qemu/hw/intc/arm_gic.c
<<
>>
Prefs
   1/*
   2 * ARM Generic/Distributed Interrupt Controller
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10/* This file contains implementation code for the RealView EB interrupt
  11 * controller, MPCore distributed interrupt controller and ARMv7-M
  12 * Nested Vectored Interrupt Controller.
  13 * It is compiled in two ways:
  14 *  (1) as a standalone file to produce a sysbus device which is a GIC
  15 *  that can be used on the realview board and as one of the builtin
  16 *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
  17 *  (2) by being directly #included into armv7m_nvic.c to produce the
  18 *  armv7m_nvic device.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "hw/irq.h"
  23#include "hw/sysbus.h"
  24#include "gic_internal.h"
  25#include "qapi/error.h"
  26#include "hw/core/cpu.h"
  27#include "qemu/log.h"
  28#include "qemu/module.h"
  29#include "trace.h"
  30#include "sysemu/kvm.h"
  31
  32/* #define DEBUG_GIC */
  33
  34#ifdef DEBUG_GIC
  35#define DEBUG_GIC_GATE 1
  36#else
  37#define DEBUG_GIC_GATE 0
  38#endif
  39
  40#define DPRINTF(fmt, ...) do {                                          \
  41        if (DEBUG_GIC_GATE) {                                           \
  42            fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
  43        }                                                               \
  44    } while (0)
  45
  46static const uint8_t gic_id_11mpcore[] = {
  47    0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  48};
  49
  50static const uint8_t gic_id_gicv1[] = {
  51    0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  52};
  53
  54static const uint8_t gic_id_gicv2[] = {
  55    0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  56};
  57
  58static inline int gic_get_current_cpu(GICState *s)
  59{
  60    if (s->num_cpu > 1) {
  61        return current_cpu->cpu_index;
  62    }
  63    return 0;
  64}
  65
  66static inline int gic_get_current_vcpu(GICState *s)
  67{
  68    return gic_get_current_cpu(s) + GIC_NCPU;
  69}
  70
  71/* Return true if this GIC config has interrupt groups, which is
  72 * true if we're a GICv2, or a GICv1 with the security extensions.
  73 */
  74static inline bool gic_has_groups(GICState *s)
  75{
  76    return s->revision == 2 || s->security_extn;
  77}
  78
  79static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
  80{
  81    return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
  82}
  83
  84static inline void gic_get_best_irq(GICState *s, int cpu,
  85                                    int *best_irq, int *best_prio, int *group)
  86{
  87    int irq;
  88    int cm = 1 << cpu;
  89
  90    *best_irq = 1023;
  91    *best_prio = 0x100;
  92
  93    for (irq = 0; irq < s->num_irq; irq++) {
  94        if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
  95            (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
  96            (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
  97            if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
  98                *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
  99                *best_irq = irq;
 100            }
 101        }
 102    }
 103
 104    if (*best_irq < 1023) {
 105        *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
 106    }
 107}
 108
 109static inline void gic_get_best_virq(GICState *s, int cpu,
 110                                     int *best_irq, int *best_prio, int *group)
 111{
 112    int lr_idx = 0;
 113
 114    *best_irq = 1023;
 115    *best_prio = 0x100;
 116
 117    for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
 118        uint32_t lr_entry = s->h_lr[lr_idx][cpu];
 119        int state = GICH_LR_STATE(lr_entry);
 120
 121        if (state == GICH_LR_STATE_PENDING) {
 122            int prio = GICH_LR_PRIORITY(lr_entry);
 123
 124            if (prio < *best_prio) {
 125                *best_prio = prio;
 126                *best_irq = GICH_LR_VIRT_ID(lr_entry);
 127                *group = GICH_LR_GROUP(lr_entry);
 128            }
 129        }
 130    }
 131}
 132
 133/* Return true if IRQ signaling is enabled for the given cpu and at least one
 134 * of the given groups:
 135 *   - in the non-virt case, the distributor must be enabled for one of the
 136 *   given groups
 137 *   - in the virt case, the virtual interface must be enabled.
 138 *   - in all cases, the (v)CPU interface must be enabled for one of the given
 139 *   groups.
 140 */
 141static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
 142                                    int group_mask)
 143{
 144    if (!virt && !(s->ctlr & group_mask)) {
 145        return false;
 146    }
 147
 148    if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
 149        return false;
 150    }
 151
 152    if (!(s->cpu_ctlr[cpu] & group_mask)) {
 153        return false;
 154    }
 155
 156    return true;
 157}
 158
 159/* TODO: Many places that call this routine could be optimized.  */
 160/* Update interrupt status after enabled or pending bits have been changed.  */
 161static inline void gic_update_internal(GICState *s, bool virt)
 162{
 163    int best_irq;
 164    int best_prio;
 165    int irq_level, fiq_level;
 166    int cpu, cpu_iface;
 167    int group = 0;
 168    qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
 169    qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
 170
 171    for (cpu = 0; cpu < s->num_cpu; cpu++) {
 172        cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
 173
 174        s->current_pending[cpu_iface] = 1023;
 175        if (!gic_irq_signaling_enabled(s, cpu, virt,
 176                                       GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
 177            qemu_irq_lower(irq_lines[cpu]);
 178            qemu_irq_lower(fiq_lines[cpu]);
 179            continue;
 180        }
 181
 182        if (virt) {
 183            gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
 184        } else {
 185            gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
 186        }
 187
 188        if (best_irq != 1023) {
 189            trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
 190                                     best_irq, best_prio,
 191                                     s->priority_mask[cpu_iface],
 192                                     s->running_priority[cpu_iface]);
 193        }
 194
 195        irq_level = fiq_level = 0;
 196
 197        if (best_prio < s->priority_mask[cpu_iface]) {
 198            s->current_pending[cpu_iface] = best_irq;
 199            if (best_prio < s->running_priority[cpu_iface]) {
 200                if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
 201                    if (group == 0 &&
 202                        s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
 203                        DPRINTF("Raised pending FIQ %d (cpu %d)\n",
 204                                best_irq, cpu_iface);
 205                        fiq_level = 1;
 206                        trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
 207                                                 fiq_level);
 208                    } else {
 209                        DPRINTF("Raised pending IRQ %d (cpu %d)\n",
 210                                best_irq, cpu_iface);
 211                        irq_level = 1;
 212                        trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
 213                                                 irq_level);
 214                    }
 215                }
 216            }
 217        }
 218
 219        qemu_set_irq(irq_lines[cpu], irq_level);
 220        qemu_set_irq(fiq_lines[cpu], fiq_level);
 221    }
 222}
 223
 224static void gic_update(GICState *s)
 225{
 226    gic_update_internal(s, false);
 227}
 228
 229/* Return true if this LR is empty, i.e. the corresponding bit
 230 * in ELRSR is set.
 231 */
 232static inline bool gic_lr_entry_is_free(uint32_t entry)
 233{
 234    return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
 235        && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
 236}
 237
 238/* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
 239 * corrsponding bit in EISR is set.
