
 163static void omap_timer_fire(void *opaque)
 164{
 165    struct omap_mpu_timer_s *timer = opaque;
 166
 167    if (!timer->ar) {
 168        timer->val = 0;
 169        timer->st = 0;
 170    }
 171
 172    if (timer->it_ena)
 173        /* Edge-triggered irq */
 174        qemu_irq_pulse(timer->irq);
 175}
 176
 177static void omap_timer_tick(void *opaque)
 178{
 179    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
 180
 181    omap_timer_sync(timer);
 182    omap_timer_fire(timer);
 183    omap_timer_update(timer);
 184}
 185
 186static void omap_timer_clk_update(void *opaque, int line, int on)
 187{
 188    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
 189
 190    omap_timer_sync(timer);
 191    timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
 192    omap_timer_update(timer);
 193}
 194
 195static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
 196{
 197    omap_clk_adduser(timer->clk,
 198                    qemu_allocate_irq(omap_timer_clk_update, timer, 0));
 199    timer->rate = omap_clk_getrate(timer->clk);
 200}
 201
 202static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
 203                                    unsigned size)
 204{
 205    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
 206
 207    if (size != 4) {
 208        return omap_badwidth_read32(opaque, addr);
 209    }
 210
 211    switch (addr) {
 212    case 0x00:  /* CNTL_TIMER */
 213        return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
 214
 215    case 0x04:  /* LOAD_TIM */
 216        break;
 217
 218    case 0x08:  /* READ_TIM */
 219        return omap_timer_read(s);
 220    }
 221
 222    OMAP_BAD_REG(addr);
 223    return 0;
 224}
 225
 226static void omap_mpu_timer_write(void *opaque, hwaddr addr,
 227                                 uint64_t value, unsigned size)
 228{
 229    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
 230
 231    if (size != 4) {
 232        omap_badwidth_write32(opaque, addr, value);
 233        return;
 234    }
 235
 236    switch (addr) {
 237    case 0x00:  /* CNTL_TIMER */
 238        omap_timer_sync(s);
 239        s->enable = (value >> 5) & 1;
 240        s->ptv = (value >> 2) & 7;
 241        s->ar = (value >> 1) & 1;
 242        s->st = value & 1;
 243        omap_timer_update(s);
 244        return;
 245
 246    case 0x04:  /* LOAD_TIM */
 247        s->reset_val = value;
 248        return;
 249
 250    case 0x08:  /* READ_TIM */
 251        OMAP_RO_REG(addr);
 252        break;
 253
 254    default:
 255        OMAP_BAD_REG(addr);
 256    }
 257}
 258
 259static const MemoryRegionOps omap_mpu_timer_ops = {
 260    .read = omap_mpu_timer_read,
 261    .write = omap_mpu_timer_write,
 262    .endianness = DEVICE_LITTLE_ENDIAN,
 263};
 264
 265static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
 266{
 267    timer_del(s->timer);
 268    s->enable = 0;
 269    s->reset_val = 31337;
 270    s->val = 0;
 271    s->ptv = 0;
 272    s->ar = 0;
 273    s->st = 0;
 274    s->it_ena = 1;
 275}
 276
 277static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
 278                hwaddr base,
 279                qemu_irq irq, omap_clk clk)
 280{
 281    struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
 282
 283    s->irq = irq;
 284    s->clk = clk;
 285    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
 286    s->tick = qemu_bh_new(omap_timer_fire, s);
 287    omap_mpu_timer_reset(s);
 288    omap_timer_clk_setup(s);
 289
 290    memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
 291                          "omap-mpu-timer", 0x100);
 292
 293    memory_region_add_subregion(system_memory, base, &s->iomem);
 294
 295    return s;
 296}
 297
 298/* Watchdog timer */
 299struct omap_watchdog_timer_s {
 300    struct omap_mpu_timer_s timer;
 301    MemoryRegion iomem;
 302    uint8_t last_wr;
 303    int mode;
 304    int free;
 305    int reset;
 306};
 307
 308static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
 309                                   unsigned size)
 310{
 311    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
 312
 313    if (size != 2) {
 314        return omap_badwidth_read16(opaque, addr);
 315    }
 316
 317    switch (addr) {
 318    case 0x00:  /* CNTL_TIMER */
 319        return (s->timer.ptv << 9) | (s->timer.ar << 8) |
 320                (s->timer.st << 7) | (s->free << 1);
 321
 322    case 0x04:  /* READ_TIMER */
 323        return omap_timer_read(&s->timer);
 324
 325    case 0x08:  /* TIMER_MODE */
 326        return s->mode << 15;
 327    }
 328
 329    OMAP_BAD_REG(addr);
 330    return 0;
 331}
 332
 333static void omap_wd_timer_write(void *opaque, hwaddr addr,
 334                                uint64_t value, unsigned size)
 335{
 336    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
 337
 338    if (size != 2) {
 339        omap_badwidth_write16(opaque, addr, value);
 340        return;
 341    }
 342
 343    switch (addr) {
 344    case 0x00:  /* CNTL_TIMER */
 345        omap_timer_sync(&s->timer);
 346        s->timer.ptv = (value >> 9) & 7;
 347        s->timer.ar = (value >> 8) & 1;
 348        s->timer.st = (value >> 7) & 1;
 349        s->free = (value >> 1) & 1;
 350        omap_timer_update(&s->timer);
 351        break;
 352
 353    case 0x04:  /* LOAD_TIMER */
 354        s->timer.reset_val = value & 0xffff;
 355        break;
 356
 357    case 0x08:  /* TIMER_MODE */
 358        if (!s->mode && ((value >> 15) & 1))
 359            omap_clk_get(s->timer.clk);
 360        s->mode |= (value >> 15) & 1;
 361        if (s->last_wr == 0xf5) {
 362            if ((value & 0xff) == 0xa0) {
 363                if (s->mode) {
 364                    s->mode = 0;
 365                    omap_clk_put(s->timer.clk);
 366                }
 367            } else {
 368                /* XXX: on T|E hardware somehow this has no effect,
 369                 * on Zire 71 it works as specified.  */
 370                s->reset = 1;
 371                qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 372            }
 373        }
 374        s->last_wr = value & 0xff;
 375        break;
 376
 377    default:
 378        OMAP_BAD_REG(addr);
 379    }
 380}
 381
 382static const MemoryRegionOps omap_wd_timer_ops = {
 383    .read = omap_wd_timer_read,
 384    .write = omap_wd_timer_write,
 385    .endianness = DEVICE_NATIVE_ENDIAN,
 386};
 387
 388static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
 389{
 390    timer_del(s->timer.timer);
 391    if (!s->mode)
 392        omap_clk_get(s->timer.clk);
 393    s->mode = 1;
 394    s->free = 1;
 395    s->reset = 0;
 396    s->timer.enable = 1;
 397    s->timer.it_ena = 1;
 398    s->timer.reset_val = 0xffff;
 399    s->timer.val = 0;
 400    s->timer.st = 0;
 401    s->timer.ptv = 0;
 402    s->timer.ar = 0;
 403    omap_timer_update(&s->timer);
 404}
 405
 406static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
 407                hwaddr base,
 408                qemu_irq irq, omap_clk clk)
 409{
 410    struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
 411
 412    s->timer.irq = irq;
 413    s->timer.clk = clk;
 414    s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
 415    omap_wd_timer_reset(s);
 416    omap_timer_clk_setup(&s->timer);
 417
 418    memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
 419                          "omap-wd-timer", 0x100);
 420    memory_region_add_subregion(memory, base, &s->iomem);
 421
 422    return s;
 423}
 424
 425/* 32-kHz timer */
 426struct omap_32khz_timer_s {
 427    struct omap_mpu_timer_s timer;
 428    MemoryRegion iomem;
 429};
 430
 431static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
 432                                   unsigned size)
 433{
 434    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
 435    int offset = addr & OMAP_MPUI_REG_MASK;
 436
 437    if (size != 4) {
 438        return omap_badwidth_read32(opaque, addr);
 439    }
 440
 441    switch (offset) {
 442    case 0x00:  /* TVR */
 443        return s->timer.reset_val;
 444
 445    case 0x04:  /* TCR */
 446        return omap_timer_read(&s->timer);
 447
 448    case 0x08:  /* CR */
 449        return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
 450
 451    default:
 452        break;
 453    }
 454    OMAP_BAD_REG(addr);
 455    return 0;
 456}
 457
 458static void omap_os_timer_write(void *opaque, hwaddr addr,
 459                                uint64_t value, unsigned size)
 460{
 461    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
 462    int offset = addr & OMAP_MPUI_REG_MASK;
 463
 464    if (size != 4) {
 465        omap_badwidth_write32(opaque, addr, value);
 466        return;
 467    }
 468
 469    switch (offset) {
 470    case 0x00:  /* TVR */
 471        s->timer.reset_val = value & 0x00ffffff;
 472        break;
 473
 474    case 0x04:  /* TCR */
 475        OMAP_RO_REG(addr);
 476        break;
 477
 478    case 0x08:  /* CR */
 479        s->timer.ar = (value >> 3) & 1;
 480        s->timer.it_ena = (value >> 2) & 1;
 481        if (s->timer.st != (value & 1) || (value & 2)) {
 482            omap_timer_sync(&s->timer);
 483            s->timer.enable = value & 1;
 484            s->timer.st = value & 1;
 485            omap_timer_update(&s->timer);
 486        }
 487        break;
 488
 489    default:
 490        OMAP_BAD_REG(addr);
 491    }
 492}
 493
 494static const MemoryRegionOps omap_os_timer_ops = {
 495    .read = omap_os_timer_read,
 496    .write = omap_os_timer_write,
 497    .endianness = DEVICE_NATIVE_ENDIAN,
 498};
 499
 500static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
 501{
 502    timer_del(s->timer.timer);
 503    s->timer.enable = 0;
 504    s->timer.it_ena = 0;
 505    s->timer.reset_val = 0x00ffffff;
 506    s->timer.val = 0;
 507    s->timer.st = 0;
 508    s->timer.ptv = 0;
 509    s->timer.ar = 1;
 510}
 511
 512static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
 513                hwaddr base,
 514                qemu_irq irq, omap_clk clk)
 515{
 516    struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
 517
 518    s->timer.irq = irq;
 519    s->timer.clk = clk;
 520    s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
 521    omap_os_timer_reset(s);
 522    omap_timer_clk_setup(&s->timer);
 523
 524    memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
 525                          "omap-os-timer", 0x800);
 526    memory_region_add_subregion(memory, base, &s->iomem);
 527
 528    return s;
 529}
 530
 531/* Ultra Low-Power Device Module */
 532static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
 533                                  unsigned size)
 534{
 535    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 536    uint16_t ret;
 537
 538    if (size != 2) {
 539        return omap_badwidth_read16(opaque, addr);
 540    }
 541
 542    switch (addr) {
 543    case 0x14:  /* IT_STATUS */
 544        ret = s->ulpd_pm_regs[addr >> 2];
 545        s->ulpd_pm_regs[addr >> 2] = 0;
 546        qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
 547        return ret;
 548
 549    case 0x18:  /* Reserved */
 550    case 0x1c:  /* Reserved */
 551    case 0x20:  /* Reserved */
 552    case 0x28:  /* Reserved */
 553    case 0x2c:  /* Reserved */
 554        OMAP_BAD_REG(addr);
 555        /* fall through */
 556    case 0x00:  /* COUNTER_32_LSB */
 557    case 0x04:  /* COUNTER_32_MSB */
 558    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 559    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 560    case 0x10:  /* GAUGING_CTRL */
 561    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 562    case 0x30:  /* CLOCK_CTRL */
 563    case 0x34:  /* SOFT_REQ */
 564    case 0x38:  /* COUNTER_32_FIQ */
 565    case 0x3c:  /* DPLL_CTRL */
 566    case 0x40:  /* STATUS_REQ */
 567        /* XXX: check clk::usecount state for every clock */
 568    case 0x48:  /* LOCL_TIME */
 569    case 0x4c:  /* APLL_CTRL */
 570    case 0x50:  /* POWER_CTRL */
 571        return s->ulpd_pm_regs[addr >> 2];
 572    }
 573
 574    OMAP_BAD_REG(addr);
 575    return 0;
 576}
 577
 578static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
 579                uint16_t diff, uint16_t value)
 580{
 581    if (diff & (1 << 4))                                /* USB_MCLK_EN */
 582        omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
 583    if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
 584        omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
 585}
 586
 587static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
 588                uint16_t diff, uint16_t value)
 589{
 590    if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
 591        omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
 592    if (diff & (1 << 1))                                /* SOFT_COM_REQ */
 593        omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
 594    if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
 595        omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
 596    if (diff & (1 << 3))                                /* SOFT_USB_REQ */
 597        omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
 598}
 599
 600static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
 601                               uint64_t value, unsigned size)
 602{
 603    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 604    int64_t now, ticks;
 605    int div, mult;
 606    static const int bypass_div[4] = { 1, 2, 4, 4 };
 607    uint16_t diff;
 608
 609    if (size != 2) {
 610        omap_badwidth_write16(opaque, addr, value);
 611        return;
 612    }
 613
 614    switch (addr) {
 615    case 0x00:  /* COUNTER_32_LSB */
 616    case 0x04:  /* COUNTER_32_MSB */
 617    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 618    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 619    case 0x14:  /* IT_STATUS */
 620    case 0x40:  /* STATUS_REQ */
 621        OMAP_RO_REG(addr);
 622        break;
 623
 624    case 0x10:  /* GAUGING_CTRL */
 625        /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
 626        if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
 627            now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 628
 629            if (value & 1)
 630                s->ulpd_gauge_start = now;
 631            else {
 632                now -= s->ulpd_gauge_start;
 633
 634                /* 32-kHz ticks */
 635                ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
 636                s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
 637                s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
 638                if (ticks >> 32)        /* OVERFLOW_32K */
 639                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
 640
 641                /* High frequency ticks */
 642                ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
 643                s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
 644                s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
 645                if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
 646                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
 647
 648                s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;   /* IT_GAUGING */
 649                qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
 650            }
 651        }
 652        s->ulpd_pm_regs[addr >> 2] = value;
 653        break;
 654
 655    case 0x18:  /* Reserved */
 656    case 0x1c:  /* Reserved */
 657    case 0x20:  /* Reserved */
 658    case 0x28:  /* Reserved */
 659    case 0x2c:  /* Reserved */
 660        OMAP_BAD_REG(addr);
 661        /* fall through */
 662    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 663    case 0x38:  /* COUNTER_32_FIQ */
 664    case 0x48:  /* LOCL_TIME */
 665    case 0x50:  /* POWER_CTRL */
 666        s->ulpd_pm_regs[addr >> 2] = value;
 667        break;
 668
 669    case 0x30:  /* CLOCK_CTRL */
 670        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 671        s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
 672        omap_ulpd_clk_update(s, diff, value);
 673        break;
 674
 675    case 0x34:  /* SOFT_REQ */
 676        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 677        s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
 678        omap_ulpd_req_update(s, diff, value);
