qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qemu/main-loop.h"
  25#include "qapi/error.h"
  26#include "hw/sysbus.h"
  27#include "exec/address-spaces.h"
  28#include "intel_iommu_internal.h"
  29#include "hw/pci/pci.h"
  30#include "hw/pci/pci_bus.h"
  31#include "hw/qdev-properties.h"
  32#include "hw/i386/pc.h"
  33#include "hw/i386/apic-msidef.h"
  34#include "hw/boards.h"
  35#include "hw/i386/x86-iommu.h"
  36#include "hw/pci-host/q35.h"
  37#include "sysemu/kvm.h"
  38#include "sysemu/sysemu.h"
  39#include "hw/i386/apic_internal.h"
  40#include "kvm_i386.h"
  41#include "migration/vmstate.h"
  42#include "trace.h"
  43
  44/* context entry operations */
  45#define VTD_CE_GET_RID2PASID(ce) \
  46    ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
  47#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
  48    ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
  49
  50/* pe operations */
  51#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
  52#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
  53#define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
  54    if (ret_fr) {                                                             \
  55        ret_fr = -ret_fr;                                                     \
  56        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {                   \
  57            trace_vtd_fault_disabled();                                       \
  58        } else {                                                              \
  59            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);      \
  60        }                                                                     \
  61        goto error;                                                           \
  62    }                                                                         \
  63}
  64
  65static void vtd_address_space_refresh_all(IntelIOMMUState *s);
  66static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
  67
  68static void vtd_panic_require_caching_mode(void)
  69{
  70    error_report("We need to set caching-mode=on for intel-iommu to enable "
  71                 "device assignment with IOMMU protection.");
  72    exit(1);
  73}
  74
  75static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  76                            uint64_t wmask, uint64_t w1cmask)
  77{
  78    stq_le_p(&s->csr[addr], val);
  79    stq_le_p(&s->wmask[addr], wmask);
  80    stq_le_p(&s->w1cmask[addr], w1cmask);
  81}
  82
  83static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  84{
  85    stq_le_p(&s->womask[addr], mask);
  86}
  87
  88static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  89                            uint32_t wmask, uint32_t w1cmask)
  90{
  91    stl_le_p(&s->csr[addr], val);
  92    stl_le_p(&s->wmask[addr], wmask);
  93    stl_le_p(&s->w1cmask[addr], w1cmask);
  94}
  95
  96static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  97{
  98    stl_le_p(&s->womask[addr], mask);
  99}
 100
 101/* "External" get/set operations */
 102static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 103{
 104    uint64_t oldval = ldq_le_p(&s->csr[addr]);
 105    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
 106    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
 107    stq_le_p(&s->csr[addr],
 108             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 109}
 110
 111static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
 112{
 113    uint32_t oldval = ldl_le_p(&s->csr[addr]);
 114    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
 115    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
 116    stl_le_p(&s->csr[addr],
 117             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 118}
 119
 120static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
 121{
 122    uint64_t val = ldq_le_p(&s->csr[addr]);
 123    uint64_t womask = ldq_le_p(&s->womask[addr]);
 124    return val & ~womask;
 125}
 126
 127static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
 128{
 129    uint32_t val = ldl_le_p(&s->csr[addr]);
 130    uint32_t womask = ldl_le_p(&s->womask[addr]);
 131    return val & ~womask;
 132}
 133
 134/* "Internal" get/set operations */
 135static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 136{
 137    return ldq_le_p(&s->csr[addr]);
 138}
 139
 140static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 141{
 142    return ldl_le_p(&s->csr[addr]);
 143}
 144
 145static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 146{
 147    stq_le_p(&s->csr[addr], val);
 148}
 149
 150static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 151                                        uint32_t clear, uint32_t mask)
 152{
 153    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 154    stl_le_p(&s->csr[addr], new_val);
 155    return new_val;
 156}
 157
 158static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 159                                        uint64_t clear, uint64_t mask)
 160{
 161    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 162    stq_le_p(&s->csr[addr], new_val);
 163    return new_val;
 164}
 165
 166static inline void vtd_iommu_lock(IntelIOMMUState *s)
 167{
 168    qemu_mutex_lock(&s->iommu_lock);
 169}
 170
 171static inline void vtd_iommu_unlock(IntelIOMMUState *s)
 172{
 173    qemu_mutex_unlock(&s->iommu_lock);
 174}
 175
 176static void vtd_update_scalable_state(IntelIOMMUState *s)
 177{
 178    uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
 179
 180    if (s->scalable_mode) {
 181        s->root_scalable = val & VTD_RTADDR_SMT;
 182    }
 183}
 184
 185/* Whether the address space needs to notify new mappings */
 186static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
 187{
 188    return as->notifier_flags & IOMMU_NOTIFIER_MAP;
 189}
 190
 191/* GHashTable functions */
 192static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 193{
 194    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 195}
 196
 197static guint vtd_uint64_hash(gconstpointer v)
 198{
 199    return (guint)*(const uint64_t *)v;
 200}
 201
 202static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 203                                          gpointer user_data)
 204{
 205    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 206    uint16_t domain_id = *(uint16_t *)user_data;
 207    return entry->domain_id == domain_id;
 208}
 209
 210/* The shift of an addr for a certain level of paging structure */
 211static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 212{
 213    assert(level != 0);
 214    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 215}
 216
 217static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 218{
 219    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 220}
 221
 222static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 223                                        gpointer user_data)
 224{
 225    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 226    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 227    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 228    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 229    return (entry->domain_id == info->domain_id) &&
 230            (((entry->gfn & info->mask) == gfn) ||
 231             (entry->gfn == gfn_tlb));
 232}
 233
 234/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 235 * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
 236 */
 237static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
 238{
 239    VTDAddressSpace *vtd_as;
 240    VTDBus *vtd_bus;
 241    GHashTableIter bus_it;
 242    uint32_t devfn_it;
 243
 244    trace_vtd_context_cache_reset();
 245
 246    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 247
 248    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 249        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
 250            vtd_as = vtd_bus->dev_as[devfn_it];
 251            if (!vtd_as) {
 252                continue;
 253            }
 254            vtd_as->context_cache_entry.context_cache_gen = 0;
 255        }
 256    }
 257    s->context_cache_gen = 1;
 258}
 259
 260/* Must be called with IOMMU lock held. */
 261static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
 262{
 263    assert(s->iotlb);
 264    g_hash_table_remove_all(s->iotlb);
 265}
 266
 267static void vtd_reset_iotlb(IntelIOMMUState *s)
 268{
 269    vtd_iommu_lock(s);
 270    vtd_reset_iotlb_locked(s);
 271    vtd_iommu_unlock(s);
 272}
 273
 274static void vtd_reset_caches(IntelIOMMUState *s)
 275{
 276    vtd_iommu_lock(s);
 277    vtd_reset_iotlb_locked(s);
 278    vtd_reset_context_cache_locked(s);
 279    vtd_iommu_unlock(s);
 280}
 281
 282static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
 283                                  uint32_t level)
 284{
 285    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 286           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 287}
 288
 289static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 290{
 291    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 292}
 293
 294/* Must be called with IOMMU lock held */
 295static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 296                                       hwaddr addr)
 297{
 298    VTDIOTLBEntry *entry;
 299    uint64_t key;
 300    int level;
 301
 302    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 303        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 304                                source_id, level);
 305        entry = g_hash_table_lookup(s->iotlb, &key);
 306        if (entry) {
 307            goto out;
 308        }
 309    }
 310
 311out:
 312    return entry;
 313}
 314
 315/* Must be with IOMMU lock held */
 316static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 317                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 318                             uint8_t access_flags, uint32_t level)
 319{
 320    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 321    uint64_t *key = g_malloc(sizeof(*key));
 322    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 323
 324    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 325    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 326        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 327        vtd_reset_iotlb_locked(s);
 328    }
 329
 330    entry->gfn = gfn;
 331    entry->domain_id = domain_id;
 332    entry->slpte = slpte;
 333    entry->access_flags = access_flags;
 334    entry->mask = vtd_slpt_level_page_mask(level);
 335    *key = vtd_get_iotlb_key(gfn, source_id, level);
 336    g_hash_table_replace(s->iotlb, key, entry);
 337}
 338
 339/* Given the reg addr of both the message data and address, generate an
 340 * interrupt via MSI.
 341 */
 342static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 343                                   hwaddr mesg_data_reg)
 344{
 345    MSIMessage msi;
 346
 347    assert(mesg_data_reg < DMAR_REG_SIZE);
 348    assert(mesg_addr_reg < DMAR_REG_SIZE);
 349
 350    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 351    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 352
 353    trace_vtd_irq_generate(msi.address, msi.data);
 354
 355    apic_get_class()->send_msi(&msi);
 356}
 357
 358/* Generate a fault event to software via MSI if conditions are met.
 359 * Notice that the value of FSTS_REG being passed to it should be the one
 360 * before any update.
 361 */
 362static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 363{
 364    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 365        pre_fsts & VTD_FSTS_IQE) {
 366        error_report_once("There are previous interrupt conditions "
 367                          "to be serviced by software, fault event "
 368                          "is not generated");
 369        return;
 370    }
 371    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 372    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 373        error_report_once("Interrupt Mask set, irq is not generated");
 374    } else {
 375        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 376        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 377    }
 378}
 379
 380/* Check if the Fault (F) field of the Fault Recording Register referenced by
 381 * @index is Set.
 382 */
 383static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 384{
 385    /* Each reg is 128-bit */
 386    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 387    addr += 8; /* Access the high 64-bit half */
 388
 389    assert(index < DMAR_FRCD_REG_NR);
 390
 391    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 392}
 393
 394/* Update the PPF field of Fault Status Register.
 395 * Should be called whenever change the F field of any fault recording
 396 * registers.
 397 */
 398static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 399{
 400    uint32_t i;
 401    uint32_t ppf_mask = 0;
 402
 403    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 404        if (vtd_is_frcd_set(s, i)) {
 405            ppf_mask = VTD_FSTS_PPF;
 406            break;
 407        }
 408    }
 409    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 410    trace_vtd_fsts_ppf(!!ppf_mask);
 411}
 412
 413static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 414{
 415    /* Each reg is 128-bit */
 416    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 417    addr += 8; /* Access the high 64-bit half */
 418
 419    assert(index < DMAR_FRCD_REG_NR);
 420
 421    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 422    vtd_update_fsts_ppf(s);
 423}
 424
 425/* Must not update F field now, should be done later */
 426static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 427                            uint16_t source_id, hwaddr addr,
 428                            VTDFaultReason fault, bool is_write)
 429{
 430    uint64_t hi = 0, lo;
 431    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 432
 433    assert(index < DMAR_FRCD_REG_NR);
 434
 435    lo = VTD_FRCD_FI(addr);
 436    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 437    if (!is_write) {
 438        hi |= VTD_FRCD_T;
 439    }
 440    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 441    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 442
 443    trace_vtd_frr_new(index, hi, lo);
 444}
 445
 446/* Try to collapse multiple pending faults from the same requester */
 447static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 448{
 449    uint32_t i;
 450    uint64_t frcd_reg;
 451    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 452
 453    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 454        frcd_reg = vtd_get_quad_raw(s, addr);
 455        if ((frcd_reg & VTD_FRCD_F) &&
 456            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 457            return true;
 458        }
 459        addr += 16; /* 128-bit for each */
 460    }
 461    return false;
 462}
 463
 464/* Log and report an DMAR (address translation) fault to software */
 465static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 466                                  hwaddr addr, VTDFaultReason fault,
 467                                  bool is_write)
 468{
 469    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 470
 471    assert(fault < VTD_FR_MAX);
 472
 473    if (fault == VTD_FR_RESERVED_ERR) {
 474        /* This is not a normal fault reason case. Drop it. */
 475        return;
 476    }
 477
 478    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 479
 480    if (fsts_reg & VTD_FSTS_PFO) {
 481        error_report_once("New fault is not recorded due to "
 482                          "Primary Fault Overflow");
 483        return;
 484    }
 485
 486    if (vtd_try_collapse_fault(s, source_id)) {
 487        error_report_once("New fault is not recorded due to "
 488                          "compression of faults");
 489        return;
 490    }
 491
 492    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 493        error_report_once("Next Fault Recording Reg is used, "
 494                          "new fault is not recorded, set PFO field");
 495        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 496        return;
 497    }
 498
 499    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 500
 501    if (fsts_reg & VTD_FSTS_PPF) {
 502        error_report_once("There are pending faults already, "
 503                          "fault event is not generated");
 504        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 505        s->next_frcd_reg++;
 506        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 507            s->next_frcd_reg = 0;
 508        }
 509    } else {
 510        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 511                                VTD_FSTS_FRI(s->next_frcd_reg));
 512        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 513        s->next_frcd_reg++;
 514        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 515            s->next_frcd_reg = 0;
 516        }
 517        /* This case actually cause the PPF to be Set.
 518         * So generate fault event (interrupt).
 519         */
 520         vtd_generate_fault_event(s, fsts_reg);
 521    }
 522}
 523
 524/* Handle Invalidation Queue Errors of queued invalidation interface error
 525 * conditions.
