qemu/hw/i2c/smbus_eeprom.c
<<
>>
Prefs
   1/*
   2 * QEMU SMBus EEPROM device
   3 *
   4 * Copyright (c) 2007 Arastra, Inc.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "qapi/error.h"
  28#include "hw/boards.h"
  29#include "hw/i2c/i2c.h"
  30#include "hw/i2c/smbus_slave.h"
  31#include "hw/qdev-properties.h"
  32#include "migration/vmstate.h"
  33#include "hw/i2c/smbus_eeprom.h"
  34
  35//#define DEBUG
  36
  37#define TYPE_SMBUS_EEPROM "smbus-eeprom"
  38
  39#define SMBUS_EEPROM(obj) \
  40    OBJECT_CHECK(SMBusEEPROMDevice, (obj), TYPE_SMBUS_EEPROM)
  41
  42#define SMBUS_EEPROM_SIZE 256
  43
  44typedef struct SMBusEEPROMDevice {
  45    SMBusDevice smbusdev;
  46    uint8_t data[SMBUS_EEPROM_SIZE];
  47    void *init_data;
  48    uint8_t offset;
  49    bool accessed;
  50} SMBusEEPROMDevice;
  51
  52static uint8_t eeprom_receive_byte(SMBusDevice *dev)
  53{
  54    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
  55    uint8_t *data = eeprom->data;
  56    uint8_t val = data[eeprom->offset++];
  57
  58    eeprom->accessed = true;
  59#ifdef DEBUG
  60    printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
  61           dev->i2c.address, val);
  62#endif
  63    return val;
  64}
  65
  66static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
  67{
  68    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
  69    uint8_t *data = eeprom->data;
  70
  71    eeprom->accessed = true;
  72#ifdef DEBUG
  73    printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
  74           dev->i2c.address, buf[0], buf[1]);
  75#endif
  76    /* len is guaranteed to be > 0 */
  77    eeprom->offset = buf[0];
  78    buf++;
  79    len--;
  80
  81    for (; len > 0; len--) {
  82        data[eeprom->offset] = *buf++;
  83        eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
  84    }
  85
  86    return 0;
  87}
  88
  89static bool smbus_eeprom_vmstate_needed(void *opaque)
  90{
  91    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
  92    SMBusEEPROMDevice *eeprom = opaque;
  93
  94    return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
  95        !mc->smbus_no_migration_support;
  96}
  97
  98static const VMStateDescription vmstate_smbus_eeprom = {
  99    .name = "smbus-eeprom",
 100    .version_id = 1,
 101    .minimum_version_id = 1,
 102    .needed = smbus_eeprom_vmstate_needed,
 103    .fields      = (VMStateField[]) {
 104        VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
 105        VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
 106        VMSTATE_UINT8(offset, SMBusEEPROMDevice),
 107        VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
 108        VMSTATE_END_OF_LIST()
 109    }
 110};
 111
 112/*
 113 * Reset the EEPROM contents to the initial state on a reset.  This
 114 * isn't really how an EEPROM works, of course, but the general
 115 * principle of QEMU is to restore function on reset to what it would
 116 * be if QEMU was stopped and started.
 117 *
 118 * The proper thing to do would be to have a backing blockdev to hold
 119 * the contents and restore that on startup, and not do this on reset.
 120 * But until that time, act as if we had been stopped and restarted.
 121 */
 122static void smbus_eeprom_reset(DeviceState *dev)
 123{
 124    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
 125
 126    memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
 127    eeprom->offset = 0;
 128}
 129
 130static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
 131{
 132    smbus_eeprom_reset(dev);
 133}
 134
 135static Property smbus_eeprom_properties[] = {
 136    DEFINE_PROP_PTR("data", SMBusEEPROMDevice, init_data),
 137    DEFINE_PROP_END_OF_LIST(),
 138};
 139
 140static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
 141{
 142    DeviceClass *dc = DEVICE_CLASS(klass);
 143    SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
 144
 145    dc->realize = smbus_eeprom_realize;
 146    dc->reset = smbus_eeprom_reset;
 147    sc->receive_byte = eeprom_receive_byte;
 148    sc->write_data = eeprom_write_data;
 149    dc->props = smbus_eeprom_properties;
 150    dc->vmsd = &vmstate_smbus_eeprom;
 151    /* Reason: pointer property "data" */
 152    dc->user_creatable = false;
 153}
 154
 155static const TypeInfo smbus_eeprom_info = {
 156    .name          = TYPE_SMBUS_EEPROM,
 157    .parent        = TYPE_SMBUS_DEVICE,
 158    .instance_size = sizeof(SMBusEEPROMDevice),
 159    .class_init    = smbus_eeprom_class_initfn,
 160};
 161
 162static void smbus_eeprom_register_types(void)
 163{
 164    type_register_static(&smbus_eeprom_info);
 165}
 166
 167type_init(smbus_eeprom_register_types)
 168
 169void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
 170{
 171    DeviceState *dev;
 172
 173    dev = qdev_create((BusState *) smbus, TYPE_SMBUS_EEPROM);
 174    qdev_prop_set_uint8(dev, "address", address);
 175    qdev_prop_set_ptr(dev, "data", eeprom_buf);
 176    qdev_init_nofail(dev);
