qemu/hw/net/e1000e_core.c
<<
>>
Prefs
   1/*
   2* Core code for QEMU e1000e emulation
   3*
   4* Software developer's manuals:
   5* http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
   6*
   7* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
   8* Developed by Daynix Computing LTD (http://www.daynix.com)
   9*
  10* Authors:
  11* Dmitry Fleytman <dmitry@daynix.com>
  12* Leonid Bloch <leonid@daynix.com>
  13* Yan Vugenfirer <yan@daynix.com>
  14*
  15* Based on work done by:
  16* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
  17* Copyright (c) 2008 Qumranet
  18* Based on work done by:
  19* Copyright (c) 2007 Dan Aloni
  20* Copyright (c) 2004 Antony T Curtis
  21*
  22* This library is free software; you can redistribute it and/or
  23* modify it under the terms of the GNU Lesser General Public
  24* License as published by the Free Software Foundation; either
  25* version 2 of the License, or (at your option) any later version.
  26*
  27* This library is distributed in the hope that it will be useful,
  28* but WITHOUT ANY WARRANTY; without even the implied warranty of
  29* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  30* Lesser General Public License for more details.
  31*
  32* You should have received a copy of the GNU Lesser General Public
  33* License along with this library; if not, see <http://www.gnu.org/licenses/>.
  34*/
  35
  36#include "qemu/osdep.h"
  37#include "net/net.h"
  38#include "net/tap.h"
  39#include "hw/hw.h"
  40#include "hw/pci/msi.h"
  41#include "hw/pci/msix.h"
  42#include "sysemu/runstate.h"
  43
  44#include "net_tx_pkt.h"
  45#include "net_rx_pkt.h"
  46
  47#include "e1000x_common.h"
  48#include "e1000e_core.h"
  49
  50#include "trace.h"
  51
  52#define E1000E_MIN_XITR     (500) /* No more then 7813 interrupts per
  53                                     second according to spec 10.2.4.2 */
  54#define E1000E_MAX_TX_FRAGS (64)
  55
  56static inline void
  57e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
  58
  59static inline void
  60e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
  61{
  62    if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
  63        trace_e1000e_wrn_no_ts_support();
  64    }
  65}
  66
  67static inline void
  68e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
  69{
  70    if (cmd_and_length & E1000_TXD_CMD_SNAP) {
  71        trace_e1000e_wrn_no_snap_support();
  72    }
  73}
  74
  75static inline void
  76e1000e_raise_legacy_irq(E1000ECore *core)
  77{
  78    trace_e1000e_irq_legacy_notify(true);
  79    e1000x_inc_reg_if_not_full(core->mac, IAC);
  80    pci_set_irq(core->owner, 1);
  81}
  82
  83static inline void
  84e1000e_lower_legacy_irq(E1000ECore *core)
  85{
  86    trace_e1000e_irq_legacy_notify(false);
  87    pci_set_irq(core->owner, 0);
  88}
  89
  90static inline void
  91e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
  92{
  93    int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
  94                                 timer->delay_resolution_ns;
  95
  96    trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
  97
  98    timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
  99
 100    timer->running = true;
 101}
 102
 103static void
 104e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
 105{
 106    if (timer->running) {
 107        e1000e_intrmgr_rearm_timer(timer);
 108    }
 109}
 110
 111static void
 112e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
 113{
 114    if (timer->running) {
 115        timer_del(timer->timer);
 116    }
 117}
 118
 119static inline void
 120e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
 121{
 122    if (timer->running) {
 123        timer_del(timer->timer);
 124        timer->running = false;
 125    }
 126}
 127
 128static inline void
 129e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
 130{
 131    trace_e1000e_irq_fire_delayed_interrupts();
 132    e1000e_set_interrupt_cause(core, 0);
 133}
 134
 135static void
 136e1000e_intrmgr_on_timer(void *opaque)
 137{
 138    E1000IntrDelayTimer *timer = opaque;
 139
 140    trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
 141
 142    timer->running = false;
 143    e1000e_intrmgr_fire_delayed_interrupts(timer->core);
 144}
 145
 146static void
 147e1000e_intrmgr_on_throttling_timer(void *opaque)
 148{
 149    E1000IntrDelayTimer *timer = opaque;
 150
 151    assert(!msix_enabled(timer->core->owner));
 152
 153    timer->running = false;
 154
 155    if (!timer->core->itr_intr_pending) {
 156        trace_e1000e_irq_throttling_no_pending_interrupts();
 157        return;
 158    }
 159
 160    if (msi_enabled(timer->core->owner)) {
 161        trace_e1000e_irq_msi_notify_postponed();
 162        e1000e_set_interrupt_cause(timer->core, 0);
 163    } else {
 164        trace_e1000e_irq_legacy_notify_postponed();
 165        e1000e_set_interrupt_cause(timer->core, 0);
 166    }
 167}
 168
 169static void
 170e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
 171{
 172    E1000IntrDelayTimer *timer = opaque;
 173    int idx = timer - &timer->core->eitr[0];
 174
 175    assert(msix_enabled(timer->core->owner));
 176
 177    timer->running = false;
 178
 179    if (!timer->core->eitr_intr_pending[idx]) {
 180        trace_e1000e_irq_throttling_no_pending_vec(idx);
 181        return;
 182    }
 183