 526 */
 527static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 528{
 529    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 530
 531    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 532    vtd_generate_fault_event(s, fsts_reg);
 533}
 534
 535/* Set the IWC field and try to generate an invalidation completion interrupt */
 536static void vtd_generate_completion_event(IntelIOMMUState *s)
 537{
 538    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 539        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 540        return;
 541    }
 542    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 543    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 544    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 545        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 546                                    "new event not generated");
 547        return;
 548    } else {
 549        /* Generate the interrupt event */
 550        trace_vtd_inv_desc_wait_irq("Generating complete event");
 551        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 552        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 553    }
 554}
 555
 556static inline bool vtd_root_entry_present(IntelIOMMUState *s,
 557                                          VTDRootEntry *re,
 558                                          uint8_t devfn)
 559{
 560    if (s->root_scalable && devfn > UINT8_MAX / 2) {
 561        return re->hi & VTD_ROOT_ENTRY_P;
 562    }
 563
 564    return re->lo & VTD_ROOT_ENTRY_P;
 565}
 566
 567static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 568                              VTDRootEntry *re)
 569{
 570    dma_addr_t addr;
 571
 572    addr = s->root + index * sizeof(*re);
 573    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 574        re->lo = 0;
 575        return -VTD_FR_ROOT_TABLE_INV;
 576    }
 577    re->lo = le64_to_cpu(re->lo);
 578    re->hi = le64_to_cpu(re->hi);
 579    return 0;
 580}
 581
 582static inline bool vtd_ce_present(VTDContextEntry *context)
 583{
 584    return context->lo & VTD_CONTEXT_ENTRY_P;
 585}
 586
 587static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
 588                                           VTDRootEntry *re,
 589                                           uint8_t index,
 590                                           VTDContextEntry *ce)
 591{
 592    dma_addr_t addr, ce_size;
 593
 594    /* we have checked that root entry is present */
 595    ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
 596              VTD_CTX_ENTRY_LEGACY_SIZE;
 597
 598    if (s->root_scalable && index > UINT8_MAX / 2) {
 599        index = index & (~VTD_DEVFN_CHECK_MASK);
 600        addr = re->hi & VTD_ROOT_ENTRY_CTP;
 601    } else {
 602        addr = re->lo & VTD_ROOT_ENTRY_CTP;
 603    }
 604
 605    addr = addr + index * ce_size;
 606    if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
 607        return -VTD_FR_CONTEXT_TABLE_INV;
 608    }
 609
 610    ce->lo = le64_to_cpu(ce->lo);
 611    ce->hi = le64_to_cpu(ce->hi);
 612    if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
 613        ce->val[2] = le64_to_cpu(ce->val[2]);
 614        ce->val[3] = le64_to_cpu(ce->val[3]);
 615    }
 616    return 0;
 617}
 618
 619static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 620{
 621    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 622}
 623
 624static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
 625{
 626    return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
 627}
 628
 629/* Whether the pte indicates the address of the page frame */
 630static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 631{
 632    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 633}
 634
 635/* Get the content of a spte located in @base_addr[@index] */
 636static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 637{
 638    uint64_t slpte;
 639
 640    assert(index < VTD_SL_PT_ENTRY_NR);
 641
 642    if (dma_memory_read(&address_space_memory,
 643                        base_addr + index * sizeof(slpte), &slpte,
 644                        sizeof(slpte))) {
 645        slpte = (uint64_t)-1;
 646        return slpte;
 647    }
 648    slpte = le64_to_cpu(slpte);
 649    return slpte;
 650}
 651
 652/* Given an iova and the level of paging structure, return the offset
 653 * of current level.
 654 */
 655static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 656{
 657    return (iova >> vtd_slpt_level_shift(level)) &
 658            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 659}
 660
 661/* Check Capability Register to see if the @level of page-table is supported */
 662static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 663{
 664    return VTD_CAP_SAGAW_MASK & s->cap &
 665           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 666}
 667
 668/* Return true if check passed, otherwise false */
 669static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
 670                                     VTDPASIDEntry *pe)
 671{
 672    switch (VTD_PE_GET_TYPE(pe)) {
 673    case VTD_SM_PASID_ENTRY_FLT:
 674    case VTD_SM_PASID_ENTRY_SLT:
 675    case VTD_SM_PASID_ENTRY_NESTED:
 676        break;
 677    case VTD_SM_PASID_ENTRY_PT:
 678        if (!x86_iommu->pt_supported) {
 679            return false;
 680        }
 681        break;
 682    default:
 683        /* Unknwon type */
 684        return false;
 685    }
 686    return true;
 687}
 688
 689static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
 690{
 691    return pdire->val & 1;
 692}
 693
 694/**
 695 * Caller of this function should check present bit if wants
 696 * to use pdir entry for futher usage except for fpd bit check.
 697 */
 698static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
 699                                         uint32_t pasid,
 700                                         VTDPASIDDirEntry *pdire)
 701{
 702    uint32_t index;
 703    dma_addr_t addr, entry_size;
 704
 705    index = VTD_PASID_DIR_INDEX(pasid);
 706    entry_size = VTD_PASID_DIR_ENTRY_SIZE;
 707    addr = pasid_dir_base + index * entry_size;
 708    if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
 709        return -VTD_FR_PASID_TABLE_INV;
 710    }
 711
 712    return 0;
 713}
 714
 715static inline bool vtd_pe_present(VTDPASIDEntry *pe)
 716{
 717    return pe->val[0] & VTD_PASID_ENTRY_P;
 718}
 719
 720static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
 721                                          uint32_t pasid,
 722                                          dma_addr_t addr,
 723                                          VTDPASIDEntry *pe)
 724{
 725    uint32_t index;
 726    dma_addr_t entry_size;
 727    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 728
 729    index = VTD_PASID_TABLE_INDEX(pasid);
 730    entry_size = VTD_PASID_ENTRY_SIZE;
 731    addr = addr + index * entry_size;
 732    if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
 733        return -VTD_FR_PASID_TABLE_INV;
 734    }
 735
 736    /* Do translation type check */
 737    if (!vtd_pe_type_check(x86_iommu, pe)) {
 738        return -VTD_FR_PASID_TABLE_INV;
 739    }
 740
 741    if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
 742        return -VTD_FR_PASID_TABLE_INV;
 743    }
 744
 745    return 0;
 746}
 747
 748/**
 749 * Caller of this function should check present bit if wants
 750 * to use pasid entry for futher usage except for fpd bit check.
 751 */
 752static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
 753                                 uint32_t pasid,
 754                                 VTDPASIDDirEntry *pdire,
 755                                 VTDPASIDEntry *pe)
 756{
 757    dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
 758
 759    return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
 760}
 761
 762/**
 763 * This function gets a pasid entry from a specified pasid
 764 * table (includes dir and leaf table) with a specified pasid.
 765 * Sanity check should be done to ensure return a present
 766 * pasid entry to caller.
 767 */
 768static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
 769                                       dma_addr_t pasid_dir_base,
 770                                       uint32_t pasid,
 771                                       VTDPASIDEntry *pe)
 772{
 773    int ret;
 774    VTDPASIDDirEntry pdire;
 775
 776    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
 777                                        pasid, &pdire);
 778    if (ret) {
 779        return ret;
 780    }
 781
 782    if (!vtd_pdire_present(&pdire)) {
 783        return -VTD_FR_PASID_TABLE_INV;
 784    }
 785
 786    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
 787    if (ret) {
 788        return ret;
 789    }
 790
 791    if (!vtd_pe_present(pe)) {
 792        return -VTD_FR_PASID_TABLE_INV;
 793    }
 794
 795    return 0;
 796}
 797
 798static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
 799                                      VTDContextEntry *ce,
 800                                      VTDPASIDEntry *pe)
 801{
 802    uint32_t pasid;
 803    dma_addr_t pasid_dir_base;
 804    int ret = 0;
 805
 806    pasid = VTD_CE_GET_RID2PASID(ce);
 807    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 808    ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
 809
 810    return ret;
 811}
 812
 813static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
 814                                VTDContextEntry *ce,
 815                                bool *pe_fpd_set)
 816{
 817    int ret;
 818    uint32_t pasid;
 819    dma_addr_t pasid_dir_base;
 820    VTDPASIDDirEntry pdire;
 821    VTDPASIDEntry pe;
 822
 823    pasid = VTD_CE_GET_RID2PASID(ce);
 824    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 825
 826    /*
 827     * No present bit check since fpd is meaningful even
 828     * if the present bit is clear.
 829     */
 830    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
 831    if (ret) {
 832        return ret;
 833    }
 834
 835    if (pdire.val & VTD_PASID_DIR_FPD) {
 836        *pe_fpd_set = true;
 837        return 0;
 838    }
 839
 840    if (!vtd_pdire_present(&pdire)) {
 841        return -VTD_FR_PASID_TABLE_INV;
 842    }
 843
 844    /*
 845     * No present bit check since fpd is meaningful even
 846     * if the present bit is clear.
 847     */
 848    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
 849    if (ret) {
 850        return ret;
 851    }
 852
 853    if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
 854        *pe_fpd_set = true;
 855    }
 856
 857    return 0;
 858}
 859
 860/* Get the page-table level that hardware should use for the second-level
 861 * page-table walk from the Address Width field of context-entry.
 862 */
 863static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 864{
 865    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 866}
 867
 868static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
 869                                   VTDContextEntry *ce)
 870{
 871    VTDPASIDEntry pe;
 872
 873    if (s->root_scalable) {
 874        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 875        return VTD_PE_GET_LEVEL(&pe);
 876    }
 877
 878    return vtd_ce_get_level(ce);
 879}
 880
 881static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 882{
 883    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 884}
 885
 886static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
 887                                  VTDContextEntry *ce)
 888{
 889    VTDPASIDEntry pe;
 890
 891    if (s->root_scalable) {
 892        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 893        return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
 894    }
 895
 896    return vtd_ce_get_agaw(ce);
 897}
 898
 899static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 900{
 901    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 902}
 903
 904/* Only for Legacy Mode. Return true if check passed, otherwise false */
 905static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 906                                     VTDContextEntry *ce)
 907{
 908    switch (vtd_ce_get_type(ce)) {
 909    case VTD_CONTEXT_TT_MULTI_LEVEL:
 910        /* Always supported */
 911        break;
 912    case VTD_CONTEXT_TT_DEV_IOTLB:
 913        if (!x86_iommu->dt_supported) {
 914            error_report_once("%s: DT specified but not supported", __func__);
 915            return false;
 916        }
 917        break;
 918    case VTD_CONTEXT_TT_PASS_THROUGH:
 919        if (!x86_iommu->pt_supported) {
 920            error_report_once("%s: PT specified but not supported", __func__);
 921            return false;
 922        }
 923        break;
 924    default:
 925        /* Unknown type */
 926        error_report_once("%s: unknown ce type: %"PRIu32, __func__,
 927                          vtd_ce_get_type(ce));
 928        return false;
 929    }
 930    return true;
 931}
 932
 933static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
 934                                      VTDContextEntry *ce, uint8_t aw)
 935{
 936    uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
 937    return 1ULL << MIN(ce_agaw, aw);
 938}
 939
 940/* Return true if IOVA passes range check, otherwise false. */
 941static inline bool vtd_iova_range_check(IntelIOMMUState *s,
 942                                        uint64_t iova, VTDContextEntry *ce,
 943                                        uint8_t aw)
 944{
 945    /*
 946     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
 947     * in CAP_REG and AW in context-entry.
 948     */
 949    return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
 950}
 951
 952static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
 953                                          VTDContextEntry *ce)
 954{
 955    VTDPASIDEntry pe;
 956
 957    if (s->root_scalable) {
 958        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 959        return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
 960    }
 961
 962    return vtd_ce_get_slpt_base(ce);
 963}
 964
 965/*
 966 * Rsvd field masks for spte:
 967 *     vtd_spte_rsvd 4k pages
 968 *     vtd_spte_rsvd_large large pages
 969 */
 970static uint64_t vtd_spte_rsvd[5];
 971static uint64_t vtd_spte_rsvd_large[5];
 972
 973static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 974{
 975    uint64_t rsvd_mask = vtd_spte_rsvd[level];
 976
 977    if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
 978        (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
 979        /* large page */
 980        rsvd_mask = vtd_spte_rsvd_large[level];
 981    }
 982
 983    return slpte & rsvd_mask;
 984}
 985
 986/* Find the VTD address space associated with a given bus number */
 987static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 988{
 989    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 990    if (!vtd_bus) {
 991        /*
 992         * Iterate over the registered buses to find the one which
 993         * currently hold this bus number, and update the bus_num
 994         * lookup table:
 995         */
 996        GHashTableIter iter;
 997
 998        g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
 999        while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1000            if (pci_bus_num(vtd_bus->bus) == bus_num) {
1001                s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1002                return vtd_bus;
1003            }
1004        }
1005        vtd_bus = NULL;
1006    }
1007    return vtd_bus;
1008}
1009
1010/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1011 * of the translation, can be used for deciding the size of large page.