 177}
 178
 179void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
 180                       const uint8_t *eeprom_spd, int eeprom_spd_size)
 181{
 182    int i;
 183     /* XXX: make this persistent */
 184
 185    assert(nb_eeprom <= 8);
 186    uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
 187    if (eeprom_spd_size > 0) {
 188        memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
 189    }
 190
 191    for (i = 0; i < nb_eeprom; i++) {
 192        smbus_eeprom_init_one(smbus, 0x50 + i,
 193                              eeprom_buf + (i * SMBUS_EEPROM_SIZE));
 194    }
 195}
 196
 197/* Generate SDRAM SPD EEPROM data describing a module of type and size */
 198uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size,
 199                           Error **errp)
 200{
 201    uint8_t *spd;
 202    uint8_t nbanks;
 203    uint16_t density;
 204    uint32_t size;
 205    int min_log2, max_log2, sz_log2;
 206    int i;
 207
 208    switch (type) {
 209    case SDR:
 210        min_log2 = 2;
 211        max_log2 = 9;
 212        break;
 213    case DDR:
 214        min_log2 = 5;
 215        max_log2 = 12;
 216        break;
 217    case DDR2:
 218        min_log2 = 7;
 219        max_log2 = 14;
 220        break;
 221    default:
 222        g_assert_not_reached();
 223    }
 224    size = ram_size >> 20; /* work in terms of megabytes */
 225    if (size < 4) {
 226        error_setg(errp, "SDRAM size is too small");
 227        return NULL;
 228    }
 229    sz_log2 = 31 - clz32(size);
 230    size = 1U << sz_log2;
 231    if (ram_size > size * MiB) {
 232        error_setg(errp, "SDRAM size 0x"RAM_ADDR_FMT" is not a power of 2, "
 233                   "truncating to %u MB", ram_size, size);
 234    }
 235    if (sz_log2 < min_log2) {
 236        error_setg(errp,
 237                   "Memory size is too small for SDRAM type, adjusting type");
 238        if (size >= 32) {
 239            type = DDR;
 240            min_log2 = 5;
 241            max_log2 = 12;
 242        } else {
 243            type = SDR;
 244            min_log2 = 2;
 245            max_log2 = 9;
 246        }
 247    }
 248
 249    nbanks = 1;
 250    while (sz_log2 > max_log2 && nbanks < 8) {
 251        sz_log2--;
 252        nbanks++;
 253    }
 254
 255    if (size > (1ULL << sz_log2) * nbanks) {
 256        error_setg(errp, "Memory size is too big for SDRAM, truncating");
 257    }
 258
 259    /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
 260    if (nbanks == 1 && sz_log2 > min_log2) {
 261        sz_log2--;
 262        nbanks++;
 263    }
 264
 265    density = 1ULL << (sz_log2 - 2);
 266    switch (type) {
 267    case DDR2:
 268        density = (density & 0xe0) | (density >> 8 & 0x1f);
 269        break;
 270    case DDR:
 271        density = (density & 0xf8) | (density >> 8 & 0x07);
 272        break;
 273    case SDR:
 274    default:
 275        density &= 0xff;
 276        break;
 277    }
 278
 279    spd = g_malloc0(256);
 280    spd[0] = 128;   /* data bytes in EEPROM */
 281    spd[1] = 8;     /* log2 size of EEPROM */
 282    spd[2] = type;
 283    spd[3] = 13;    /* row address bits */
 284    spd[4] = 10;    /* column address bits */
 285    spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
 286    spd[6] = 64;    /* module data width */
 287                    /* reserved / data width high */
 288    spd[8] = 4;     /* interface voltage level */
 289    spd[9] = 0x25;  /* highest CAS latency */
 290    spd[10] = 1;    /* access time */
 291                    /* DIMM configuration 0 = non-ECC */
 292    spd[12] = 0x82; /* refresh requirements */
 293    spd[13] = 8;    /* primary SDRAM width */
 294                    /* ECC SDRAM width */
 295    spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
 296    spd[16] = 12;   /* burst lengths supported */
 297    spd[17] = 4;    /* banks per SDRAM device */
 298    spd[18] = 12;   /* ~CAS latencies supported */
 299    spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
 300    spd[20] = 2;    /* DIMM type / ~WE latencies */
 301                    /* module features */
 302                    /* memory chip features */
 303    spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
 304                    /* data access time */
 305                    /* clock cycle time @ short CAS latency */
 306                    /* data access time */
 307    spd[27] = 20;   /* min. row precharge time */
 308    spd[28] = 15;   /* min. row active row delay */
 309    spd[29] = 20;   /* min. ~RAS to ~CAS delay */
 310    spd[30] = 45;   /* min. active to precharge time */
 311    spd[31] = density;
 312    spd[32] = 20;   /* addr/cmd setup time */
 313    spd[33] = 8;    /* addr/cmd hold time */
 314    spd[34] = 20;   /* data input setup time */
 315    spd[35] = 8;    /* data input hold time */
 316
 317    /* checksum */
 318    for (i = 0; i < 63; i++) {
 319        spd[63] += spd[i];
 320    }
 321    return spd;
 322}
 323