 240 */
 241static inline bool gic_lr_entry_is_eoi(uint32_t entry)
 242{
 243    return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
 244        && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
 245}
 246
 247static inline void gic_extract_lr_info(GICState *s, int cpu,
 248                                int *num_eoi, int *num_valid, int *num_pending)
 249{
 250    int lr_idx;
 251
 252    *num_eoi = 0;
 253    *num_valid = 0;
 254    *num_pending = 0;
 255
 256    for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
 257        uint32_t *entry = &s->h_lr[lr_idx][cpu];
 258
 259        if (gic_lr_entry_is_eoi(*entry)) {
 260            (*num_eoi)++;
 261        }
 262
 263        if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
 264            (*num_valid)++;
 265        }
 266
 267        if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
 268            (*num_pending)++;
 269        }
 270    }
 271}
 272
 273static void gic_compute_misr(GICState *s, int cpu)
 274{
 275    uint32_t value = 0;
 276    int vcpu = cpu + GIC_NCPU;
 277
 278    int num_eoi, num_valid, num_pending;
 279
 280    gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
 281
 282    /* EOI */
 283    if (num_eoi) {
 284        value |= R_GICH_MISR_EOI_MASK;
 285    }
 286
 287    /* U: true if only 0 or 1 LR entry is valid */
 288    if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
 289        value |= R_GICH_MISR_U_MASK;
 290    }
 291
 292    /* LRENP: EOICount is not 0 */
 293    if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
 294        ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
 295        value |= R_GICH_MISR_LRENP_MASK;
 296    }
 297
 298    /* NP: no pending interrupts */
 299    if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
 300        value |= R_GICH_MISR_NP_MASK;
 301    }
 302
 303    /* VGrp0E: group0 virq signaling enabled */
 304    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
 305        (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
 306        value |= R_GICH_MISR_VGrp0E_MASK;
 307    }
 308
 309    /* VGrp0D: group0 virq signaling disabled */
 310    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
 311        !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
 312        value |= R_GICH_MISR_VGrp0D_MASK;
 313    }
 314
 315    /* VGrp1E: group1 virq signaling enabled */
 316    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
 317        (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
 318        value |= R_GICH_MISR_VGrp1E_MASK;
 319    }
 320
 321    /* VGrp1D: group1 virq signaling disabled */
 322    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
 323        !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
 324        value |= R_GICH_MISR_VGrp1D_MASK;
 325    }
 326
 327    s->h_misr[cpu] = value;
 328}
 329
 330static void gic_update_maintenance(GICState *s)
 331{
 332    int cpu = 0;
 333    int maint_level;
 334
 335    for (cpu = 0; cpu < s->num_cpu; cpu++) {
 336        gic_compute_misr(s, cpu);
 337        maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
 338
 339        trace_gic_update_maintenance_irq(cpu, maint_level);
 340        qemu_set_irq(s->maintenance_irq[cpu], maint_level);
 341    }
 342}
 343
 344static void gic_update_virt(GICState *s)
 345{
 346    gic_update_internal(s, true);
 347    gic_update_maintenance(s);
 348}
 349
 350static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
 351                                 int cm, int target)
 352{
 353    if (level) {
 354        GIC_DIST_SET_LEVEL(irq, cm);
 355        if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
 356            DPRINTF("Set %d pending mask %x\n", irq, target);
 357            GIC_DIST_SET_PENDING(irq, target);
 358        }
 359    } else {
 360        GIC_DIST_CLEAR_LEVEL(irq, cm);
 361    }
 362}
 363
 364static void gic_set_irq_generic(GICState *s, int irq, int level,
 365                                int cm, int target)
 366{
 367    if (level) {
 368        GIC_DIST_SET_LEVEL(irq, cm);
 369        DPRINTF("Set %d pending mask %x\n", irq, target);
 370        if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
 371            GIC_DIST_SET_PENDING(irq, target);
 372        }
 373    } else {
 374        GIC_DIST_CLEAR_LEVEL(irq, cm);
 375    }
 376}
 377
 378/* Process a change in an external IRQ input.  */
 379static void gic_set_irq(void *opaque, int irq, int level)
 380{
 381    /* Meaning of the 'irq' parameter:
 382     *  [0..N-1] : external interrupts
 383     *  [N..N+31] : PPI (internal) interrupts for CPU 0
 384     *  [N+32..N+63] : PPI (internal interrupts for CPU 1
 385     *  ...
 386     */
 387    GICState *s = (GICState *)opaque;
 388    int cm, target;
 389    if (irq < (s->num_irq - GIC_INTERNAL)) {
 390        /* The first external input line is internal interrupt 32.  */
 391        cm = ALL_CPU_MASK;
 392        irq += GIC_INTERNAL;
 393        target = GIC_DIST_TARGET(irq);
 394    } else {
 395        int cpu;
 396        irq -= (s->num_irq - GIC_INTERNAL);
 397        cpu = irq / GIC_INTERNAL;
 398        irq %= GIC_INTERNAL;
 399        cm = 1 << cpu;
 400        target = cm;
 401    }
 402
 403    assert(irq >= GIC_NR_SGIS);
 404
 405    if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
 406        return;
 407    }
 408
 409    if (s->revision == REV_11MPCORE) {
 410        gic_set_irq_11mpcore(s, irq, level, cm, target);
 411    } else {
 412        gic_set_irq_generic(s, irq, level, cm, target);
 413    }
 414    trace_gic_set_irq(irq, level, cm, target);
 415
 416    gic_update(s);
 417}
 418
 419static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
 420                                            MemTxAttrs attrs)
 421{
 422    uint16_t pending_irq = s->current_pending[cpu];
 423
 424    if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
 425        int group = gic_test_group(s, pending_irq, cpu);
 426
 427        /* On a GIC without the security extensions, reading this register
 428         * behaves in the same way as a secure access to a GIC with them.
 429         */
 430        bool secure = !gic_cpu_ns_access(s, cpu, attrs);
 431
 432        if (group == 0 && !secure) {
 433            /* Group0 interrupts hidden from Non-secure access */
 434            return 1023;
 435        }
 436        if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
 437            /* Group1 interrupts only seen by Secure access if
 438             * AckCtl bit set.
 439             */
 440            return 1022;
 441        }
 442    }
 443    return pending_irq;
 444}
 445
 446static int gic_get_group_priority(GICState *s, int cpu, int irq)
 447{
 448    /* Return the group priority of the specified interrupt
 449     * (which is the top bits of its priority, with the number
 450     * of bits masked determined by the applicable binary point register).
 451     */
 452    int bpr;
 453    uint32_t mask;
 454
 455    if (gic_has_groups(s) &&
 456        !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
 457        gic_test_group(s, irq, cpu)) {
 458        bpr = s->abpr[cpu] - 1;
 459        assert(bpr >= 0);
 460    } else {
 461        bpr = s->bpr[cpu];
 462    }
 463
 464    /* a BPR of 0 means the group priority bits are [7:1];
 465     * a BPR of 1 means they are [7:2], and so on down to
 466     * a BPR of 7 meaning no group priority bits at all.
 467     */
 468    mask = ~0U << ((bpr & 7) + 1);
 469
 470    return gic_get_priority(s, irq, cpu) & mask;
 471}
 472
 473static void gic_activate_irq(GICState *s, int cpu, int irq)
 474{
 475    /* Set the appropriate Active Priority Register bit for this IRQ,
 476     * and update the running priority.
 477     */
 478    int prio = gic_get_group_priority(s, cpu, irq);
 479    int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
 480    int preemption_level = prio >> (min_bpr + 1);
 481    int regno = preemption_level / 32;
 482    int bitno = preemption_level % 32;
 483    uint32_t *papr = NULL;
 484
 485    if (gic_is_vcpu(cpu)) {
 486        assert(regno == 0);
 487        papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
 488    } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
 489        papr = &s->nsapr[regno][cpu];
 490    } else {
 491        papr = &s->apr[regno][cpu];
 492    }
 493
 494    *papr |= (1 << bitno);
 495
 496    s->running_priority[cpu] = prio;
 497    gic_set_active(s, irq, cpu);
 498}
 499
 500static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
 501{
 502    /* Recalculate the current running priority for this CPU based
 503     * on the set bits in the Active Priority Registers.
 504     */
 505    int i;
 506
 507    if (gic_is_vcpu(cpu)) {
 508        uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
 509        if (apr) {
 510            return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
 511        } else {
 512            return 0x100;
 513        }
 514    }
 515
 516    for (i = 0; i < GIC_NR_APRS; i++) {
 517        uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
 518        if (!apr) {
 519            continue;
 520        }
 521        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
 522    }
 523    return 0x100;
 524}
 525
 526static void gic_drop_prio(GICState *s, int cpu, int group)
 527{
 528    /* Drop the priority of the currently active interrupt in the
 529     * specified group.
 530     *
 531     * Note that we can guarantee (because of the requirement to nest
 532     * GICC_IAR reads [which activate an interrupt and raise priority]
 533     * with GICC_EOIR writes [which drop the priority for the interrupt])
 534     * that the interrupt we're being called for is the highest priority
 535     * active interrupt, meaning that it has the lowest set bit in the
 536     * APR registers.