1012 */
1013static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1014                             uint64_t iova, bool is_write,
1015                             uint64_t *slptep, uint32_t *slpte_level,
1016                             bool *reads, bool *writes, uint8_t aw_bits)
1017{
1018    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1019    uint32_t level = vtd_get_iova_level(s, ce);
1020    uint32_t offset;
1021    uint64_t slpte;
1022    uint64_t access_right_check;
1023
1024    if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1025        error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1026                          __func__, iova);
1027        return -VTD_FR_ADDR_BEYOND_MGAW;
1028    }
1029
1030    /* FIXME: what is the Atomics request here? */
1031    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1032
1033    while (true) {
1034        offset = vtd_iova_level_offset(iova, level);
1035        slpte = vtd_get_slpte(addr, offset);
1036
1037        if (slpte == (uint64_t)-1) {
1038            error_report_once("%s: detected read error on DMAR slpte "
1039                              "(iova=0x%" PRIx64 ")", __func__, iova);
1040            if (level == vtd_get_iova_level(s, ce)) {
1041                /* Invalid programming of context-entry */
1042                return -VTD_FR_CONTEXT_ENTRY_INV;
1043            } else {
1044                return -VTD_FR_PAGING_ENTRY_INV;
1045            }
1046        }
1047        *reads = (*reads) && (slpte & VTD_SL_R);
1048        *writes = (*writes) && (slpte & VTD_SL_W);
1049        if (!(slpte & access_right_check)) {
1050            error_report_once("%s: detected slpte permission error "
1051                              "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1052                              "slpte=0x%" PRIx64 ", write=%d)", __func__,
1053                              iova, level, slpte, is_write);
1054            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1055        }
1056        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1057            error_report_once("%s: detected splte reserve non-zero "
1058                              "iova=0x%" PRIx64 ", level=0x%" PRIx32
1059                              "slpte=0x%" PRIx64 ")", __func__, iova,
1060                              level, slpte);
1061            return -VTD_FR_PAGING_ENTRY_RSVD;
1062        }
1063
1064        if (vtd_is_last_slpte(slpte, level)) {
1065            *slptep = slpte;
1066            *slpte_level = level;
1067            return 0;
1068        }
1069        addr = vtd_get_slpte_addr(slpte, aw_bits);
1070        level--;
1071    }
1072}
1073
1074typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1075
1076/**
1077 * Constant information used during page walking
1078 *
1079 * @hook_fn: hook func to be called when detected page
1080 * @private: private data to be passed into hook func
1081 * @notify_unmap: whether we should notify invalid entries
1082 * @as: VT-d address space of the device
1083 * @aw: maximum address width
1084 * @domain: domain ID of the page walk
1085 */
1086typedef struct {
1087    VTDAddressSpace *as;
1088    vtd_page_walk_hook hook_fn;
1089    void *private;
1090    bool notify_unmap;
1091    uint8_t aw;
1092    uint16_t domain_id;
1093} vtd_page_walk_info;
1094
1095static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1096{
1097    VTDAddressSpace *as = info->as;
1098    vtd_page_walk_hook hook_fn = info->hook_fn;
1099    void *private = info->private;
1100    DMAMap target = {
1101        .iova = entry->iova,
1102        .size = entry->addr_mask,
1103        .translated_addr = entry->translated_addr,
1104        .perm = entry->perm,
1105    };
1106    DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1107
1108    if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1109        trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1110        return 0;
1111    }
1112
1113    assert(hook_fn);
1114
1115    /* Update local IOVA mapped ranges */
1116    if (entry->perm) {
1117        if (mapped) {
1118            /* If it's exactly the same translation, skip */
1119            if (!memcmp(mapped, &target, sizeof(target))) {
1120                trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1121                                                 entry->translated_addr);
1122                return 0;
1123            } else {
1124                /*
1125                 * Translation changed.  Normally this should not
1126                 * happen, but it can happen when with buggy guest
1127                 * OSes.  Note that there will be a small window that
1128                 * we don't have map at all.  But that's the best
1129                 * effort we can do.  The ideal way to emulate this is
1130                 * atomically modify the PTE to follow what has
1131                 * changed, but we can't.  One example is that vfio
1132                 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1133                 * interface to modify a mapping (meanwhile it seems
1134                 * meaningless to even provide one).  Anyway, let's
1135                 * mark this as a TODO in case one day we'll have
1136                 * a better solution.
1137                 */
1138                IOMMUAccessFlags cache_perm = entry->perm;
1139                int ret;
1140
1141                /* Emulate an UNMAP */
1142                entry->perm = IOMMU_NONE;
1143                trace_vtd_page_walk_one(info->domain_id,
1144                                        entry->iova,
1145                                        entry->translated_addr,
1146                                        entry->addr_mask,
1147                                        entry->perm);
1148                ret = hook_fn(entry, private);
1149                if (ret) {
1150                    return ret;
1151                }
1152                /* Drop any existing mapping */
1153                iova_tree_remove(as->iova_tree, &target);
1154                /* Recover the correct permission */
1155                entry->perm = cache_perm;
1156            }
1157        }
1158        iova_tree_insert(as->iova_tree, &target);
1159    } else {
1160        if (!mapped) {
1161            /* Skip since we didn't map this range at all */
1162            trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1163            return 0;
1164        }
1165        iova_tree_remove(as->iova_tree, &target);
1166    }
1167
1168    trace_vtd_page_walk_one(info->domain_id, entry->iova,
1169                            entry->translated_addr, entry->addr_mask,
1170                            entry->perm);
1171    return hook_fn(entry, private);
1172}
1173
1174/**
1175 * vtd_page_walk_level - walk over specific level for IOVA range
1176 *
1177 * @addr: base GPA addr to start the walk
1178 * @start: IOVA range start address
1179 * @end: IOVA range end address (start <= addr < end)
1180 * @read: whether parent level has read permission
1181 * @write: whether parent level has write permission
1182 * @info: constant information for the page walk
1183 */
1184static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1185                               uint64_t end, uint32_t level, bool read,
1186                               bool write, vtd_page_walk_info *info)
1187{
1188    bool read_cur, write_cur, entry_valid;
1189    uint32_t offset;
1190    uint64_t slpte;
1191    uint64_t subpage_size, subpage_mask;
1192    IOMMUTLBEntry entry;
1193    uint64_t iova = start;
1194    uint64_t iova_next;
1195    int ret = 0;
1196
1197    trace_vtd_page_walk_level(addr, level, start, end);
1198
1199    subpage_size = 1ULL << vtd_slpt_level_shift(level);
1200    subpage_mask = vtd_slpt_level_page_mask(level);
1201
1202    while (iova < end) {
1203        iova_next = (iova & subpage_mask) + subpage_size;
1204
1205        offset = vtd_iova_level_offset(iova, level);
1206        slpte = vtd_get_slpte(addr, offset);
1207
1208        if (slpte == (uint64_t)-1) {
1209            trace_vtd_page_walk_skip_read(iova, iova_next);
1210            goto next;
1211        }
1212
1213        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1214            trace_vtd_page_walk_skip_reserve(iova, iova_next);
1215            goto next;
1216        }
1217
1218        /* Permissions are stacked with parents' */
1219        read_cur = read && (slpte & VTD_SL_R);
1220        write_cur = write && (slpte & VTD_SL_W);
1221
1222        /*
1223         * As long as we have either read/write permission, this is a
1224         * valid entry. The rule works for both page entries and page
1225         * table entries.
1226         */
1227        entry_valid = read_cur | write_cur;
1228
1229        if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1230            /*
1231             * This is a valid PDE (or even bigger than PDE).  We need
1232             * to walk one further level.
1233             */
1234            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1235                                      iova, MIN(iova_next, end), level - 1,
1236                                      read_cur, write_cur, info);
1237        } else {
1238            /*
1239             * This means we are either:
1240             *
1241             * (1) the real page entry (either 4K page, or huge page)
1242             * (2) the whole range is invalid
1243             *
1244             * In either case, we send an IOTLB notification down.
1245             */
1246            entry.target_as = &address_space_memory;
1247            entry.iova = iova & subpage_mask;
1248            entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1249            entry.addr_mask = ~subpage_mask;
1250            /* NOTE: this is only meaningful if entry_valid == true */
1251            entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1252            ret = vtd_page_walk_one(&entry, info);
1253        }
1254
1255        if (ret < 0) {
1256            return ret;
1257        }
1258
1259next:
1260        iova = iova_next;
1261    }
1262
1263    return 0;
1264}
1265
1266/**
1267 * vtd_page_walk - walk specific IOVA range, and call the hook
1268 *
1269 * @s: intel iommu state
1270 * @ce: context entry to walk upon
1271 * @start: IOVA address to start the walk
1272 * @end: IOVA range end address (start <= addr < end)
1273 * @info: page walking information struct
1274 */
1275static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1276                         uint64_t start, uint64_t end,
1277                         vtd_page_walk_info *info)
1278{
1279    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1280    uint32_t level = vtd_get_iova_level(s, ce);
1281
1282    if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1283        return -VTD_FR_ADDR_BEYOND_MGAW;
1284    }
1285
1286    if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1287        /* Fix end so that it reaches the maximum */
1288        end = vtd_iova_limit(s, ce, info->aw);
1289    }
1290
1291    return vtd_page_walk_level(addr, start, end, level, true, true, info);
1292}
1293
1294static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1295                                          VTDRootEntry *re)
1296{
1297    /* Legacy Mode reserved bits check */
1298    if (!s->root_scalable &&
1299        (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1300        goto rsvd_err;
1301
1302    /* Scalable Mode reserved bits check */
1303    if (s->root_scalable &&
1304        ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1305         (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1306        goto rsvd_err;
1307
1308    return 0;
1309
1310rsvd_err:
1311    error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1312                      ", lo=0x%"PRIx64,
1313                      __func__, re->hi, re->lo);
1314    return -VTD_FR_ROOT_ENTRY_RSVD;
1315}
1316
1317static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1318                                                    VTDContextEntry *ce)
1319{
1320    if (!s->root_scalable &&
1321        (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1322         ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1323        error_report_once("%s: invalid context entry: hi=%"PRIx64
1324                          ", lo=%"PRIx64" (reserved nonzero)",
1325                          __func__, ce->hi, ce->lo);
1326        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1327    }
1328
1329    if (s->root_scalable &&
1330        (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1331         ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1332         ce->val[2] ||
1333         ce->val[3])) {
1334        error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1335                          ", val[2]=%"PRIx64
1336                          ", val[1]=%"PRIx64
1337                          ", val[0]=%"PRIx64" (reserved nonzero)",
1338                          __func__, ce->val[3], ce->val[2],
1339                          ce->val[1], ce->val[0]);
1340        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1341    }
1342
1343    return 0;
1344}
1345
1346static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1347                                  VTDContextEntry *ce)
1348{
1349    VTDPASIDEntry pe;
1350
1351    /*
1352     * Make sure in Scalable Mode, a present context entry
1353     * has valid rid2pasid setting, which includes valid
1354     * rid2pasid field and corresponding pasid entry setting
1355     */
1356    return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1357}
1358
1359/* Map a device to its corresponding domain (context-entry) */
1360static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1361                                    uint8_t devfn, VTDContextEntry *ce)
1362{
1363    VTDRootEntry re;
1364    int ret_fr;
1365    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1366
1367    ret_fr = vtd_get_root_entry(s, bus_num, &re);
1368    if (ret_fr) {
1369        return ret_fr;
1370    }
1371
1372    if (!vtd_root_entry_present(s, &re, devfn)) {
1373        /* Not error - it's okay we don't have root entry. */
1374        trace_vtd_re_not_present(bus_num);
1375        return -VTD_FR_ROOT_ENTRY_P;
1376    }
1377
1378    ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1379    if (ret_fr) {
1380        return ret_fr;
1381    }
1382
1383    ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1384    if (ret_fr) {
1385        return ret_fr;
1386    }
1387
1388    if (!vtd_ce_present(ce)) {
1389        /* Not error - it's okay we don't have context entry. */
1390        trace_vtd_ce_not_present(bus_num, devfn);
1391        return -VTD_FR_CONTEXT_ENTRY_P;
1392    }
1393
1394    ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1395    if (ret_fr) {
1396        return ret_fr;
1397    }
1398
1399    /* Check if the programming of context-entry is valid */
1400    if (!s->root_scalable &&
1401        !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1402        error_report_once("%s: invalid context entry: hi=%"PRIx64
1403                          ", lo=%"PRIx64" (level %d not supported)",
1404                          __func__, ce->hi, ce->lo,
1405                          vtd_ce_get_level(ce));
1406        return -VTD_FR_CONTEXT_ENTRY_INV;
1407    }
1408
1409    if (!s->root_scalable) {
1410        /* Do translation type check */
1411        if (!vtd_ce_type_check(x86_iommu, ce)) {
1412            /* Errors dumped in vtd_ce_type_check() */
1413            return -VTD_FR_CONTEXT_ENTRY_INV;
1414        }
1415    } else {
1416        /*
1417         * Check if the programming of context-entry.rid2pasid
1418         * and corresponding pasid setting is valid, and thus
1419         * avoids to check pasid entry fetching result in future
1420         * helper function calling.
1421         */
1422        ret_fr = vtd_ce_rid2pasid_check(s, ce);
1423        if (ret_fr) {
1424            return ret_fr;
1425        }
1426    }
1427
1428    return 0;
1429}
1430
1431static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1432                                     void *private)
1433{
1434    memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1435    return 0;
1436}
1437
1438static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1439                                  VTDContextEntry *ce)
1440{
1441    VTDPASIDEntry pe;
1442
1443    if (s->root_scalable) {
1444        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1445        return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1446    }
1447
1448    return VTD_CONTEXT_ENTRY_DID(ce->hi);
1449}
1450
1451static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1452                                            VTDContextEntry *ce,
1453                                            hwaddr addr, hwaddr size)
1454{
1455    IntelIOMMUState *s = vtd_as->iommu_state;
1456    vtd_page_walk_info info = {
1457        .hook_fn = vtd_sync_shadow_page_hook,
1458        .private = (void *)&vtd_as->iommu,
1459        .notify_unmap = true,
1460        .aw = s->aw_bits,
1461        .as = vtd_as,
1462        .domain_id = vtd_get_domain_id(s, ce),
1463    };
1464
1465    return vtd_page_walk(s, ce, addr, addr + size, &info);
1466}
1467
1468static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1469{
1470    int ret;
1471    VTDContextEntry ce;
1472    IOMMUNotifier *n;
1473
1474    ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1475                                   pci_bus_num(vtd_as->bus),
1476                                   vtd_as->devfn, &ce);
1477    if (ret) {
1478        if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1479            /*
1480             * It's a valid scenario to have a context entry that is
1481             * not present.  For example, when a device is removed
1482             * from an existing domain then the context entry will be
1483             * zeroed by the guest before it was put into another
1484             * domain.  When this happens, instead of synchronizing
1485             * the shadow pages we should invalidate all existing
1486             * mappings and notify the backends.
1487             */
1488            IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1489                vtd_address_space_unmap(vtd_as, n);
1490            }
1491            ret = 0;
1492        }
1493        return ret;
1494    }
1495
1496    return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1497}
1498
1499/*
1500 * Check if specific device is configed to bypass address
1501 * translation for DMA requests. In Scalable Mode, bypass
1502 * 1st-level translation or 2nd-level translation, it depends
1503 * on PGTT setting.
