qemu/hw/block/m25p80.c
<<
>>
Prefs
   1/*
   2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
   3 * set. Known devices table current as of Jun/2012 and taken from linux.
   4 * See drivers/mtd/devices/m25p80.c.
   5 *
   6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
   7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
   8 * Copyright (C) 2012 PetaLogix
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 or
  13 * (at your option) a later version of the License.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "qemu/units.h"
  26#include "sysemu/block-backend.h"
  27#include "hw/qdev-properties.h"
  28#include "hw/ssi/ssi.h"
  29#include "migration/vmstate.h"
  30#include "qemu/bitops.h"
  31#include "qemu/log.h"
  32#include "qemu/module.h"
  33#include "qemu/error-report.h"
  34#include "qapi/error.h"
  35
  36#ifndef M25P80_ERR_DEBUG
  37#define M25P80_ERR_DEBUG 0
  38#endif
  39
  40#define DB_PRINT_L(level, ...) do { \
  41    if (M25P80_ERR_DEBUG > (level)) { \
  42        fprintf(stderr,  ": %s: ", __func__); \
  43        fprintf(stderr, ## __VA_ARGS__); \
  44    } \
  45} while (0)
  46
  47/* Fields for FlashPartInfo->flags */
  48
  49/* erase capabilities */
  50#define ER_4K 1
  51#define ER_32K 2
  52/* set to allow the page program command to write 0s back to 1. Useful for
  53 * modelling EEPROM with SPI flash command set
  54 */
  55#define EEPROM 0x100
  56
  57/* 16 MiB max in 3 byte address mode */
  58#define MAX_3BYTES_SIZE 0x1000000
  59
  60#define SPI_NOR_MAX_ID_LEN 6
  61
  62typedef struct FlashPartInfo {
  63    const char *part_name;
  64    /*
  65     * This array stores the ID bytes.
  66     * The first three bytes are the JEDIC ID.
  67     * JEDEC ID zero means "no ID" (mostly older chips).
  68     */
  69    uint8_t id[SPI_NOR_MAX_ID_LEN];
  70    uint8_t id_len;
  71    /* there is confusion between manufacturers as to what a sector is. In this
  72     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
  73     * command (opcode 0xd8).
  74     */
  75    uint32_t sector_size;
  76    uint32_t n_sectors;
  77    uint32_t page_size;
  78    uint16_t flags;
  79    /*
  80     * Big sized spi nor are often stacked devices, thus sometime
  81     * replace chip erase with die erase.
  82     * This field inform how many die is in the chip.
  83     */
  84    uint8_t die_cnt;
  85} FlashPartInfo;
  86
  87/* adapted from linux */
  88/* Used when the "_ext_id" is two bytes at most */
  89#define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
  90    .part_name = _part_name,\
  91    .id = {\
  92        ((_jedec_id) >> 16) & 0xff,\
  93        ((_jedec_id) >> 8) & 0xff,\
  94        (_jedec_id) & 0xff,\
  95        ((_ext_id) >> 8) & 0xff,\
  96        (_ext_id) & 0xff,\
  97          },\
  98    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
  99    .sector_size = (_sector_size),\
 100    .n_sectors = (_n_sectors),\
 101    .page_size = 256,\
 102    .flags = (_flags),\
 103    .die_cnt = 0
 104
 105#define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
 106    .part_name = _part_name,\
 107    .id = {\
 108        ((_jedec_id) >> 16) & 0xff,\
 109        ((_jedec_id) >> 8) & 0xff,\
 110        (_jedec_id) & 0xff,\
 111        ((_ext_id) >> 16) & 0xff,\
 112        ((_ext_id) >> 8) & 0xff,\
 113        (_ext_id) & 0xff,\
 114          },\
 115    .id_len = 6,\
 116    .sector_size = (_sector_size),\
 117    .n_sectors = (_n_sectors),\
 118    .page_size = 256,\
 119    .flags = (_flags),\
 120    .die_cnt = 0
 121
 122#define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
 123                    _flags, _die_cnt)\
 124    .part_name = _part_name,\
 125    .id = {\
 126        ((_jedec_id) >> 16) & 0xff,\
 127        ((_jedec_id) >> 8) & 0xff,\
 128        (_jedec_id) & 0xff,\
 129        ((_ext_id) >> 8) & 0xff,\
 130        (_ext_id) & 0xff,\
 131          },\
 132    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
 133    .sector_size = (_sector_size),\
 134    .n_sectors = (_n_sectors),\
 135    .page_size = 256,\
 136    .flags = (_flags),\
 137    .die_cnt = _die_cnt
 138
 139#define JEDEC_NUMONYX 0x20
 140#define JEDEC_WINBOND 0xEF
 141#define JEDEC_SPANSION 0x01
 142
 143/* Numonyx (Micron) Configuration register macros */
 144#define VCFG_DUMMY 0x1
 145#define VCFG_WRAP_SEQUENTIAL 0x2
 146#define NVCFG_XIP_MODE_DISABLED (7 << 9)
 147#define NVCFG_XIP_MODE_MASK (7 << 9)
 148#define VCFG_XIP_MODE_ENABLED (1 << 3)
 149#define CFG_DUMMY_CLK_LEN 4
 150#define NVCFG_DUMMY_CLK_POS 12
 151#define VCFG_DUMMY_CLK_POS 4
 152#define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
 153#define EVCFG_VPP_ACCELERATOR (1 << 3)
 154#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
 155#define NVCFG_DUAL_IO_MASK (1 << 2)
 156#define EVCFG_DUAL_IO_ENABLED (1 << 6)
 157#define NVCFG_QUAD_IO_MASK (1 << 3)
 158#define EVCFG_QUAD_IO_ENABLED (1 << 7)
 159#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
 160#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
 161
 162/* Numonyx (Micron) Flag Status Register macros */
 163#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
 164#define FSR_FLASH_READY (1 << 7)
 165
 166/* Spansion configuration registers macros. */
 167#define SPANSION_QUAD_CFG_POS 0
 168#define SPANSION_QUAD_CFG_LEN 1
 169#define SPANSION_DUMMY_CLK_POS 0
 170#define SPANSION_DUMMY_CLK_LEN 4
 171#define SPANSION_ADDR_LEN_POS 7
 172#define SPANSION_ADDR_LEN_LEN 1
 173
 174/*
 175 * Spansion read mode command length in bytes,
 176 * the mode is currently not supported.