 679        break;
 680
 681    case 0x3c:  /* DPLL_CTRL */
 682        /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
 683         * omitted altogether, probably a typo.  */
 684        /* This register has identical semantics with DPLL(1:3) control
 685         * registers, see omap_dpll_write() */
 686        diff = s->ulpd_pm_regs[addr >> 2] & value;
 687        s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
 688        if (diff & (0x3ff << 2)) {
 689            if (value & (1 << 4)) {                     /* PLL_ENABLE */
 690                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
 691                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
 692            } else {
 693                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
 694                mult = 1;
 695            }
 696            omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
 697        }
 698
 699        /* Enter the desired mode.  */
 700        s->ulpd_pm_regs[addr >> 2] =
 701                (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
 702                ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
 703
 704        /* Act as if the lock is restored.  */
 705        s->ulpd_pm_regs[addr >> 2] |= 2;
 706        break;
 707
 708    case 0x4c:  /* APLL_CTRL */
 709        diff = s->ulpd_pm_regs[addr >> 2] & value;
 710        s->ulpd_pm_regs[addr >> 2] = value & 0xf;
 711        if (diff & (1 << 0))                            /* APLL_NDPLL_SWITCH */
 712            omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
 713                                    (value & (1 << 0)) ? "apll" : "dpll4"));
 714        break;
 715
 716    default:
 717        OMAP_BAD_REG(addr);
 718    }
 719}
 720
 721static const MemoryRegionOps omap_ulpd_pm_ops = {
 722    .read = omap_ulpd_pm_read,
 723    .write = omap_ulpd_pm_write,
 724    .endianness = DEVICE_NATIVE_ENDIAN,
 725};
 726
 727static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
 728{
 729    mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
 730    mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
 731    mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
 732    mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
 733    mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
 734    mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
 735    mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
 736    mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
 737    mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
 738    mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
 739    mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
 740    omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
 741    mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
 742    omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
 743    mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
 744    mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
 745    mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
 746    mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
 747    mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
 748    mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
 749    mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
 750    omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
 751    omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
 752}
 753
 754static void omap_ulpd_pm_init(MemoryRegion *system_memory,
 755                hwaddr base,
 756                struct omap_mpu_state_s *mpu)
 757{
 758    memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
 759                          "omap-ulpd-pm", 0x800);
 760    memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
 761    omap_ulpd_pm_reset(mpu);
 762}
 763
 764/* OMAP Pin Configuration */
 765static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
 766                                  unsigned size)
 767{
 768    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 769
 770    if (size != 4) {
 771        return omap_badwidth_read32(opaque, addr);
 772    }
 773
 774    switch (addr) {
 775    case 0x00:  /* FUNC_MUX_CTRL_0 */
 776    case 0x04:  /* FUNC_MUX_CTRL_1 */
 777    case 0x08:  /* FUNC_MUX_CTRL_2 */
 778        return s->func_mux_ctrl[addr >> 2];
 779
 780    case 0x0c:  /* COMP_MODE_CTRL_0 */
 781        return s->comp_mode_ctrl[0];
 782
 783    case 0x10:  /* FUNC_MUX_CTRL_3 */
 784    case 0x14:  /* FUNC_MUX_CTRL_4 */
 785    case 0x18:  /* FUNC_MUX_CTRL_5 */
 786    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 787    case 0x20:  /* FUNC_MUX_CTRL_7 */
 788    case 0x24:  /* FUNC_MUX_CTRL_8 */
 789    case 0x28:  /* FUNC_MUX_CTRL_9 */
 790    case 0x2c:  /* FUNC_MUX_CTRL_A */
 791    case 0x30:  /* FUNC_MUX_CTRL_B */
 792    case 0x34:  /* FUNC_MUX_CTRL_C */
 793    case 0x38:  /* FUNC_MUX_CTRL_D */
 794        return s->func_mux_ctrl[(addr >> 2) - 1];
 795
 796    case 0x40:  /* PULL_DWN_CTRL_0 */
 797    case 0x44:  /* PULL_DWN_CTRL_1 */
 798    case 0x48:  /* PULL_DWN_CTRL_2 */
 799    case 0x4c:  /* PULL_DWN_CTRL_3 */
 800        return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
 801
 802    case 0x50:  /* GATE_INH_CTRL_0 */
 803        return s->gate_inh_ctrl[0];
 804
 805    case 0x60:  /* VOLTAGE_CTRL_0 */
 806        return s->voltage_ctrl[0];
 807
 808    case 0x70:  /* TEST_DBG_CTRL_0 */
 809        return s->test_dbg_ctrl[0];
 810
 811    case 0x80:  /* MOD_CONF_CTRL_0 */
 812        return s->mod_conf_ctrl[0];
 813    }
 814
 815    OMAP_BAD_REG(addr);
 816    return 0;
 817}
 818
 819static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
 820                uint32_t diff, uint32_t value)
 821{
 822    if (s->compat1509) {
 823        if (diff & (1 << 9))                    /* BLUETOOTH */
 824            omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
 825                            (~value >> 9) & 1);
 826        if (diff & (1 << 7))                    /* USB.CLKO */
 827            omap_clk_onoff(omap_findclk(s, "usb.clko"),
 828                            (value >> 7) & 1);
 829    }
 830}
 831
 832static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
 833                uint32_t diff, uint32_t value)
 834{
 835    if (s->compat1509) {
 836        if (diff & (1U << 31)) {
 837            /* MCBSP3_CLK_HIZ_DI */
 838            omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
 839        }
 840        if (diff & (1 << 1)) {
 841            /* CLK32K */
 842            omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
 843        }
 844    }
 845}
 846
 847static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
 848                uint32_t diff, uint32_t value)
 849{
 850    if (diff & (1U << 31)) {
 851        /* CONF_MOD_UART3_CLK_MODE_R */
 852        omap_clk_reparent(omap_findclk(s, "uart3_ck"),
 853                          omap_findclk(s, ((value >> 31) & 1) ?
 854                                       "ck_48m" : "armper_ck"));
 855    }
 856    if (diff & (1 << 30))                       /* CONF_MOD_UART2_CLK_MODE_R */
 857         omap_clk_reparent(omap_findclk(s, "uart2_ck"),
 858                         omap_findclk(s, ((value >> 30) & 1) ?
 859                                 "ck_48m" : "armper_ck"));
 860    if (diff & (1 << 29))                       /* CONF_MOD_UART1_CLK_MODE_R */
 861         omap_clk_reparent(omap_findclk(s, "uart1_ck"),
 862                         omap_findclk(s, ((value >> 29) & 1) ?
 863                                 "ck_48m" : "armper_ck"));
 864    if (diff & (1 << 23))                       /* CONF_MOD_MMC_SD_CLK_REQ_R */
 865         omap_clk_reparent(omap_findclk(s, "mmc_ck"),
 866                         omap_findclk(s, ((value >> 23) & 1) ?
 867                                 "ck_48m" : "armper_ck"));
 868    if (diff & (1 << 12))                       /* CONF_MOD_COM_MCLK_12_48_S */
 869         omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
 870                         omap_findclk(s, ((value >> 12) & 1) ?
 871                                 "ck_48m" : "armper_ck"));
 872    if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
 873         omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
 874}
 875
 876static void omap_pin_cfg_write(void *opaque, hwaddr addr,
 877                               uint64_t value, unsigned size)
 878{
 879    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 880    uint32_t diff;
 881
 882    if (size != 4) {
 883        omap_badwidth_write32(opaque, addr, value);
 884        return;
 885    }
 886
 887    switch (addr) {
 888    case 0x00:  /* FUNC_MUX_CTRL_0 */
 889        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 890        s->func_mux_ctrl[addr >> 2] = value;
 891        omap_pin_funcmux0_update(s, diff, value);
 892        return;
 893
 894    case 0x04:  /* FUNC_MUX_CTRL_1 */
 895        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 896        s->func_mux_ctrl[addr >> 2] = value;
 897        omap_pin_funcmux1_update(s, diff, value);
 898        return;
 899
 900    case 0x08:  /* FUNC_MUX_CTRL_2 */
 901        s->func_mux_ctrl[addr >> 2] = value;
 902        return;
 903
 904    case 0x0c:  /* COMP_MODE_CTRL_0 */
 905        s->comp_mode_ctrl[0] = value;
 906        s->compat1509 = (value != 0x0000eaef);
 907        omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
 908        omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
 909        return;
 910
 911    case 0x10:  /* FUNC_MUX_CTRL_3 */
 912    case 0x14:  /* FUNC_MUX_CTRL_4 */
 913    case 0x18:  /* FUNC_MUX_CTRL_5 */
 914    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 915    case 0x20:  /* FUNC_MUX_CTRL_7 */
 916    case 0x24:  /* FUNC_MUX_CTRL_8 */
 917    case 0x28:  /* FUNC_MUX_CTRL_9 */
 918    case 0x2c:  /* FUNC_MUX_CTRL_A */
 919    case 0x30:  /* FUNC_MUX_CTRL_B */
 920    case 0x34:  /* FUNC_MUX_CTRL_C */
 921    case 0x38:  /* FUNC_MUX_CTRL_D */
 922        s->func_mux_ctrl[(addr >> 2) - 1] = value;
 923        return;
 924
 925    case 0x40:  /* PULL_DWN_CTRL_0 */
 926    case 0x44:  /* PULL_DWN_CTRL_1 */
 927    case 0x48:  /* PULL_DWN_CTRL_2 */
 928    case 0x4c:  /* PULL_DWN_CTRL_3 */
 929        s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
 930        return;
 931
 932    case 0x50:  /* GATE_INH_CTRL_0 */
 933        s->gate_inh_ctrl[0] = value;
 934        return;
 935
 936    case 0x60:  /* VOLTAGE_CTRL_0 */
 937        s->voltage_ctrl[0] = value;
 938        return;
 939
 940    case 0x70:  /* TEST_DBG_CTRL_0 */
 941        s->test_dbg_ctrl[0] = value;
 942        return;
 943
 944    case 0x80:  /* MOD_CONF_CTRL_0 */
 945        diff = s->mod_conf_ctrl[0] ^ value;
 946        s->mod_conf_ctrl[0] = value;
 947        omap_pin_modconf1_update(s, diff, value);
 948        return;
 949
 950    default:
 951        OMAP_BAD_REG(addr);
 952    }
 953}
 954
 955static const MemoryRegionOps omap_pin_cfg_ops = {
 956    .read = omap_pin_cfg_read,
 957    .write = omap_pin_cfg_write,
 958    .endianness = DEVICE_NATIVE_ENDIAN,
 959};
 960
 961static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
 962{
 963    /* Start in Compatibility Mode.  */
 964    mpu->compat1509 = 1;
 965    omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
 966    omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
 967    omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
 968    memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
 969    memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
 970    memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
 971    memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
 972    memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
 973    memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
 974    memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
 975}
 976
 977static void omap_pin_cfg_init(MemoryRegion *system_memory,
 978                hwaddr base,
 979                struct omap_mpu_state_s *mpu)
 980{
 981    memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
 982                          "omap-pin-cfg", 0x800);
 983    memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
 984    omap_pin_cfg_reset(mpu);
 985}
 986
 987/* Device Identification, Die Identification */
 988static uint64_t omap_id_read(void *opaque, hwaddr addr,
 989                             unsigned size)
 990{
 991    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 992
 993    if (size != 4) {
 994        return omap_badwidth_read32(opaque, addr);
 995    }
 996
 997    switch (addr) {
 998    case 0xfffe1800:    /* DIE_ID_LSB */
 999        return 0xc9581f0e;
1000    case 0xfffe1804:    /* DIE_ID_MSB */
1001        return 0xa8858bfa;
1002
1003    case 0xfffe2000:    /* PRODUCT_ID_LSB */
1004        return 0x00aaaafc;
1005    case 0xfffe2004:    /* PRODUCT_ID_MSB */
1006        return 0xcafeb574;
1007
1008    case 0xfffed400:    /* JTAG_ID_LSB */
1009        switch (s->mpu_model) {
1010        case omap310:
1011            return 0x03310315;
1012        case omap1510:
1013            return 0x03310115;
1014        default:
1015            hw_error("%s: bad mpu model\n", __func__);
1016        }
1017        break;
1018
1019    case 0xfffed404:    /* JTAG_ID_MSB */
1020        switch (s->mpu_model) {
1021        case omap310:
1022            return 0xfb57402f;
1023        case omap1510:
1024            return 0xfb47002f;
1025        default:
1026            hw_error("%s: bad mpu model\n", __func__);
1027        }
1028        break;
1029    }
1030
1031    OMAP_BAD_REG(addr);
1032    return 0;
1033}
1034
1035static void omap_id_write(void *opaque, hwaddr addr,
1036                          uint64_t value, unsigned size)
1037{
1038    if (size != 4) {
1039        omap_badwidth_write32(opaque, addr, value);
1040        return;
1041    }
1042
1043    OMAP_BAD_REG(addr);
1044}
1045
1046static const MemoryRegionOps omap_id_ops = {
1047    .read = omap_id_read,
1048    .write = omap_id_write,
1049    .endianness = DEVICE_NATIVE_ENDIAN,
1050};
1051
1052static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1053{
1054    memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1055                          "omap-id", 0x100000000ULL);
1056    memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1057                             0xfffe1800, 0x800);
1058    memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1059    memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1060                             0xfffed400, 0x100);
1061    memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1062    if (!cpu_is_omap15xx(mpu)) {
1063        memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1064                                 &mpu->id_iomem, 0xfffe2000, 0x800);
1065        memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1066    }
1067}
1068
1069/* MPUI Control (Dummy) */
1070static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1071                               unsigned size)
1072{
1073    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1074
1075    if (size != 4) {
1076        return omap_badwidth_read32(opaque, addr);
1077    }
1078
1079    switch (addr) {
1080    case 0x00:  /* CTRL */
1081        return s->mpui_ctrl;
1082    case 0x04:  /* DEBUG_ADDR */
1083        return 0x01ffffff;
1084    case 0x08:  /* DEBUG_DATA */
1085        return 0xffffffff;
1086    case 0x0c:  /* DEBUG_FLAG */
1087        return 0x00000800;
1088    case 0x10:  /* STATUS */
1089        return 0x00000000;
1090
1091    /* Not in OMAP310 */
1092    case 0x14:  /* DSP_STATUS */
1093    case 0x18:  /* DSP_BOOT_CONFIG */
1094        return 0x00000000;
1095    case 0x1c:  /* DSP_MPUI_CONFIG */
1096        return 0x0000ffff;
1097    }
1098
1099    OMAP_BAD_REG(addr);
1100    return 0;
1101}
1102
1103static void omap_mpui_write(void *opaque, hwaddr addr,
1104                            uint64_t value, unsigned size)
1105{
1106    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1107
1108    if (size != 4) {
1109        omap_badwidth_write32(opaque, addr, value);
1110        return;
1111    }
1112
1113    switch (addr) {
1114    case 0x00:  /* CTRL */
1115        s->mpui_ctrl = value & 0x007fffff;
1116        break;
1117
1118    case 0x04:  /* DEBUG_ADDR */
1119    case 0x08:  /* DEBUG_DATA */
1120    case 0x0c:  /* DEBUG_FLAG */