1504 */
1505static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1506{
1507    IntelIOMMUState *s;
1508    VTDContextEntry ce;
1509    VTDPASIDEntry pe;
1510    int ret;
1511
1512    assert(as);
1513
1514    s = as->iommu_state;
1515    ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1516                                   as->devfn, &ce);
1517    if (ret) {
1518        /*
1519         * Possibly failed to parse the context entry for some reason
1520         * (e.g., during init, or any guest configuration errors on
1521         * context entries). We should assume PT not enabled for
1522         * safety.
1523         */
1524        return false;
1525    }
1526
1527    if (s->root_scalable) {
1528        ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1529        if (ret) {
1530            error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1531                              __func__, ret);
1532            return false;
1533        }
1534        return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1535    }
1536
1537    return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1538}
1539
1540/* Return whether the device is using IOMMU translation. */
1541static bool vtd_switch_address_space(VTDAddressSpace *as)
1542{
1543    bool use_iommu;
1544    /* Whether we need to take the BQL on our own */
1545    bool take_bql = !qemu_mutex_iothread_locked();
1546
1547    assert(as);
1548
1549    use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1550
1551    trace_vtd_switch_address_space(pci_bus_num(as->bus),
1552                                   VTD_PCI_SLOT(as->devfn),
1553                                   VTD_PCI_FUNC(as->devfn),
1554                                   use_iommu);
1555
1556    /*
1557     * It's possible that we reach here without BQL, e.g., when called
1558     * from vtd_pt_enable_fast_path(). However the memory APIs need
1559     * it. We'd better make sure we have had it already, or, take it.
1560     */
1561    if (take_bql) {
1562        qemu_mutex_lock_iothread();
1563    }
1564
1565    /* Turn off first then on the other */
1566    if (use_iommu) {
1567        memory_region_set_enabled(&as->nodmar, false);
1568        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1569    } else {
1570        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1571        memory_region_set_enabled(&as->nodmar, true);
1572    }
1573
1574    if (take_bql) {
1575        qemu_mutex_unlock_iothread();
1576    }
1577
1578    return use_iommu;
1579}
1580
1581static void vtd_switch_address_space_all(IntelIOMMUState *s)
1582{
1583    GHashTableIter iter;
1584    VTDBus *vtd_bus;
1585    int i;
1586
1587    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1588    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1589        for (i = 0; i < PCI_DEVFN_MAX; i++) {
1590            if (!vtd_bus->dev_as[i]) {
1591                continue;
1592            }
1593            vtd_switch_address_space(vtd_bus->dev_as[i]);
1594        }
1595    }
1596}
1597
1598static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1599{
1600    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1601}
1602
1603static const bool vtd_qualified_faults[] = {
1604    [VTD_FR_RESERVED] = false,
1605    [VTD_FR_ROOT_ENTRY_P] = false,
1606    [VTD_FR_CONTEXT_ENTRY_P] = true,
1607    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1608    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1609    [VTD_FR_WRITE] = true,
1610    [VTD_FR_READ] = true,
1611    [VTD_FR_PAGING_ENTRY_INV] = true,
1612    [VTD_FR_ROOT_TABLE_INV] = false,
1613    [VTD_FR_CONTEXT_TABLE_INV] = false,
1614    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1615    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1616    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1617    [VTD_FR_PASID_TABLE_INV] = false,
1618    [VTD_FR_RESERVED_ERR] = false,
1619    [VTD_FR_MAX] = false,
1620};
1621
1622/* To see if a fault condition is "qualified", which is reported to software
1623 * only if the FPD field in the context-entry used to process the faulting
1624 * request is 0.
1625 */
1626static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1627{
1628    return vtd_qualified_faults[fault];
1629}
1630
1631static inline bool vtd_is_interrupt_addr(hwaddr addr)
1632{
1633    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1634}
1635
1636static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1637{
1638    VTDBus *vtd_bus;
1639    VTDAddressSpace *vtd_as;
1640    bool success = false;
1641
1642    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1643    if (!vtd_bus) {
1644        goto out;
1645    }
1646
1647    vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1648    if (!vtd_as) {
1649        goto out;
1650    }
1651
1652    if (vtd_switch_address_space(vtd_as) == false) {
1653        /* We switched off IOMMU region successfully. */
1654        success = true;
1655    }
1656
1657out:
1658    trace_vtd_pt_enable_fast_path(source_id, success);
1659}
1660
1661/* Map dev to context-entry then do a paging-structures walk to do a iommu
1662 * translation.
1663 *
1664 * Called from RCU critical section.
1665 *
1666 * @bus_num: The bus number
1667 * @devfn: The devfn, which is the  combined of device and function number
1668 * @is_write: The access is a write operation
1669 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1670 *
1671 * Returns true if translation is successful, otherwise false.
1672 */
1673static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1674                                   uint8_t devfn, hwaddr addr, bool is_write,
1675                                   IOMMUTLBEntry *entry)
1676{
1677    IntelIOMMUState *s = vtd_as->iommu_state;
1678    VTDContextEntry ce;
1679    uint8_t bus_num = pci_bus_num(bus);
1680    VTDContextCacheEntry *cc_entry;
1681    uint64_t slpte, page_mask;
1682    uint32_t level;
1683    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1684    int ret_fr;
1685    bool is_fpd_set = false;
1686    bool reads = true;
1687    bool writes = true;
1688    uint8_t access_flags;
1689    VTDIOTLBEntry *iotlb_entry;
1690
1691    /*
1692     * We have standalone memory region for interrupt addresses, we
1693     * should never receive translation requests in this region.
1694     */
1695    assert(!vtd_is_interrupt_addr(addr));
1696
1697    vtd_iommu_lock(s);
1698
1699    cc_entry = &vtd_as->context_cache_entry;
1700
1701    /* Try to fetch slpte form IOTLB */
1702    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1703    if (iotlb_entry) {
1704        trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1705                                 iotlb_entry->domain_id);
1706        slpte = iotlb_entry->slpte;
1707        access_flags = iotlb_entry->access_flags;
1708        page_mask = iotlb_entry->mask;
1709        goto out;
1710    }
1711
1712    /* Try to fetch context-entry from cache first */
1713    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1714        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1715                               cc_entry->context_entry.lo,
1716                               cc_entry->context_cache_gen);
1717        ce = cc_entry->context_entry;
1718        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1719        if (!is_fpd_set && s->root_scalable) {
1720            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1721            VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1722        }
1723    } else {
1724        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1725        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1726        if (!ret_fr && !is_fpd_set && s->root_scalable) {
1727            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1728        }
1729        VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1730        /* Update context-cache */
1731        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1732                                  cc_entry->context_cache_gen,
1733                                  s->context_cache_gen);
1734        cc_entry->context_entry = ce;
1735        cc_entry->context_cache_gen = s->context_cache_gen;
1736    }
1737
1738    /*
1739     * We don't need to translate for pass-through context entries.
1740     * Also, let's ignore IOTLB caching as well for PT devices.
1741     */
1742    if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1743        entry->iova = addr & VTD_PAGE_MASK_4K;
1744        entry->translated_addr = entry->iova;
1745        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1746        entry->perm = IOMMU_RW;
1747        trace_vtd_translate_pt(source_id, entry->iova);
1748
1749        /*
1750         * When this happens, it means firstly caching-mode is not
1751         * enabled, and this is the first passthrough translation for
1752         * the device. Let's enable the fast path for passthrough.
1753         *
1754         * When passthrough is disabled again for the device, we can
1755         * capture it via the context entry invalidation, then the
1756         * IOMMU region can be swapped back.
1757         */
1758        vtd_pt_enable_fast_path(s, source_id);
1759        vtd_iommu_unlock(s);
1760        return true;
1761    }
1762
1763    ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1764                               &reads, &writes, s->aw_bits);
1765    VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1766
1767    page_mask = vtd_slpt_level_page_mask(level);
1768    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1769    vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1770                     access_flags, level);
1771out:
1772    vtd_iommu_unlock(s);
1773    entry->iova = addr & page_mask;
1774    entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1775    entry->addr_mask = ~page_mask;
1776    entry->perm = access_flags;
1777    return true;
1778
1779error:
1780    vtd_iommu_unlock(s);
1781    entry->iova = 0;
1782    entry->translated_addr = 0;
1783    entry->addr_mask = 0;
1784    entry->perm = IOMMU_NONE;
1785    return false;
1786}
1787
1788static void vtd_root_table_setup(IntelIOMMUState *s)
1789{
1790    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1791    s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1792
1793    vtd_update_scalable_state(s);
1794
1795    trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1796}
1797
1798static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1799                               uint32_t index, uint32_t mask)
1800{
1801    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1802}
1803
1804static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1805{
1806    uint64_t value = 0;
1807    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1808    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1809    s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1810    s->intr_eime = value & VTD_IRTA_EIME;
1811
1812    /* Notify global invalidation */
1813    vtd_iec_notify_all(s, true, 0, 0);
1814
1815    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1816}
1817
1818static void vtd_iommu_replay_all(IntelIOMMUState *s)
1819{
1820    VTDAddressSpace *vtd_as;
1821
1822    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1823        vtd_sync_shadow_page_table(vtd_as);
1824    }
1825}
1826
1827static void vtd_context_global_invalidate(IntelIOMMUState *s)
1828{
1829    trace_vtd_inv_desc_cc_global();
1830    /* Protects context cache */
1831    vtd_iommu_lock(s);
1832    s->context_cache_gen++;
1833    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1834        vtd_reset_context_cache_locked(s);
1835    }
1836    vtd_iommu_unlock(s);
1837    vtd_address_space_refresh_all(s);
1838    /*
1839     * From VT-d spec 6.5.2.1, a global context entry invalidation
1840     * should be followed by a IOTLB global invalidation, so we should
1841     * be safe even without this. Hoewever, let's replay the region as
1842     * well to be safer, and go back here when we need finer tunes for
1843     * VT-d emulation codes.
1844     */
1845    vtd_iommu_replay_all(s);
1846}
1847
1848/* Do a context-cache device-selective invalidation.
1849 * @func_mask: FM field after shifting
1850 */
1851static void vtd_context_device_invalidate(IntelIOMMUState *s,
1852                                          uint16_t source_id,
1853                                          uint16_t func_mask)
1854{
1855    uint16_t mask;
1856    VTDBus *vtd_bus;
1857    VTDAddressSpace *vtd_as;
1858    uint8_t bus_n, devfn;
1859    uint16_t devfn_it;
1860
1861    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1862
1863    switch (func_mask & 3) {
1864    case 0:
1865        mask = 0;   /* No bits in the SID field masked */
1866        break;
1867    case 1:
1868        mask = 4;   /* Mask bit 2 in the SID field */
1869        break;
1870    case 2:
1871        mask = 6;   /* Mask bit 2:1 in the SID field */
1872        break;
1873    case 3:
1874        mask = 7;   /* Mask bit 2:0 in the SID field */
1875        break;
1876    }
1877    mask = ~mask;
1878
1879    bus_n = VTD_SID_TO_BUS(source_id);
1880    vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1881    if (vtd_bus) {
1882        devfn = VTD_SID_TO_DEVFN(source_id);
1883        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1884            vtd_as = vtd_bus->dev_as[devfn_it];
1885            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1886                trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1887                                             VTD_PCI_FUNC(devfn_it));
1888                vtd_iommu_lock(s);
1889                vtd_as->context_cache_entry.context_cache_gen = 0;
1890                vtd_iommu_unlock(s);
1891                /*
1892                 * Do switch address space when needed, in case if the
1893                 * device passthrough bit is switched.
1894                 */
1895                vtd_switch_address_space(vtd_as);
1896                /*
1897                 * So a device is moving out of (or moving into) a
1898                 * domain, resync the shadow page table.
1899                 * This won't bring bad even if we have no such
1900                 * notifier registered - the IOMMU notification
1901                 * framework will skip MAP notifications if that
1902                 * happened.
1903                 */
1904                vtd_sync_shadow_page_table(vtd_as);
1905            }
1906        }
1907    }
1908}
1909
1910/* Context-cache invalidation
1911 * Returns the Context Actual Invalidation Granularity.
1912 * @val: the content of the CCMD_REG
1913 */
1914static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1915{
1916    uint64_t caig;
1917    uint64_t type = val & VTD_CCMD_CIRG_MASK;
1918
1919    switch (type) {
1920    case VTD_CCMD_DOMAIN_INVL:
1921        /* Fall through */
1922    case VTD_CCMD_GLOBAL_INVL:
1923        caig = VTD_CCMD_GLOBAL_INVL_A;
1924        vtd_context_global_invalidate(s);
1925        break;
1926
1927    case VTD_CCMD_DEVICE_INVL:
1928        caig = VTD_CCMD_DEVICE_INVL_A;
1929        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1930        break;
1931
1932    default:
1933        error_report_once("%s: invalid context: 0x%" PRIx64,
1934                          __func__, val);
1935        caig = 0;
1936    }
1937    return caig;
1938}
1939
1940static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1941{
1942    trace_vtd_inv_desc_iotlb_global();
1943    vtd_reset_iotlb(s);
1944    vtd_iommu_replay_all(s);
1945}
1946
1947static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1948{
1949    VTDContextEntry ce;
1950    VTDAddressSpace *vtd_as;
1951
1952    trace_vtd_inv_desc_iotlb_domain(domain_id);
1953
1954    vtd_iommu_lock(s);
1955    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1956                                &domain_id);
1957    vtd_iommu_unlock(s);
1958
1959    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1960        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1961                                      vtd_as->devfn, &ce) &&
1962            domain_id == vtd_get_domain_id(s, &ce)) {
1963            vtd_sync_shadow_page_table(vtd_as);
1964        }
1965    }
1966}
1967
1968static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1969                                           uint16_t domain_id, hwaddr addr,
1970                                           uint8_t am)
1971{
1972    VTDAddressSpace *vtd_as;
1973    VTDContextEntry ce;
1974    int ret;
1975    hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1976
1977    QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1978        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1979                                       vtd_as->devfn, &ce);
1980        if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1981            if (vtd_as_has_map_notifier(vtd_as)) {
1982                /*
1983                 * As long as we have MAP notifications registered in
1984                 * any of our IOMMU notifiers, we need to sync the
1985                 * shadow page table.