 184    trace_e1000e_irq_msix_notify_postponed_vec(idx);
 185    msix_notify(timer->core->owner, idx);
 186}
 187
 188static void
 189e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
 190{
 191    int i;
 192
 193    core->radv.delay_reg = RADV;
 194    core->rdtr.delay_reg = RDTR;
 195    core->raid.delay_reg = RAID;
 196    core->tadv.delay_reg = TADV;
 197    core->tidv.delay_reg = TIDV;
 198
 199    core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
 200    core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
 201    core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
 202    core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
 203    core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
 204
 205    core->radv.core = core;
 206    core->rdtr.core = core;
 207    core->raid.core = core;
 208    core->tadv.core = core;
 209    core->tidv.core = core;
 210
 211    core->itr.core = core;
 212    core->itr.delay_reg = ITR;
 213    core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
 214
 215    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 216        core->eitr[i].core = core;
 217        core->eitr[i].delay_reg = EITR + i;
 218        core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
 219    }
 220
 221    if (!create) {
 222        return;
 223    }
 224
 225    core->radv.timer =
 226        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
 227    core->rdtr.timer =
 228        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
 229    core->raid.timer =
 230        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
 231
 232    core->tadv.timer =
 233        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
 234    core->tidv.timer =
 235        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
 236
 237    core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 238                                   e1000e_intrmgr_on_throttling_timer,
 239                                   &core->itr);
 240
 241    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 242        core->eitr[i].timer =
 243            timer_new_ns(QEMU_CLOCK_VIRTUAL,
 244                         e1000e_intrmgr_on_msix_throttling_timer,
 245                         &core->eitr[i]);
 246    }
 247}
 248
 249static inline void
 250e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
 251{
 252    e1000e_intrmgr_stop_timer(&core->radv);
 253    e1000e_intrmgr_stop_timer(&core->rdtr);
 254    e1000e_intrmgr_stop_timer(&core->raid);
 255    e1000e_intrmgr_stop_timer(&core->tidv);
 256    e1000e_intrmgr_stop_timer(&core->tadv);
 257}
 258
 259static bool
 260e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
 261{
 262    uint32_t delayable_causes;
 263    uint32_t rdtr = core->mac[RDTR];
 264    uint32_t radv = core->mac[RADV];
 265    uint32_t raid = core->mac[RAID];
 266
 267    if (msix_enabled(core->owner)) {
 268        return false;
 269    }
 270
 271    delayable_causes = E1000_ICR_RXQ0 |
 272                       E1000_ICR_RXQ1 |
 273                       E1000_ICR_RXT0;
 274
 275    if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
 276        delayable_causes |= E1000_ICR_ACK;
 277    }
 278
 279    /* Clean up all causes that may be delayed */
 280    core->delayed_causes |= *causes & delayable_causes;
 281    *causes &= ~delayable_causes;
 282
 283    /* Check if delayed RX interrupts disabled by client
 284       or if there are causes that cannot be delayed */
 285    if ((rdtr == 0) || (*causes != 0)) {
 286        return false;
 287    }
 288
 289    /* Check if delayed RX ACK interrupts disabled by client
 290       and there is an ACK packet received */
 291    if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
 292        return false;
 293    }
 294
 295    /* All causes delayed */
 296    e1000e_intrmgr_rearm_timer(&core->rdtr);
 297
 298    if (!core->radv.running && (radv != 0)) {
 299        e1000e_intrmgr_rearm_timer(&core->radv);
 300    }
 301
 302    if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
 303        e1000e_intrmgr_rearm_timer(&core->raid);
 304    }
 305
 306    return true;
 307}
 308
 309static bool
 310e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
 311{
 312    static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
 313                                             E1000_ICR_TXQ1 |
 314                                             E1000_ICR_TXQE |
 315                                             E1000_ICR_TXDW;
 316
 317    if (msix_enabled(core->owner)) {
 318        return false;
 319    }
 320
 321    /* Clean up all causes that may be delayed */
 322    core->delayed_causes |= *causes & delayable_causes;
 323    *causes &= ~delayable_causes;
 324
 325    /* If there are causes that cannot be delayed */
 326    if (*causes != 0) {
 327        return false;
 328    }
 329
 330    /* All causes delayed */
 331    e1000e_intrmgr_rearm_timer(&core->tidv);
 332
 333    if (!core->tadv.running && (core->mac[TADV] != 0)) {
 334        e1000e_intrmgr_rearm_timer(&core->tadv);
 335    }
 336
 337    return true;
 338}
 339
 340static uint32_t
 341e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
 342{
 343    uint32_t res;
 344
 345    if (msix_enabled(core->owner)) {
 346        assert(core->delayed_causes == 0);
 347        return 0;
 348    }
 349
 350    res = core->delayed_causes;