1121    case 0x10:  /* STATUS */
1122    /* Not in OMAP310 */
1123    case 0x14:  /* DSP_STATUS */
1124        OMAP_RO_REG(addr);
1125        break;
1126    case 0x18:  /* DSP_BOOT_CONFIG */
1127    case 0x1c:  /* DSP_MPUI_CONFIG */
1128        break;
1129
1130    default:
1131        OMAP_BAD_REG(addr);
1132    }
1133}
1134
1135static const MemoryRegionOps omap_mpui_ops = {
1136    .read = omap_mpui_read,
1137    .write = omap_mpui_write,
1138    .endianness = DEVICE_NATIVE_ENDIAN,
1139};
1140
1141static void omap_mpui_reset(struct omap_mpu_state_s *s)
1142{
1143    s->mpui_ctrl = 0x0003ff1b;
1144}
1145
1146static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1147                struct omap_mpu_state_s *mpu)
1148{
1149    memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1150                          "omap-mpui", 0x100);
1151    memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1152
1153    omap_mpui_reset(mpu);
1154}
1155
1156/* TIPB Bridges */
1157struct omap_tipb_bridge_s {
1158    qemu_irq abort;
1159    MemoryRegion iomem;
1160
1161    int width_intr;
1162    uint16_t control;
1163    uint16_t alloc;
1164    uint16_t buffer;
1165    uint16_t enh_control;
1166};
1167
1168static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1169                                      unsigned size)
1170{
1171    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1172
1173    if (size < 2) {
1174        return omap_badwidth_read16(opaque, addr);
1175    }
1176
1177    switch (addr) {
1178    case 0x00:  /* TIPB_CNTL */
1179        return s->control;
1180    case 0x04:  /* TIPB_BUS_ALLOC */
1181        return s->alloc;
1182    case 0x08:  /* MPU_TIPB_CNTL */
1183        return s->buffer;
1184    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1185        return s->enh_control;
1186    case 0x10:  /* ADDRESS_DBG */
1187    case 0x14:  /* DATA_DEBUG_LOW */
1188    case 0x18:  /* DATA_DEBUG_HIGH */
1189        return 0xffff;
1190    case 0x1c:  /* DEBUG_CNTR_SIG */
1191        return 0x00f8;
1192    }
1193
1194    OMAP_BAD_REG(addr);
1195    return 0;
1196}
1197
1198static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1199                                   uint64_t value, unsigned size)
1200{
1201    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1202
1203    if (size < 2) {
1204        omap_badwidth_write16(opaque, addr, value);
1205        return;
1206    }
1207
1208    switch (addr) {
1209    case 0x00:  /* TIPB_CNTL */
1210        s->control = value & 0xffff;
1211        break;
1212
1213    case 0x04:  /* TIPB_BUS_ALLOC */
1214        s->alloc = value & 0x003f;
1215        break;
1216
1217    case 0x08:  /* MPU_TIPB_CNTL */
1218        s->buffer = value & 0x0003;
1219        break;
1220
1221    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1222        s->width_intr = !(value & 2);
1223        s->enh_control = value & 0x000f;
1224        break;
1225
1226    case 0x10:  /* ADDRESS_DBG */
1227    case 0x14:  /* DATA_DEBUG_LOW */
1228    case 0x18:  /* DATA_DEBUG_HIGH */
1229    case 0x1c:  /* DEBUG_CNTR_SIG */
1230        OMAP_RO_REG(addr);
1231        break;
1232
1233    default:
1234        OMAP_BAD_REG(addr);
1235    }
1236}
1237
1238static const MemoryRegionOps omap_tipb_bridge_ops = {
1239    .read = omap_tipb_bridge_read,
1240    .write = omap_tipb_bridge_write,
1241    .endianness = DEVICE_NATIVE_ENDIAN,
1242};
1243
1244static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1245{
1246    s->control = 0xffff;
1247    s->alloc = 0x0009;
1248    s->buffer = 0x0000;
1249    s->enh_control = 0x000f;
1250}
1251
1252static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1253    MemoryRegion *memory, hwaddr base,
1254    qemu_irq abort_irq, omap_clk clk)
1255{
1256    struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1257
1258    s->abort = abort_irq;
1259    omap_tipb_bridge_reset(s);
1260
1261    memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1262                          "omap-tipb-bridge", 0x100);
1263    memory_region_add_subregion(memory, base, &s->iomem);
1264
1265    return s;
1266}
1267
1268/* Dummy Traffic Controller's Memory Interface */
1269static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1270                               unsigned size)
1271{
1272    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1273    uint32_t ret;
1274
1275    if (size != 4) {
1276        return omap_badwidth_read32(opaque, addr);
1277    }
1278
1279    switch (addr) {
1280    case 0x00:  /* IMIF_PRIO */
1281    case 0x04:  /* EMIFS_PRIO */
1282    case 0x08:  /* EMIFF_PRIO */
1283    case 0x0c:  /* EMIFS_CONFIG */
1284    case 0x10:  /* EMIFS_CS0_CONFIG */
1285    case 0x14:  /* EMIFS_CS1_CONFIG */
1286    case 0x18:  /* EMIFS_CS2_CONFIG */
1287    case 0x1c:  /* EMIFS_CS3_CONFIG */
1288    case 0x24:  /* EMIFF_MRS */
1289    case 0x28:  /* TIMEOUT1 */
1290    case 0x2c:  /* TIMEOUT2 */
1291    case 0x30:  /* TIMEOUT3 */
1292    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1293    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1294        return s->tcmi_regs[addr >> 2];
1295
1296    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1297        ret = s->tcmi_regs[addr >> 2];
1298        s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1299        /* XXX: We can try using the VGA_DIRTY flag for this */
1300        return ret;
1301    }
1302
1303    OMAP_BAD_REG(addr);
1304    return 0;
1305}
1306
1307static void omap_tcmi_write(void *opaque, hwaddr addr,
1308                            uint64_t value, unsigned size)
1309{
1310    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1311
1312    if (size != 4) {
1313        omap_badwidth_write32(opaque, addr, value);
1314        return;
1315    }
1316
1317    switch (addr) {
1318    case 0x00:  /* IMIF_PRIO */
1319    case 0x04:  /* EMIFS_PRIO */
1320    case 0x08:  /* EMIFF_PRIO */
1321    case 0x10:  /* EMIFS_CS0_CONFIG */
1322    case 0x14:  /* EMIFS_CS1_CONFIG */
1323    case 0x18:  /* EMIFS_CS2_CONFIG */
1324    case 0x1c:  /* EMIFS_CS3_CONFIG */
1325    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1326    case 0x24:  /* EMIFF_MRS */
1327    case 0x28:  /* TIMEOUT1 */
1328    case 0x2c:  /* TIMEOUT2 */
1329    case 0x30:  /* TIMEOUT3 */
1330    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1331    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1332        s->tcmi_regs[addr >> 2] = value;
1333        break;
1334    case 0x0c:  /* EMIFS_CONFIG */
1335        s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1336        break;
1337
1338    default:
1339        OMAP_BAD_REG(addr);
1340    }
1341}
1342
1343static const MemoryRegionOps omap_tcmi_ops = {
1344    .read = omap_tcmi_read,
1345    .write = omap_tcmi_write,
1346    .endianness = DEVICE_NATIVE_ENDIAN,
1347};
1348
1349static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1350{
1351    mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1352    mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1353    mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1354    mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1355    mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1356    mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1357    mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1358    mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1359    mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1360    mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1361    mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1362    mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1363    mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1364    mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1365    mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1366}
1367
1368static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1369                struct omap_mpu_state_s *mpu)
1370{
1371    memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1372                          "omap-tcmi", 0x100);
1373    memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1374    omap_tcmi_reset(mpu);
1375}
1376
1377/* Digital phase-locked loops control */
1378struct dpll_ctl_s {
1379    MemoryRegion iomem;
1380    uint16_t mode;
1381    omap_clk dpll;
1382};
1383
1384static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1385                               unsigned size)
1386{
1387    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1388
1389    if (size != 2) {
1390        return omap_badwidth_read16(opaque, addr);
1391    }
1392
1393    if (addr == 0x00)   /* CTL_REG */
1394        return s->mode;
1395
1396    OMAP_BAD_REG(addr);
1397    return 0;
1398}
1399
1400static void omap_dpll_write(void *opaque, hwaddr addr,
1401                            uint64_t value, unsigned size)
1402{
1403    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1404    uint16_t diff;
1405    static const int bypass_div[4] = { 1, 2, 4, 4 };
1406    int div, mult;
1407
1408    if (size != 2) {
1409        omap_badwidth_write16(opaque, addr, value);
1410        return;
1411    }
1412
1413    if (addr == 0x00) { /* CTL_REG */
1414        /* See omap_ulpd_pm_write() too */
1415        diff = s->mode & value;
1416        s->mode = value & 0x2fff;
1417        if (diff & (0x3ff << 2)) {
1418            if (value & (1 << 4)) {                     /* PLL_ENABLE */
1419                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
1420                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
1421            } else {
1422                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
1423                mult = 1;
1424            }
1425            omap_clk_setrate(s->dpll, div, mult);
1426        }
1427
1428        /* Enter the desired mode.  */
1429        s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1430
1431        /* Act as if the lock is restored.  */
1432        s->mode |= 2;
1433    } else {
1434        OMAP_BAD_REG(addr);
1435    }
1436}
1437
1438static const MemoryRegionOps omap_dpll_ops = {
1439    .read = omap_dpll_read,
1440    .write = omap_dpll_write,
1441    .endianness = DEVICE_NATIVE_ENDIAN,
1442};
1443
1444static void omap_dpll_reset(struct dpll_ctl_s *s)
1445{
1446    s->mode = 0x2002;
1447    omap_clk_setrate(s->dpll, 1, 1);
1448}
1449
1450static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1451                           hwaddr base, omap_clk clk)
1452{
1453    struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1454    memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1455
1456    s->dpll = clk;
1457    omap_dpll_reset(s);
1458
1459    memory_region_add_subregion(memory, base, &s->iomem);
1460    return s;
1461}
1462
1463/* MPU Clock/Reset/Power Mode Control */
1464static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1465                               unsigned size)
1466{
1467    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1468
1469    if (size != 2) {
1470        return omap_badwidth_read16(opaque, addr);
1471    }
1472
1473    switch (addr) {
1474    case 0x00:  /* ARM_CKCTL */
1475        return s->clkm.arm_ckctl;
1476
1477    case 0x04:  /* ARM_IDLECT1 */
1478        return s->clkm.arm_idlect1;
1479
1480    case 0x08:  /* ARM_IDLECT2 */
1481        return s->clkm.arm_idlect2;
1482
1483    case 0x0c:  /* ARM_EWUPCT */
1484        return s->clkm.arm_ewupct;
1485
1486    case 0x10:  /* ARM_RSTCT1 */
1487        return s->clkm.arm_rstct1;
1488
1489    case 0x14:  /* ARM_RSTCT2 */
1490        return s->clkm.arm_rstct2;
1491
1492    case 0x18:  /* ARM_SYSST */
1493        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1494
1495    case 0x1c:  /* ARM_CKOUT1 */
1496        return s->clkm.arm_ckout1;
1497
1498    case 0x20:  /* ARM_CKOUT2 */
1499        break;
1500    }
1501
1502    OMAP_BAD_REG(addr);
1503    return 0;
1504}
1505
1506static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1507                uint16_t diff, uint16_t value)
1508{
1509    omap_clk clk;
1510
1511    if (diff & (1 << 14)) {                             /* ARM_INTHCK_SEL */
1512        if (value & (1 << 14))
1513            /* Reserved */;
1514        else {
1515            clk = omap_findclk(s, "arminth_ck");
1516            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1517        }
1518    }
1519    if (diff & (1 << 12)) {                             /* ARM_TIMXO */
1520        clk = omap_findclk(s, "armtim_ck");
1521        if (value & (1 << 12))
1522            omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1523        else
1524            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1525    }
1526    /* XXX: en_dspck */
1527    if (diff & (3 << 10)) {                             /* DSPMMUDIV */
1528        clk = omap_findclk(s, "dspmmu_ck");
1529        omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1530    }
1531    if (diff & (3 << 8)) {                              /* TCDIV */
1532        clk = omap_findclk(s, "tc_ck");
1533        omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1534    }
1535    if (diff & (3 << 6)) {                              /* DSPDIV */
1536        clk = omap_findclk(s, "dsp_ck");
1537        omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1538    }
1539    if (diff & (3 << 4)) {                              /* ARMDIV */
1540        clk = omap_findclk(s, "arm_ck");
1541        omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1542    }
1543    if (diff & (3 << 2)) {                              /* LCDDIV */
1544        clk = omap_findclk(s, "lcd_ck");
1545        omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1546    }
1547    if (diff & (3 << 0)) {                              /* PERDIV */
1548        clk = omap_findclk(s, "armper_ck");
1549        omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1550    }
1551}
1552
1553static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1554                uint16_t diff, uint16_t value)
1555{
1556    omap_clk clk;
1557
1558    if (value & (1 << 11)) {                            /* SETARM_IDLE */
1559        cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1560    }
1561    if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1562        /* XXX: disable wakeup from IRQ */
1563        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1564    }
1565
1566#define SET_CANIDLE(clock, bit)                         \
1567    if (diff & (1 << bit)) {                            \
1568        clk = omap_findclk(s, clock);                   \
1569        omap_clk_canidle(clk, (value >> bit) & 1);      \
1570    }
1571    SET_CANIDLE("mpuwd_ck", 0)                          /* IDLWDT_ARM */
1572    SET_CANIDLE("armxor_ck", 1)                         /* IDLXORP_ARM */
1573    SET_CANIDLE("mpuper_ck", 2)                         /* IDLPER_ARM */
1574    SET_CANIDLE("lcd_ck", 3)                            /* IDLLCD_ARM */
1575    SET_CANIDLE("lb_ck", 4)                             /* IDLLB_ARM */
1576    SET_CANIDLE("hsab_ck", 5)                           /* IDLHSAB_ARM */
1577    SET_CANIDLE("tipb_ck", 6)                           /* IDLIF_ARM */
1578    SET_CANIDLE("dma_ck", 6)                            /* IDLIF_ARM */
1579    SET_CANIDLE("tc_ck", 6)                             /* IDLIF_ARM */
1580    SET_CANIDLE("dpll1", 7)                             /* IDLDPLL_ARM */
1581    SET_CANIDLE("dpll2", 7)                             /* IDLDPLL_ARM */
1582    SET_CANIDLE("dpll3", 7)                             /* IDLDPLL_ARM */
1583    SET_CANIDLE("mpui_ck", 8)                           /* IDLAPI_ARM */
1584    SET_CANIDLE("armtim_ck", 9)                         /* IDLTIM_ARM */
1585}
1586
1587static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1588                uint16_t diff, uint16_t value)
1589{
1590    omap_clk clk;
1591
1592#define SET_ONOFF(clock, bit)                           \
1593    if (diff & (1 << bit)) {                            \
1594        clk = omap_findclk(s, clock);                   \
1595        omap_clk_onoff(clk, (value >> bit) & 1);        \
1596    }
1597    SET_ONOFF("mpuwd_ck", 0)                            /* EN_WDTCK */
1598    SET_ONOFF("armxor_ck", 1)                           /* EN_XORPCK */
1599    SET_ONOFF("mpuper_ck", 2)                           /* EN_PERCK */
1600    SET_ONOFF("lcd_ck", 3)                              /* EN_LCDCK */