 537     *
 538     * If the guest does not honour the ordering constraints then the
 539     * behaviour of the GIC is UNPREDICTABLE, which for us means that
 540     * the values of the APR registers might become incorrect and the
 541     * running priority will be wrong, so interrupts that should preempt
 542     * might not do so, and interrupts that should not preempt might do so.
 543     */
 544    if (gic_is_vcpu(cpu)) {
 545        int rcpu = gic_get_vcpu_real_id(cpu);
 546
 547        if (s->h_apr[rcpu]) {
 548            /* Clear lowest set bit */
 549            s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
 550        }
 551    } else {
 552        int i;
 553
 554        for (i = 0; i < GIC_NR_APRS; i++) {
 555            uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
 556            if (!*papr) {
 557                continue;
 558            }
 559            /* Clear lowest set bit */
 560            *papr &= *papr - 1;
 561            break;
 562        }
 563    }
 564
 565    s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
 566}
 567
 568static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
 569{
 570    int src;
 571    uint32_t ret;
 572
 573    if (!gic_is_vcpu(cpu)) {
 574        /* Lookup the source CPU for the SGI and clear this in the
 575         * sgi_pending map.  Return the src and clear the overall pending
 576         * state on this CPU if the SGI is not pending from any CPUs.
 577         */
 578        assert(s->sgi_pending[irq][cpu] != 0);
 579        src = ctz32(s->sgi_pending[irq][cpu]);
 580        s->sgi_pending[irq][cpu] &= ~(1 << src);
 581        if (s->sgi_pending[irq][cpu] == 0) {
 582            gic_clear_pending(s, irq, cpu);
 583        }
 584        ret = irq | ((src & 0x7) << 10);
 585    } else {
 586        uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
 587        src = GICH_LR_CPUID(*lr_entry);
 588
 589        gic_clear_pending(s, irq, cpu);
 590        ret = irq | (src << 10);
 591    }
 592
 593    return ret;
 594}
 595
 596uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
 597{
 598    int ret, irq;
 599
 600    /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
 601     * for the case where this GIC supports grouping and the pending interrupt
 602     * is in the wrong group.
 603     */
 604    irq = gic_get_current_pending_irq(s, cpu, attrs);
 605    trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
 606                              gic_get_vcpu_real_id(cpu), irq);
 607
 608    if (irq >= GIC_MAXIRQ) {
 609        DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
 610        return irq;
 611    }
 612
 613    if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
 614        DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
 615        return 1023;
 616    }
 617
 618    gic_activate_irq(s, cpu, irq);
 619
 620    if (s->revision == REV_11MPCORE) {
 621        /* Clear pending flags for both level and edge triggered interrupts.
 622         * Level triggered IRQs will be reasserted once they become inactive.
 623         */
 624        gic_clear_pending(s, irq, cpu);
 625        ret = irq;
 626    } else {
 627        if (irq < GIC_NR_SGIS) {
 628            ret = gic_clear_pending_sgi(s, irq, cpu);
 629        } else {
 630            gic_clear_pending(s, irq, cpu);
 631            ret = irq;
 632        }
 633    }
 634
 635    if (gic_is_vcpu(cpu)) {
 636        gic_update_virt(s);
 637    } else {
 638        gic_update(s);
 639    }
 640    DPRINTF("ACK %d\n", irq);
 641    return ret;
 642}
 643
 644void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
 645                      MemTxAttrs attrs)
 646{
 647    if (s->security_extn && !attrs.secure) {
 648        if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
 649            return; /* Ignore Non-secure access of Group0 IRQ */
 650        }
 651        val = 0x80 | (val >> 1); /* Non-secure view */
 652    }
 653
 654    if (irq < GIC_INTERNAL) {
 655        s->priority1[irq][cpu] = val;
 656    } else {
 657        s->priority2[(irq) - GIC_INTERNAL] = val;
 658    }
 659}
 660
 661static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
 662                                 MemTxAttrs attrs)
 663{
 664    uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
 665
 666    if (s->security_extn && !attrs.secure) {
 667        if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
 668            return 0; /* Non-secure access cannot read priority of Group0 IRQ */
 669        }
 670        prio = (prio << 1) & 0xff; /* Non-secure view */
 671    }
 672    return prio;
 673}
 674
 675static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
 676                                  MemTxAttrs attrs)
 677{
 678    if (gic_cpu_ns_access(s, cpu, attrs)) {
 679        if (s->priority_mask[cpu] & 0x80) {
 680            /* Priority Mask in upper half */
 681            pmask = 0x80 | (pmask >> 1);
 682        } else {
 683            /* Non-secure write ignored if priority mask is in lower half */
 684            return;
 685        }
 686    }
 687    s->priority_mask[cpu] = pmask;
 688}
 689
 690static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
 691{
 692    uint32_t pmask = s->priority_mask[cpu];
 693
 694    if (gic_cpu_ns_access(s, cpu, attrs)) {
 695        if (pmask & 0x80) {
 696            /* Priority Mask in upper half, return Non-secure view */
 697            pmask = (pmask << 1) & 0xff;
 698        } else {
 699            /* Priority Mask in lower half, RAZ */
 700            pmask = 0;
 701        }
 702    }
 703    return pmask;
 704}
 705
 706static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
 707{
 708    uint32_t ret = s->cpu_ctlr[cpu];
 709
 710    if (gic_cpu_ns_access(s, cpu, attrs)) {
 711        /* Construct the NS banked view of GICC_CTLR from the correct
 712         * bits of the S banked view. We don't need to move the bypass
 713         * control bits because we don't implement that (IMPDEF) part
 714         * of the GIC architecture.
 715         */
 716        ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
 717    }
 718    return ret;
 719}
 720
 721static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
 722                                MemTxAttrs attrs)
 723{
 724    uint32_t mask;
 725
 726    if (gic_cpu_ns_access(s, cpu, attrs)) {
 727        /* The NS view can only write certain bits in the register;
 728         * the rest are unchanged
 729         */
 730        mask = GICC_CTLR_EN_GRP1;
 731        if (s->revision == 2) {
 732            mask |= GICC_CTLR_EOIMODE_NS;
 733        }
 734        s->cpu_ctlr[cpu] &= ~mask;
 735        s->cpu_ctlr[cpu] |= (value << 1) & mask;
 736    } else {
 737        if (s->revision == 2) {
 738            mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
 739        } else {
 740            mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
 741        }
 742        s->cpu_ctlr[cpu] = value & mask;
 743    }
 744    DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
 745            "Group1 Interrupts %sabled\n", cpu,
 746            (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
 747            (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
 748}
 749
 750static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
 751{
 752    if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
 753        /* Idle priority */
 754        return 0xff;
 755    }
 756
 757    if (gic_cpu_ns_access(s, cpu, attrs)) {
 758        if (s->running_priority[cpu] & 0x80) {
 759            /* Running priority in upper half of range: return the Non-secure
 760             * view of the priority.
 761             */
 762            return s->running_priority[cpu] << 1;
 763        } else {
 764            /* Running priority in lower half of range: RAZ */
 765            return 0;
 766        }
 767    } else {
 768        return s->running_priority[cpu];
 769    }
 770}
 771
 772/* Return true if we should split priority drop and interrupt deactivation,
 773 * ie whether the relevant EOIMode bit is set.
 774 */
 775static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
 776{
 777    if (s->revision != 2) {
 778        /* Before GICv2 prio-drop and deactivate are not separable */
 779        return false;
 780    }
 781    if (gic_cpu_ns_access(s, cpu, attrs)) {
 782        return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
 783    }
 784    return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
 785}
 786
 787static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 788{
 789    int group;
 790
 791    if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
 792        /*
 793         * This handles two cases:
 794         * 1. If software writes the ID of a spurious interrupt [ie 1023]
 795         * to the GICC_DIR, the GIC ignores that write.
 796         * 2. If software writes the number of a non-existent interrupt
 797         * this must be a subcase of "value written is not an active interrupt"
 798         * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
 799         * all IRQs potentially exist, so this limit does not apply.