1986                 */
1987                vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1988            } else {
1989                /*
1990                 * For UNMAP-only notifiers, we don't need to walk the
1991                 * page tables.  We just deliver the PSI down to
1992                 * invalidate caches.
1993                 */
1994                IOMMUTLBEntry entry = {
1995                    .target_as = &address_space_memory,
1996                    .iova = addr,
1997                    .translated_addr = 0,
1998                    .addr_mask = size - 1,
1999                    .perm = IOMMU_NONE,
2000                };
2001                memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
2002            }
2003        }
2004    }
2005}
2006
2007static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2008                                      hwaddr addr, uint8_t am)
2009{
2010    VTDIOTLBPageInvInfo info;
2011
2012    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2013
2014    assert(am <= VTD_MAMV);
2015    info.domain_id = domain_id;
2016    info.addr = addr;
2017    info.mask = ~((1 << am) - 1);
2018    vtd_iommu_lock(s);
2019    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2020    vtd_iommu_unlock(s);
2021    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2022}
2023
2024/* Flush IOTLB
2025 * Returns the IOTLB Actual Invalidation Granularity.
2026 * @val: the content of the IOTLB_REG
2027 */
2028static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2029{
2030    uint64_t iaig;
2031    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2032    uint16_t domain_id;
2033    hwaddr addr;
2034    uint8_t am;
2035
2036    switch (type) {
2037    case VTD_TLB_GLOBAL_FLUSH:
2038        iaig = VTD_TLB_GLOBAL_FLUSH_A;
2039        vtd_iotlb_global_invalidate(s);
2040        break;
2041
2042    case VTD_TLB_DSI_FLUSH:
2043        domain_id = VTD_TLB_DID(val);
2044        iaig = VTD_TLB_DSI_FLUSH_A;
2045        vtd_iotlb_domain_invalidate(s, domain_id);
2046        break;
2047
2048    case VTD_TLB_PSI_FLUSH:
2049        domain_id = VTD_TLB_DID(val);
2050        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2051        am = VTD_IVA_AM(addr);
2052        addr = VTD_IVA_ADDR(addr);
2053        if (am > VTD_MAMV) {
2054            error_report_once("%s: address mask overflow: 0x%" PRIx64,
2055                              __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2056            iaig = 0;
2057            break;
2058        }
2059        iaig = VTD_TLB_PSI_FLUSH_A;
2060        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2061        break;
2062
2063    default:
2064        error_report_once("%s: invalid granularity: 0x%" PRIx64,
2065                          __func__, val);
2066        iaig = 0;
2067    }
2068    return iaig;
2069}
2070
2071static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2072
2073static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2074{
2075    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2076           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2077}
2078
2079static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2080{
2081    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2082
2083    trace_vtd_inv_qi_enable(en);
2084
2085    if (en) {
2086        s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2087        /* 2^(x+8) entries */
2088        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2089        s->qi_enabled = true;
2090        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2091        /* Ok - report back to driver */
2092        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2093
2094        if (s->iq_tail != 0) {
2095            /*
2096             * This is a spec violation but Windows guests are known to set up
2097             * Queued Invalidation this way so we allow the write and process
2098             * Invalidation Descriptors right away.
2099             */
2100            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2101            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2102                vtd_fetch_inv_desc(s);
2103            }
2104        }
2105    } else {
2106        if (vtd_queued_inv_disable_check(s)) {
2107            /* disable Queued Invalidation */
2108            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2109            s->iq_head = 0;
2110            s->qi_enabled = false;
2111            /* Ok - report back to driver */
2112            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2113        } else {
2114            error_report_once("%s: detected improper state when disable QI "
2115                              "(head=0x%x, tail=0x%x, last_type=%d)",
2116                              __func__,
2117                              s->iq_head, s->iq_tail, s->iq_last_desc_type);
2118        }
2119    }
2120}
2121
2122/* Set Root Table Pointer */
2123static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2124{
2125    vtd_root_table_setup(s);
2126    /* Ok - report back to driver */
2127    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2128    vtd_reset_caches(s);
2129    vtd_address_space_refresh_all(s);
2130}
2131
2132/* Set Interrupt Remap Table Pointer */
2133static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2134{
2135    vtd_interrupt_remap_table_setup(s);
2136    /* Ok - report back to driver */
2137    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2138}
2139
2140/* Handle Translation Enable/Disable */
2141static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2142{
2143    if (s->dmar_enabled == en) {
2144        return;
2145    }
2146
2147    trace_vtd_dmar_enable(en);
2148
2149    if (en) {
2150        s->dmar_enabled = true;
2151        /* Ok - report back to driver */
2152        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2153    } else {
2154        s->dmar_enabled = false;
2155
2156        /* Clear the index of Fault Recording Register */
2157        s->next_frcd_reg = 0;
2158        /* Ok - report back to driver */
2159        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2160    }
2161
2162    vtd_reset_caches(s);
2163    vtd_address_space_refresh_all(s);
2164}
2165
2166/* Handle Interrupt Remap Enable/Disable */
2167static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2168{
2169    trace_vtd_ir_enable(en);
2170
2171    if (en) {
2172        s->intr_enabled = true;
2173        /* Ok - report back to driver */
2174        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2175    } else {
2176        s->intr_enabled = false;
2177        /* Ok - report back to driver */
2178        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2179    }
2180}
2181
2182/* Handle write to Global Command Register */
2183static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2184{
2185    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2186    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2187    uint32_t changed = status ^ val;
2188
2189    trace_vtd_reg_write_gcmd(status, val);
2190    if (changed & VTD_GCMD_TE) {
2191        /* Translation enable/disable */
2192        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2193    }
2194    if (val & VTD_GCMD_SRTP) {
2195        /* Set/update the root-table pointer */
2196        vtd_handle_gcmd_srtp(s);
2197    }
2198    if (changed & VTD_GCMD_QIE) {
2199        /* Queued Invalidation Enable */
2200        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2201    }
2202    if (val & VTD_GCMD_SIRTP) {
2203        /* Set/update the interrupt remapping root-table pointer */
2204        vtd_handle_gcmd_sirtp(s);
2205    }
2206    if (changed & VTD_GCMD_IRE) {
2207        /* Interrupt remap enable/disable */
2208        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2209    }
2210}
2211
2212/* Handle write to Context Command Register */
2213static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2214{
2215    uint64_t ret;
2216    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2217
2218    /* Context-cache invalidation request */
2219    if (val & VTD_CCMD_ICC) {
2220        if (s->qi_enabled) {
2221            error_report_once("Queued Invalidation enabled, "
2222                              "should not use register-based invalidation");
2223            return;
2224        }
2225        ret = vtd_context_cache_invalidate(s, val);
2226        /* Invalidation completed. Change something to show */
2227        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2228        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2229                                      ret);
2230    }
2231}
2232
2233/* Handle write to IOTLB Invalidation Register */
2234static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2235{
2236    uint64_t ret;
2237    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2238
2239    /* IOTLB invalidation request */
2240    if (val & VTD_TLB_IVT) {
2241        if (s->qi_enabled) {
2242            error_report_once("Queued Invalidation enabled, "
2243                              "should not use register-based invalidation");
2244            return;
2245        }
2246        ret = vtd_iotlb_flush(s, val);
2247        /* Invalidation completed. Change something to show */
2248        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2249        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2250                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2251    }
2252}
2253
2254/* Fetch an Invalidation Descriptor from the Invalidation Queue */
2255static bool vtd_get_inv_desc(IntelIOMMUState *s,
2256                             VTDInvDesc *inv_desc)
2257{
2258    dma_addr_t base_addr = s->iq;
2259    uint32_t offset = s->iq_head;
2260    uint32_t dw = s->iq_dw ? 32 : 16;
2261    dma_addr_t addr = base_addr + offset * dw;
2262
2263    if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2264        error_report_once("Read INV DESC failed.");
2265        return false;
2266    }
2267    inv_desc->lo = le64_to_cpu(inv_desc->lo);
2268    inv_desc->hi = le64_to_cpu(inv_desc->hi);
2269    if (dw == 32) {
2270        inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2271        inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2272    }
2273    return true;
2274}
2275
2276static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2277{
2278    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2279        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2280        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2281                          " (reserved nonzero)", __func__, inv_desc->hi,
2282                          inv_desc->lo);
2283        return false;
2284    }
2285    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2286        /* Status Write */
2287        uint32_t status_data = (uint32_t)(inv_desc->lo >>
2288                               VTD_INV_DESC_WAIT_DATA_SHIFT);
2289
2290        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2291
2292        /* FIXME: need to be masked with HAW? */
2293        dma_addr_t status_addr = inv_desc->hi;
2294        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2295        status_data = cpu_to_le32(status_data);
2296        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2297                             sizeof(status_data))) {
2298            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2299            return false;
2300        }
2301    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2302        /* Interrupt flag */
2303        vtd_generate_completion_event(s);
2304    } else {
2305        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2306                          " (unknown type)", __func__, inv_desc->hi,
2307                          inv_desc->lo);
2308        return false;
2309    }
2310    return true;
2311}
2312
2313static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2314                                           VTDInvDesc *inv_desc)
2315{
2316    uint16_t sid, fmask;
2317
2318    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2319        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2320                          " (reserved nonzero)", __func__, inv_desc->hi,
2321                          inv_desc->lo);
2322        return false;
2323    }
2324    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2325    case VTD_INV_DESC_CC_DOMAIN:
2326        trace_vtd_inv_desc_cc_domain(
2327            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2328        /* Fall through */
2329    case VTD_INV_DESC_CC_GLOBAL:
2330        vtd_context_global_invalidate(s);
2331        break;
2332
2333    case VTD_INV_DESC_CC_DEVICE:
2334        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2335        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2336        vtd_context_device_invalidate(s, sid, fmask);
2337        break;
2338
2339    default:
2340        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2341                          " (invalid type)", __func__, inv_desc->hi,
2342                          inv_desc->lo);
2343        return false;
2344    }
2345    return true;
2346}
2347
2348static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2349{
2350    uint16_t domain_id;
2351    uint8_t am;
2352    hwaddr addr;
2353
2354    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2355        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2356        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2357                          ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2358                          __func__, inv_desc->hi, inv_desc->lo);
2359        return false;
2360    }
2361
2362    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2363    case VTD_INV_DESC_IOTLB_GLOBAL:
2364        vtd_iotlb_global_invalidate(s);
2365        break;
2366
2367    case VTD_INV_DESC_IOTLB_DOMAIN:
2368        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2369        vtd_iotlb_domain_invalidate(s, domain_id);
2370        break;
2371
2372    case VTD_INV_DESC_IOTLB_PAGE:
2373        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2374        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2375        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2376        if (am > VTD_MAMV) {
2377            error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2378                              ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2379                              __func__, inv_desc->hi, inv_desc->lo,
2380                              am, (unsigned)VTD_MAMV);
2381            return false;
2382        }
2383        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2384        break;
2385
2386    default:
2387        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2388                          ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2389                          __func__, inv_desc->hi, inv_desc->lo,
2390                          inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2391        return false;
2392    }
2393    return true;
2394}
2395
2396static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2397                                     VTDInvDesc *inv_desc)
2398{
2399    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2400                           inv_desc->iec.index,
2401                           inv_desc->iec.index_mask);
2402
2403    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2404                       inv_desc->iec.index,
2405                       inv_desc->iec.index_mask);
2406    return true;
2407}
2408
2409static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2410                                          VTDInvDesc *inv_desc)
2411{
2412    VTDAddressSpace *vtd_dev_as;
2413    IOMMUTLBEntry entry;
2414    struct VTDBus *vtd_bus;
2415    hwaddr addr;
2416    uint64_t sz;
2417    uint16_t sid;
2418    uint8_t devfn;
2419    bool size;
2420    uint8_t bus_num;
2421
2422    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2423    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2424    devfn = sid & 0xff;
2425    bus_num = sid >> 8;
2426    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2427
2428    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2429        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2430        error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2431                          ", lo=%"PRIx64" (reserved nonzero)", __func__,
2432                          inv_desc->hi, inv_desc->lo);
2433        return false;
2434    }
2435
2436    vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2437    if (!vtd_bus) {
2438        goto done;
2439    }
2440
2441    vtd_dev_as = vtd_bus->dev_as[devfn];
2442    if (!vtd_dev_as) {
2443        goto done;
2444    }
2445
2446    /* According to ATS spec table 2.4:
2447     * S = 0, bits 15:12 = xxxx     range size: 4K
2448     * S = 1, bits 15:12 = xxx0     range size: 8K
2449     * S = 1, bits 15:12 = xx01     range size: 16K
2450     * S = 1, bits 15:12 = x011     range size: 32K
2451     * S = 1, bits 15:12 = 0111     range size: 64K
2452     * ...
2453     */
2454    if (size) {
2455        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2456        addr &= ~(sz - 1);
2457    } else {
2458        sz = VTD_PAGE_SIZE;
2459    }
2460
2461    entry.target_as = &vtd_dev_as->as;
2462    entry.addr_mask = sz - 1;
2463    entry.iova = addr;
2464    entry.perm = IOMMU_NONE;
2465    entry.translated_addr = 0;
2466    memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2467
2468done:
2469    return true;
2470}
2471
2472static bool vtd_process_inv_desc(IntelIOMMUState *s)
2473{
2474    VTDInvDesc inv_desc;
2475    uint8_t desc_type;
2476
2477    trace_vtd_inv_qi_head(s->iq_head);
2478    if (!vtd_get_inv_desc(s, &inv_desc)) {
2479        s->iq_last_desc_type = VTD_INV_DESC_NONE;
2480        return false;
2481    }
2482
2483    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2484    /* FIXME: should update at first or at last? */
2485    s->iq_last_desc_type = desc_type;
2486
2487    switch (desc_type) {
2488    case VTD_INV_DESC_CC:
2489        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2490        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2491            return false;
2492        }
2493        break;
2494
2495    case VTD_INV_DESC_IOTLB:
2496        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2497        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2498            return false;
2499        }
2500        break;
2501
2502    /*
2503     * TODO: the entity of below two cases will be implemented in future series.