1601    SET_ONOFF("lb_ck", 4)                               /* EN_LBCK */
1602    SET_ONOFF("hsab_ck", 5)                             /* EN_HSABCK */
1603    SET_ONOFF("mpui_ck", 6)                             /* EN_APICK */
1604    SET_ONOFF("armtim_ck", 7)                           /* EN_TIMCK */
1605    SET_CANIDLE("dma_ck", 8)                            /* DMACK_REQ */
1606    SET_ONOFF("arm_gpio_ck", 9)                         /* EN_GPIOCK */
1607    SET_ONOFF("lbfree_ck", 10)                          /* EN_LBFREECK */
1608}
1609
1610static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1611                uint16_t diff, uint16_t value)
1612{
1613    omap_clk clk;
1614
1615    if (diff & (3 << 4)) {                              /* TCLKOUT */
1616        clk = omap_findclk(s, "tclk_out");
1617        switch ((value >> 4) & 3) {
1618        case 1:
1619            omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1620            omap_clk_onoff(clk, 1);
1621            break;
1622        case 2:
1623            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1624            omap_clk_onoff(clk, 1);
1625            break;
1626        default:
1627            omap_clk_onoff(clk, 0);
1628        }
1629    }
1630    if (diff & (3 << 2)) {                              /* DCLKOUT */
1631        clk = omap_findclk(s, "dclk_out");
1632        switch ((value >> 2) & 3) {
1633        case 0:
1634            omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1635            break;
1636        case 1:
1637            omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1638            break;
1639        case 2:
1640            omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1641            break;
1642        case 3:
1643            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1644            break;
1645        }
1646    }
1647    if (diff & (3 << 0)) {                              /* ACLKOUT */
1648        clk = omap_findclk(s, "aclk_out");
1649        switch ((value >> 0) & 3) {
1650        case 1:
1651            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1652            omap_clk_onoff(clk, 1);
1653            break;
1654        case 2:
1655            omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1656            omap_clk_onoff(clk, 1);
1657            break;
1658        case 3:
1659            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1660            omap_clk_onoff(clk, 1);
1661            break;
1662        default:
1663            omap_clk_onoff(clk, 0);
1664        }
1665    }
1666}
1667
1668static void omap_clkm_write(void *opaque, hwaddr addr,
1669                            uint64_t value, unsigned size)
1670{
1671    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1672    uint16_t diff;
1673    omap_clk clk;
1674    static const char *clkschemename[8] = {
1675        "fully synchronous", "fully asynchronous", "synchronous scalable",
1676        "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1677    };
1678
1679    if (size != 2) {
1680        omap_badwidth_write16(opaque, addr, value);
1681        return;
1682    }
1683
1684    switch (addr) {
1685    case 0x00:  /* ARM_CKCTL */
1686        diff = s->clkm.arm_ckctl ^ value;
1687        s->clkm.arm_ckctl = value & 0x7fff;
1688        omap_clkm_ckctl_update(s, diff, value);
1689        return;
1690
1691    case 0x04:  /* ARM_IDLECT1 */
1692        diff = s->clkm.arm_idlect1 ^ value;
1693        s->clkm.arm_idlect1 = value & 0x0fff;
1694        omap_clkm_idlect1_update(s, diff, value);
1695        return;
1696
1697    case 0x08:  /* ARM_IDLECT2 */
1698        diff = s->clkm.arm_idlect2 ^ value;
1699        s->clkm.arm_idlect2 = value & 0x07ff;
1700        omap_clkm_idlect2_update(s, diff, value);
1701        return;
1702
1703    case 0x0c:  /* ARM_EWUPCT */
1704        s->clkm.arm_ewupct = value & 0x003f;
1705        return;
1706
1707    case 0x10:  /* ARM_RSTCT1 */
1708        diff = s->clkm.arm_rstct1 ^ value;
1709        s->clkm.arm_rstct1 = value & 0x0007;
1710        if (value & 9) {
1711            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1712            s->clkm.cold_start = 0xa;
1713        }
1714        if (diff & ~value & 4) {                                /* DSP_RST */
1715            omap_mpui_reset(s);
1716            omap_tipb_bridge_reset(s->private_tipb);
1717            omap_tipb_bridge_reset(s->public_tipb);
1718        }
1719        if (diff & 2) {                                         /* DSP_EN */
1720            clk = omap_findclk(s, "dsp_ck");
1721            omap_clk_canidle(clk, (~value >> 1) & 1);
1722        }
1723        return;
1724
1725    case 0x14:  /* ARM_RSTCT2 */
1726        s->clkm.arm_rstct2 = value & 0x0001;
1727        return;
1728
1729    case 0x18:  /* ARM_SYSST */
1730        if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1731            s->clkm.clocking_scheme = (value >> 11) & 7;
1732            printf("%s: clocking scheme set to %s\n", __func__,
1733                   clkschemename[s->clkm.clocking_scheme]);
1734        }
1735        s->clkm.cold_start &= value & 0x3f;
1736        return;
1737
1738    case 0x1c:  /* ARM_CKOUT1 */
1739        diff = s->clkm.arm_ckout1 ^ value;
1740        s->clkm.arm_ckout1 = value & 0x003f;
1741        omap_clkm_ckout1_update(s, diff, value);
1742        return;
1743
1744    case 0x20:  /* ARM_CKOUT2 */
1745    default:
1746        OMAP_BAD_REG(addr);
1747    }
1748}
1749
1750static const MemoryRegionOps omap_clkm_ops = {
1751    .read = omap_clkm_read,
1752    .write = omap_clkm_write,
1753    .endianness = DEVICE_NATIVE_ENDIAN,
1754};
1755
1756static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1757                                 unsigned size)
1758{
1759    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1760    CPUState *cpu = CPU(s->cpu);
1761
1762    if (size != 2) {
1763        return omap_badwidth_read16(opaque, addr);
1764    }
1765
1766    switch (addr) {
1767    case 0x04:  /* DSP_IDLECT1 */
1768        return s->clkm.dsp_idlect1;
1769
1770    case 0x08:  /* DSP_IDLECT2 */
1771        return s->clkm.dsp_idlect2;
1772
1773    case 0x14:  /* DSP_RSTCT2 */
1774        return s->clkm.dsp_rstct2;
1775
1776    case 0x18:  /* DSP_SYSST */
1777        cpu = CPU(s->cpu);
1778        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1779                (cpu->halted << 6);      /* Quite useless... */
1780    }
1781
1782    OMAP_BAD_REG(addr);
1783    return 0;
1784}
1785
1786static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1787                uint16_t diff, uint16_t value)
1788{
1789    omap_clk clk;
1790
1791    SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
1792}
1793
1794static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1795                uint16_t diff, uint16_t value)
1796{
1797    omap_clk clk;
1798
1799    SET_ONOFF("dspxor_ck", 1);                          /* EN_XORPCK */
1800}
1801
1802static void omap_clkdsp_write(void *opaque, hwaddr addr,
1803                              uint64_t value, unsigned size)
1804{
1805    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1806    uint16_t diff;
1807
1808    if (size != 2) {
1809        omap_badwidth_write16(opaque, addr, value);
1810        return;
1811    }
1812
1813    switch (addr) {
1814    case 0x04:  /* DSP_IDLECT1 */
1815        diff = s->clkm.dsp_idlect1 ^ value;
1816        s->clkm.dsp_idlect1 = value & 0x01f7;
1817        omap_clkdsp_idlect1_update(s, diff, value);
1818        break;
1819
1820    case 0x08:  /* DSP_IDLECT2 */
1821        s->clkm.dsp_idlect2 = value & 0x0037;
1822        diff = s->clkm.dsp_idlect1 ^ value;
1823        omap_clkdsp_idlect2_update(s, diff, value);
1824        break;
1825
1826    case 0x14:  /* DSP_RSTCT2 */
1827        s->clkm.dsp_rstct2 = value & 0x0001;
1828        break;
1829
1830    case 0x18:  /* DSP_SYSST */
1831        s->clkm.cold_start &= value & 0x3f;
1832        break;
1833
1834    default:
1835        OMAP_BAD_REG(addr);
1836    }
1837}
1838
1839static const MemoryRegionOps omap_clkdsp_ops = {
1840    .read = omap_clkdsp_read,
1841    .write = omap_clkdsp_write,
1842    .endianness = DEVICE_NATIVE_ENDIAN,
1843};
1844
1845static void omap_clkm_reset(struct omap_mpu_state_s *s)
1846{
1847    if (s->wdt && s->wdt->reset)
1848        s->clkm.cold_start = 0x6;
1849    s->clkm.clocking_scheme = 0;
1850    omap_clkm_ckctl_update(s, ~0, 0x3000);
1851    s->clkm.arm_ckctl = 0x3000;
1852    omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1853    s->clkm.arm_idlect1 = 0x0400;
1854    omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1855    s->clkm.arm_idlect2 = 0x0100;
1856    s->clkm.arm_ewupct = 0x003f;
1857    s->clkm.arm_rstct1 = 0x0000;
1858    s->clkm.arm_rstct2 = 0x0000;
1859    s->clkm.arm_ckout1 = 0x0015;
1860    s->clkm.dpll1_mode = 0x2002;
1861    omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1862    s->clkm.dsp_idlect1 = 0x0040;
1863    omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1864    s->clkm.dsp_idlect2 = 0x0000;
1865    s->clkm.dsp_rstct2 = 0x0000;
1866}
1867
1868static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1869                hwaddr dsp_base, struct omap_mpu_state_s *s)
1870{
1871    memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1872                          "omap-clkm", 0x100);
1873    memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1874                          "omap-clkdsp", 0x1000);
1875
1876    s->clkm.arm_idlect1 = 0x03ff;
1877    s->clkm.arm_idlect2 = 0x0100;
1878    s->clkm.dsp_idlect1 = 0x0002;
1879    omap_clkm_reset(s);
1880    s->clkm.cold_start = 0x3a;
1881
1882    memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1883    memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1884}
1885
1886/* MPU I/O */
1887struct omap_mpuio_s {
1888    qemu_irq irq;
1889    qemu_irq kbd_irq;
1890    qemu_irq *in;
1891    qemu_irq handler[16];
1892    qemu_irq wakeup;
1893    MemoryRegion iomem;
1894
1895    uint16_t inputs;
1896    uint16_t outputs;
1897    uint16_t dir;
1898    uint16_t edge;
1899    uint16_t mask;
1900    uint16_t ints;
1901
1902    uint16_t debounce;
1903    uint16_t latch;
1904    uint8_t event;
1905
1906    uint8_t buttons[5];
1907    uint8_t row_latch;
1908    uint8_t cols;
1909    int kbd_mask;
1910    int clk;
1911};
1912
1913static void omap_mpuio_set(void *opaque, int line, int level)
1914{
1915    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1916    uint16_t prev = s->inputs;
1917
1918    if (level)
1919        s->inputs |= 1 << line;
1920    else
1921        s->inputs &= ~(1 << line);
1922
1923    if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1924        if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1925            s->ints |= 1 << line;
1926            qemu_irq_raise(s->irq);
1927            /* TODO: wakeup */
1928        }
1929        if ((s->event & (1 << 0)) &&            /* SET_GPIO_EVENT_MODE */
1930                (s->event >> 1) == line)        /* PIN_SELECT */
1931            s->latch = s->inputs;
1932    }
1933}
1934
1935static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1936{
1937    int i;
1938    uint8_t *row, rows = 0, cols = ~s->cols;
1939
1940    for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1941        if (*row & cols)
1942            rows |= i;
1943
1944    qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1945    s->row_latch = ~rows;
1946}
1947
1948static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1949                                unsigned size)
1950{
1951    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1952    int offset = addr & OMAP_MPUI_REG_MASK;
1953    uint16_t ret;
1954
1955    if (size != 2) {
1956        return omap_badwidth_read16(opaque, addr);
1957    }
1958
1959    switch (offset) {
1960    case 0x00:  /* INPUT_LATCH */
1961        return s->inputs;
1962
1963    case 0x04:  /* OUTPUT_REG */
1964        return s->outputs;
1965
1966    case 0x08:  /* IO_CNTL */
1967        return s->dir;
1968
1969    case 0x10:  /* KBR_LATCH */
1970        return s->row_latch;
1971
1972    case 0x14:  /* KBC_REG */
1973        return s->cols;
1974
1975    case 0x18:  /* GPIO_EVENT_MODE_REG */
1976        return s->event;
1977
1978    case 0x1c:  /* GPIO_INT_EDGE_REG */
1979        return s->edge;
1980
1981    case 0x20:  /* KBD_INT */
1982        return (~s->row_latch & 0x1f) && !s->kbd_mask;
1983
1984    case 0x24:  /* GPIO_INT */
1985        ret = s->ints;
1986        s->ints &= s->mask;
1987        if (ret)
1988            qemu_irq_lower(s->irq);
1989        return ret;
1990
1991    case 0x28:  /* KBD_MASKIT */
1992        return s->kbd_mask;
1993
1994    case 0x2c:  /* GPIO_MASKIT */
1995        return s->mask;
1996
1997    case 0x30:  /* GPIO_DEBOUNCING_REG */
1998        return s->debounce;
1999
2000    case 0x34:  /* GPIO_LATCH_REG */
2001        return s->latch;
2002    }
2003
2004    OMAP_BAD_REG(addr);
2005    return 0;
2006}
2007
2008static void omap_mpuio_write(void *opaque, hwaddr addr,
2009                             uint64_t value, unsigned size)
2010{
2011    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2012    int offset = addr & OMAP_MPUI_REG_MASK;
2013    uint16_t diff;
2014    int ln;
2015
2016    if (size != 2) {
2017        omap_badwidth_write16(opaque, addr, value);
2018        return;
2019    }
2020
2021    switch (offset) {
2022    case 0x04:  /* OUTPUT_REG */
2023        diff = (s->outputs ^ value) & ~s->dir;
2024        s->outputs = value;
2025        while ((ln = ctz32(diff)) != 32) {
2026            if (s->handler[ln])
2027                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2028            diff &= ~(1 << ln);
2029        }
2030        break;
2031
2032    case 0x08:  /* IO_CNTL */
2033        diff = s->outputs & (s->dir ^ value);
2034        s->dir = value;
2035
2036        value = s->outputs & ~s->dir;
2037        while ((ln = ctz32(diff)) != 32) {
2038            if (s->handler[ln])
2039                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2040            diff &= ~(1 << ln);
2041        }
2042        break;
2043
2044    case 0x14:  /* KBC_REG */
2045        s->cols = value;
2046        omap_mpuio_kbd_update(s);
2047        break;
2048
2049    case 0x18:  /* GPIO_EVENT_MODE_REG */
2050        s->event = value & 0x1f;
2051        break;
2052
2053    case 0x1c:  /* GPIO_INT_EDGE_REG */
2054        s->edge = value;
2055        break;
2056
2057    case 0x28:  /* KBD_MASKIT */
2058        s->kbd_mask = value & 1;
2059        omap_mpuio_kbd_update(s);
2060        break;
2061
2062    case 0x2c:  /* GPIO_MASKIT */
2063        s->mask = value;
2064        break;
2065
2066    case 0x30:  /* GPIO_DEBOUNCING_REG */
2067        s->debounce = value & 0x1ff;
2068        break;
2069
2070    case 0x00:  /* INPUT_LATCH */
2071    case 0x10:  /* KBR_LATCH */
2072    case 0x20:  /* KBD_INT */
2073    case 0x24:  /* GPIO_INT */
2074    case 0x34:  /* GPIO_LATCH_REG */
2075        OMAP_RO_REG(addr);
2076        return;
2077
2078    default:
2079        OMAP_BAD_REG(addr);
2080        return;
2081    }
2082}
2083
2084static const MemoryRegionOps omap_mpuio_ops  = {
2085    .read = omap_mpuio_read,
2086    .write = omap_mpuio_write,
2087    .endianness = DEVICE_NATIVE_ENDIAN,
2088};
2089
2090static void omap_mpuio_reset(struct omap_mpuio_s *s)
2091{
2092    s->inputs = 0;
2093    s->outputs = 0;
2094    s->dir = ~0;
2095    s->event = 0;
2096    s->edge = 0;
2097    s->kbd_mask = 0;
2098    s->mask = 0;
2099    s->debounce = 0;
2100    s->latch = 0;
2101    s->ints = 0;
2102    s->row_latch = 0x1f;
2103    s->clk = 1;
2104}
2105
2106static void omap_mpuio_onoff(void *opaque, int line, int on)
2107{
2108    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2109
2110    s->clk = on;
2111    if (on)
2112        omap_mpuio_kbd_update(s);
2113}
2114
2115static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2116                hwaddr base,
2117                qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2118                omap_clk clk)
2119{
2120    struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2121
2122    s->irq = gpio_int;
2123    s->kbd_irq = kbd_int;
2124    s->wakeup = wakeup;
2125    s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2126    omap_mpuio_reset(s);
2127
2128    memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2129                          "omap-mpuio", 0x800);