 800         */
 801        return;
 802    }
 803
 804    if (!gic_eoi_split(s, cpu, attrs)) {
 805        /* This is UNPREDICTABLE; we choose to ignore it */
 806        qemu_log_mask(LOG_GUEST_ERROR,
 807                      "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
 808        return;
 809    }
 810
 811    if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
 812        /* This vIRQ does not have an LR entry which is either active or
 813         * pending and active. Increment EOICount and ignore the write.
 814         */
 815        int rcpu = gic_get_vcpu_real_id(cpu);
 816        s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
 817
 818        /* Update the virtual interface in case a maintenance interrupt should
 819         * be raised.
 820         */
 821        gic_update_virt(s);
 822        return;
 823    }
 824
 825    group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
 826
 827    if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
 828        DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
 829        return;
 830    }
 831
 832    gic_clear_active(s, irq, cpu);
 833}
 834
 835static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 836{
 837    int cm = 1 << cpu;
 838    int group;
 839
 840    DPRINTF("EOI %d\n", irq);
 841    if (gic_is_vcpu(cpu)) {
 842        /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
 843         * running prio is < 0x100.
 844         */
 845        bool prio_drop = s->running_priority[cpu] < 0x100;
 846
 847        if (irq >= GIC_MAXIRQ) {
 848            /* Ignore spurious interrupt */
 849            return;
 850        }
 851
 852        gic_drop_prio(s, cpu, 0);
 853
 854        if (!gic_eoi_split(s, cpu, attrs)) {
 855            bool valid = gic_virq_is_valid(s, irq, cpu);
 856            if (prio_drop && !valid) {
 857                /* We are in a situation where:
 858                 *   - V_CTRL.EOIMode is false (no EOI split),
 859                 *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
 860                 *   - This vIRQ does not have an LR entry which is either
 861                 *     active or pending and active.
 862                 * In that case, we must increment EOICount.
 863                 */
 864                int rcpu = gic_get_vcpu_real_id(cpu);
 865                s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
 866            } else if (valid) {
 867                gic_clear_active(s, irq, cpu);
 868            }
 869        }
 870
 871        gic_update_virt(s);
 872        return;
 873    }
 874
 875    if (irq >= s->num_irq) {
 876        /* This handles two cases:
 877         * 1. If software writes the ID of a spurious interrupt [ie 1023]
 878         * to the GICC_EOIR, the GIC ignores that write.
 879         * 2. If software writes the number of a non-existent interrupt
 880         * this must be a subcase of "value written does not match the last
 881         * valid interrupt value read from the Interrupt Acknowledge
 882         * register" and so this is UNPREDICTABLE. We choose to ignore it.
 883         */
 884        return;
 885    }
 886    if (s->running_priority[cpu] == 0x100) {
 887        return; /* No active IRQ.  */
 888    }
 889
 890    if (s->revision == REV_11MPCORE) {
 891        /* Mark level triggered interrupts as pending if they are still
 892           raised.  */
 893        if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
 894            && GIC_DIST_TEST_LEVEL(irq, cm)
 895            && (GIC_DIST_TARGET(irq) & cm) != 0) {
 896            DPRINTF("Set %d pending mask %x\n", irq, cm);
 897            GIC_DIST_SET_PENDING(irq, cm);
 898        }
 899    }
 900
 901    group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
 902
 903    if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
 904        DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
 905        return;
 906    }
 907
 908    /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
 909     * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
 910     * i.e. go ahead and complete the irq anyway.
 911     */
 912
 913    gic_drop_prio(s, cpu, group);
 914
 915    /* In GICv2 the guest can choose to split priority-drop and deactivate */
 916    if (!gic_eoi_split(s, cpu, attrs)) {
 917        gic_clear_active(s, irq, cpu);
 918    }
 919    gic_update(s);
 920}
 921
 922static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
 923{
 924    GICState *s = (GICState *)opaque;
 925    uint32_t res;
 926    int irq;
 927    int i;
 928    int cpu;
 929    int cm;
 930    int mask;
 931
 932    cpu = gic_get_current_cpu(s);
 933    cm = 1 << cpu;
 934    if (offset < 0x100) {
 935        if (offset == 0) {      /* GICD_CTLR */
 936            if (s->security_extn && !attrs.secure) {
 937                /* The NS bank of this register is just an alias of the
 938                 * EnableGrp1 bit in the S bank version.
 939                 */
 940                return extract32(s->ctlr, 1, 1);
 941            } else {
 942                return s->ctlr;
 943            }
 944        }
 945        if (offset == 4)
 946            /* Interrupt Controller Type Register */
 947            return ((s->num_irq / 32) - 1)
 948                    | ((s->num_cpu - 1) << 5)
 949                    | (s->security_extn << 10);
 950        if (offset < 0x08)
 951            return 0;
 952        if (offset >= 0x80) {
 953            /* Interrupt Group Registers: these RAZ/WI if this is an NS
 954             * access to a GIC with the security extensions, or if the GIC
 955             * doesn't have groups at all.
 956             */
 957            res = 0;
 958            if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
 959                /* Every byte offset holds 8 group status bits */
 960                irq = (offset - 0x080) * 8;
 961                if (irq >= s->num_irq) {
 962                    goto bad_reg;
 963                }
 964                for (i = 0; i < 8; i++) {
 965                    if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
 966                        res |= (1 << i);
 967                    }
 968                }
 969            }
 970            return res;
 971        }
 972        goto bad_reg;
 973    } else if (offset < 0x200) {
 974        /* Interrupt Set/Clear Enable.  */
 975        if (offset < 0x180)
 976            irq = (offset - 0x100) * 8;
 977        else
 978            irq = (offset - 0x180) * 8;
 979        if (irq >= s->num_irq)
 980            goto bad_reg;
 981        res = 0;
 982        for (i = 0; i < 8; i++) {
 983            if (s->security_extn && !attrs.secure &&
 984                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
 985                continue; /* Ignore Non-secure access of Group0 IRQ */
 986            }
 987
 988            if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
 989                res |= (1 << i);
 990            }
 991        }
 992    } else if (offset < 0x300) {
 993        /* Interrupt Set/Clear Pending.  */
 994        if (offset < 0x280)
 995            irq = (offset - 0x200) * 8;
 996        else
 997            irq = (offset - 0x280) * 8;
 998        if (irq >= s->num_irq)
 999            goto bad_reg;
1000        res = 0;
1001        mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1002        for (i = 0; i < 8; i++) {
1003            if (s->security_extn && !attrs.secure &&
1004                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1005                continue; /* Ignore Non-secure access of Group0 IRQ */
1006            }
1007
1008            if (gic_test_pending(s, irq + i, mask)) {
1009                res |= (1 << i);
1010            }
1011        }
1012    } else if (offset < 0x400) {
1013        /* Interrupt Set/Clear Active.  */
1014        if (offset < 0x380) {
1015            irq = (offset - 0x300) * 8;
1016        } else if (s->revision == 2) {
1017            irq = (offset - 0x380) * 8;
1018        } else {
1019            goto bad_reg;
1020        }
1021
1022        if (irq >= s->num_irq)
1023            goto bad_reg;
1024        res = 0;
1025        mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1026        for (i = 0; i < 8; i++) {
1027            if (s->security_extn && !attrs.secure &&
1028                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1029                continue; /* Ignore Non-secure access of Group0 IRQ */
1030            }
1031
1032            if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1033                res |= (1 << i);
1034            }
1035        }
1036    } else if (offset < 0x800) {
1037        /* Interrupt Priority.  */
1038        irq = (offset - 0x400);
1039        if (irq >= s->num_irq)
1040            goto bad_reg;
1041        res = gic_dist_get_priority(s, cpu, irq, attrs);
1042    } else if (offset < 0xc00) {
1043        /* Interrupt CPU Target.  */
1044        if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1045            /* For uniprocessor GICs these RAZ/WI */
1046            res = 0;
1047        } else {
1048            irq = (offset - 0x800);
1049            if (irq >= s->num_irq) {
1050                goto bad_reg;
1051            }
1052            if (irq < 29 && s->revision == REV_11MPCORE) {
1053                res = 0;
1054            } else if (irq < GIC_INTERNAL) {
1055                res = cm;
1056            } else {
1057                res = GIC_DIST_TARGET(irq);
1058            }
1059        }
1060    } else if (offset < 0xf00) {
1061        /* Interrupt Configuration.  */
1062        irq = (offset - 0xc00) * 4;
1063        if (irq >= s->num_irq)
1064            goto bad_reg;
1065        res = 0;
1066        for (i = 0; i < 4; i++) {
1067            if (s->security_extn && !attrs.secure &&
1068                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1069                continue; /* Ignore Non-secure access of Group0 IRQ */
1070            }
1071
1072            if (GIC_DIST_TEST_MODEL(irq + i)) {
1073                res |= (1 << (i * 2));
1074            }
1075            if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1076                res |= (2 << (i * 2));
1077            }
1078        }
1079    } else if (offset < 0xf10) {
1080        goto bad_reg;
1081    } else if (offset < 0xf30) {
1082        if (s->revision == REV_11MPCORE) {
1083            goto bad_reg;
1084        }
1085
1086        if (offset < 0xf20) {
1087            /* GICD_CPENDSGIRn */