2504     * To make guest (which integrates scalable mode support patch set in
2505     * iommu driver) work, just return true is enough so far.
2506     */
2507    case VTD_INV_DESC_PC:
2508        break;
2509
2510    case VTD_INV_DESC_PIOTLB:
2511        break;
2512
2513    case VTD_INV_DESC_WAIT:
2514        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2515        if (!vtd_process_wait_desc(s, &inv_desc)) {
2516            return false;
2517        }
2518        break;
2519
2520    case VTD_INV_DESC_IEC:
2521        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2522        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2523            return false;
2524        }
2525        break;
2526
2527    case VTD_INV_DESC_DEVICE:
2528        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2529        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2530            return false;
2531        }
2532        break;
2533
2534    default:
2535        error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2536                          " (unknown type)", __func__, inv_desc.hi,
2537                          inv_desc.lo);
2538        return false;
2539    }
2540    s->iq_head++;
2541    if (s->iq_head == s->iq_size) {
2542        s->iq_head = 0;
2543    }
2544    return true;
2545}
2546
2547/* Try to fetch and process more Invalidation Descriptors */
2548static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2549{
2550    trace_vtd_inv_qi_fetch();
2551
2552    if (s->iq_tail >= s->iq_size) {
2553        /* Detects an invalid Tail pointer */
2554        error_report_once("%s: detected invalid QI tail "
2555                          "(tail=0x%x, size=0x%x)",
2556                          __func__, s->iq_tail, s->iq_size);
2557        vtd_handle_inv_queue_error(s);
2558        return;
2559    }
2560    while (s->iq_head != s->iq_tail) {
2561        if (!vtd_process_inv_desc(s)) {
2562            /* Invalidation Queue Errors */
2563            vtd_handle_inv_queue_error(s);
2564            break;
2565        }
2566        /* Must update the IQH_REG in time */
2567        vtd_set_quad_raw(s, DMAR_IQH_REG,
2568                         (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2569                         VTD_IQH_QH_MASK);
2570    }
2571}
2572
2573/* Handle write to Invalidation Queue Tail Register */
2574static void vtd_handle_iqt_write(IntelIOMMUState *s)
2575{
2576    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2577
2578    if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2579        error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2580                          __func__, val);
2581        return;
2582    }
2583    s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2584    trace_vtd_inv_qi_tail(s->iq_tail);
2585
2586    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2587        /* Process Invalidation Queue here */
2588        vtd_fetch_inv_desc(s);
2589    }
2590}
2591
2592static void vtd_handle_fsts_write(IntelIOMMUState *s)
2593{
2594    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2595    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2596    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2597
2598    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2599        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2600        trace_vtd_fsts_clear_ip();
2601    }
2602    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2603     * Descriptors if there are any when Queued Invalidation is enabled?
2604     */
2605}
2606
2607static void vtd_handle_fectl_write(IntelIOMMUState *s)
2608{
2609    uint32_t fectl_reg;
2610    /* FIXME: when software clears the IM field, check the IP field. But do we
2611     * need to compare the old value and the new value to conclude that
2612     * software clears the IM field? Or just check if the IM field is zero?
2613     */
2614    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2615
2616    trace_vtd_reg_write_fectl(fectl_reg);
2617
2618    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2619        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2620        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2621    }
2622}
2623
2624static void vtd_handle_ics_write(IntelIOMMUState *s)
2625{
2626    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2627    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2628
2629    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2630        trace_vtd_reg_ics_clear_ip();
2631        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2632    }
2633}
2634
2635static void vtd_handle_iectl_write(IntelIOMMUState *s)
2636{
2637    uint32_t iectl_reg;
2638    /* FIXME: when software clears the IM field, check the IP field. But do we
2639     * need to compare the old value and the new value to conclude that
2640     * software clears the IM field? Or just check if the IM field is zero?
2641     */
2642    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2643
2644    trace_vtd_reg_write_iectl(iectl_reg);
2645
2646    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2647        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2648        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2649    }
2650}
2651
2652static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2653{
2654    IntelIOMMUState *s = opaque;
2655    uint64_t val;
2656
2657    trace_vtd_reg_read(addr, size);
2658
2659    if (addr + size > DMAR_REG_SIZE) {
2660        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2661                          " size=0x%u", __func__, addr, size);
2662        return (uint64_t)-1;
2663    }
2664
2665    switch (addr) {
2666    /* Root Table Address Register, 64-bit */
2667    case DMAR_RTADDR_REG:
2668        if (size == 4) {
2669            val = s->root & ((1ULL << 32) - 1);
2670        } else {
2671            val = s->root;
2672        }
2673        break;
2674
2675    case DMAR_RTADDR_REG_HI:
2676        assert(size == 4);
2677        val = s->root >> 32;
2678        break;
2679
2680    /* Invalidation Queue Address Register, 64-bit */
2681    case DMAR_IQA_REG:
2682        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2683        if (size == 4) {
2684            val = val & ((1ULL << 32) - 1);
2685        }
2686        break;
2687
2688    case DMAR_IQA_REG_HI:
2689        assert(size == 4);
2690        val = s->iq >> 32;
2691        break;
2692
2693    default:
2694        if (size == 4) {
2695            val = vtd_get_long(s, addr);
2696        } else {
2697            val = vtd_get_quad(s, addr);
2698        }
2699    }
2700
2701    return val;
2702}
2703
2704static void vtd_mem_write(void *opaque, hwaddr addr,
2705                          uint64_t val, unsigned size)
2706{
2707    IntelIOMMUState *s = opaque;
2708
2709    trace_vtd_reg_write(addr, size, val);
2710
2711    if (addr + size > DMAR_REG_SIZE) {
2712        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2713                          " size=0x%u", __func__, addr, size);
2714        return;
2715    }
2716
2717    switch (addr) {
2718    /* Global Command Register, 32-bit */
2719    case DMAR_GCMD_REG:
2720        vtd_set_long(s, addr, val);
2721        vtd_handle_gcmd_write(s);
2722        break;
2723
2724    /* Context Command Register, 64-bit */
2725    case DMAR_CCMD_REG:
2726        if (size == 4) {
2727            vtd_set_long(s, addr, val);
2728        } else {
2729            vtd_set_quad(s, addr, val);
2730            vtd_handle_ccmd_write(s);
2731        }
2732        break;
2733
2734    case DMAR_CCMD_REG_HI:
2735        assert(size == 4);
2736        vtd_set_long(s, addr, val);
2737        vtd_handle_ccmd_write(s);
2738        break;
2739
2740    /* IOTLB Invalidation Register, 64-bit */
2741    case DMAR_IOTLB_REG:
2742        if (size == 4) {
2743            vtd_set_long(s, addr, val);
2744        } else {
2745            vtd_set_quad(s, addr, val);
2746            vtd_handle_iotlb_write(s);
2747        }
2748        break;
2749
2750    case DMAR_IOTLB_REG_HI:
2751        assert(size == 4);
2752        vtd_set_long(s, addr, val);
2753        vtd_handle_iotlb_write(s);
2754        break;
2755
2756    /* Invalidate Address Register, 64-bit */
2757    case DMAR_IVA_REG:
2758        if (size == 4) {
2759            vtd_set_long(s, addr, val);
2760        } else {
2761            vtd_set_quad(s, addr, val);
2762        }
2763        break;
2764
2765    case DMAR_IVA_REG_HI:
2766        assert(size == 4);
2767        vtd_set_long(s, addr, val);
2768        break;
2769
2770    /* Fault Status Register, 32-bit */
2771    case DMAR_FSTS_REG:
2772        assert(size == 4);
2773        vtd_set_long(s, addr, val);
2774        vtd_handle_fsts_write(s);
2775        break;
2776
2777    /* Fault Event Control Register, 32-bit */
2778    case DMAR_FECTL_REG:
2779        assert(size == 4);
2780        vtd_set_long(s, addr, val);
2781        vtd_handle_fectl_write(s);
2782        break;
2783
2784    /* Fault Event Data Register, 32-bit */
2785    case DMAR_FEDATA_REG:
2786        assert(size == 4);
2787        vtd_set_long(s, addr, val);
2788        break;
2789
2790    /* Fault Event Address Register, 32-bit */
2791    case DMAR_FEADDR_REG:
2792        if (size == 4) {
2793            vtd_set_long(s, addr, val);
2794        } else {
2795            /*
2796             * While the register is 32-bit only, some guests (Xen...) write to
2797             * it with 64-bit.
2798             */
2799            vtd_set_quad(s, addr, val);
2800        }
2801        break;
2802
2803    /* Fault Event Upper Address Register, 32-bit */
2804    case DMAR_FEUADDR_REG:
2805        assert(size == 4);
2806        vtd_set_long(s, addr, val);
2807        break;
2808
2809    /* Protected Memory Enable Register, 32-bit */
2810    case DMAR_PMEN_REG:
2811        assert(size == 4);
2812        vtd_set_long(s, addr, val);
2813        break;
2814
2815    /* Root Table Address Register, 64-bit */
2816    case DMAR_RTADDR_REG:
2817        if (size == 4) {
2818            vtd_set_long(s, addr, val);
2819        } else {
2820            vtd_set_quad(s, addr, val);
2821        }
2822        break;
2823
2824    case DMAR_RTADDR_REG_HI:
2825        assert(size == 4);
2826        vtd_set_long(s, addr, val);
2827        break;
2828
2829    /* Invalidation Queue Tail Register, 64-bit */
2830    case DMAR_IQT_REG:
2831        if (size == 4) {
2832            vtd_set_long(s, addr, val);
2833        } else {
2834            vtd_set_quad(s, addr, val);
2835        }
2836        vtd_handle_iqt_write(s);
2837        break;
2838
2839    case DMAR_IQT_REG_HI:
2840        assert(size == 4);
2841        vtd_set_long(s, addr, val);
2842        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2843        break;
2844
2845    /* Invalidation Queue Address Register, 64-bit */
2846    case DMAR_IQA_REG:
2847        if (size == 4) {
2848            vtd_set_long(s, addr, val);
2849        } else {
2850            vtd_set_quad(s, addr, val);
2851        }
2852        if (s->ecap & VTD_ECAP_SMTS &&
2853            val & VTD_IQA_DW_MASK) {
2854            s->iq_dw = true;
2855        } else {
2856            s->iq_dw = false;
2857        }
2858        break;
2859
2860    case DMAR_IQA_REG_HI:
2861        assert(size == 4);
2862        vtd_set_long(s, addr, val);
2863        break;
2864
2865    /* Invalidation Completion Status Register, 32-bit */
2866    case DMAR_ICS_REG:
2867        assert(size == 4);
2868        vtd_set_long(s, addr, val);
2869        vtd_handle_ics_write(s);
2870        break;
2871
2872    /* Invalidation Event Control Register, 32-bit */
2873    case DMAR_IECTL_REG:
2874        assert(size == 4);
2875        vtd_set_long(s, addr, val);
2876        vtd_handle_iectl_write(s);
2877        break;
2878
2879    /* Invalidation Event Data Register, 32-bit */
2880    case DMAR_IEDATA_REG:
2881        assert(size == 4);
2882        vtd_set_long(s, addr, val);
2883        break;
2884
2885    /* Invalidation Event Address Register, 32-bit */
2886    case DMAR_IEADDR_REG:
2887        assert(size == 4);
2888        vtd_set_long(s, addr, val);
2889        break;
2890
2891    /* Invalidation Event Upper Address Register, 32-bit */
2892    case DMAR_IEUADDR_REG:
2893        assert(size == 4);
2894        vtd_set_long(s, addr, val);
2895        break;
2896
2897    /* Fault Recording Registers, 128-bit */
2898    case DMAR_FRCD_REG_0_0:
2899        if (size == 4) {
2900            vtd_set_long(s, addr, val);
2901        } else {
2902            vtd_set_quad(s, addr, val);
2903        }
2904        break;
2905
2906    case DMAR_FRCD_REG_0_1:
2907        assert(size == 4);
2908        vtd_set_long(s, addr, val);
2909        break;
2910
2911    case DMAR_FRCD_REG_0_2:
2912        if (size == 4) {
2913            vtd_set_long(s, addr, val);
2914        } else {
2915            vtd_set_quad(s, addr, val);
2916            /* May clear bit 127 (Fault), update PPF */
2917            vtd_update_fsts_ppf(s);
2918        }
2919        break;
2920
2921    case DMAR_FRCD_REG_0_3:
2922        assert(size == 4);
2923        vtd_set_long(s, addr, val);
2924        /* May clear bit 127 (Fault), update PPF */
2925        vtd_update_fsts_ppf(s);
2926        break;
2927
2928    case DMAR_IRTA_REG:
2929        if (size == 4) {
2930            vtd_set_long(s, addr, val);
2931        } else {
2932            vtd_set_quad(s, addr, val);
2933        }
2934        break;
2935
2936    case DMAR_IRTA_REG_HI:
2937        assert(size == 4);
2938        vtd_set_long(s, addr, val);
2939        break;
2940
2941    default:
2942        if (size == 4) {
2943            vtd_set_long(s, addr, val);
2944        } else {
2945            vtd_set_quad(s, addr, val);
2946        }
2947    }
2948}
2949
2950static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2951                                         IOMMUAccessFlags flag, int iommu_idx)
2952{
2953    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2954    IntelIOMMUState *s = vtd_as->iommu_state;
2955    IOMMUTLBEntry iotlb = {
2956        /* We'll fill in the rest later. */
2957        .target_as = &address_space_memory,
2958    };
2959    bool success;
2960
2961    if (likely(s->dmar_enabled)) {
2962        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2963                                         addr, flag & IOMMU_WO, &iotlb);
2964    } else {
2965        /* DMAR disabled, passthrough, use 4k-page*/
2966        iotlb.iova = addr & VTD_PAGE_MASK_4K;
2967        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2968        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2969        iotlb.perm = IOMMU_RW;
2970        success = true;
2971    }
2972
2973    if (likely(success)) {
2974        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2975                                 VTD_PCI_SLOT(vtd_as->devfn),
2976                                 VTD_PCI_FUNC(vtd_as->devfn),
2977                                 iotlb.iova, iotlb.translated_addr,
2978                                 iotlb.addr_mask);
2979    } else {
2980        error_report_once("%s: detected translation failure "
2981                          "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2982                          __func__, pci_bus_num(vtd_as->bus),
2983                          VTD_PCI_SLOT(vtd_as->devfn),
2984                          VTD_PCI_FUNC(vtd_as->devfn),
2985                          addr);
2986    }
2987
2988    return iotlb;
2989}
2990
2991static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2992                                         IOMMUNotifierFlag old,
2993                                         IOMMUNotifierFlag new,
2994                                         Error **errp)
2995{
2996    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2997    IntelIOMMUState *s = vtd_as->iommu_state;
2998
2999    /* Update per-address-space notifier flags */
3000    vtd_as->notifier_flags = new;
3001
3002    if (old == IOMMU_NOTIFIER_NONE) {
3003        QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3004    } else if (new == IOMMU_NOTIFIER_NONE) {
3005        QLIST_REMOVE(vtd_as, next);
3006    }
3007    return 0;
3008}
3009
3010static int vtd_post_load(void *opaque, int version_id)
3011{
3012    IntelIOMMUState *iommu = opaque;
3013
3014    /*
3015     * Memory regions are dynamically turned on/off depending on
3016     * context entry configurations from the guest. After migration,
3017     * we need to make sure the memory regions are still correct.