2130    memory_region_add_subregion(memory, base, &s->iomem);
2131
2132    omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2133
2134    return s;
2135}
2136
2137qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2138{
2139    return s->in;
2140}
2141
2142void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2143{
2144    if (line >= 16 || line < 0)
2145        hw_error("%s: No GPIO line %i\n", __func__, line);
2146    s->handler[line] = handler;
2147}
2148
2149void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2150{
2151    if (row >= 5 || row < 0)
2152        hw_error("%s: No key %i-%i\n", __func__, col, row);
2153
2154    if (down)
2155        s->buttons[row] |= 1 << col;
2156    else
2157        s->buttons[row] &= ~(1 << col);
2158
2159    omap_mpuio_kbd_update(s);
2160}
2161
2162/* MicroWire Interface */
2163struct omap_uwire_s {
2164    MemoryRegion iomem;
2165    qemu_irq txirq;
2166    qemu_irq rxirq;
2167    qemu_irq txdrq;
2168
2169    uint16_t txbuf;
2170    uint16_t rxbuf;
2171    uint16_t control;
2172    uint16_t setup[5];
2173
2174    uWireSlave *chip[4];
2175};
2176
2177static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2178{
2179    int chipselect = (s->control >> 10) & 3;            /* INDEX */
2180    uWireSlave *slave = s->chip[chipselect];
2181
2182    if ((s->control >> 5) & 0x1f) {                     /* NB_BITS_WR */
2183        if (s->control & (1 << 12))                     /* CS_CMD */
2184            if (slave && slave->send)
2185                slave->send(slave->opaque,
2186                                s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2187        s->control &= ~(1 << 14);                       /* CSRB */
2188        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2189         * a DRQ.  When is the level IRQ supposed to be reset?  */
2190    }
2191
2192    if ((s->control >> 0) & 0x1f) {                     /* NB_BITS_RD */
2193        if (s->control & (1 << 12))                     /* CS_CMD */
2194            if (slave && slave->receive)
2195                s->rxbuf = slave->receive(slave->opaque);
2196        s->control |= 1 << 15;                          /* RDRB */
2197        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2198         * a DRQ.  When is the level IRQ supposed to be reset?  */
2199    }
2200}
2201
2202static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2203                                unsigned size)
2204{
2205    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2206    int offset = addr & OMAP_MPUI_REG_MASK;
2207
2208    if (size != 2) {
2209        return omap_badwidth_read16(opaque, addr);
2210    }
2211
2212    switch (offset) {
2213    case 0x00:  /* RDR */
2214        s->control &= ~(1 << 15);                       /* RDRB */
2215        return s->rxbuf;
2216
2217    case 0x04:  /* CSR */
2218        return s->control;
2219
2220    case 0x08:  /* SR1 */
2221        return s->setup[0];
2222    case 0x0c:  /* SR2 */
2223        return s->setup[1];
2224    case 0x10:  /* SR3 */
2225        return s->setup[2];
2226    case 0x14:  /* SR4 */
2227        return s->setup[3];
2228    case 0x18:  /* SR5 */
2229        return s->setup[4];
2230    }
2231
2232    OMAP_BAD_REG(addr);
2233    return 0;
2234}
2235
2236static void omap_uwire_write(void *opaque, hwaddr addr,
2237                             uint64_t value, unsigned size)
2238{
2239    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2240    int offset = addr & OMAP_MPUI_REG_MASK;
2241
2242    if (size != 2) {
2243        omap_badwidth_write16(opaque, addr, value);
2244        return;
2245    }
2246
2247    switch (offset) {
2248    case 0x00:  /* TDR */
2249        s->txbuf = value;                               /* TD */
2250        if ((s->setup[4] & (1 << 2)) &&                 /* AUTO_TX_EN */
2251                        ((s->setup[4] & (1 << 3)) ||    /* CS_TOGGLE_TX_EN */
2252                         (s->control & (1 << 12)))) {   /* CS_CMD */
2253            s->control |= 1 << 14;                      /* CSRB */
2254            omap_uwire_transfer_start(s);
2255        }
2256        break;
2257
2258    case 0x04:  /* CSR */
2259        s->control = value & 0x1fff;
2260        if (value & (1 << 13))                          /* START */
2261            omap_uwire_transfer_start(s);
2262        break;
2263
2264    case 0x08:  /* SR1 */
2265        s->setup[0] = value & 0x003f;
2266        break;
2267
2268    case 0x0c:  /* SR2 */
2269        s->setup[1] = value & 0x0fc0;
2270        break;
2271
2272    case 0x10:  /* SR3 */
2273        s->setup[2] = value & 0x0003;
2274        break;
2275
2276    case 0x14:  /* SR4 */
2277        s->setup[3] = value & 0x0001;
2278        break;
2279
2280    case 0x18:  /* SR5 */
2281        s->setup[4] = value & 0x000f;
2282        break;
2283
2284    default:
2285        OMAP_BAD_REG(addr);
2286        return;
2287    }
2288}
2289
2290static const MemoryRegionOps omap_uwire_ops = {
2291    .read = omap_uwire_read,
2292    .write = omap_uwire_write,
2293    .endianness = DEVICE_NATIVE_ENDIAN,
2294};
2295
2296static void omap_uwire_reset(struct omap_uwire_s *s)
2297{
2298    s->control = 0;
2299    s->setup[0] = 0;
2300    s->setup[1] = 0;
2301    s->setup[2] = 0;
2302    s->setup[3] = 0;
2303    s->setup[4] = 0;
2304}
2305
2306static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2307                                            hwaddr base,
2308                                            qemu_irq txirq, qemu_irq rxirq,
2309                                            qemu_irq dma,
2310                                            omap_clk clk)
2311{
2312    struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2313
2314    s->txirq = txirq;
2315    s->rxirq = rxirq;
2316    s->txdrq = dma;
2317    omap_uwire_reset(s);
2318
2319    memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2320    memory_region_add_subregion(system_memory, base, &s->iomem);
2321
2322    return s;
2323}
2324
2325void omap_uwire_attach(struct omap_uwire_s *s,
2326                uWireSlave *slave, int chipselect)
2327{
2328    if (chipselect < 0 || chipselect > 3) {
2329        error_report("%s: Bad chipselect %i", __func__, chipselect);
2330        exit(-1);
2331    }
2332
2333    s->chip[chipselect] = slave;
2334}
2335
2336/* Pseudonoise Pulse-Width Light Modulator */
2337struct omap_pwl_s {
2338    MemoryRegion iomem;
2339    uint8_t output;
2340    uint8_t level;
2341    uint8_t enable;
2342    int clk;
2343};
2344
2345static void omap_pwl_update(struct omap_pwl_s *s)
2346{
2347    int output = (s->clk && s->enable) ? s->level : 0;
2348
2349    if (output != s->output) {
2350        s->output = output;
2351        printf("%s: Backlight now at %i/256\n", __func__, output);
2352    }
2353}
2354
2355static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2356                              unsigned size)
2357{
2358    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2359    int offset = addr & OMAP_MPUI_REG_MASK;
2360
2361    if (size != 1) {
2362        return omap_badwidth_read8(opaque, addr);
2363    }
2364
2365    switch (offset) {
2366    case 0x00:  /* PWL_LEVEL */
2367        return s->level;
2368    case 0x04:  /* PWL_CTRL */
2369        return s->enable;
2370    }
2371    OMAP_BAD_REG(addr);
2372    return 0;
2373}
2374
2375static void omap_pwl_write(void *opaque, hwaddr addr,
2376                           uint64_t value, unsigned size)
2377{
2378    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2379    int offset = addr & OMAP_MPUI_REG_MASK;
2380
2381    if (size != 1) {
2382        omap_badwidth_write8(opaque, addr, value);
2383        return;
2384    }
2385
2386    switch (offset) {
2387    case 0x00:  /* PWL_LEVEL */
2388        s->level = value;
2389        omap_pwl_update(s);
2390        break;
2391    case 0x04:  /* PWL_CTRL */
2392        s->enable = value & 1;
2393        omap_pwl_update(s);
2394        break;
2395    default:
2396        OMAP_BAD_REG(addr);
2397        return;
2398    }
2399}
2400
2401static const MemoryRegionOps omap_pwl_ops = {
2402    .read = omap_pwl_read,
2403    .write = omap_pwl_write,
2404    .endianness = DEVICE_NATIVE_ENDIAN,
2405};
2406
2407static void omap_pwl_reset(struct omap_pwl_s *s)
2408{
2409    s->output = 0;
2410    s->level = 0;
2411    s->enable = 0;
2412    s->clk = 1;
2413    omap_pwl_update(s);
2414}
2415
2416static void omap_pwl_clk_update(void *opaque, int line, int on)
2417{
2418    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2419
2420    s->clk = on;
2421    omap_pwl_update(s);
2422}
2423
2424static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2425                                        hwaddr base,
2426                                        omap_clk clk)
2427{
2428    struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2429
2430    omap_pwl_reset(s);
2431
2432    memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2433                          "omap-pwl", 0x800);
2434    memory_region_add_subregion(system_memory, base, &s->iomem);
2435
2436    omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2437    return s;
2438}
2439
2440/* Pulse-Width Tone module */
2441struct omap_pwt_s {
2442    MemoryRegion iomem;
2443    uint8_t frc;
2444    uint8_t vrc;
2445    uint8_t gcr;
2446    omap_clk clk;
2447};
2448
2449static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2450                              unsigned size)
2451{
2452    struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2453    int offset = addr & OMAP_MPUI_REG_MASK;
2454
2455    if (size != 1) {
2456        return omap_badwidth_read8(opaque, addr);
2457    }
2458
2459    switch (offset) {
2460    case 0x00:  /* FRC */
2461        return s->frc;
2462    case 0x04:  /* VCR */
2463        return s->vrc;
2464    case 0x08:  /* GCR */
2465        return s->gcr;
2466    }
2467    OMAP_BAD_REG(addr);
2468    return 0;
2469}
2470
2471static void omap_pwt_write(void *opaque, hwaddr addr,
2472                           uint64_t value, unsigned size)
2473{
2474    struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2475    int offset = addr & OMAP_MPUI_REG_MASK;
2476
2477    if (size != 1) {
2478        omap_badwidth_write8(opaque, addr, value);
2479        return;
2480    }
2481
2482    switch (offset) {
2483    case 0x00:  /* FRC */
2484        s->frc = value & 0x3f;
2485        break;
2486    case 0x04:  /* VRC */
2487        if ((value ^ s->vrc) & 1) {
2488            if (value & 1)
2489                printf("%s: %iHz buzz on\n", __func__, (int)
2490                                /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2491                                ((omap_clk_getrate(s->clk) >> 3) /
2492                                 /* Pre-multiplexer divider */
2493                                 ((s->gcr & 2) ? 1 : 154) /
2494                                 /* Octave multiplexer */
2495                                 (2 << (value & 3)) *
2496                                 /* 101/107 divider */
2497                                 ((value & (1 << 2)) ? 101 : 107) *
2498                                 /*  49/55 divider */
2499                                 ((value & (1 << 3)) ?  49 : 55) *
2500                                 /*  50/63 divider */
2501                                 ((value & (1 << 4)) ?  50 : 63) *
2502                                 /*  80/127 divider */
2503                                 ((value & (1 << 5)) ?  80 : 127) /
2504                                 (107 * 55 * 63 * 127)));
2505            else
2506                printf("%s: silence!\n", __func__);
2507        }
2508        s->vrc = value & 0x7f;
2509        break;
2510    case 0x08:  /* GCR */
2511        s->gcr = value & 3;
2512        break;
2513    default:
2514        OMAP_BAD_REG(addr);
2515        return;
2516    }
2517}
2518
2519static const MemoryRegionOps omap_pwt_ops = {
2520    .read =omap_pwt_read,
2521    .write = omap_pwt_write,
2522    .endianness = DEVICE_NATIVE_ENDIAN,
2523};
2524
2525static void omap_pwt_reset(struct omap_pwt_s *s)
2526{
2527    s->frc = 0;
2528    s->vrc = 0;
2529    s->gcr = 0;
2530}
2531
2532static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2533                                        hwaddr base,
2534                                        omap_clk clk)
2535{
2536    struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2537    s->clk = clk;
2538    omap_pwt_reset(s);
2539
2540    memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2541                          "omap-pwt", 0x800);
2542    memory_region_add_subregion(system_memory, base, &s->iomem);
2543    return s;
2544}
2545
2546/* Real-time Clock module */
2547struct omap_rtc_s {
2548    MemoryRegion iomem;
2549    qemu_irq irq;
2550    qemu_irq alarm;
2551    QEMUTimer *clk;
2552
2553    uint8_t interrupts;
2554    uint8_t status;
2555    int16_t comp_reg;
2556    int running;
2557    int pm_am;
2558    int auto_comp;
2559    int round;
2560    struct tm alarm_tm;
2561    time_t alarm_ti;
2562
2563    struct tm current_tm;
2564    time_t ti;
2565    uint64_t tick;
2566};
2567
2568static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2569{
2570    /* s->alarm is level-triggered */
2571    qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2572}
2573
2574static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2575{
2576    s->alarm_ti = mktimegm(&s->alarm_tm);
2577    if (s->alarm_ti == -1)
2578        printf("%s: conversion failed\n", __func__);
2579}
2580
2581static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2582                              unsigned size)
2583{
2584    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2585    int offset = addr & OMAP_MPUI_REG_MASK;
2586    uint8_t i;
2587
2588    if (size != 1) {
2589        return omap_badwidth_read8(opaque, addr);
2590    }
2591
2592    switch (offset) {
2593    case 0x00:  /* SECONDS_REG */
2594        return to_bcd(s->current_tm.tm_sec);
2595
2596    case 0x04:  /* MINUTES_REG */
2597        return to_bcd(s->current_tm.tm_min);
2598
2599    case 0x08:  /* HOURS_REG */
2600        if (s->pm_am)
2601            return ((s->current_tm.tm_hour > 11) << 7) |
2602                    to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2603        else
2604            return to_bcd(s->current_tm.tm_hour);
2605
2606    case 0x0c:  /* DAYS_REG */
2607        return to_bcd(s->current_tm.tm_mday);
2608
2609    case 0x10:  /* MONTHS_REG */
2610        return to_bcd(s->current_tm.tm_mon + 1);
2611
2612    case 0x14:  /* YEARS_REG */
2613        return to_bcd(s->current_tm.tm_year % 100);
2614
2615    case 0x18:  /* WEEK_REG */
2616        return s->current_tm.tm_wday;
2617
2618    case 0x20:  /* ALARM_SECONDS_REG */
2619        return to_bcd(s->alarm_tm.tm_sec);
2620
2621    case 0x24:  /* ALARM_MINUTES_REG */
2622        return to_bcd(s->alarm_tm.tm_min);
2623
2624    case 0x28:  /* ALARM_HOURS_REG */
2625        if (s->pm_am)
2626            return ((s->alarm_tm.tm_hour > 11) << 7) |
2627                    to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2628        else
2629            return to_bcd(s->alarm_tm.tm_hour);
2630
2631    case 0x2c:  /* ALARM_DAYS_REG */
2632        return to_bcd(s->alarm_tm.tm_mday);
2633
2634    case 0x30:  /* ALARM_MONTHS_REG */
2635        return to_bcd(s->alarm_tm.tm_mon + 1);
2636
2637    case 0x34:  /* ALARM_YEARS_REG */
2638        return to_bcd(s->alarm_tm.tm_year % 100);
2639
2640    case 0x40:  /* RTC_CTRL_REG */
2641        return (s->pm_am << 3) | (s->auto_comp << 2) |
2642                (s->round << 1) | s->running;
2643
2644    case 0x44:  /* RTC_STATUS_REG */
2645        i = s->status;
2646        s->status &= ~0x3d;
2647        return i;
2648
2649    case 0x48:  /* RTC_INTERRUPTS_REG */
2650        return s->interrupts;
2651
2652    case 0x4c:  /* RTC_COMP_LSB_REG */
2653        return ((uint16_t) s->comp_reg) & 0xff;
2654
2655    case 0x50:  /* RTC_COMP_MSB_REG */
2656        return ((uint16_t) s->comp_reg) >> 8;
2657    }
2658
2659    OMAP_BAD_REG(addr);
2660    return 0;
2661}
2662
2663static void omap_rtc_write(void *opaque, hwaddr addr,
2664                           uint64_t value, unsigned size)
2665{
2666    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2667    int offset = addr & OMAP_MPUI_REG_MASK;
2668    struct tm new_tm;
2669    time_t ti[2];
2670
2671    if (size != 1) {
2672        omap_badwidth_write8(opaque, addr, value);