1088            irq = (offset - 0xf10);
1089        } else {
1090            irq = (offset - 0xf20);
1091            /* GICD_SPENDSGIRn */
1092        }
1093
1094        if (s->security_extn && !attrs.secure &&
1095            !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1096            res = 0; /* Ignore Non-secure access of Group0 IRQ */
1097        } else {
1098            res = s->sgi_pending[irq][cpu];
1099        }
1100    } else if (offset < 0xfd0) {
1101        goto bad_reg;
1102    } else if (offset < 0x1000) {
1103        if (offset & 3) {
1104            res = 0;
1105        } else {
1106            switch (s->revision) {
1107            case REV_11MPCORE:
1108                res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1109                break;
1110            case 1:
1111                res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1112                break;
1113            case 2:
1114                res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1115                break;
1116            default:
1117                res = 0;
1118            }
1119        }
1120    } else {
1121        g_assert_not_reached();
1122    }
1123    return res;
1124bad_reg:
1125    qemu_log_mask(LOG_GUEST_ERROR,
1126                  "gic_dist_readb: Bad offset %x\n", (int)offset);
1127    return 0;
1128}
1129
1130static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1131                                 unsigned size, MemTxAttrs attrs)
1132{
1133    switch (size) {
1134    case 1:
1135        *data = gic_dist_readb(opaque, offset, attrs);
1136        break;
1137    case 2:
1138        *data = gic_dist_readb(opaque, offset, attrs);
1139        *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1140        break;
1141    case 4:
1142        *data = gic_dist_readb(opaque, offset, attrs);
1143        *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1144        *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1145        *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1146        break;
1147    default:
1148        return MEMTX_ERROR;
1149    }
1150
1151    trace_gic_dist_read(offset, size, *data);
1152    return MEMTX_OK;
1153}
1154
1155static void gic_dist_writeb(void *opaque, hwaddr offset,
1156                            uint32_t value, MemTxAttrs attrs)
1157{
1158    GICState *s = (GICState *)opaque;
1159    int irq;
1160    int i;
1161    int cpu;
1162
1163    cpu = gic_get_current_cpu(s);
1164    if (offset < 0x100) {
1165        if (offset == 0) {
1166            if (s->security_extn && !attrs.secure) {
1167                /* NS version is just an alias of the S version's bit 1 */
1168                s->ctlr = deposit32(s->ctlr, 1, 1, value);
1169            } else if (gic_has_groups(s)) {
1170                s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1171            } else {
1172                s->ctlr = value & GICD_CTLR_EN_GRP0;
1173            }
1174            DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1175                    s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1176                    s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1177        } else if (offset < 4) {
1178            /* ignored.  */
1179        } else if (offset >= 0x80) {
1180            /* Interrupt Group Registers: RAZ/WI for NS access to secure
1181             * GIC, or for GICs without groups.
1182             */
1183            if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1184                /* Every byte offset holds 8 group status bits */
1185                irq = (offset - 0x80) * 8;
1186                if (irq >= s->num_irq) {
1187                    goto bad_reg;
1188                }
1189                for (i = 0; i < 8; i++) {
1190                    /* Group bits are banked for private interrupts */
1191                    int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1192                    if (value & (1 << i)) {
1193                        /* Group1 (Non-secure) */
1194                        GIC_DIST_SET_GROUP(irq + i, cm);
1195                    } else {
1196                        /* Group0 (Secure) */
1197                        GIC_DIST_CLEAR_GROUP(irq + i, cm);
1198                    }
1199                }
1200            }
1201        } else {
1202            goto bad_reg;
1203        }
1204    } else if (offset < 0x180) {
1205        /* Interrupt Set Enable.  */
1206        irq = (offset - 0x100) * 8;
1207        if (irq >= s->num_irq)
1208            goto bad_reg;
1209        if (irq < GIC_NR_SGIS) {
1210            value = 0xff;
1211        }
1212
1213        for (i = 0; i < 8; i++) {
1214            if (value & (1 << i)) {
1215                int mask =
1216                    (irq < GIC_INTERNAL) ? (1 << cpu)
1217                                         : GIC_DIST_TARGET(irq + i);
1218                int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1219
1220                if (s->security_extn && !attrs.secure &&
1221                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1222                    continue; /* Ignore Non-secure access of Group0 IRQ */
1223                }
1224
1225                if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1226                    DPRINTF("Enabled IRQ %d\n", irq + i);
1227                    trace_gic_enable_irq(irq + i);
1228                }
1229                GIC_DIST_SET_ENABLED(irq + i, cm);
1230                /* If a raised level triggered IRQ enabled then mark
1231                   is as pending.  */
1232                if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1233                        && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1234                    DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1235                    GIC_DIST_SET_PENDING(irq + i, mask);
1236                }
1237            }
1238        }
1239    } else if (offset < 0x200) {
1240        /* Interrupt Clear Enable.  */
1241        irq = (offset - 0x180) * 8;
1242        if (irq >= s->num_irq)
1243            goto bad_reg;
1244        if (irq < GIC_NR_SGIS) {
1245            value = 0;
1246        }
1247
1248        for (i = 0; i < 8; i++) {
1249            if (value & (1 << i)) {
1250                int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1251
1252                if (s->security_extn && !attrs.secure &&
1253                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1254                    continue; /* Ignore Non-secure access of Group0 IRQ */
1255                }
1256
1257                if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1258                    DPRINTF("Disabled IRQ %d\n", irq + i);
1259                    trace_gic_disable_irq(irq + i);
1260                }
1261                GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1262            }
1263        }
1264    } else if (offset < 0x280) {
1265        /* Interrupt Set Pending.  */
1266        irq = (offset - 0x200) * 8;
1267        if (irq >= s->num_irq)
1268            goto bad_reg;
1269        if (irq < GIC_NR_SGIS) {
1270            value = 0;
1271        }
1272
1273        for (i = 0; i < 8; i++) {
1274            if (value & (1 << i)) {
1275                if (s->security_extn && !attrs.secure &&
1276                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1277                    continue; /* Ignore Non-secure access of Group0 IRQ */
1278                }
1279
1280                GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1281            }
1282        }
1283    } else if (offset < 0x300) {
1284        /* Interrupt Clear Pending.  */
1285        irq = (offset - 0x280) * 8;
1286        if (irq >= s->num_irq)
1287            goto bad_reg;
1288        if (irq < GIC_NR_SGIS) {
1289            value = 0;
1290        }
1291
1292        for (i = 0; i < 8; i++) {
1293            if (s->security_extn && !attrs.secure &&
1294                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1295                continue; /* Ignore Non-secure access of Group0 IRQ */
1296            }
1297
1298            /* ??? This currently clears the pending bit for all CPUs, even
1299               for per-CPU interrupts.  It's unclear whether this is the
1300               corect behavior.  */
1301            if (value & (1 << i)) {
1302                GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1303            }
1304        }
1305    } else if (offset < 0x380) {
1306        /* Interrupt Set Active.  */
1307        if (s->revision != 2) {
1308            goto bad_reg;
1309        }
1310
1311        irq = (offset - 0x300) * 8;
1312        if (irq >= s->num_irq) {
1313            goto bad_reg;
1314        }
1315
1316        /* This register is banked per-cpu for PPIs */
1317        int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1318
1319        for (i = 0; i < 8; i++) {
1320            if (s->security_extn && !attrs.secure &&
1321                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1322                continue; /* Ignore Non-secure access of Group0 IRQ */
1323            }
1324
1325            if (value & (1 << i)) {
1326                GIC_DIST_SET_ACTIVE(irq + i, cm);
1327            }
1328        }
1329    } else if (offset < 0x400) {
1330        /* Interrupt Clear Active.  */
1331        if (s->revision != 2) {
1332            goto bad_reg;
1333        }
1334
1335        irq = (offset - 0x380) * 8;
1336        if (irq >= s->num_irq) {
1337            goto bad_reg;
1338        }
1339
1340        /* This register is banked per-cpu for PPIs */
1341        int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1342
1343        for (i = 0; i < 8; i++) {
1344            if (s->security_extn && !attrs.secure &&
1345                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1346                continue; /* Ignore Non-secure access of Group0 IRQ */
1347            }
1348
1349            if (value & (1 << i)) {
1350                GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1351            }
1352        }
1353    } else if (offset < 0x800) {
1354        /* Interrupt Priority.  */
1355        irq = (offset - 0x400);
1356        if (irq >= s->num_irq)
1357            goto bad_reg;
1358        gic_dist_set_priority(s, cpu, irq, value, attrs);
1359    } else if (offset < 0xc00) {
1360        /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1361         * annoying exception of the 11MPCore's GIC.