 177*/
 178
 179#define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
 180#define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
 181
 182static const FlashPartInfo known_devices[] = {
 183    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 184    { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
 185    { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
 186
 187    { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
 188    { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
 189    { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
 190
 191    { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
 192    { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
 193    { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
 194    { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
 195
 196    { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
 197
 198    /* Atmel EEPROMS - it is assumed, that don't care bit in command
 199     * is set to 0. Block protection is not supported.
 200     */
 201    { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
 202    { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
 203
 204    /* EON -- en25xxx */
 205    { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
 206    { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
 207    { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
 208    { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
 209    { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
 210
 211    /* GigaDevice */
 212    { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
 213    { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
 214
 215    /* Intel/Numonyx -- xxxs33b */
 216    { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
 217    { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
 218    { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
 219    { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
 220
 221    /* Macronix */
 222    { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
 223    { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
 224    { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
 225    { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
 226    { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
 227    { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
 228    { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
 229    { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
 230    { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
 231    { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
 232    { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
 233    { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 234    { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 235
 236    /* Micron */
 237    { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
 238    { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
 239    { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
 240    { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
 241    { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
 242    { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
 243    { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
 244    { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
 245    { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
 246    { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 247    { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
 248    { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
 249    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 250    { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 251    { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 252    { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 253    { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 254
 255    /* Spansion -- single (large) sector size only, at least
 256     * for the chips listed here (without boot sectors).
 257     */
 258    { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
 259    { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
 260    { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
 261    { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
 262    { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
 263    { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
 264    { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
 265    { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
 266    { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
 267    { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
 268    { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
 269    { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
 270    { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
 271    { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
 272    { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
 273    { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
 274    { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
 275
 276    /* Spansion --  boot sectors support  */
 277    { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
 278    { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
 279
 280    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
 281    { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
 282    { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
 283    { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
 284    { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
 285    { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
 286    { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
 287    { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
 288    { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
 289    { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
 290
 291    /* ST Microelectronics -- newer production may have feature updates */
 292    { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
 293    { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
 294    { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