2673        return;
2674    }
2675
2676    switch (offset) {
2677    case 0x00:  /* SECONDS_REG */
2678#ifdef ALMDEBUG
2679        printf("RTC SEC_REG <-- %02x\n", value);
2680#endif
2681        s->ti -= s->current_tm.tm_sec;
2682        s->ti += from_bcd(value);
2683        return;
2684
2685    case 0x04:  /* MINUTES_REG */
2686#ifdef ALMDEBUG
2687        printf("RTC MIN_REG <-- %02x\n", value);
2688#endif
2689        s->ti -= s->current_tm.tm_min * 60;
2690        s->ti += from_bcd(value) * 60;
2691        return;
2692
2693    case 0x08:  /* HOURS_REG */
2694#ifdef ALMDEBUG
2695        printf("RTC HRS_REG <-- %02x\n", value);
2696#endif
2697        s->ti -= s->current_tm.tm_hour * 3600;
2698        if (s->pm_am) {
2699            s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2700            s->ti += ((value >> 7) & 1) * 43200;
2701        } else
2702            s->ti += from_bcd(value & 0x3f) * 3600;
2703        return;
2704
2705    case 0x0c:  /* DAYS_REG */
2706#ifdef ALMDEBUG
2707        printf("RTC DAY_REG <-- %02x\n", value);
2708#endif
2709        s->ti -= s->current_tm.tm_mday * 86400;
2710        s->ti += from_bcd(value) * 86400;
2711        return;
2712
2713    case 0x10:  /* MONTHS_REG */
2714#ifdef ALMDEBUG
2715        printf("RTC MTH_REG <-- %02x\n", value);
2716#endif
2717        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2718        new_tm.tm_mon = from_bcd(value);
2719        ti[0] = mktimegm(&s->current_tm);
2720        ti[1] = mktimegm(&new_tm);
2721
2722        if (ti[0] != -1 && ti[1] != -1) {
2723            s->ti -= ti[0];
2724            s->ti += ti[1];
2725        } else {
2726            /* A less accurate version */
2727            s->ti -= s->current_tm.tm_mon * 2592000;
2728            s->ti += from_bcd(value) * 2592000;
2729        }
2730        return;
2731
2732    case 0x14:  /* YEARS_REG */
2733#ifdef ALMDEBUG
2734        printf("RTC YRS_REG <-- %02x\n", value);
2735#endif
2736        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2737        new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2738        ti[0] = mktimegm(&s->current_tm);
2739        ti[1] = mktimegm(&new_tm);
2740
2741        if (ti[0] != -1 && ti[1] != -1) {
2742            s->ti -= ti[0];
2743            s->ti += ti[1];
2744        } else {
2745            /* A less accurate version */
2746            s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2747            s->ti += (time_t)from_bcd(value) * 31536000;
2748        }
2749        return;
2750
2751    case 0x18:  /* WEEK_REG */
2752        return; /* Ignored */
2753
2754    case 0x20:  /* ALARM_SECONDS_REG */
2755#ifdef ALMDEBUG
2756        printf("ALM SEC_REG <-- %02x\n", value);
2757#endif
2758        s->alarm_tm.tm_sec = from_bcd(value);
2759        omap_rtc_alarm_update(s);
2760        return;
2761
2762    case 0x24:  /* ALARM_MINUTES_REG */
2763#ifdef ALMDEBUG
2764        printf("ALM MIN_REG <-- %02x\n", value);
2765#endif
2766        s->alarm_tm.tm_min = from_bcd(value);
2767        omap_rtc_alarm_update(s);
2768        return;
2769
2770    case 0x28:  /* ALARM_HOURS_REG */
2771#ifdef ALMDEBUG
2772        printf("ALM HRS_REG <-- %02x\n", value);
2773#endif
2774        if (s->pm_am)
2775            s->alarm_tm.tm_hour =
2776                    ((from_bcd(value & 0x3f)) % 12) +
2777                    ((value >> 7) & 1) * 12;
2778        else
2779            s->alarm_tm.tm_hour = from_bcd(value);
2780        omap_rtc_alarm_update(s);
2781        return;
2782
2783    case 0x2c:  /* ALARM_DAYS_REG */
2784#ifdef ALMDEBUG
2785        printf("ALM DAY_REG <-- %02x\n", value);
2786#endif
2787        s->alarm_tm.tm_mday = from_bcd(value);
2788        omap_rtc_alarm_update(s);
2789        return;
2790
2791    case 0x30:  /* ALARM_MONTHS_REG */
2792#ifdef ALMDEBUG
2793        printf("ALM MON_REG <-- %02x\n", value);
2794#endif
2795        s->alarm_tm.tm_mon = from_bcd(value);
2796        omap_rtc_alarm_update(s);
2797        return;
2798
2799    case 0x34:  /* ALARM_YEARS_REG */
2800#ifdef ALMDEBUG
2801        printf("ALM YRS_REG <-- %02x\n", value);
2802#endif
2803        s->alarm_tm.tm_year = from_bcd(value);
2804        omap_rtc_alarm_update(s);
2805        return;
2806
2807    case 0x40:  /* RTC_CTRL_REG */
2808#ifdef ALMDEBUG
2809        printf("RTC CONTROL <-- %02x\n", value);
2810#endif
2811        s->pm_am = (value >> 3) & 1;
2812        s->auto_comp = (value >> 2) & 1;
2813        s->round = (value >> 1) & 1;
2814        s->running = value & 1;
2815        s->status &= 0xfd;
2816        s->status |= s->running << 1;
2817        return;
2818
2819    case 0x44:  /* RTC_STATUS_REG */
2820#ifdef ALMDEBUG
2821        printf("RTC STATUSL <-- %02x\n", value);
2822#endif
2823        s->status &= ~((value & 0xc0) ^ 0x80);
2824        omap_rtc_interrupts_update(s);
2825        return;
2826
2827    case 0x48:  /* RTC_INTERRUPTS_REG */
2828#ifdef ALMDEBUG
2829        printf("RTC INTRS <-- %02x\n", value);
2830#endif
2831        s->interrupts = value;
2832        return;
2833
2834    case 0x4c:  /* RTC_COMP_LSB_REG */
2835#ifdef ALMDEBUG
2836        printf("RTC COMPLSB <-- %02x\n", value);
2837#endif
2838        s->comp_reg &= 0xff00;
2839        s->comp_reg |= 0x00ff & value;
2840        return;
2841
2842    case 0x50:  /* RTC_COMP_MSB_REG */
2843#ifdef ALMDEBUG
2844        printf("RTC COMPMSB <-- %02x\n", value);
2845#endif
2846        s->comp_reg &= 0x00ff;
2847        s->comp_reg |= 0xff00 & (value << 8);
2848        return;
2849
2850    default:
2851        OMAP_BAD_REG(addr);
2852        return;
2853    }
2854}
2855
2856static const MemoryRegionOps omap_rtc_ops = {
2857    .read = omap_rtc_read,
2858    .write = omap_rtc_write,
2859    .endianness = DEVICE_NATIVE_ENDIAN,
2860};
2861
2862static void omap_rtc_tick(void *opaque)
2863{
2864    struct omap_rtc_s *s = opaque;
2865
2866    if (s->round) {
2867        /* Round to nearest full minute.  */
2868        if (s->current_tm.tm_sec < 30)
2869            s->ti -= s->current_tm.tm_sec;
2870        else
2871            s->ti += 60 - s->current_tm.tm_sec;
2872
2873        s->round = 0;
2874    }
2875
2876    localtime_r(&s->ti, &s->current_tm);
2877
2878    if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2879        s->status |= 0x40;
2880        omap_rtc_interrupts_update(s);
2881    }
2882
2883    if (s->interrupts & 0x04)
2884        switch (s->interrupts & 3) {
2885        case 0:
2886            s->status |= 0x04;
2887            qemu_irq_pulse(s->irq);
2888            break;
2889        case 1:
2890            if (s->current_tm.tm_sec)
2891                break;
2892            s->status |= 0x08;
2893            qemu_irq_pulse(s->irq);
2894            break;
2895        case 2:
2896            if (s->current_tm.tm_sec || s->current_tm.tm_min)
2897                break;
2898            s->status |= 0x10;
2899            qemu_irq_pulse(s->irq);
2900            break;
2901        case 3:
2902            if (s->current_tm.tm_sec ||
2903                            s->current_tm.tm_min || s->current_tm.tm_hour)
2904                break;
2905            s->status |= 0x20;
2906            qemu_irq_pulse(s->irq);
2907            break;
2908        }
2909
2910    /* Move on */
2911    if (s->running)
2912        s->ti ++;
2913    s->tick += 1000;
2914
2915    /*
2916     * Every full hour add a rough approximation of the compensation
2917     * register to the 32kHz Timer (which drives the RTC) value. 
2918     */
2919    if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2920        s->tick += s->comp_reg * 1000 / 32768;
2921
2922    timer_mod(s->clk, s->tick);
2923}
2924
2925static void omap_rtc_reset(struct omap_rtc_s *s)
2926{
2927    struct tm tm;
2928
2929    s->interrupts = 0;
2930    s->comp_reg = 0;
2931    s->running = 0;
2932    s->pm_am = 0;
2933    s->auto_comp = 0;
2934    s->round = 0;
2935    s->tick = qemu_clock_get_ms(rtc_clock);
2936    memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2937    s->alarm_tm.tm_mday = 0x01;
2938    s->status = 1 << 7;
2939    qemu_get_timedate(&tm, 0);
2940    s->ti = mktimegm(&tm);
2941
2942    omap_rtc_alarm_update(s);
2943    omap_rtc_tick(s);
2944}
2945
2946static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2947                                        hwaddr base,
2948                                        qemu_irq timerirq, qemu_irq alarmirq,
2949                                        omap_clk clk)
2950{
2951    struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2952
2953    s->irq = timerirq;
2954    s->alarm = alarmirq;
2955    s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2956
2957    omap_rtc_reset(s);
2958
2959    memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2960                          "omap-rtc", 0x800);
2961    memory_region_add_subregion(system_memory, base, &s->iomem);
2962
2963    return s;
2964}
2965
2966/* Multi-channel Buffered Serial Port interfaces */
2967struct omap_mcbsp_s {
2968    MemoryRegion iomem;
2969    qemu_irq txirq;
2970    qemu_irq rxirq;
2971    qemu_irq txdrq;
2972    qemu_irq rxdrq;
2973
2974    uint16_t spcr[2];
2975    uint16_t rcr[2];
2976    uint16_t xcr[2];
2977    uint16_t srgr[2];
2978    uint16_t mcr[2];
2979    uint16_t pcr;
2980    uint16_t rcer[8];
2981    uint16_t xcer[8];
2982    int tx_rate;
2983    int rx_rate;
2984    int tx_req;
2985    int rx_req;
2986
2987    I2SCodec *codec;
2988    QEMUTimer *source_timer;
2989    QEMUTimer *sink_timer;
2990};
2991
2992static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2993{
2994    int irq;
2995
2996    switch ((s->spcr[0] >> 4) & 3) {                    /* RINTM */
2997    case 0:
2998        irq = (s->spcr[0] >> 1) & 1;                    /* RRDY */
2999        break;
3000    case 3:
3001        irq = (s->spcr[0] >> 3) & 1;                    /* RSYNCERR */
3002        break;
3003    default:
3004        irq = 0;
3005        break;
3006    }
3007
3008    if (irq)
3009        qemu_irq_pulse(s->rxirq);
3010
3011    switch ((s->spcr[1] >> 4) & 3) {                    /* XINTM */
3012    case 0:
3013        irq = (s->spcr[1] >> 1) & 1;                    /* XRDY */
3014        break;
3015    case 3:
3016        irq = (s->spcr[1] >> 3) & 1;                    /* XSYNCERR */
3017        break;
3018    default:
3019        irq = 0;
3020        break;
3021    }
3022
3023    if (irq)
3024        qemu_irq_pulse(s->txirq);
3025}
3026
3027static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3028{
3029    if ((s->spcr[0] >> 1) & 1)                          /* RRDY */
3030        s->spcr[0] |= 1 << 2;                           /* RFULL */
3031    s->spcr[0] |= 1 << 1;                               /* RRDY */
3032    qemu_irq_raise(s->rxdrq);
3033    omap_mcbsp_intr_update(s);
3034}
3035
3036static void omap_mcbsp_source_tick(void *opaque)
3037{
3038    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3039    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3040
3041    if (!s->rx_rate)
3042        return;
3043    if (s->rx_req)
3044        printf("%s: Rx FIFO overrun\n", __func__);
3045
3046    s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3047
3048    omap_mcbsp_rx_newdata(s);
3049    timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3050                   NANOSECONDS_PER_SECOND);
3051}
3052
3053static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3054{
3055    if (!s->codec || !s->codec->rts)
3056        omap_mcbsp_source_tick(s);
3057    else if (s->codec->in.len) {
3058        s->rx_req = s->codec->in.len;
3059        omap_mcbsp_rx_newdata(s);
3060    }
3061}
3062
3063static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3064{
3065    timer_del(s->source_timer);
3066}
3067
3068static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3069{
3070    s->spcr[0] &= ~(1 << 1);                            /* RRDY */
3071    qemu_irq_lower(s->rxdrq);
3072    omap_mcbsp_intr_update(s);
3073}
3074
3075static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3076{
3077    s->spcr[1] |= 1 << 1;                               /* XRDY */
3078    qemu_irq_raise(s->txdrq);
3079    omap_mcbsp_intr_update(s);
3080}
3081
3082static void omap_mcbsp_sink_tick(void *opaque)
3083{
3084    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3085    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3086
3087    if (!s->tx_rate)
3088        return;
3089    if (s->tx_req)
3090        printf("%s: Tx FIFO underrun\n", __func__);
3091
3092    s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3093
3094    omap_mcbsp_tx_newdata(s);
3095    timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3096                   NANOSECONDS_PER_SECOND);
3097}
3098
3099static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3100{
3101    if (!s->codec || !s->codec->cts)
3102        omap_mcbsp_sink_tick(s);
3103    else if (s->codec->out.size) {
3104        s->tx_req = s->codec->out.size;
3105        omap_mcbsp_tx_newdata(s);
3106    }
3107}
3108
3109static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3110{
3111    s->spcr[1] &= ~(1 << 1);                            /* XRDY */
3112    qemu_irq_lower(s->txdrq);
3113    omap_mcbsp_intr_update(s);
3114    if (s->codec && s->codec->cts)
3115        s->codec->tx_swallow(s->codec->opaque);
3116}
3117
3118static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3119{
3120    s->tx_req = 0;
3121    omap_mcbsp_tx_done(s);
3122    timer_del(s->sink_timer);
3123}
3124
3125static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3126{
3127    int prev_rx_rate, prev_tx_rate;
3128    int rx_rate = 0, tx_rate = 0;
3129    int cpu_rate = 1500000;     /* XXX */
3130
3131    /* TODO: check CLKSTP bit */
3132    if (s->spcr[1] & (1 << 6)) {                        /* GRST */
3133        if (s->spcr[0] & (1 << 0)) {                    /* RRST */
3134            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3135                            (s->pcr & (1 << 8))) {      /* CLKRM */
3136                if (~s->pcr & (1 << 7))                 /* SCLKME */
3137                    rx_rate = cpu_rate /
3138                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3139            } else
3140                if (s->codec)
3141                    rx_rate = s->codec->rx_rate;
3142        }
3143
3144        if (s->spcr[1] & (1 << 0)) {                    /* XRST */
3145            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3146                            (s->pcr & (1 << 9))) {      /* CLKXM */
3147                if (~s->pcr & (1 << 7))                 /* SCLKME */
3148                    tx_rate = cpu_rate /
3149                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3150            } else
3151                if (s->codec)
3152                    tx_rate = s->codec->tx_rate;
3153        }
3154    }
3155    prev_tx_rate = s->tx_rate;
3156    prev_rx_rate = s->rx_rate;
3157    s->tx_rate = tx_rate;
3158    s->rx_rate = rx_rate;
3159
3160    if (s->codec)
3161        s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3162
3163    if (!prev_tx_rate && tx_rate)
3164        omap_mcbsp_tx_start(s);
3165    else if (s->tx_rate && !tx_rate)
3166        omap_mcbsp_tx_stop(s);
3167
3168    if (!prev_rx_rate && rx_rate)
3169        omap_mcbsp_rx_start(s);
3170    else if (prev_tx_rate && !tx_rate)
3171        omap_mcbsp_rx_stop(s);
3172}
3173
3174static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3175                                unsigned size)
3176{
3177    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3178    int offset = addr & OMAP_MPUI_REG_MASK;
3179    uint16_t ret;
3180
3181    if (size != 2) {
3182        return omap_badwidth_read16(opaque, addr);
3183    }
3184
3185    switch (offset) {
3186    case 0x00:  /* DRR2 */
3187        if (((s->rcr[0] >> 5) & 7) < 3)                 /* RWDLEN1 */
3188            return 0x0000;
3189        /* Fall through.  */
3190    case 0x02:  /* DRR1 */
3191        if (s->rx_req < 2) {
3192            printf("%s: Rx FIFO underrun\n", __func__);
3193            omap_mcbsp_rx_done(s);
3194        } else {
3195            s->tx_req -= 2;
3196            if (s->codec && s->codec->in.len >= 2) {
3197                ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3198                ret |= s->codec->in.fifo[s->codec->in.start ++];
3199                s->codec->in.len -= 2;
3200            } else
3201                ret = 0x0000;
3202            if (!s->tx_req)
3203                omap_mcbsp_rx_done(s);