1362         */
1363        if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1364            irq = (offset - 0x800);
1365            if (irq >= s->num_irq) {
1366                goto bad_reg;
1367            }
1368            if (irq < 29 && s->revision == REV_11MPCORE) {
1369                value = 0;
1370            } else if (irq < GIC_INTERNAL) {
1371                value = ALL_CPU_MASK;
1372            }
1373            s->irq_target[irq] = value & ALL_CPU_MASK;
1374        }
1375    } else if (offset < 0xf00) {
1376        /* Interrupt Configuration.  */
1377        irq = (offset - 0xc00) * 4;
1378        if (irq >= s->num_irq)
1379            goto bad_reg;
1380        if (irq < GIC_NR_SGIS)
1381            value |= 0xaa;
1382        for (i = 0; i < 4; i++) {
1383            if (s->security_extn && !attrs.secure &&
1384                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1385                continue; /* Ignore Non-secure access of Group0 IRQ */
1386            }
1387
1388            if (s->revision == REV_11MPCORE) {
1389                if (value & (1 << (i * 2))) {
1390                    GIC_DIST_SET_MODEL(irq + i);
1391                } else {
1392                    GIC_DIST_CLEAR_MODEL(irq + i);
1393                }
1394            }
1395            if (value & (2 << (i * 2))) {
1396                GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1397            } else {
1398                GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1399            }
1400        }
1401    } else if (offset < 0xf10) {
1402        /* 0xf00 is only handled for 32-bit writes.  */
1403        goto bad_reg;
1404    } else if (offset < 0xf20) {
1405        /* GICD_CPENDSGIRn */
1406        if (s->revision == REV_11MPCORE) {
1407            goto bad_reg;
1408        }
1409        irq = (offset - 0xf10);
1410
1411        if (!s->security_extn || attrs.secure ||
1412            GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1413            s->sgi_pending[irq][cpu] &= ~value;
1414            if (s->sgi_pending[irq][cpu] == 0) {
1415                GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1416            }
1417        }
1418    } else if (offset < 0xf30) {
1419        /* GICD_SPENDSGIRn */
1420        if (s->revision == REV_11MPCORE) {
1421            goto bad_reg;
1422        }
1423        irq = (offset - 0xf20);
1424
1425        if (!s->security_extn || attrs.secure ||
1426            GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1427            GIC_DIST_SET_PENDING(irq, 1 << cpu);
1428            s->sgi_pending[irq][cpu] |= value;
1429        }
1430    } else {
1431        goto bad_reg;
1432    }
1433    gic_update(s);
1434    return;
1435bad_reg:
1436    qemu_log_mask(LOG_GUEST_ERROR,
1437                  "gic_dist_writeb: Bad offset %x\n", (int)offset);
1438}
1439
1440static void gic_dist_writew(void *opaque, hwaddr offset,
1441                            uint32_t value, MemTxAttrs attrs)
1442{
1443    gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1444    gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1445}
1446
1447static void gic_dist_writel(void *opaque, hwaddr offset,
1448                            uint32_t value, MemTxAttrs attrs)
1449{
1450    GICState *s = (GICState *)opaque;
1451    if (offset == 0xf00) {
1452        int cpu;
1453        int irq;
1454        int mask;
1455        int target_cpu;
1456
1457        cpu = gic_get_current_cpu(s);
1458        irq = value & 0x3ff;
1459        switch ((value >> 24) & 3) {
1460        case 0:
1461            mask = (value >> 16) & ALL_CPU_MASK;
1462            break;
1463        case 1:
1464            mask = ALL_CPU_MASK ^ (1 << cpu);
1465            break;
1466        case 2:
1467            mask = 1 << cpu;
1468            break;
1469        default:
1470            DPRINTF("Bad Soft Int target filter\n");
1471            mask = ALL_CPU_MASK;
1472            break;
1473        }
1474        GIC_DIST_SET_PENDING(irq, mask);
1475        target_cpu = ctz32(mask);
1476        while (target_cpu < GIC_NCPU) {
1477            s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1478            mask &= ~(1 << target_cpu);
1479            target_cpu = ctz32(mask);
1480        }
1481        gic_update(s);
1482        return;
1483    }
1484    gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1485    gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1486}
1487
1488static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1489                                  unsigned size, MemTxAttrs attrs)
1490{
1491    trace_gic_dist_write(offset, size, data);
1492
1493    switch (size) {
1494    case 1:
1495        gic_dist_writeb(opaque, offset, data, attrs);
1496        return MEMTX_OK;
1497    case 2:
1498        gic_dist_writew(opaque, offset, data, attrs);
1499        return MEMTX_OK;
1500    case 4:
1501        gic_dist_writel(opaque, offset, data, attrs);
1502        return MEMTX_OK;
1503    default:
1504        return MEMTX_ERROR;
1505    }
1506}
1507
1508static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1509{
1510    /* Return the Nonsecure view of GICC_APR<regno>. This is the
1511     * second half of GICC_NSAPR.