 295    { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
 296    { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
 297    { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
 298    { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
 299    { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
 300    { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
 301    { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
 302
 303    { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
 304    { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
 305    { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
 306
 307    { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
 308    { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
 309    { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
 310
 311    { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
 312    { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
 313    { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
 314    { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
 315
 316    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
 317    { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
 318    { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
 319    { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
 320    { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
 321    { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
 322    { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
 323    { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
 324    { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
 325    { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
 326    { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
 327    { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
 328    { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
 329    { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
 330    { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
 331};
 332
 333typedef enum {
 334    NOP = 0,
 335    WRSR = 0x1,
 336    WRDI = 0x4,
 337    RDSR = 0x5,
 338    WREN = 0x6,
 339    BRRD = 0x16,
 340    BRWR = 0x17,
 341    JEDEC_READ = 0x9f,
 342    BULK_ERASE_60 = 0x60,
 343    BULK_ERASE = 0xc7,
 344    READ_FSR = 0x70,
 345    RDCR = 0x15,
 346
 347    READ = 0x03,
 348    READ4 = 0x13,
 349    FAST_READ = 0x0b,
 350    FAST_READ4 = 0x0c,
 351    DOR = 0x3b,
 352    DOR4 = 0x3c,
 353    QOR = 0x6b,
 354    QOR4 = 0x6c,
 355    DIOR = 0xbb,
 356    DIOR4 = 0xbc,
 357    QIOR = 0xeb,
 358    QIOR4 = 0xec,
 359
 360    PP = 0x02,
 361    PP4 = 0x12,
 362    PP4_4 = 0x3e,
 363    DPP = 0xa2,
 364    QPP = 0x32,
 365    QPP_4 = 0x34,
 366    RDID_90 = 0x90,
 367    RDID_AB = 0xab,
 368
 369    ERASE_4K = 0x20,
 370    ERASE4_4K = 0x21,
 371    ERASE_32K = 0x52,
 372    ERASE4_32K = 0x5c,
 373    ERASE_SECTOR = 0xd8,
 374    ERASE4_SECTOR = 0xdc,
 375
 376    EN_4BYTE_ADDR = 0xB7,
 377    EX_4BYTE_ADDR = 0xE9,
 378
 379    EXTEND_ADDR_READ = 0xC8,
 380    EXTEND_ADDR_WRITE = 0xC5,
 381
 382    RESET_ENABLE = 0x66,
 383    RESET_MEMORY = 0x99,
 384
 385    /*
 386     * Micron: 0x35 - enable QPI
 387     * Spansion: 0x35 - read control register
 388     */
 389    RDCR_EQIO = 0x35,
 390    RSTQIO = 0xf5,
 391
 392    RNVCR = 0xB5,
 393    WNVCR = 0xB1,
 394
 395    RVCR = 0x85,
 396    WVCR = 0x81,
 397
 398    REVCR = 0x65,
 399    WEVCR = 0x61,
 400
 401    DIE_ERASE = 0xC4,
 402} FlashCMD;
 403
 404typedef enum {
 405    STATE_IDLE,
 406    STATE_PAGE_PROGRAM,
 407    STATE_READ,
 408    STATE_COLLECTING_DATA,
 409    STATE_COLLECTING_VAR_LEN_DATA,
 410    STATE_READING_DATA,
 411} CMDState;
 412
 413typedef enum {
 414    MAN_SPANSION,
 415    MAN_MACRONIX,
 416    MAN_NUMONYX,
 417    MAN_WINBOND,
 418    MAN_SST,
 419    MAN_GENERIC,
 420} Manufacturer;
 421
 422#define M25P80_INTERNAL_DATA_BUFFER_SZ 16
 423
 424typedef struct Flash {
 425    SSISlave parent_obj;
 426
 427    BlockBackend *blk;
 428
 429    uint8_t *storage;
 430    uint32_t size;
 431    int page_size;
 432
 433    uint8_t state;
 434    uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
 435    uint32_t len;
 436    uint32_t pos;
 437    bool data_read_loop;
 438    uint8_t needed_bytes;
 439    uint8_t cmd_in_progress;
 440    uint32_t cur_addr;
 441    uint32_t nonvolatile_cfg;
 442    /* Configuration register for Macronix */
 443    uint32_t volatile_cfg;
 444    uint32_t enh_volatile_cfg;
 445    /* Spansion cfg registers. */
 446    uint8_t spansion_cr1nv;
 447    uint8_t spansion_cr2nv;
 448    uint8_t spansion_cr3nv;
 449    uint8_t spansion_cr4nv;
 450    uint8_t spansion_cr1v;
 451    uint8_t spansion_cr2v;
 452    uint8_t spansion_cr3v;
 453    uint8_t spansion_cr4v;
 454    bool write_enable;
 455    bool four_bytes_address_mode;
 456    bool reset_enable;
 457    bool quad_enable;
 458    uint8_t ear;
 459
 460    int64_t dirty_page;
 461
 462    const FlashPartInfo *pi;
 463
 464} Flash;
 465
 466typedef struct M25P80Class {
 467    SSISlaveClass parent_class;
 468    FlashPartInfo *pi;
 469} M25P80Class;
 470
 471#define TYPE_M25P80 "m25p80-generic"
 472#define M25P80(obj) \
 473     OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
 474#define M25P80_CLASS(klass) \
 475     OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
 476#define M25P80_GET_CLASS(obj) \
 477     OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
 478
 479static inline Manufacturer get_man(Flash *s)
 480{
 481    switch (s->pi->id[0]) {
 482    case 0x20:
 483        return MAN_NUMONYX;
 484    case 0xEF:
 485        return MAN_WINBOND;
 486    case 0x01:
 487        return MAN_SPANSION;
 488    case 0xC2:
 489        return MAN_MACRONIX;
 490    case 0xBF:
 491        return MAN_SST;
 492    default:
 493        return MAN_GENERIC;
 494    }
 495}
 496
 497static void blk_sync_complete(void *opaque, int ret)
 498{
 499    QEMUIOVector *iov = opaque;
 500
 501    qemu_iovec_destroy(iov);
 502    g_free(iov);
 503
 504    /* do nothing. Masters do not directly interact with the backing store,
 505     * only the working copy so no mutexing required.