3204            return ret;
3205        }
3206        return 0x0000;
3207
3208    case 0x04:  /* DXR2 */
3209    case 0x06:  /* DXR1 */
3210        return 0x0000;
3211
3212    case 0x08:  /* SPCR2 */
3213        return s->spcr[1];
3214    case 0x0a:  /* SPCR1 */
3215        return s->spcr[0];
3216    case 0x0c:  /* RCR2 */
3217        return s->rcr[1];
3218    case 0x0e:  /* RCR1 */
3219        return s->rcr[0];
3220    case 0x10:  /* XCR2 */
3221        return s->xcr[1];
3222    case 0x12:  /* XCR1 */
3223        return s->xcr[0];
3224    case 0x14:  /* SRGR2 */
3225        return s->srgr[1];
3226    case 0x16:  /* SRGR1 */
3227        return s->srgr[0];
3228    case 0x18:  /* MCR2 */
3229        return s->mcr[1];
3230    case 0x1a:  /* MCR1 */
3231        return s->mcr[0];
3232    case 0x1c:  /* RCERA */
3233        return s->rcer[0];
3234    case 0x1e:  /* RCERB */
3235        return s->rcer[1];
3236    case 0x20:  /* XCERA */
3237        return s->xcer[0];
3238    case 0x22:  /* XCERB */
3239        return s->xcer[1];
3240    case 0x24:  /* PCR0 */
3241        return s->pcr;
3242    case 0x26:  /* RCERC */
3243        return s->rcer[2];
3244    case 0x28:  /* RCERD */
3245        return s->rcer[3];
3246    case 0x2a:  /* XCERC */
3247        return s->xcer[2];
3248    case 0x2c:  /* XCERD */
3249        return s->xcer[3];
3250    case 0x2e:  /* RCERE */
3251        return s->rcer[4];
3252    case 0x30:  /* RCERF */
3253        return s->rcer[5];
3254    case 0x32:  /* XCERE */
3255        return s->xcer[4];
3256    case 0x34:  /* XCERF */
3257        return s->xcer[5];
3258    case 0x36:  /* RCERG */
3259        return s->rcer[6];
3260    case 0x38:  /* RCERH */
3261        return s->rcer[7];
3262    case 0x3a:  /* XCERG */
3263        return s->xcer[6];
3264    case 0x3c:  /* XCERH */
3265        return s->xcer[7];
3266    }
3267
3268    OMAP_BAD_REG(addr);
3269    return 0;
3270}
3271
3272static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3273                uint32_t value)
3274{
3275    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3276    int offset = addr & OMAP_MPUI_REG_MASK;
3277
3278    switch (offset) {
3279    case 0x00:  /* DRR2 */
3280    case 0x02:  /* DRR1 */
3281        OMAP_RO_REG(addr);
3282        return;
3283
3284    case 0x04:  /* DXR2 */
3285        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3286            return;
3287        /* Fall through.  */
3288    case 0x06:  /* DXR1 */
3289        if (s->tx_req > 1) {
3290            s->tx_req -= 2;
3291            if (s->codec && s->codec->cts) {
3292                s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3293                s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3294            }
3295            if (s->tx_req < 2)
3296                omap_mcbsp_tx_done(s);
3297        } else
3298            printf("%s: Tx FIFO overrun\n", __func__);
3299        return;
3300
3301    case 0x08:  /* SPCR2 */
3302        s->spcr[1] &= 0x0002;
3303        s->spcr[1] |= 0x03f9 & value;
3304        s->spcr[1] |= 0x0004 & (value << 2);            /* XEMPTY := XRST */
3305        if (~value & 1)                                 /* XRST */
3306            s->spcr[1] &= ~6;
3307        omap_mcbsp_req_update(s);
3308        return;
3309    case 0x0a:  /* SPCR1 */
3310        s->spcr[0] &= 0x0006;
3311        s->spcr[0] |= 0xf8f9 & value;
3312        if (value & (1 << 15))                          /* DLB */
3313            printf("%s: Digital Loopback mode enable attempt\n", __func__);
3314        if (~value & 1) {                               /* RRST */
3315            s->spcr[0] &= ~6;
3316            s->rx_req = 0;
3317            omap_mcbsp_rx_done(s);
3318        }
3319        omap_mcbsp_req_update(s);
3320        return;
3321
3322    case 0x0c:  /* RCR2 */
3323        s->rcr[1] = value & 0xffff;
3324        return;
3325    case 0x0e:  /* RCR1 */
3326        s->rcr[0] = value & 0x7fe0;
3327        return;
3328    case 0x10:  /* XCR2 */
3329        s->xcr[1] = value & 0xffff;
3330        return;
3331    case 0x12:  /* XCR1 */
3332        s->xcr[0] = value & 0x7fe0;
3333        return;
3334    case 0x14:  /* SRGR2 */
3335        s->srgr[1] = value & 0xffff;
3336        omap_mcbsp_req_update(s);
3337        return;
3338    case 0x16:  /* SRGR1 */
3339        s->srgr[0] = value & 0xffff;
3340        omap_mcbsp_req_update(s);
3341        return;
3342    case 0x18:  /* MCR2 */
3343        s->mcr[1] = value & 0x03e3;
3344        if (value & 3)                                  /* XMCM */
3345            printf("%s: Tx channel selection mode enable attempt\n", __func__);
3346        return;
3347    case 0x1a:  /* MCR1 */
3348        s->mcr[0] = value & 0x03e1;
3349        if (value & 1)                                  /* RMCM */
3350            printf("%s: Rx channel selection mode enable attempt\n", __func__);
3351        return;
3352    case 0x1c:  /* RCERA */
3353        s->rcer[0] = value & 0xffff;
3354        return;
3355    case 0x1e:  /* RCERB */
3356        s->rcer[1] = value & 0xffff;
3357        return;
3358    case 0x20:  /* XCERA */
3359        s->xcer[0] = value & 0xffff;
3360        return;
3361    case 0x22:  /* XCERB */
3362        s->xcer[1] = value & 0xffff;
3363        return;
3364    case 0x24:  /* PCR0 */
3365        s->pcr = value & 0x7faf;
3366        return;
3367    case 0x26:  /* RCERC */
3368        s->rcer[2] = value & 0xffff;
3369        return;
3370    case 0x28:  /* RCERD */
3371        s->rcer[3] = value & 0xffff;
3372        return;
3373    case 0x2a:  /* XCERC */
3374        s->xcer[2] = value & 0xffff;
3375        return;
3376    case 0x2c:  /* XCERD */
3377        s->xcer[3] = value & 0xffff;
3378        return;
3379    case 0x2e:  /* RCERE */
3380        s->rcer[4] = value & 0xffff;
3381        return;
3382    case 0x30:  /* RCERF */
3383        s->rcer[5] = value & 0xffff;
3384        return;
3385    case 0x32:  /* XCERE */
3386        s->xcer[4] = value & 0xffff;
3387        return;
3388    case 0x34:  /* XCERF */
3389        s->xcer[5] = value & 0xffff;
3390        return;
3391    case 0x36:  /* RCERG */
3392        s->rcer[6] = value & 0xffff;
3393        return;
3394    case 0x38:  /* RCERH */
3395        s->rcer[7] = value & 0xffff;
3396        return;
3397    case 0x3a:  /* XCERG */
3398        s->xcer[6] = value & 0xffff;
3399        return;
3400    case 0x3c:  /* XCERH */
3401        s->xcer[7] = value & 0xffff;
3402        return;
3403    }
3404
3405    OMAP_BAD_REG(addr);
3406}
3407
3408static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3409                uint32_t value)
3410{
3411    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3412    int offset = addr & OMAP_MPUI_REG_MASK;
3413
3414    if (offset == 0x04) {                               /* DXR */
3415        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3416            return;
3417        if (s->tx_req > 3) {
3418            s->tx_req -= 4;
3419            if (s->codec && s->codec->cts) {
3420                s->codec->out.fifo[s->codec->out.len ++] =
3421                        (value >> 24) & 0xff;
3422                s->codec->out.fifo[s->codec->out.len ++] =
3423                        (value >> 16) & 0xff;
3424                s->codec->out.fifo[s->codec->out.len ++] =
3425                        (value >> 8) & 0xff;
3426                s->codec->out.fifo[s->codec->out.len ++] =
3427                        (value >> 0) & 0xff;
3428            }
3429            if (s->tx_req < 4)
3430                omap_mcbsp_tx_done(s);
3431        } else
3432            printf("%s: Tx FIFO overrun\n", __func__);
3433        return;
3434    }
3435
3436    omap_badwidth_write16(opaque, addr, value);
3437}
3438
3439static void omap_mcbsp_write(void *opaque, hwaddr addr,
3440                             uint64_t value, unsigned size)
3441{
3442    switch (size) {
3443    case 2:
3444        omap_mcbsp_writeh(opaque, addr, value);
3445        break;
3446    case 4:
3447        omap_mcbsp_writew(opaque, addr, value);
3448        break;
3449    default:
3450        omap_badwidth_write16(opaque, addr, value);
3451    }
3452}
3453
3454static const MemoryRegionOps omap_mcbsp_ops = {
3455    .read = omap_mcbsp_read,
3456    .write = omap_mcbsp_write,
3457    .endianness = DEVICE_NATIVE_ENDIAN,
3458};
3459
3460static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3461{
3462    memset(&s->spcr, 0, sizeof(s->spcr));
3463    memset(&s->rcr, 0, sizeof(s->rcr));
3464    memset(&s->xcr, 0, sizeof(s->xcr));
3465    s->srgr[0] = 0x0001;
3466    s->srgr[1] = 0x2000;
3467    memset(&s->mcr, 0, sizeof(s->mcr));
3468    memset(&s->pcr, 0, sizeof(s->pcr));
3469    memset(&s->rcer, 0, sizeof(s->rcer));
3470    memset(&s->xcer, 0, sizeof(s->xcer));
3471    s->tx_req = 0;
3472    s->rx_req = 0;
3473    s->tx_rate = 0;
3474    s->rx_rate = 0;
3475    timer_del(s->source_timer);
3476    timer_del(s->sink_timer);
3477}
3478
3479static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3480                                            hwaddr base,
3481                                            qemu_irq txirq, qemu_irq rxirq,
3482                                            qemu_irq *dma, omap_clk clk)
3483{
3484    struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3485
3486    s->txirq = txirq;
3487    s->rxirq = rxirq;
3488    s->txdrq = dma[0];
3489    s->rxdrq = dma[1];
3490    s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3491    s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3492    omap_mcbsp_reset(s);
3493
3494    memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3495    memory_region_add_subregion(system_memory, base, &s->iomem);
3496
3497    return s;
3498}
3499
3500static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3501{
3502    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3503
3504    if (s->rx_rate) {
3505        s->rx_req = s->codec->in.len;
3506        omap_mcbsp_rx_newdata(s);
3507    }
3508}
3509
3510static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3511{
3512    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3513
3514    if (s->tx_rate) {
3515        s->tx_req = s->codec->out.size;
3516        omap_mcbsp_tx_newdata(s);
3517    }
3518}
3519
3520void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3521{
3522    s->codec = slave;
3523    slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3524    slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3525}
3526
3527/* LED Pulse Generators */
3528struct omap_lpg_s {
3529    MemoryRegion iomem;
3530    QEMUTimer *tm;
3531
3532    uint8_t control;
3533    uint8_t power;
3534    int64_t on;
3535    int64_t period;
3536    int clk;
3537    int cycle;
3538};
3539
3540static void omap_lpg_tick(void *opaque)
3541{
3542    struct omap_lpg_s *s = opaque;
3543
3544    if (s->cycle)
3545        timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3546    else
3547        timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3548
3549    s->cycle = !s->cycle;
3550    printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3551}
3552
3553static void omap_lpg_update(struct omap_lpg_s *s)
3554{
3555    int64_t on, period = 1, ticks = 1000;
3556    static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3557
3558    if (~s->control & (1 << 6))                                 /* LPGRES */
3559        on = 0;
3560    else if (s->control & (1 << 7))                             /* PERM_ON */
3561        on = period;
3562    else {
3563        period = muldiv64(ticks, per[s->control & 7],           /* PERCTRL */
3564                        256 / 32);
3565        on = (s->clk && s->power) ? muldiv64(ticks,
3566                        per[(s->control >> 3) & 7], 256) : 0;   /* ONCTRL */
3567    }
3568
3569    timer_del(s->tm);
3570    if (on == period && s->on < s->period)
3571        printf("%s: LED is on\n", __func__);
3572    else if (on == 0 && s->on)
3573        printf("%s: LED is off\n", __func__);
3574    else if (on && (on != s->on || period != s->period)) {
3575        s->cycle = 0;
3576        s->on = on;
3577        s->period = period;
3578        omap_lpg_tick(s);
3579        return;
3580    }
3581
3582    s->on = on;
3583    s->period = period;
3584}
3585
3586static void omap_lpg_reset(struct omap_lpg_s *s)
3587{
3588    s->control = 0x00;
3589    s->power = 0x00;
3590    s->clk = 1;
3591    omap_lpg_update(s);
3592}
3593
3594static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3595                              unsigned size)
3596{
3597    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3598    int offset = addr & OMAP_MPUI_REG_MASK;
3599
3600    if (size != 1) {
3601        return omap_badwidth_read8(opaque, addr);
3602    }
3603
3604    switch (offset) {
3605    case 0x00:  /* LCR */
3606        return s->control;
3607
3608    case 0x04:  /* PMR */
3609        return s->power;
3610    }
3611
3612    OMAP_BAD_REG(addr);
3613    return 0;
3614}
3615
3616static void omap_lpg_write(void *opaque, hwaddr addr,
3617                           uint64_t value, unsigned size)
3618{
3619    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3620    int offset = addr & OMAP_MPUI_REG_MASK;
3621
3622    if (size != 1) {
3623        omap_badwidth_write8(opaque, addr, value);
3624        return;
3625    }
3626
3627    switch (offset) {
3628    case 0x00:  /* LCR */
3629        if (~value & (1 << 6))                                  /* LPGRES */
3630            omap_lpg_reset(s);
3631        s->control = value & 0xff;
3632        omap_lpg_update(s);
3633        return;
3634
3635    case 0x04:  /* PMR */
3636        s->power = value & 0x01;
3637        omap_lpg_update(s);
3638        return;
3639
3640    default:
3641        OMAP_BAD_REG(addr);
3642        return;
3643    }
3644}
3645
3646static const MemoryRegionOps omap_lpg_ops = {
3647    .read = omap_lpg_read,
3648    .write = omap_lpg_write,
3649    .endianness = DEVICE_NATIVE_ENDIAN,
3650};
3651
3652static void omap_lpg_clk_update(void *opaque, int line, int on)
3653{
3654    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3655
3656    s->clk = on;
3657    omap_lpg_update(s);
3658}
3659
3660static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3661                                        hwaddr base, omap_clk clk)
3662{
3663    struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3664
3665    s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3666
3667    omap_lpg_reset(s);
3668
3669    memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3670    memory_region_add_subregion(system_memory, base, &s->iomem);
3671
3672    omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3673
3674    return s;
3675}
3676
3677/* MPUI Peripheral Bridge configuration */
3678static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3679                                  unsigned size)
3680{
3681    if (size != 2) {
3682        return omap_badwidth_read16(opaque, addr);
3683    }
3684
3685    if (addr == OMAP_MPUI_BASE) /* CMR */
3686        return 0xfe4d;
3687
3688    OMAP_BAD_REG(addr);
3689    return 0;
3690}
3691
3692static void omap_mpui_io_write(void *opaque, hwaddr addr,
3693                               uint64_t value, unsigned size)
3694{
3695    /* FIXME: infinite loop */
3696    omap_badwidth_write16(opaque, addr, value);
3697}
3698
3699static const MemoryRegionOps omap_mpui_io_ops = {
3700    .read = omap_mpui_io_read,
3701    .write = omap_mpui_io_write,
3702    .endianness = DEVICE_NATIVE_ENDIAN,
3703};
3704
3705static void omap_setup_mpui_io(MemoryRegion *system_memory,
3706                               struct omap_mpu_state_s *mpu)
3707{
3708    memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3709                          "omap-mpui-io", 0x7fff);
3710    memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3711                                &mpu->mpui_io_iomem);
3712}
3713
3714/* General chip reset */
3715static void omap1_mpu_reset(void *opaque)
3716{
3717    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3718
3719    omap_dma_reset(mpu->dma);
3720    omap_mpu_timer_reset(mpu->timer[0]);
3721    omap_mpu_timer_reset(mpu->timer[1]);
3722    omap_mpu_timer_reset(mpu->timer[2]);
3723    omap_wd_timer_reset(mpu->wdt);
3724    omap_os_timer_reset(mpu->os_timer);
3725    omap_lcdc_reset(mpu->lcd);
3726    omap_ulpd_pm_reset(mpu);
3727    omap_pin_cfg_reset(mpu);
3728    omap_mpui_reset(mpu);