3018     */
3019    vtd_switch_address_space_all(iommu);
3020
3021    /*
3022     * We don't need to migrate the root_scalable because we can
3023     * simply do the calculation after the loading is complete.  We
3024     * can actually do similar things with root, dmar_enabled, etc.
3025     * however since we've had them already so we'd better keep them
3026     * for compatibility of migration.
3027     */
3028    vtd_update_scalable_state(iommu);
3029
3030    return 0;
3031}
3032
3033static const VMStateDescription vtd_vmstate = {
3034    .name = "iommu-intel",
3035    .version_id = 1,
3036    .minimum_version_id = 1,
3037    .priority = MIG_PRI_IOMMU,
3038    .post_load = vtd_post_load,
3039    .fields = (VMStateField[]) {
3040        VMSTATE_UINT64(root, IntelIOMMUState),
3041        VMSTATE_UINT64(intr_root, IntelIOMMUState),
3042        VMSTATE_UINT64(iq, IntelIOMMUState),
3043        VMSTATE_UINT32(intr_size, IntelIOMMUState),
3044        VMSTATE_UINT16(iq_head, IntelIOMMUState),
3045        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3046        VMSTATE_UINT16(iq_size, IntelIOMMUState),
3047        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3048        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3049        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3050        VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3051        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3052        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3053        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3054        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3055        VMSTATE_END_OF_LIST()
3056    }
3057};
3058
3059static const MemoryRegionOps vtd_mem_ops = {
3060    .read = vtd_mem_read,
3061    .write = vtd_mem_write,
3062    .endianness = DEVICE_LITTLE_ENDIAN,
3063    .impl = {
3064        .min_access_size = 4,
3065        .max_access_size = 8,
3066    },
3067    .valid = {
3068        .min_access_size = 4,
3069        .max_access_size = 8,
3070    },
3071};
3072
3073static Property vtd_properties[] = {
3074    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3075    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3076                            ON_OFF_AUTO_AUTO),
3077    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3078    DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3079                      VTD_HOST_ADDRESS_WIDTH),
3080    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3081    DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3082    DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3083    DEFINE_PROP_END_OF_LIST(),
3084};
3085
3086/* Read IRTE entry with specific index */
3087static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3088                        VTD_IR_TableEntry *entry, uint16_t sid)
3089{
3090    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3091        {0xffff, 0xfffb, 0xfff9, 0xfff8};
3092    dma_addr_t addr = 0x00;
3093    uint16_t mask, source_id;
3094    uint8_t bus, bus_max, bus_min;
3095
3096    addr = iommu->intr_root + index * sizeof(*entry);
3097    if (dma_memory_read(&address_space_memory, addr, entry,
3098                        sizeof(*entry))) {
3099        error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3100                          __func__, index, addr);
3101        return -VTD_FR_IR_ROOT_INVAL;
3102    }
3103
3104    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3105                          le64_to_cpu(entry->data[0]));
3106
3107    if (!entry->irte.present) {
3108        error_report_once("%s: detected non-present IRTE "
3109                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3110                          __func__, index, le64_to_cpu(entry->data[1]),
3111                          le64_to_cpu(entry->data[0]));
3112        return -VTD_FR_IR_ENTRY_P;
3113    }
3114
3115    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3116        entry->irte.__reserved_2) {
3117        error_report_once("%s: detected non-zero reserved IRTE "
3118                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3119                          __func__, index, le64_to_cpu(entry->data[1]),
3120                          le64_to_cpu(entry->data[0]));
3121        return -VTD_FR_IR_IRTE_RSVD;
3122    }
3123
3124    if (sid != X86_IOMMU_SID_INVALID) {
3125        /* Validate IRTE SID */
3126        source_id = le32_to_cpu(entry->irte.source_id);
3127        switch (entry->irte.sid_vtype) {
3128        case VTD_SVT_NONE:
3129            break;
3130
3131        case VTD_SVT_ALL:
3132            mask = vtd_svt_mask[entry->irte.sid_q];
3133            if ((source_id & mask) != (sid & mask)) {
3134                error_report_once("%s: invalid IRTE SID "
3135                                  "(index=%u, sid=%u, source_id=%u)",
3136                                  __func__, index, sid, source_id);
3137                return -VTD_FR_IR_SID_ERR;
3138            }
3139            break;
3140
3141        case VTD_SVT_BUS:
3142            bus_max = source_id >> 8;
3143            bus_min = source_id & 0xff;
3144            bus = sid >> 8;
3145            if (bus > bus_max || bus < bus_min) {
3146                error_report_once("%s: invalid SVT_BUS "
3147                                  "(index=%u, bus=%u, min=%u, max=%u)",
3148                                  __func__, index, bus, bus_min, bus_max);
3149                return -VTD_FR_IR_SID_ERR;
3150            }
3151            break;
3152
3153        default:
3154            error_report_once("%s: detected invalid IRTE SVT "
3155                              "(index=%u, type=%d)", __func__,
3156                              index, entry->irte.sid_vtype);
3157            /* Take this as verification failure. */
3158            return -VTD_FR_IR_SID_ERR;
3159            break;
3160        }
3161    }
3162
3163    return 0;
3164}
3165
3166/* Fetch IRQ information of specific IR index */
3167static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3168                             X86IOMMUIrq *irq, uint16_t sid)
3169{
3170    VTD_IR_TableEntry irte = {};
3171    int ret = 0;
3172
3173    ret = vtd_irte_get(iommu, index, &irte, sid);
3174    if (ret) {
3175        return ret;
3176    }
3177
3178    irq->trigger_mode = irte.irte.trigger_mode;
3179    irq->vector = irte.irte.vector;
3180    irq->delivery_mode = irte.irte.delivery_mode;
3181    irq->dest = le32_to_cpu(irte.irte.dest_id);
3182    if (!iommu->intr_eime) {
3183#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3184#define  VTD_IR_APIC_DEST_SHIFT        (8)
3185        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3186            VTD_IR_APIC_DEST_SHIFT;
3187    }
3188    irq->dest_mode = irte.irte.dest_mode;
3189    irq->redir_hint = irte.irte.redir_hint;
3190
3191    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3192                       irq->delivery_mode, irq->dest, irq->dest_mode);
3193
3194    return 0;
3195}
3196
3197/* Interrupt remapping for MSI/MSI-X entry */
3198static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3199                                   MSIMessage *origin,
3200                                   MSIMessage *translated,
3201                                   uint16_t sid)
3202{
3203    int ret = 0;
3204    VTD_IR_MSIAddress addr;
3205    uint16_t index;
3206    X86IOMMUIrq irq = {};
3207
3208    assert(origin && translated);
3209
3210    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3211
3212    if (!iommu || !iommu->intr_enabled) {
3213        memcpy(translated, origin, sizeof(*origin));
3214        goto out;
3215    }
3216
3217    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3218        error_report_once("%s: MSI address high 32 bits non-zero detected: "
3219                          "address=0x%" PRIx64, __func__, origin->address);
3220        return -VTD_FR_IR_REQ_RSVD;
3221    }
3222
3223    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3224    if (addr.addr.__head != 0xfee) {
3225        error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3226                          __func__, addr.data);
3227        return -VTD_FR_IR_REQ_RSVD;
3228    }
3229
3230    /* This is compatible mode. */
3231    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3232        memcpy(translated, origin, sizeof(*origin));
3233        goto out;
3234    }
3235
3236    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3237
3238#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3239#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3240
3241    if (addr.addr.sub_valid) {
3242        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3243        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3244    }
3245
3246    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3247    if (ret) {
3248        return ret;
3249    }
3250
3251    if (addr.addr.sub_valid) {
3252        trace_vtd_ir_remap_type("MSI");
3253        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3254            error_report_once("%s: invalid IR MSI "
3255                              "(sid=%u, address=0x%" PRIx64
3256                              ", data=0x%" PRIx32 ")",
3257                              __func__, sid, origin->address, origin->data);
3258            return -VTD_FR_IR_REQ_RSVD;
3259        }
3260    } else {
3261        uint8_t vector = origin->data & 0xff;
3262        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3263
3264        trace_vtd_ir_remap_type("IOAPIC");
3265        /* IOAPIC entry vector should be aligned with IRTE vector
3266         * (see vt-d spec 5.1.5.1). */
3267        if (vector != irq.vector) {
3268            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3269        }
3270
3271        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3272         * (see vt-d spec 5.1.5.1). */
3273        if (trigger_mode != irq.trigger_mode) {
3274            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3275                                      irq.trigger_mode);
3276        }
3277    }
3278
3279    /*
3280     * We'd better keep the last two bits, assuming that guest OS
3281     * might modify it. Keep it does not hurt after all.
3282     */
3283    irq.msi_addr_last_bits = addr.addr.__not_care;
3284
3285    /* Translate X86IOMMUIrq to MSI message */
3286    x86_iommu_irq_to_msi_message(&irq, translated);
3287
3288out:
3289    trace_vtd_ir_remap_msi(origin->address, origin->data,
3290                           translated->address, translated->data);
3291    return 0;
3292}
3293
3294static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3295                         MSIMessage *dst, uint16_t sid)
3296{
3297    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3298                                   src, dst, sid);
3299}
3300
3301static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3302                                   uint64_t *data, unsigned size,
3303                                   MemTxAttrs attrs)
3304{
3305    return MEMTX_OK;
3306}
3307
3308static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3309                                    uint64_t value, unsigned size,
3310                                    MemTxAttrs attrs)
3311{
3312    int ret = 0;
3313    MSIMessage from = {}, to = {};
3314    uint16_t sid = X86_IOMMU_SID_INVALID;
3315
3316    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3317    from.data = (uint32_t) value;
3318
3319    if (!attrs.unspecified) {
3320        /* We have explicit Source ID */
3321        sid = attrs.requester_id;
3322    }
3323
3324    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3325    if (ret) {
3326        /* TODO: report error */
3327        /* Drop this interrupt */
3328        return MEMTX_ERROR;
3329    }
3330
3331    apic_get_class()->send_msi(&to);
3332
3333    return MEMTX_OK;
3334}
3335
3336static const MemoryRegionOps vtd_mem_ir_ops = {
3337    .read_with_attrs = vtd_mem_ir_read,
3338    .write_with_attrs = vtd_mem_ir_write,
3339    .endianness = DEVICE_LITTLE_ENDIAN,
3340    .impl = {
3341        .min_access_size = 4,
3342        .max_access_size = 4,
3343    },
3344    .valid = {
3345        .min_access_size = 4,
3346        .max_access_size = 4,
3347    },
3348};
3349
3350VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3351{
3352    uintptr_t key = (uintptr_t)bus;
3353    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3354    VTDAddressSpace *vtd_dev_as;
3355    char name[128];
3356
3357    if (!vtd_bus) {
3358        uintptr_t *new_key = g_malloc(sizeof(*new_key));
3359        *new_key = (uintptr_t)bus;
3360        /* No corresponding free() */
3361        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3362                            PCI_DEVFN_MAX);
3363        vtd_bus->bus = bus;
3364        g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3365    }
3366
3367    vtd_dev_as = vtd_bus->dev_as[devfn];
3368
3369    if (!vtd_dev_as) {
3370        snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3371                 PCI_FUNC(devfn));
3372        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3373
3374        vtd_dev_as->bus = bus;
3375        vtd_dev_as->devfn = (uint8_t)devfn;
3376        vtd_dev_as->iommu_state = s;
3377        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3378        vtd_dev_as->iova_tree = iova_tree_new();
3379
3380        memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3381        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3382
3383        /*
3384         * Build the DMAR-disabled container with aliases to the
3385         * shared MRs.  Note that aliasing to a shared memory region
3386         * could help the memory API to detect same FlatViews so we
3387         * can have devices to share the same FlatView when DMAR is
3388         * disabled (either by not providing "intel_iommu=on" or with
3389         * "iommu=pt").  It will greatly reduce the total number of
3390         * FlatViews of the system hence VM runs faster.