 506     */
 507}
 508
 509static void flash_sync_page(Flash *s, int page)
 510{
 511    QEMUIOVector *iov;
 512
 513    if (!s->blk || blk_is_read_only(s->blk)) {
 514        return;
 515    }
 516
 517    iov = g_new(QEMUIOVector, 1);
 518    qemu_iovec_init(iov, 1);
 519    qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
 520                   s->pi->page_size);
 521    blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
 522                    blk_sync_complete, iov);
 523}
 524
 525static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
 526{
 527    QEMUIOVector *iov;
 528
 529    if (!s->blk || blk_is_read_only(s->blk)) {
 530        return;
 531    }
 532
 533    assert(!(len % BDRV_SECTOR_SIZE));
 534    iov = g_new(QEMUIOVector, 1);
 535    qemu_iovec_init(iov, 1);
 536    qemu_iovec_add(iov, s->storage + off, len);
 537    blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
 538}
 539
 540static void flash_erase(Flash *s, int offset, FlashCMD cmd)
 541{
 542    uint32_t len;
 543    uint8_t capa_to_assert = 0;
 544
 545    switch (cmd) {
 546    case ERASE_4K:
 547    case ERASE4_4K:
 548        len = 4 * KiB;
 549        capa_to_assert = ER_4K;
 550        break;
 551    case ERASE_32K:
 552    case ERASE4_32K:
 553        len = 32 * KiB;
 554        capa_to_assert = ER_32K;
 555        break;
 556    case ERASE_SECTOR:
 557    case ERASE4_SECTOR:
 558        len = s->pi->sector_size;
 559        break;
 560    case BULK_ERASE:
 561        len = s->size;
 562        break;
 563    case DIE_ERASE:
 564        if (s->pi->die_cnt) {
 565            len = s->size / s->pi->die_cnt;
 566            offset = offset & (~(len - 1));
 567        } else {
 568            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
 569                          " by device\n");
 570            return;
 571        }
 572        break;
 573    default:
 574        abort();
 575    }
 576
 577    DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
 578    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
 579        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
 580                      " device\n", len);
 581    }
 582
 583    if (!s->write_enable) {
 584        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
 585        return;
 586    }
 587    memset(s->storage + offset, 0xff, len);
 588    flash_sync_area(s, offset, len);
 589}
 590
 591static inline void flash_sync_dirty(Flash *s, int64_t newpage)
 592{
 593    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
 594        flash_sync_page(s, s->dirty_page);
 595        s->dirty_page = newpage;
 596    }
 597}
 598
 599static inline
 600void flash_write8(Flash *s, uint32_t addr, uint8_t data)
 601{
 602    uint32_t page = addr / s->pi->page_size;
 603    uint8_t prev = s->storage[s->cur_addr];
 604
 605    if (!s->write_enable) {
 606        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 607    }
 608
 609    if ((prev ^ data) & data) {
 610        DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
 611                   " -> %" PRIx8 "\n", addr, prev, data);
 612    }
 613
 614    if (s->pi->flags & EEPROM) {
 615        s->storage[s->cur_addr] = data;
 616    } else {
 617        s->storage[s->cur_addr] &= data;
 618    }
 619
 620    flash_sync_dirty(s, page);
 621    s->dirty_page = page;
 622}
 623
 624static inline int get_addr_length(Flash *s)
 625{
 626   /* check if eeprom is in use */
 627    if (s->pi->flags == EEPROM) {
 628        return 2;
 629    }
 630
 631   switch (s->cmd_in_progress) {
 632   case PP4:
 633   case PP4_4:
 634   case QPP_4:
 635   case READ4:
 636   case QIOR4:
 637   case ERASE4_4K:
 638   case ERASE4_32K:
 639   case ERASE4_SECTOR:
 640   case FAST_READ4:
 641   case DOR4:
 642   case QOR4:
 643   case DIOR4:
 644       return 4;
 645   default:
 646       return s->four_bytes_address_mode ? 4 : 3;
 647   }
 648}
 649
 650static void complete_collecting_data(Flash *s)
 651{
 652    int i, n;
 653
 654    n = get_addr_length(s);
 655    s->cur_addr = (n == 3 ? s->ear : 0);
 656    for (i = 0; i < n; ++i) {
 657        s->cur_addr <<= 8;
 658        s->cur_addr |= s->data[i];
 659    }
 660
 661    s->cur_addr &= s->size - 1;
 662
 663    s->state = STATE_IDLE;
 664
 665    switch (s->cmd_in_progress) {
 666    case DPP:
 667    case QPP:
 668    case QPP_4:
 669    case PP:
 670    case PP4:
 671    case PP4_4:
 672        s->state = STATE_PAGE_PROGRAM;
 673        break;
 674    case READ:
 675    case READ4:
 676    case FAST_READ:
 677    case FAST_READ4:
 678    case DOR:
 679    case DOR4:
 680    case QOR:
 681    case QOR4:
 682    case DIOR:
 683    case DIOR4:
 684    case QIOR:
 685    case QIOR4:
 686        s->state = STATE_READ;
 687        break;
 688    case ERASE_4K:
 689    case ERASE4_4K:
 690    case ERASE_32K:
 691    case ERASE4_32K:
 692    case ERASE_SECTOR:
 693    case ERASE4_SECTOR:
 694    case DIE_ERASE:
 695        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 696        break;
 697    case WRSR:
 698        switch (get_man(s)) {
 699        case MAN_SPANSION:
 700            s->quad_enable = !!(s->data[1] & 0x02);
 701            break;
 702        case MAN_MACRONIX:
 703            s->quad_enable = extract32(s->data[0], 6, 1);
 704            if (s->len > 1) {
 705                s->volatile_cfg = s->data[1];
 706                s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
 707            }
 708            break;
 709        default:
 710            break;
 711        }
 712        if (s->write_enable) {