1512     */
1513    switch (GIC_MIN_BPR) {
1514    case 0:
1515        if (regno < 2) {
1516            return s->nsapr[regno + 2][cpu];
1517        }
1518        break;
1519    case 1:
1520        if (regno == 0) {
1521            return s->nsapr[regno + 1][cpu];
1522        }
1523        break;
1524    case 2:
1525        if (regno == 0) {
1526            return extract32(s->nsapr[0][cpu], 16, 16);
1527        }
1528        break;
1529    case 3:
1530        if (regno == 0) {
1531            return extract32(s->nsapr[0][cpu], 8, 8);
1532        }
1533        break;
1534    default:
1535        g_assert_not_reached();
1536    }
1537    return 0;
1538}
1539
1540static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1541                                         uint32_t value)
1542{
1543    /* Write the Nonsecure view of GICC_APR<regno>. */
1544    switch (GIC_MIN_BPR) {
1545    case 0:
1546        if (regno < 2) {
1547            s->nsapr[regno + 2][cpu] = value;
1548        }
1549        break;
1550    case 1:
1551        if (regno == 0) {
1552            s->nsapr[regno + 1][cpu] = value;
1553        }
1554        break;
1555    case 2:
1556        if (regno == 0) {
1557            s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1558        }
1559        break;
1560    case 3:
1561        if (regno == 0) {
1562            s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1563        }
1564        break;
1565    default:
1566        g_assert_not_reached();
1567    }
1568}
1569
1570static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1571                                uint64_t *data, MemTxAttrs attrs)
1572{
1573    switch (offset) {
1574    case 0x00: /* Control */
1575        *data = gic_get_cpu_control(s, cpu, attrs);
1576        break;
1577    case 0x04: /* Priority mask */
1578        *data = gic_get_priority_mask(s, cpu, attrs);
1579        break;
1580    case 0x08: /* Binary Point */
1581        if (gic_cpu_ns_access(s, cpu, attrs)) {
1582            if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1583                /* NS view of BPR when CBPR is 1 */
1584                *data = MIN(s->bpr[cpu] + 1, 7);
1585            } else {
1586                /* BPR is banked. Non-secure copy stored in ABPR. */
1587                *data = s->abpr[cpu];
1588            }
1589        } else {
1590            *data = s->bpr[cpu];
1591        }
1592        break;
1593    case 0x0c: /* Acknowledge */
1594        *data = gic_acknowledge_irq(s, cpu, attrs);
1595        break;
1596    case 0x14: /* Running Priority */
1597        *data = gic_get_running_priority(s, cpu, attrs);
1598        break;
1599    case 0x18: /* Highest Pending Interrupt */
1600        *data = gic_get_current_pending_irq(s, cpu, attrs);
1601        break;
1602    case 0x1c: /* Aliased Binary Point */
1603        /* GIC v2, no security: ABPR
1604         * GIC v1, no security: not implemented (RAZ/WI)
1605         * With security extensions, secure access: ABPR (alias of NS BPR)
1606         * With security extensions, nonsecure access: RAZ/WI
1607         */
1608        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1609            *data = 0;
1610        } else {
1611            *data = s->abpr[cpu];
1612        }
1613        break;
1614    case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1615    {
1616        int regno = (offset - 0xd0) / 4;
1617        int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1618
1619        if (regno >= nr_aprs || s->revision != 2) {
1620            *data = 0;
1621        } else if (gic_is_vcpu(cpu)) {
1622            *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1623        } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1624            /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1625            *data = gic_apr_ns_view(s, regno, cpu);
1626        } else {
1627            *data = s->apr[regno][cpu];
1628        }
1629        break;
1630    }
1631    case 0xe0: case 0xe4: case 0xe8: case 0xec:
1632    {
1633        int regno = (offset - 0xe0) / 4;
1634
1635        if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1636            gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1637            *data = 0;
1638        } else {
1639            *data = s->nsapr[regno][cpu];
1640        }
1641        break;
1642    }
1643    default:
1644        qemu_log_mask(LOG_GUEST_ERROR,
1645                      "gic_cpu_read: Bad offset %x\n", (int)offset);
1646        *data = 0;
1647        break;
1648    }
1649
1650    trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1651                       gic_get_vcpu_real_id(cpu), offset, *data);
1652    return MEMTX_OK;
1653}
1654
1655static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1656                                 uint32_t value, MemTxAttrs attrs)
1657{
1658    trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1659                        gic_get_vcpu_real_id(cpu), offset, value);
1660
1661    switch (offset) {
1662    case 0x00: /* Control */
1663        gic_set_cpu_control(s, cpu, value, attrs);
1664        break;
1665    case 0x04: /* Priority mask */
1666        gic_set_priority_mask(s, cpu, value, attrs);
1667        break;
1668    case 0x08: /* Binary Point */
1669        if (gic_cpu_ns_access(s, cpu, attrs)) {
1670            if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1671                /* WI when CBPR is 1 */
1672                return MEMTX_OK;
1673            } else {
1674                s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1675            }
1676        } else {
1677            int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1678            s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1679        }
1680        break;
1681    case 0x10: /* End Of Interrupt */
1682        gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1683        return MEMTX_OK;
1684    case 0x1c: /* Aliased Binary Point */
1685        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1686            /* unimplemented, or NS access: RAZ/WI */
1687            return MEMTX_OK;
1688        } else {
1689            s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1690        }
1691        break;
1692    case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1693    {
1694        int regno = (offset - 0xd0) / 4;
1695        int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1696
1697        if (regno >= nr_aprs || s->revision != 2) {
1698            return MEMTX_OK;
1699        }
1700        if (gic_is_vcpu(cpu)) {
1701            s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1702        } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1703            /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1704            gic_apr_write_ns_view(s, regno, cpu, value);
1705        } else {
1706            s->apr[regno][cpu] = value;
1707        }
1708        break;
1709    }
1710    case 0xe0: case 0xe4: case 0xe8: case 0xec:
1711    {
1712        int regno = (offset - 0xe0) / 4;
1713
1714        if (regno >= GIC_NR_APRS || s->revision != 2) {
1715            return MEMTX_OK;
1716        }
1717        if (gic_is_vcpu(cpu)) {
1718            return MEMTX_OK;
1719        }
1720        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1721            return MEMTX_OK;
1722        }
1723        s->nsapr[regno][cpu] = value;
1724        break;
1725    }
1726    case 0x1000:
1727        /* GICC_DIR */
1728        gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1729        break;
1730    default:
1731        qemu_log_mask(LOG_GUEST_ERROR,
1732                      "gic_cpu_write: Bad offset %x\n", (int)offset);
1733        return MEMTX_OK;
1734    }
1735
1736    if (gic_is_vcpu(cpu)) {
1737        gic_update_virt(s);
1738    } else {
1739        gic_update(s);
1740    }
1741
1742    return MEMTX_OK;
1743}
1744
1745/* Wrappers to read/write the GIC CPU interface for the current CPU */
1746static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1747                                    unsigned size, MemTxAttrs attrs)
1748{
1749    GICState *s = (GICState *)opaque;
1750    return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1751}
1752
1753static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1754                                     uint64_t value, unsigned size,
1755                                     MemTxAttrs attrs)
1756{
1757    GICState *s = (GICState *)opaque;
1758    return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1759}
1760
1761/* Wrappers to read/write the GIC CPU interface for a specific CPU.
1762 * These just decode the opaque pointer into GICState* + cpu id.