3391         */
3392        memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3393                                 "vtd-nodmar", &s->mr_nodmar, 0,
3394                                 memory_region_size(&s->mr_nodmar));
3395
3396        /*
3397         * Build the per-device DMAR-enabled container.
3398         *
3399         * TODO: currently we have per-device IOMMU memory region only
3400         * because we have per-device IOMMU notifiers for devices.  If
3401         * one day we can abstract the IOMMU notifiers out of the
3402         * memory regions then we can also share the same memory
3403         * region here just like what we've done above with the nodmar
3404         * region.
3405         */
3406        strcat(name, "-dmar");
3407        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3408                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3409                                 name, UINT64_MAX);
3410        memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3411                                 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3412        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3413                                            VTD_INTERRUPT_ADDR_FIRST,
3414                                            &vtd_dev_as->iommu_ir, 1);
3415
3416        /*
3417         * Hook both the containers under the root container, we
3418         * switch between DMAR & noDMAR by enable/disable
3419         * corresponding sub-containers
3420         */
3421        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3422                                            MEMORY_REGION(&vtd_dev_as->iommu),
3423                                            0);
3424        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3425                                            &vtd_dev_as->nodmar, 0);
3426
3427        vtd_switch_address_space(vtd_dev_as);
3428    }
3429    return vtd_dev_as;
3430}
3431
3432static uint64_t get_naturally_aligned_size(uint64_t start,
3433                                           uint64_t size, int gaw)
3434{
3435    uint64_t max_mask = 1ULL << gaw;
3436    uint64_t alignment = start ? start & -start : max_mask;
3437
3438    alignment = MIN(alignment, max_mask);
3439    size = MIN(size, max_mask);
3440
3441    if (alignment <= size) {
3442        /* Increase the alignment of start */
3443        return alignment;
3444    } else {
3445        /* Find the largest page mask from size */
3446        return 1ULL << (63 - clz64(size));
3447    }
3448}
3449
3450/* Unmap the whole range in the notifier's scope. */
3451static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3452{
3453    hwaddr size, remain;
3454    hwaddr start = n->start;
3455    hwaddr end = n->end;
3456    IntelIOMMUState *s = as->iommu_state;
3457    DMAMap map;
3458
3459    /*
3460     * Note: all the codes in this function has a assumption that IOVA
3461     * bits are no more than VTD_MGAW bits (which is restricted by
3462     * VT-d spec), otherwise we need to consider overflow of 64 bits.
3463     */
3464
3465    if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3466        /*
3467         * Don't need to unmap regions that is bigger than the whole
3468         * VT-d supported address space size
3469         */
3470        end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3471    }
3472
3473    assert(start <= end);
3474    size = remain = end - start + 1;
3475
3476    while (remain >= VTD_PAGE_SIZE) {
3477        IOMMUTLBEntry entry;
3478        uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
3479
3480        assert(mask);
3481
3482        entry.iova = start;
3483        entry.addr_mask = mask - 1;
3484        entry.target_as = &address_space_memory;
3485        entry.perm = IOMMU_NONE;
3486        /* This field is meaningless for unmap */
3487        entry.translated_addr = 0;
3488
3489        memory_region_notify_one(n, &entry);
3490
3491        start += mask;
3492        remain -= mask;
3493    }
3494
3495    assert(!remain);
3496
3497    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3498                             VTD_PCI_SLOT(as->devfn),
3499                             VTD_PCI_FUNC(as->devfn),
3500                             n->start, size);
3501
3502    map.iova = n->start;
3503    map.size = size;
3504    iova_tree_remove(as->iova_tree, &map);
3505}
3506
3507static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3508{
3509    VTDAddressSpace *vtd_as;
3510    IOMMUNotifier *n;
3511
3512    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3513        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3514            vtd_address_space_unmap(vtd_as, n);
3515        }
3516    }
3517}
3518
3519static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3520{
3521    vtd_address_space_unmap_all(s);
3522    vtd_switch_address_space_all(s);
3523}
3524
3525static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3526{
3527    memory_region_notify_one((IOMMUNotifier *)private, entry);
3528    return 0;
3529}
3530
3531static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3532{
3533    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3534    IntelIOMMUState *s = vtd_as->iommu_state;
3535    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3536    VTDContextEntry ce;
3537
3538    /*
3539     * The replay can be triggered by either a invalidation or a newly
3540     * created entry. No matter what, we release existing mappings
3541     * (it means flushing caches for UNMAP-only registers).
3542     */
3543    vtd_address_space_unmap(vtd_as, n);
3544
3545    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3546        trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3547                                  "legacy mode",
3548                                  bus_n, PCI_SLOT(vtd_as->devfn),
3549                                  PCI_FUNC(vtd_as->devfn),
3550                                  vtd_get_domain_id(s, &ce),
3551                                  ce.hi, ce.lo);
3552        if (vtd_as_has_map_notifier(vtd_as)) {
3553            /* This is required only for MAP typed notifiers */
3554            vtd_page_walk_info info = {
3555                .hook_fn = vtd_replay_hook,
3556                .private = (void *)n,
3557                .notify_unmap = false,
3558                .aw = s->aw_bits,
3559                .as = vtd_as,
3560                .domain_id = vtd_get_domain_id(s, &ce),
3561            };
3562
3563            vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3564        }
3565    } else {
3566        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3567                                    PCI_FUNC(vtd_as->devfn));
3568    }
3569
3570    return;
3571}
3572
3573/* Do the initialization. It will also be called when reset, so pay
3574 * attention when adding new initialization stuff.
3575 */
3576static void vtd_init(IntelIOMMUState *s)
3577{
3578    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3579
3580    memset(s->csr, 0, DMAR_REG_SIZE);
3581    memset(s->wmask, 0, DMAR_REG_SIZE);
3582    memset(s->w1cmask, 0, DMAR_REG_SIZE);
3583    memset(s->womask, 0, DMAR_REG_SIZE);
3584
3585    s->root = 0;
3586    s->root_scalable = false;
3587    s->dmar_enabled = false;
3588    s->intr_enabled = false;
3589    s->iq_head = 0;
3590    s->iq_tail = 0;
3591    s->iq = 0;
3592    s->iq_size = 0;
3593    s->qi_enabled = false;
3594    s->iq_last_desc_type = VTD_INV_DESC_NONE;
3595    s->iq_dw = false;
3596    s->next_frcd_reg = 0;
3597    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3598             VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3599             VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3600    if (s->dma_drain) {
3601        s->cap |= VTD_CAP_DRAIN;
3602    }
3603    if (s->aw_bits == VTD_HOST_AW_48BIT) {
3604        s->cap |= VTD_CAP_SAGAW_48bit;
3605    }
3606    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3607
3608    /*
3609     * Rsvd field masks for spte
3610     */
3611    vtd_spte_rsvd[0] = ~0ULL;
3612    vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3613                                                  x86_iommu->dt_supported);
3614    vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3615    vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3616    vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3617
3618    vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3619                                                         x86_iommu->dt_supported);
3620    vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3621                                                         x86_iommu->dt_supported);
3622
3623    if (x86_iommu_ir_supported(x86_iommu)) {
3624        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3625        if (s->intr_eim == ON_OFF_AUTO_ON) {
3626            s->ecap |= VTD_ECAP_EIM;
3627        }
3628        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3629    }
3630
3631    if (x86_iommu->dt_supported) {
3632        s->ecap |= VTD_ECAP_DT;
3633    }
3634
3635    if (x86_iommu->pt_supported) {
3636        s->ecap |= VTD_ECAP_PT;
3637    }
3638
3639    if (s->caching_mode) {
3640        s->cap |= VTD_CAP_CM;
3641    }
3642
3643    /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3644    if (s->scalable_mode) {
3645        s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3646    }
3647
3648    vtd_reset_caches(s);
3649
3650    /* Define registers with default values and bit semantics */
3651    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3652    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3653    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3654    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3655    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3656    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3657    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3658    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3659    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3660
3661    /* Advanced Fault Logging not supported */
3662    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3663    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3664    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3665    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3666
3667    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3668     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3669     */
3670    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3671
3672    /* Treated as RO for implementations that PLMR and PHMR fields reported
3673     * as Clear in the CAP_REG.
3674     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3675     */
3676    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3677
3678    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3679    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3680    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3681    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3682    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3683    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3684    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3685    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3686    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3687
3688    /* IOTLB registers */
3689    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3690    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3691    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3692
3693    /* Fault Recording Registers, 128-bit */
3694    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3695    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3696
3697    /*
3698     * Interrupt remapping registers.
3699     */
3700    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3701}
3702
3703/* Should not reset address_spaces when reset because devices will still use
3704 * the address space they got at first (won't ask the bus again).
3705 */
3706static void vtd_reset(DeviceState *dev)
3707{
3708    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3709
3710    vtd_init(s);
3711    vtd_address_space_refresh_all(s);
3712}
3713
3714static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3715{
3716    IntelIOMMUState *s = opaque;
3717    VTDAddressSpace *vtd_as;
3718
3719    assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3720
3721    vtd_as = vtd_find_add_as(s, bus, devfn);
3722    return &vtd_as->as;
3723}
3724
3725static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3726{
3727    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3728
3729    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3730        error_setg(errp, "eim=on cannot be selected without intremap=on");
3731        return false;
3732    }
3733
3734    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3735        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3736                      && x86_iommu_ir_supported(x86_iommu) ?
3737                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3738    }
3739    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3740        if (!kvm_irqchip_in_kernel()) {
3741            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3742            return false;
3743        }
3744        if (!kvm_enable_x2apic()) {
3745            error_setg(errp, "eim=on requires support on the KVM side"
3746                             "(X2APIC_API, first shipped in v4.7)");
3747            return false;
3748        }
3749    }
3750
3751    /* Currently only address widths supported are 39 and 48 bits */
3752    if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3753        (s->aw_bits != VTD_HOST_AW_48BIT)) {
3754        error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3755                   VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3756        return false;
3757    }
3758
3759    if (s->scalable_mode && !s->dma_drain) {
3760        error_setg(errp, "Need to set dma_drain for scalable mode");
3761        return false;
3762    }
3763
3764    return true;
3765}
3766
3767static int vtd_machine_done_notify_one(Object *child, void *unused)
3768{
3769    IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3770
3771    /*
3772     * We hard-coded here because vfio-pci is the only special case
3773     * here.  Let's be more elegant in the future when we can, but so
3774     * far there seems to be no better way.
3775     */
3776    if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3777        vtd_panic_require_caching_mode();
3778    }
3779
3780    return 0;
3781}
3782
3783static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3784{
3785    object_child_foreach_recursive(object_get_root(),
3786                                   vtd_machine_done_notify_one, NULL);
3787}
3788
3789static Notifier vtd_machine_done_notify = {
3790    .notify = vtd_machine_done_hook,
3791};
3792
3793static void vtd_realize(DeviceState *dev, Error **errp)
3794{
3795    MachineState *ms = MACHINE(qdev_get_machine());
3796    PCMachineState *pcms = PC_MACHINE(ms);
3797    X86MachineState *x86ms = X86_MACHINE(ms);
3798    PCIBus *bus = pcms->bus;
3799    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3800    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3801
3802    x86_iommu->type = TYPE_INTEL;
3803
3804    if (!vtd_decide_config(s, errp)) {
3805        return;
3806    }
3807
3808    QLIST_INIT(&s->vtd_as_with_notifiers);
3809    qemu_mutex_init(&s->iommu_lock);
3810    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3811    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3812                          "intel_iommu", DMAR_REG_SIZE);
3813
3814    /* Create the shared memory regions by all devices */
3815    memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3816                       UINT64_MAX);
3817    memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3818                          s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3819    memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3820                             "vtd-sys-alias", get_system_memory(), 0,
3821                             memory_region_size(get_system_memory()));
3822    memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3823                                        &s->mr_sys_alias, 0);
3824    memory_region_add_subregion_overlap(&s->mr_nodmar,
3825                                        VTD_INTERRUPT_ADDR_FIRST,
3826                                        &s->mr_ir, 1);
3827
3828    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3829    /* No corresponding destroy */
3830    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3831                                     g_free, g_free);
3832    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3833                                              g_free, g_free);
3834    vtd_init(s);
3835    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3836    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3837    /* Pseudo address space under root PCI bus. */
3838    x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3839    qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3840}
3841
3842static void vtd_class_init(ObjectClass *klass, void *data)
3843{
3844    DeviceClass *dc = DEVICE_CLASS(klass);
3845    X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3846
3847    dc->reset = vtd_reset;
3848    dc->vmsd = &vtd_vmstate;
3849    dc->props = vtd_properties;
3850    dc->hotpluggable = false;
3851    x86_class->realize = vtd_realize;
3852    x86_class->int_remap = vtd_int_remap;
3853    /* Supported by the pc-q35-* machine types */
3854    dc->user_creatable = true;
3855    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3856    dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3857}
3858
3859static const TypeInfo vtd_info = {
3860    .name          = TYPE_INTEL_IOMMU_DEVICE,
3861    .parent        = TYPE_X86_IOMMU_DEVICE,
3862    .instance_size = sizeof(IntelIOMMUState),
3863    .class_init    = vtd_class_init,
3864};
3865
3866static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3867                                                     void *data)
3868{
3869    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3870
3871    imrc->translate = vtd_iommu_translate;
3872    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3873    imrc->replay = vtd_iommu_replay;
3874}
3875
3876static const TypeInfo vtd_iommu_memory_region_info = {
3877    .parent = TYPE_IOMMU_MEMORY_REGION,
3878    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3879    .class_init = vtd_iommu_memory_region_class_init,
3880};
3881
3882static void vtd_register_types(void)
3883{
3884    type_register_static(&vtd_info);
3885    type_register_static(&vtd_iommu_memory_region_info);
3886}
3887
3888type_init(vtd_register_types)
3889