 713            s->write_enable = false;
 714        }
 715        break;
 716    case BRWR:
 717    case EXTEND_ADDR_WRITE:
 718        s->ear = s->data[0];
 719        break;
 720    case WNVCR:
 721        s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
 722        break;
 723    case WVCR:
 724        s->volatile_cfg = s->data[0];
 725        break;
 726    case WEVCR:
 727        s->enh_volatile_cfg = s->data[0];
 728        break;
 729    case RDID_90:
 730    case RDID_AB:
 731        if (get_man(s) == MAN_SST) {
 732            if (s->cur_addr <= 1) {
 733                if (s->cur_addr) {
 734                    s->data[0] = s->pi->id[2];
 735                    s->data[1] = s->pi->id[0];
 736                } else {
 737                    s->data[0] = s->pi->id[0];
 738                    s->data[1] = s->pi->id[2];
 739                }
 740                s->pos = 0;
 741                s->len = 2;
 742                s->data_read_loop = true;
 743                s->state = STATE_READING_DATA;
 744            } else {
 745                qemu_log_mask(LOG_GUEST_ERROR,
 746                              "M25P80: Invalid read id address\n");
 747            }
 748        } else {
 749            qemu_log_mask(LOG_GUEST_ERROR,
 750                          "M25P80: Read id (command 0x90/0xAB) is not supported"
 751                          " by device\n");
 752        }
 753        break;
 754    default:
 755        break;
 756    }
 757}
 758
 759static void reset_memory(Flash *s)
 760{
 761    s->cmd_in_progress = NOP;
 762    s->cur_addr = 0;
 763    s->ear = 0;
 764    s->four_bytes_address_mode = false;
 765    s->len = 0;
 766    s->needed_bytes = 0;
 767    s->pos = 0;
 768    s->state = STATE_IDLE;
 769    s->write_enable = false;
 770    s->reset_enable = false;
 771    s->quad_enable = false;
 772
 773    switch (get_man(s)) {
 774    case MAN_NUMONYX:
 775        s->volatile_cfg = 0;
 776        s->volatile_cfg |= VCFG_DUMMY;
 777        s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
 778        if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
 779                                != NVCFG_XIP_MODE_DISABLED) {
 780            s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
 781        }
 782        s->volatile_cfg |= deposit32(s->volatile_cfg,
 783                            VCFG_DUMMY_CLK_POS,
 784                            CFG_DUMMY_CLK_LEN,
 785                            extract32(s->nonvolatile_cfg,
 786                                        NVCFG_DUMMY_CLK_POS,
 787                                        CFG_DUMMY_CLK_LEN)
 788                            );
 789
 790        s->enh_volatile_cfg = 0;
 791        s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
 792        s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
 793        s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
 794        if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
 795            s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
 796        }
 797        if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
 798            s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
 799        }
 800        if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
 801            s->four_bytes_address_mode = true;
 802        }
 803        if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
 804            s->ear = s->size / MAX_3BYTES_SIZE - 1;
 805        }
 806        break;
 807    case MAN_MACRONIX:
 808        s->volatile_cfg = 0x7;
 809        break;
 810    case MAN_SPANSION:
 811        s->spansion_cr1v = s->spansion_cr1nv;
 812        s->spansion_cr2v = s->spansion_cr2nv;
 813        s->spansion_cr3v = s->spansion_cr3nv;
 814        s->spansion_cr4v = s->spansion_cr4nv;
 815        s->quad_enable = extract32(s->spansion_cr1v,
 816                                   SPANSION_QUAD_CFG_POS,
 817                                   SPANSION_QUAD_CFG_LEN
 818                                   );
 819        s->four_bytes_address_mode = extract32(s->spansion_cr2v,
 820                SPANSION_ADDR_LEN_POS,
 821                SPANSION_ADDR_LEN_LEN
 822                );
 823        break;
 824    default:
 825        break;
 826    }
 827
 828    DB_PRINT_L(0, "Reset done.\n");
 829}
 830
 831static void decode_fast_read_cmd(Flash *s)
 832{
 833    s->needed_bytes = get_addr_length(s);
 834    switch (get_man(s)) {
 835    /* Dummy cycles - modeled with bytes writes instead of bits */
 836    case MAN_WINBOND:
 837        s->needed_bytes += 8;
 838        break;
 839    case MAN_NUMONYX:
 840        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 841        break;
 842    case MAN_MACRONIX:
 843        if (extract32(s->volatile_cfg, 6, 2) == 1) {
 844            s->needed_bytes += 6;
 845        } else {
 846            s->needed_bytes += 8;
 847        }
 848        break;
 849    case MAN_SPANSION:
 850        s->needed_bytes += extract32(s->spansion_cr2v,
 851                                    SPANSION_DUMMY_CLK_POS,
 852                                    SPANSION_DUMMY_CLK_LEN
 853                                    );
 854        break;
 855    default:
 856        break;
 857    }
 858    s->pos = 0;
 859    s->len = 0;
 860    s->state = STATE_COLLECTING_DATA;
 861}
 862
 863static void decode_dio_read_cmd(Flash *s)
 864{
 865    s->needed_bytes = get_addr_length(s);
 866    /* Dummy cycles modeled with bytes writes instead of bits */
 867    switch (get_man(s)) {
 868    case MAN_WINBOND:
 869        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 870        break;
 871    case MAN_SPANSION:
 872        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 873        s->needed_bytes += extract32(s->spansion_cr2v,
 874                                    SPANSION_DUMMY_CLK_POS,
 875                                    SPANSION_DUMMY_CLK_LEN
 876                                    );
 877        break;
 878    case MAN_NUMONYX:
 879        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 880        break;
 881    case MAN_MACRONIX:
 882        switch (extract32(s->volatile_cfg, 6, 2)) {
 883        case 1:
 884            s->needed_bytes += 6;
 885            break;
 886        case 2:
 887            s->needed_bytes += 8;
 888            break;
 889        default:
 890            s->needed_bytes += 4;
 891            break;
 892        }
 893        break;
 894    default:
 895        break;
 896    }
 897    s->pos = 0;
 898    s->len = 0;
 899    s->state = STATE_COLLECTING_DATA;
 900}
 901
 902static void decode_qio_read_cmd(Flash *s)
 903{
 904    s->needed_bytes = get_addr_length(s);
 905    /* Dummy cycles modeled with bytes writes instead of bits */
 906    switch (get_man(s)) {
 907    case MAN_WINBOND:
 908        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 909        s->needed_bytes += 4;
 910        break;
 911    case MAN_SPANSION:
 912        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 913        s->needed_bytes += extract32(s->spansion_cr2v,
 914                                    SPANSION_DUMMY_CLK_POS,
 915                                    SPANSION_DUMMY_CLK_LEN
 916                                    );
 917        break;
 918    case MAN_NUMONYX:
 919        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 920        break;
 921    case MAN_MACRONIX:
 922        switch (extract32(s->volatile_cfg, 6, 2)) {
 923        case 1:
 924            s->needed_bytes += 4;
 925            break;
 926        case 2:
 927            s->needed_bytes += 8;
 928            break;
 929        default:
 930            s->needed_bytes += 6;
 931            break;
 932        }
 933        break;
 934    default:
 935        break;
 936    }
 937    s->pos = 0;
 938    s->len = 0;
 939    s->state = STATE_COLLECTING_DATA;
 940}
 941
 942static void decode_new_cmd(Flash *s, uint32_t value)
 943{
 944    s->cmd_in_progress = value;
 945    int i;
 946    DB_PRINT_L(0, "decoded new command:%x\n", value);
 947
 948    if (value != RESET_MEMORY) {
 949        s->reset_enable = false;
 950    }
 951
 952    switch (value) {
 953
 954    case ERASE_4K:
 955    case ERASE4_4K:
 956    case ERASE_32K:
 957    case ERASE4_32K:
 958    case ERASE_SECTOR:
 959    case ERASE4_SECTOR:
 960    case READ:
 961    case READ4:
 962    case DPP:
 963    case QPP:
 964    case QPP_4:
 965    case PP:
 966    case PP4:
 967    case PP4_4:
 968    case DIE_ERASE:
 969    case RDID_90:
 970    case RDID_AB:
 971        s->needed_bytes = get_addr_length(s);
 972        s->pos = 0;
 973        s->len = 0;
 974        s->state = STATE_COLLECTING_DATA;
 975        break;
 976
 977    case FAST_READ:
 978    case FAST_READ4:
 979    case DOR:
 980    case DOR4:
 981    case QOR:
 982    case QOR4:
 983        decode_fast_read_cmd(s);
 984        break;
 985
 986    case DIOR:
 987    case DIOR4:
 988        decode_dio_read_cmd(s);
 989        break;
 990
 991    case QIOR:
 992    case QIOR4:
 993        decode_qio_read_cmd(s);
 994        break;
 995
 996    case WRSR:
 997        if (s->write_enable) {
 998            switch (get_man(s)) {
 999            case MAN_SPANSION:
1000                s->needed_bytes = 2;
1001                s->state = STATE_COLLECTING_DATA;
1002                break;
1003            case MAN_MACRONIX:
1004                s->needed_bytes = 2;
1005                s->state = STATE_COLLECTING_VAR_LEN_DATA;
1006                break;
1007            default:
1008                s->needed_bytes = 1;
1009                s->state = STATE_COLLECTING_DATA;
1010            }
1011            s->pos = 0;
1012        }
1013        break;
1014
1015    case WRDI:
1016        s->write_enable = false;
1017        break;
1018    case WREN:
1019        s->write_enable = true;
1020        break;
1021
1022    case RDSR:
1023        s->data[0] = (!!s->write_enable) << 1;
1024        if (get_man(s) == MAN_MACRONIX) {
1025            s->data[0] |= (!!s->quad_enable) << 6;
1026        }
1027        s->pos = 0;
1028        s->len = 1;
1029        s->data_read_loop = true;
1030        s->state = STATE_READING_DATA;
1031        break;
1032
1033    case READ_FSR:
1034        s->data[0] = FSR_FLASH_READY;
1035        if (s->four_bytes_address_mode) {
1036            s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1037        }
1038        s->pos = 0;
1039        s->len = 1;
1040        s->data_read_loop = true;
1041        s->state = STATE_READING_DATA;
1042        break;
1043
1044    case JEDEC_READ:
1045        DB_PRINT_L(0, "populated jedec code\n");
1046        for (i = 0; i < s->pi->id_len; i++) {
1047            s->data[i] = s->pi->id[i];
1048        }
1049
1050        s->len = s->pi->id_len;
1051        s->pos = 0;
1052        s->state = STATE_READING_DATA;
1053        break;
1054
1055    case RDCR:
1056        s->data[0] = s->volatile_cfg & 0xFF;
1057        s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1058        s->pos = 0;
1059        s->len = 1;
1060        s->state = STATE_READING_DATA;
1061        break;
1062
1063    case BULK_ERASE_60:
1064    case BULK_ERASE:
1065        if (s->write_enable) {
1066            DB_PRINT_L(0, "chip erase\n");
1067            flash_erase(s, 0, BULK_ERASE);
1068        } else {
1069            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1070                          "protect!\n");
1071        }
1072        break;
1073    case NOP:
1074        break;
1075    case EN_4BYTE_ADDR:
1076        s->four_bytes_address_mode = true;
1077        break;
1078    case EX_4BYTE_ADDR:
1079        s->four_bytes_address_mode = false;
1080        break;
1081    case BRRD:
1082    case EXTEND_ADDR_READ:
1083        s->data[0] = s->ear;
1084        s->pos = 0;
1085        s->len = 1;
1086        s->state = STATE_READING_DATA;
1087        break;
1088    case BRWR:
1089    case EXTEND_ADDR_WRITE:
1090        if (s->write_enable) {
1091            s->needed_bytes = 1;
1092            s->pos = 0;
1093            s->len = 0;
1094            s->state = STATE_COLLECTING_DATA;
1095        }
1096        break;
1097    case RNVCR:
1098        s->data[0] = s->nonvolatile_cfg & 0xFF;
1099        s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1100        s->pos = 0;
1101        s->len = 2;
1102        s->state = STATE_READING_DATA;
1103        break;
1104    case WNVCR:
1105        if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1106            s->needed_bytes = 2;
1107            s->pos = 0;
1108            s->len = 0;
1109            s->state = STATE_COLLECTING_DATA;
1110        }
1111        break;
1112    case RVCR:
1113        s->data[0] = s->volatile_cfg & 0xFF;
1114        s->pos = 0;
1115        s->len = 1;
1116        s->state = STATE_READING_DATA;
1117        break;
1118    case WVCR:
1119        if (s->write_enable) {
1120            s->needed_bytes = 1;
1121            s->pos = 0;
1122            s->len = 0;
1123            s->state = STATE_COLLECTING_DATA;
1124        }
1125        break;
1126    case REVCR:
1127        s->data[0] = s->enh_volatile_cfg & 0xFF;
1128        s->pos = 0;
1129        s->len = 1;
1130        s->state = STATE_READING_DATA;
1131        break;
1132    case WEVCR:
1133        if (s->write_enable) {
1134            s->needed_bytes = 1;
1135            s->pos = 0;
1136            s->len = 0;
1137            s->state = STATE_COLLECTING_DATA;
1138        }
1139        break;
1140    case RESET_ENABLE:
1141        s->reset_enable = true;
1142        break;
1143    case RESET_MEMORY:
1144        if (s->reset_enable) {
1145            reset_memory(s);
1146        }
1147        break;
1148    case RDCR_EQIO:
1149        switch (get_man(s)) {
1150        case MAN_SPANSION:
1151            s->data[0] = (!!s->quad_enable) << 1;
1152            s->pos = 0;
1153            s->len = 1;
1154            s->state = STATE_READING_DATA;
1155            break;
1156        case MAN_MACRONIX:
1157            s->quad_enable = true;
1158            break;
1159        default:
1160            break;
1161        }
1162        break;
1163    case RSTQIO:
1164        s->quad_enable = false;
1165        break;
1166    default:
1167        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1168        break;
1169    }
1170}
1171
1172static int m25p80_cs(SSISlave *ss, bool select)
1173{
1174    Flash *s = M25P80(ss);
1175
1176    if (select) {
1177        if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1178            complete_collecting_data(s);
1179        }
1180        s->len = 0;
1181        s->pos = 0;
1182        s->state = STATE_IDLE;
1183        flash_sync_dirty(s, -1);
1184        s->data_read_loop = false;
1185    }
1186
1187    DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1188
1189    return 0;
1190}
1191
1192static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1193{
1194    Flash *s = M25P80(ss);
1195    uint32_t r = 0;
1196
1197    switch (s->state) {
1198
1199    case STATE_PAGE_PROGRAM:
1200        DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1201                   s->cur_addr, (uint8_t)tx);
1202        flash_write8(s, s->cur_addr, (uint8_t)tx);
1203        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1204        break;
1205
1206    case STATE_READ:
1207        r = s->storage[s->cur_addr];
1208        DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1209                   (uint8_t)r);
1210        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1211        break;
1212
1213    case STATE_COLLECTING_DATA:
1214    case STATE_COLLECTING_VAR_LEN_DATA:
1215
1216        if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1217            qemu_log_mask(LOG_GUEST_ERROR,
1218                          "M25P80: Write overrun internal data buffer. "
1219                          "SPI controller (QEMU emulator or guest driver) "
1220                          "is misbehaving\n");
1221            s->len = s->pos = 0;
1222            s->state = STATE_IDLE;
1223            break;
1224        }
1225
1226        s->data[s->len] = (uint8_t)tx;
1227        s->len++;
1228
1229        if (s->len == s->needed_bytes) {
1230            complete_collecting_data(s);
1231        }
1232        break;
1233
1234    case STATE_READING_DATA:
1235
1236        if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1237            qemu_log_mask(LOG_GUEST_ERROR,
1238                          "M25P80: Read overrun internal data buffer. "
1239                          "SPI controller (QEMU emulator or guest driver) "
1240                          "is misbehaving\n");
1241            s->len = s->pos = 0;
1242            s->state = STATE_IDLE;
1243            break;
1244        }