3729    omap_tipb_bridge_reset(mpu->private_tipb);
3730    omap_tipb_bridge_reset(mpu->public_tipb);
3731    omap_dpll_reset(mpu->dpll[0]);
3732    omap_dpll_reset(mpu->dpll[1]);
3733    omap_dpll_reset(mpu->dpll[2]);
3734    omap_uart_reset(mpu->uart[0]);
3735    omap_uart_reset(mpu->uart[1]);
3736    omap_uart_reset(mpu->uart[2]);
3737    omap_mmc_reset(mpu->mmc);
3738    omap_mpuio_reset(mpu->mpuio);
3739    omap_uwire_reset(mpu->microwire);
3740    omap_pwl_reset(mpu->pwl);
3741    omap_pwt_reset(mpu->pwt);
3742    omap_rtc_reset(mpu->rtc);
3743    omap_mcbsp_reset(mpu->mcbsp1);
3744    omap_mcbsp_reset(mpu->mcbsp2);
3745    omap_mcbsp_reset(mpu->mcbsp3);
3746    omap_lpg_reset(mpu->led[0]);
3747    omap_lpg_reset(mpu->led[1]);
3748    omap_clkm_reset(mpu);
3749    cpu_reset(CPU(mpu->cpu));
3750}
3751
3752static const struct omap_map_s {
3753    hwaddr phys_dsp;
3754    hwaddr phys_mpu;
3755    uint32_t size;
3756    const char *name;
3757} omap15xx_dsp_mm[] = {
3758    /* Strobe 0 */
3759    { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },              /* CS0 */
3760    { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },             /* CS1 */
3761    { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },          /* CS3 */
3762    { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },   /* CS4 */
3763    { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
3764    { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                 /* CS6 */
3765    { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                  /* CS7 */
3766    { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },              /* CS8 */
3767    { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                   /* CS9 */
3768    { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                 /* CS10 */
3769    { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                   /* CS11 */
3770    { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                   /* CS12 */
3771    { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
3772    { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                   /* CS15 */
3773    { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },          /* CS18 */
3774    { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                 /* CS19 */
3775    { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },         /* CS25 */
3776    /* Strobe 1 */
3777    { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                 /* CS28 */
3778
3779    { 0 }
3780};
3781
3782static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3783                                   const struct omap_map_s *map)
3784{
3785    MemoryRegion *io;
3786
3787    for (; map->phys_dsp; map ++) {
3788        io = g_new(MemoryRegion, 1);
3789        memory_region_init_alias(io, NULL, map->name,
3790                                 system_memory, map->phys_mpu, map->size);
3791        memory_region_add_subregion(system_memory, map->phys_dsp, io);
3792    }
3793}
3794
3795void omap_mpu_wakeup(void *opaque, int irq, int req)
3796{
3797    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3798    CPUState *cpu = CPU(mpu->cpu);
3799
3800    if (cpu->halted) {
3801        cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3802    }
3803}
3804
3805static const struct dma_irq_map omap1_dma_irq_map[] = {
3806    { 0, OMAP_INT_DMA_CH0_6 },
3807    { 0, OMAP_INT_DMA_CH1_7 },
3808    { 0, OMAP_INT_DMA_CH2_8 },
3809    { 0, OMAP_INT_DMA_CH3 },
3810    { 0, OMAP_INT_DMA_CH4 },
3811    { 0, OMAP_INT_DMA_CH5 },
3812    { 1, OMAP_INT_1610_DMA_CH6 },
3813    { 1, OMAP_INT_1610_DMA_CH7 },
3814    { 1, OMAP_INT_1610_DMA_CH8 },
3815    { 1, OMAP_INT_1610_DMA_CH9 },
3816    { 1, OMAP_INT_1610_DMA_CH10 },
3817    { 1, OMAP_INT_1610_DMA_CH11 },
3818    { 1, OMAP_INT_1610_DMA_CH12 },
3819    { 1, OMAP_INT_1610_DMA_CH13 },
3820    { 1, OMAP_INT_1610_DMA_CH14 },
3821    { 1, OMAP_INT_1610_DMA_CH15 }
3822};
3823
3824/* DMA ports for OMAP1 */
3825static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3826                hwaddr addr)
3827{
3828    return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3829}
3830
3831static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3832                hwaddr addr)
3833{
3834    return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3835                             addr);
3836}
3837
3838static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3839                hwaddr addr)
3840{
3841    return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3842}
3843
3844static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3845                hwaddr addr)
3846{
3847    return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3848}
3849
3850static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3851                hwaddr addr)
3852{
3853    return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3854}
3855
3856static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3857                hwaddr addr)
3858{
3859    return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3860}
3861
3862struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
3863                const char *cpu_type)
3864{
3865    int i;
3866    struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3867    qemu_irq dma_irqs[6];
3868    DriveInfo *dinfo;
3869    SysBusDevice *busdev;
3870    MemoryRegion *system_memory = get_system_memory();
3871
3872    /* Core */
3873    s->mpu_model = omap310;
3874    s->cpu = ARM_CPU(cpu_create(cpu_type));
3875    s->sdram_size = memory_region_size(dram);
3876    s->sram_size = OMAP15XX_SRAM_SIZE;
3877
3878    s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3879
3880    /* Clocks */
3881    omap_clk_init(s);
3882
3883    /* Memory-mapped stuff */
3884    memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3885                           &error_fatal);
3886    memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3887
3888    omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3889
3890    s->ih[0] = qdev_create(NULL, "omap-intc");
3891    qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3892    qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3893    qdev_init_nofail(s->ih[0]);
3894    busdev = SYS_BUS_DEVICE(s->ih[0]);
3895    sysbus_connect_irq(busdev, 0,
3896                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3897    sysbus_connect_irq(busdev, 1,
3898                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3899    sysbus_mmio_map(busdev, 0, 0xfffecb00);
3900    s->ih[1] = qdev_create(NULL, "omap-intc");
3901    qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3902    qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3903    qdev_init_nofail(s->ih[1]);
3904    busdev = SYS_BUS_DEVICE(s->ih[1]);
3905    sysbus_connect_irq(busdev, 0,
3906                       qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3907    /* The second interrupt controller's FIQ output is not wired up */
3908    sysbus_mmio_map(busdev, 0, 0xfffe0000);
3909
3910    for (i = 0; i < 6; i++) {
3911        dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3912                                       omap1_dma_irq_map[i].intr);
3913    }
3914    s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3915                           qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3916                           s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3917
3918    s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3919    s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3920    s->port[imif     ].addr_valid = omap_validate_imif_addr;
3921    s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3922    s->port[local    ].addr_valid = omap_validate_local_addr;
3923    s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3924
3925    /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3926    soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
3927                         OMAP_EMIFF_BASE, s->sdram_size);
3928    soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3929                         OMAP_IMIF_BASE, s->sram_size);
3930
3931    s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3932                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3933                    omap_findclk(s, "mputim_ck"));
3934    s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3935                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3936                    omap_findclk(s, "mputim_ck"));
3937    s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3938                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3939                    omap_findclk(s, "mputim_ck"));
3940
3941    s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3942                    qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3943                    omap_findclk(s, "armwdt_ck"));
3944
3945    s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3946                    qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3947                    omap_findclk(s, "clk32-kHz"));
3948
3949    s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3950                            qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3951                            omap_dma_get_lcdch(s->dma),
3952                            omap_findclk(s, "lcd_ck"));
3953
3954    omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3955    omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3956    omap_id_init(system_memory, s);
3957
3958    omap_mpui_init(system_memory, 0xfffec900, s);
3959
3960    s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3961                    qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3962                    omap_findclk(s, "tipb_ck"));
3963    s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3964                    qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3965                    omap_findclk(s, "tipb_ck"));
3966
3967    omap_tcmi_init(system_memory, 0xfffecc00, s);
3968
3969    s->uart[0] = omap_uart_init(0xfffb0000,
3970                                qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3971                    omap_findclk(s, "uart1_ck"),
3972                    omap_findclk(s, "uart1_ck"),
3973                    s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3974                    "uart1",
3975                    serial_hd(0));
3976    s->uart[1] = omap_uart_init(0xfffb0800,
3977                                qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3978                    omap_findclk(s, "uart2_ck"),
3979                    omap_findclk(s, "uart2_ck"),
3980                    s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3981                    "uart2",
3982                    serial_hd(0) ? serial_hd(1) : NULL);
3983    s->uart[2] = omap_uart_init(0xfffb9800,
3984                                qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3985                    omap_findclk(s, "uart3_ck"),
3986                    omap_findclk(s, "uart3_ck"),
3987                    s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3988                    "uart3",
3989                    serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3990
3991    s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3992                                omap_findclk(s, "dpll1"));
3993    s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3994                                omap_findclk(s, "dpll2"));
3995    s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3996                                omap_findclk(s, "dpll3"));
3997
3998    dinfo = drive_get(IF_SD, 0, 0);
3999    if (!dinfo && !qtest_enabled()) {
4000        warn_report("missing SecureDigital device");
4001    }
4002    s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4003                           dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4004                           qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4005                           &s->drq[OMAP_DMA_MMC_TX],
4006                    omap_findclk(s, "mmc_ck"));
4007
4008    s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4009                               qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4010                               qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4011                               s->wakeup, omap_findclk(s, "clk32-kHz"));
4012
4013    s->gpio = qdev_create(NULL, "omap-gpio");
4014    qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4015    qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4016    qdev_init_nofail(s->gpio);
4017    sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4018                       qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4019    sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4020
4021    s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4022                                   qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4023                                   qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4024                    s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4025
4026    s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4027                           omap_findclk(s, "armxor_ck"));
4028    s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4029                           omap_findclk(s, "armxor_ck"));
4030
4031    s->i2c[0] = qdev_create(NULL, "omap_i2c");
4032    qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4033    qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4034    qdev_init_nofail(s->i2c[0]);
4035    busdev = SYS_BUS_DEVICE(s->i2c[0]);
4036    sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4037    sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4038    sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4039    sysbus_mmio_map(busdev, 0, 0xfffb3800);
4040
4041    s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4042                           qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4043                           qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4044                    omap_findclk(s, "clk32-kHz"));
4045
4046    s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4047                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4048                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4049                    &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4050    s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4051                                qdev_get_gpio_in(s->ih[0],
4052                                                 OMAP_INT_310_McBSP2_TX),
4053                                qdev_get_gpio_in(s->ih[0],
4054                                                 OMAP_INT_310_McBSP2_RX),
4055                    &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4056    s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4057                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4058                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4059                    &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4060
4061    s->led[0] = omap_lpg_init(system_memory,
4062                              0xfffbd000, omap_findclk(s, "clk32-kHz"));
4063    s->led[1] = omap_lpg_init(system_memory,
4064                              0xfffbd800, omap_findclk(s, "clk32-kHz"));
4065
4066    /* Register mappings not currenlty implemented:
4067     * MCSI2 Comm       fffb2000 - fffb27ff (not mapped on OMAP310)
4068     * MCSI1 Bluetooth  fffb2800 - fffb2fff (not mapped on OMAP310)
4069     * USB W2FC         fffb4000 - fffb47ff
4070     * Camera Interface fffb6800 - fffb6fff
4071     * USB Host         fffba000 - fffba7ff
4072     * FAC              fffba800 - fffbafff
4073     * HDQ/1-Wire       fffbc000 - fffbc7ff
4074     * TIPB switches    fffbc800 - fffbcfff
4075     * Mailbox          fffcf000 - fffcf7ff
4076     * Local bus IF     fffec100 - fffec1ff
4077     * Local bus MMU    fffec200 - fffec2ff
4078     * DSP MMU          fffed200 - fffed2ff
4079     */
4080
4081    omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4082    omap_setup_mpui_io(system_memory, s);
4083
4084    qemu_register_reset(omap1_mpu_reset, s);
4085
4086    return s;
4087}
4088