1763 */
1764static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1765                                   unsigned size, MemTxAttrs attrs)
1766{
1767    GICState **backref = (GICState **)opaque;
1768    GICState *s = *backref;
1769    int id = (backref - s->backref);
1770    return gic_cpu_read(s, id, addr, data, attrs);
1771}
1772
1773static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1774                                    uint64_t value, unsigned size,
1775                                    MemTxAttrs attrs)
1776{
1777    GICState **backref = (GICState **)opaque;
1778    GICState *s = *backref;
1779    int id = (backref - s->backref);
1780    return gic_cpu_write(s, id, addr, value, attrs);
1781}
1782
1783static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1784                                    unsigned size, MemTxAttrs attrs)
1785{
1786    GICState *s = (GICState *)opaque;
1787
1788    return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1789}
1790
1791static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1792                                     uint64_t value, unsigned size,
1793                                     MemTxAttrs attrs)
1794{
1795    GICState *s = (GICState *)opaque;
1796
1797    return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1798}
1799
1800static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1801{
1802    int lr_idx;
1803    uint32_t ret = 0;
1804
1805    for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1806        uint32_t *entry = &s->h_lr[lr_idx][cpu];
1807        ret = deposit32(ret, lr_idx - lr_start, 1,
1808                        gic_lr_entry_is_eoi(*entry));
1809    }
1810
1811    return ret;
1812}
1813
1814static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1815{
1816    int lr_idx;
1817    uint32_t ret = 0;
1818
1819    for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1820        uint32_t *entry = &s->h_lr[lr_idx][cpu];
1821        ret = deposit32(ret, lr_idx - lr_start, 1,
1822                        gic_lr_entry_is_free(*entry));
1823    }
1824
1825    return ret;
1826}
1827
1828static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1829{
1830    int vcpu = gic_get_current_vcpu(s);
1831    uint32_t ctlr;
1832    uint32_t abpr;
1833    uint32_t bpr;
1834    uint32_t prio_mask;
1835
1836    ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1837    abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1838    bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1839    prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1840
1841    gic_set_cpu_control(s, vcpu, ctlr, attrs);
1842    s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1843    s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1844    gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1845}
1846
1847static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1848                                uint64_t *data, MemTxAttrs attrs)
1849{
1850    GICState *s = ARM_GIC(opaque);
1851    int vcpu = cpu + GIC_NCPU;
1852
1853    switch (addr) {
1854    case A_GICH_HCR: /* Hypervisor Control */
1855        *data = s->h_hcr[cpu];
1856        break;
1857
1858    case A_GICH_VTR: /* VGIC Type */
1859        *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1860        *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1861                           GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1862        *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1863                           (7 - GIC_VIRT_MIN_BPR) - 1);
1864        break;
1865
1866    case A_GICH_VMCR: /* Virtual Machine Control */
1867        *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1868                           extract32(s->cpu_ctlr[vcpu], 0, 10));
1869        *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1870        *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1871        *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1872                           extract32(s->priority_mask[vcpu], 3, 5));
1873        break;
1874
1875    case A_GICH_MISR: /* Maintenance Interrupt Status */
1876        *data = s->h_misr[cpu];
1877        break;
1878
1879    case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1880    case A_GICH_EISR1:
1881        *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1882        break;
1883
1884    case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1885    case A_GICH_ELRSR1:
1886        *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1887        break;
1888
1889    case A_GICH_APR: /* Active Priorities */
1890        *data = s->h_apr[cpu];
1891        break;
1892
1893    case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1894    {
1895        int lr_idx = (addr - A_GICH_LR0) / 4;
1896
1897        if (lr_idx > s->num_lrs) {
1898            *data = 0;
1899        } else {
1900            *data = s->h_lr[lr_idx][cpu];
1901        }
1902        break;
1903    }
1904
1905    default:
1906        qemu_log_mask(LOG_GUEST_ERROR,
1907                      "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1908        return MEMTX_OK;
1909    }
1910
1911    trace_gic_hyp_read(addr, *data);
1912    return MEMTX_OK;
1913}
1914
1915static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1916                                 uint64_t value, MemTxAttrs attrs)
1917{
1918    GICState *s = ARM_GIC(opaque);
1919    int vcpu = cpu + GIC_NCPU;
1920
1921    trace_gic_hyp_write(addr, value);
1922
1923    switch (addr) {
1924    case A_GICH_HCR: /* Hypervisor Control */
1925        s->h_hcr[cpu] = value & GICH_HCR_MASK;
1926        break;
1927
1928    case A_GICH_VMCR: /* Virtual Machine Control */
1929        gic_vmcr_write(s, value, attrs);
1930        break;
1931
1932    case A_GICH_APR: /* Active Priorities */
1933        s->h_apr[cpu] = value;
1934        s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1935        break;
1936
1937    case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1938    {
1939        int lr_idx = (addr - A_GICH_LR0) / 4;
1940
1941        if (lr_idx > s->num_lrs) {
1942            return MEMTX_OK;
1943        }
1944
1945        s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1946        trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1947        break;
1948    }
1949
1950    default:
1951        qemu_log_mask(LOG_GUEST_ERROR,
1952                      "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1953        return MEMTX_OK;
1954    }
1955
1956    gic_update_virt(s);
1957    return MEMTX_OK;
1958}
1959
1960static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1961                                    unsigned size, MemTxAttrs attrs)
1962{
1963    GICState *s = (GICState *)opaque;
1964
1965    return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1966}
1967
1968static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1969                                     uint64_t value, unsigned size,
1970                                     MemTxAttrs attrs)
1971{
1972    GICState *s = (GICState *)opaque;
1973
1974    return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1975}
1976
1977static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1978                                    unsigned size, MemTxAttrs attrs)
1979{
1980    GICState **backref = (GICState **)opaque;
1981    GICState *s = *backref;
1982    int id = (backref - s->backref);
1983
1984    return gic_hyp_read(s, id, addr, data, attrs);
1985}
1986
1987static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
1988                                     uint64_t value, unsigned size,
1989                                     MemTxAttrs attrs)
1990{
1991    GICState **backref = (GICState **)opaque;
1992    GICState *s = *backref;
1993    int id = (backref - s->backref);
1994
1995    return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
1996
1997}
1998
1999static const MemoryRegionOps gic_ops[2] = {
2000    {
2001        .read_with_attrs = gic_dist_read,
2002        .write_with_attrs = gic_dist_write,
2003        .endianness = DEVICE_NATIVE_ENDIAN,
2004    },
2005    {
2006        .read_with_attrs = gic_thiscpu_read,
2007        .write_with_attrs = gic_thiscpu_write,
2008        .endianness = DEVICE_NATIVE_ENDIAN,
2009    }
2010};
2011
2012static const MemoryRegionOps gic_cpu_ops = {
2013    .read_with_attrs = gic_do_cpu_read,
2014    .write_with_attrs = gic_do_cpu_write,
2015    .endianness = DEVICE_NATIVE_ENDIAN,
2016};
2017
2018static const MemoryRegionOps gic_virt_ops[2] = {
2019    {
2020        .read_with_attrs = gic_thiscpu_hyp_read,
2021        .write_with_attrs = gic_thiscpu_hyp_write,
2022        .endianness = DEVICE_NATIVE_ENDIAN,
2023    },
2024    {
2025        .read_with_attrs = gic_thisvcpu_read,
2026        .write_with_attrs = gic_thisvcpu_write,
2027        .endianness = DEVICE_NATIVE_ENDIAN,
2028    }
2029};
2030
2031static const MemoryRegionOps gic_viface_ops = {
2032    .read_with_attrs = gic_do_hyp_read,
2033    .write_with_attrs = gic_do_hyp_write,
2034    .endianness = DEVICE_NATIVE_ENDIAN,
2035};
2036
2037static void arm_gic_realize(DeviceState *dev, Error **errp)
2038{
2039    /* Device instance realize function for the GIC sysbus device */
2040    int i;
2041    GICState *s = ARM_GIC(dev);
2042    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2043    ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2044    Error *local_err = NULL;
2045
2046    agc->parent_realize(dev, &local_err);
2047    if (local_err) {
2048        error_propagate(errp, local_err);
2049        return;
2050    }
2051
2052    if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2053        error_setg(errp, "KVM with user space irqchip only works when the "
2054                         "host kernel supports KVM_CAP_ARM_USER_IRQ");
2055        return;
2056    }
2057
2058    /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2059     * enabled, virtualization extensions related interfaces (main virtual
2060     * interface (s->vifaceiomem[0]) and virtual CPU interface).
2061     */
2062    gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2063
2064    /* Extra core-specific regions for the CPU interfaces. This is
2065     * necessary for "franken-GIC" implementations, for example on
2066     * Exynos 4.
2067     * NB that the memory region size of 0x100 applies for the 11MPCore
2068     * and also cores following the GIC v1 spec (ie A9).
2069     * GIC v2 defines a larger memory region (0x1000) so this will need
2070     * to be extended when we implement A15.
2071     */
2072    for (i = 0; i < s->num_cpu; i++) {
2073        s->backref[i] = s;
2074        memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2075                              &s->backref[i], "gic_cpu", 0x100);
2076        sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2077    }
2078
2079    /* Extra core-specific regions for virtual interfaces. This is required by
2080     * the GICv2 specification.
2081     */
2082    if (s->virt_extn) {
2083        for (i = 0; i < s->num_cpu; i++) {
2084            memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2085                                  &gic_viface_ops, &s->backref[i],
2086                                  "gic_viface", 0x200);
2087            sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2088        }
2089    }
2090
2091}
2092
2093static void arm_gic_class_init(ObjectClass *klass, void *data)
2094{
2095    DeviceClass *dc = DEVICE_CLASS(klass);
2096    ARMGICClass *agc = ARM_GIC_CLASS(klass);
2097
2098    device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2099}
2100
2101static const TypeInfo arm_gic_info = {
2102    .name = TYPE_ARM_GIC,
2103    .parent = TYPE_ARM_GIC_COMMON,
2104    .instance_size = sizeof(GICState),
2105    .class_init = arm_gic_class_init,
2106    .class_size = sizeof(ARMGICClass),
2107};
2108
2109static void arm_gic_register_types(void)
2110{
2111    type_register_static(&arm_gic_info);
2112}
2113
2114type_init(arm_gic_register_types)
2115