1245
1246        r = s->data[s->pos];
1247        s->pos++;
1248        if (s->pos == s->len) {
1249            s->pos = 0;
1250            if (!s->data_read_loop) {
1251                s->state = STATE_IDLE;
1252            }
1253        }
1254        break;
1255
1256    default:
1257    case STATE_IDLE:
1258        decode_new_cmd(s, (uint8_t)tx);
1259        break;
1260    }
1261
1262    return r;
1263}
1264
1265static void m25p80_realize(SSISlave *ss, Error **errp)
1266{
1267    Flash *s = M25P80(ss);
1268    M25P80Class *mc = M25P80_GET_CLASS(s);
1269    int ret;
1270
1271    s->pi = mc->pi;
1272
1273    s->size = s->pi->sector_size * s->pi->n_sectors;
1274    s->dirty_page = -1;
1275
1276    if (s->blk) {
1277        uint64_t perm = BLK_PERM_CONSISTENT_READ |
1278                        (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1279        ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1280        if (ret < 0) {
1281            return;
1282        }
1283
1284        DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1285        s->storage = blk_blockalign(s->blk, s->size);
1286
1287        if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1288            error_setg(errp, "failed to read the initial flash content");
1289            return;
1290        }
1291    } else {
1292        DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1293        s->storage = blk_blockalign(NULL, s->size);
1294        memset(s->storage, 0xFF, s->size);
1295    }
1296}
1297
1298static void m25p80_reset(DeviceState *d)
1299{
1300    Flash *s = M25P80(d);
1301
1302    reset_memory(s);
1303}
1304
1305static int m25p80_pre_save(void *opaque)
1306{
1307    flash_sync_dirty((Flash *)opaque, -1);
1308
1309    return 0;
1310}
1311
1312static Property m25p80_properties[] = {
1313    /* This is default value for Micron flash */
1314    DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1315    DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1316    DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1317    DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1318    DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1319    DEFINE_PROP_DRIVE("drive", Flash, blk),
1320    DEFINE_PROP_END_OF_LIST(),
1321};
1322
1323static int m25p80_pre_load(void *opaque)
1324{
1325    Flash *s = (Flash *)opaque;
1326
1327    s->data_read_loop = false;
1328    return 0;
1329}
1330
1331static bool m25p80_data_read_loop_needed(void *opaque)
1332{
1333    Flash *s = (Flash *)opaque;
1334
1335    return s->data_read_loop;
1336}
1337
1338static const VMStateDescription vmstate_m25p80_data_read_loop = {
1339    .name = "m25p80/data_read_loop",
1340    .version_id = 1,
1341    .minimum_version_id = 1,
1342    .needed = m25p80_data_read_loop_needed,
1343    .fields = (VMStateField[]) {
1344        VMSTATE_BOOL(data_read_loop, Flash),
1345        VMSTATE_END_OF_LIST()
1346    }
1347};
1348
1349static const VMStateDescription vmstate_m25p80 = {
1350    .name = "m25p80",
1351    .version_id = 0,
1352    .minimum_version_id = 0,
1353    .pre_save = m25p80_pre_save,
1354    .pre_load = m25p80_pre_load,
1355    .fields = (VMStateField[]) {
1356        VMSTATE_UINT8(state, Flash),
1357        VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1358        VMSTATE_UINT32(len, Flash),
1359        VMSTATE_UINT32(pos, Flash),
1360        VMSTATE_UINT8(needed_bytes, Flash),
1361        VMSTATE_UINT8(cmd_in_progress, Flash),
1362        VMSTATE_UINT32(cur_addr, Flash),
1363        VMSTATE_BOOL(write_enable, Flash),
1364        VMSTATE_BOOL(reset_enable, Flash),
1365        VMSTATE_UINT8(ear, Flash),
1366        VMSTATE_BOOL(four_bytes_address_mode, Flash),
1367        VMSTATE_UINT32(nonvolatile_cfg, Flash),
1368        VMSTATE_UINT32(volatile_cfg, Flash),
1369        VMSTATE_UINT32(enh_volatile_cfg, Flash),
1370        VMSTATE_BOOL(quad_enable, Flash),
1371        VMSTATE_UINT8(spansion_cr1nv, Flash),
1372        VMSTATE_UINT8(spansion_cr2nv, Flash),
1373        VMSTATE_UINT8(spansion_cr3nv, Flash),
1374        VMSTATE_UINT8(spansion_cr4nv, Flash),
1375        VMSTATE_END_OF_LIST()
1376    },
1377    .subsections = (const VMStateDescription * []) {
1378        &vmstate_m25p80_data_read_loop,
1379        NULL
1380    }
1381};
1382
1383static void m25p80_class_init(ObjectClass *klass, void *data)
1384{
1385    DeviceClass *dc = DEVICE_CLASS(klass);
1386    SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1387    M25P80Class *mc = M25P80_CLASS(klass);
1388
1389    k->realize = m25p80_realize;
1390    k->transfer = m25p80_transfer8;
1391    k->set_cs = m25p80_cs;
1392    k->cs_polarity = SSI_CS_LOW;
1393    dc->vmsd = &vmstate_m25p80;
1394    dc->props = m25p80_properties;
1395    dc->reset = m25p80_reset;
1396    mc->pi = data;
1397}
1398
1399static const TypeInfo m25p80_info = {
1400    .name           = TYPE_M25P80,
1401    .parent         = TYPE_SSI_SLAVE,
1402    .instance_size  = sizeof(Flash),
1403    .class_size     = sizeof(M25P80Class),
1404    .abstract       = true,
1405};
1406
1407static void m25p80_register_types(void)
1408{
1409    int i;
1410
1411    type_register_static(&m25p80_info);
1412    for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1413        TypeInfo ti = {
1414            .name       = known_devices[i].part_name,
1415            .parent     = TYPE_M25P80,
1416            .class_init = m25p80_class_init,
1417            .class_data = (void *)&known_devices[i],
1418        };
1419        type_register(&ti);
1420    }
1421}
1422
1423type_init(m25p80_register_types)
1424