 351    core->delayed_causes = 0;
 352
 353    e1000e_intrmgr_stop_delay_timers(core);
 354
 355    return res;
 356}
 357
 358static void
 359e1000e_intrmgr_fire_all_timers(E1000ECore *core)
 360{
 361    int i;
 362    uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
 363
 364    trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
 365    core->mac[ICR] |= val;
 366
 367    if (core->itr.running) {
 368        timer_del(core->itr.timer);
 369        e1000e_intrmgr_on_throttling_timer(&core->itr);
 370    }
 371
 372    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 373        if (core->eitr[i].running) {
 374            timer_del(core->eitr[i].timer);
 375            e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
 376        }
 377    }
 378}
 379
 380static void
 381e1000e_intrmgr_resume(E1000ECore *core)
 382{
 383    int i;
 384
 385    e1000e_intmgr_timer_resume(&core->radv);
 386    e1000e_intmgr_timer_resume(&core->rdtr);
 387    e1000e_intmgr_timer_resume(&core->raid);
 388    e1000e_intmgr_timer_resume(&core->tidv);
 389    e1000e_intmgr_timer_resume(&core->tadv);
 390
 391    e1000e_intmgr_timer_resume(&core->itr);
 392
 393    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 394        e1000e_intmgr_timer_resume(&core->eitr[i]);
 395    }
 396}
 397
 398static void
 399e1000e_intrmgr_pause(E1000ECore *core)
 400{
 401    int i;
 402
 403    e1000e_intmgr_timer_pause(&core->radv);
 404    e1000e_intmgr_timer_pause(&core->rdtr);
 405    e1000e_intmgr_timer_pause(&core->raid);
 406    e1000e_intmgr_timer_pause(&core->tidv);
 407    e1000e_intmgr_timer_pause(&core->tadv);
 408
 409    e1000e_intmgr_timer_pause(&core->itr);
 410
 411    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 412        e1000e_intmgr_timer_pause(&core->eitr[i]);
 413    }
 414}
 415
 416static void
 417e1000e_intrmgr_reset(E1000ECore *core)
 418{
 419    int i;
 420
 421    core->delayed_causes = 0;
 422
 423    e1000e_intrmgr_stop_delay_timers(core);
 424
 425    e1000e_intrmgr_stop_timer(&core->itr);
 426
 427    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 428        e1000e_intrmgr_stop_timer(&core->eitr[i]);
 429    }
 430}
 431
 432static void
 433e1000e_intrmgr_pci_unint(E1000ECore *core)
 434{
 435    int i;
 436
 437    timer_del(core->radv.timer);
 438    timer_free(core->radv.timer);
 439    timer_del(core->rdtr.timer);
 440    timer_free(core->rdtr.timer);
 441    timer_del(core->raid.timer);
 442    timer_free(core->raid.timer);
 443
 444    timer_del(core->tadv.timer);
 445    timer_free(core->tadv.timer);
 446    timer_del(core->tidv.timer);
 447    timer_free(core->tidv.timer);
 448
 449    timer_del(core->itr.timer);
 450    timer_free(core->itr.timer);
 451
 452    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 453        timer_del(core->eitr[i].timer);
 454        timer_free(core->eitr[i].timer);
 455    }
 456}
 457
 458static void
 459e1000e_intrmgr_pci_realize(E1000ECore *core)
 460{
 461    e1000e_intrmgr_initialize_all_timers(core, true);
 462}
 463
 464static inline bool
 465e1000e_rx_csum_enabled(E1000ECore *core)
 466{
 467    return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
 468}
 469
 470static inline bool
 471e1000e_rx_use_legacy_descriptor(E1000ECore *core)
 472{
 473    return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
 474}
 475
 476static inline bool
 477e1000e_rx_use_ps_descriptor(E1000ECore *core)
 478{
 479    return !e1000e_rx_use_legacy_descriptor(core) &&
 480           (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
 481}
 482
 483static inline bool
 484e1000e_rss_enabled(E1000ECore *core)
 485{
 486    return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
 487           !e1000e_rx_csum_enabled(core) &&
 488           !e1000e_rx_use_legacy_descriptor(core);
 489}
 490
 491typedef struct E1000E_RSSInfo_st {
 492    bool enabled;
 493    uint32_t hash;
 494    uint32_t queue;
 495    uint32_t type;
 496} E1000E_RSSInfo;
 497
 498static uint32_t
 499e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
 500{
 501    bool isip4, isip6, isudp, istcp;
 502
 503    assert(e1000e_rss_enabled(core));
 504
 505    net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
 506
 507    if (isip4) {
 508        bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
 509
 510        trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
 511                                E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
 512                                E1000_MRQC_EN_IPV4(core->mac[MRQC]));
 513
 514        if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
 515            return E1000_MRQ_RSS_TYPE_IPV4TCP;
 516        }
 517
 518        if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
 519            return E1000_MRQ_RSS_TYPE_IPV4;
 520        }
 521    } else if (isip6) {
 522        eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
 523
 524        bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
 525        bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
 526
 527        /*
 528         * Following two traces must not be combined because resulting
 529         * event will have 11 arguments totally and some trace backends
 530         * (at least "ust") have limitation of maximum 10 arguments per
 531         * event. Events with more arguments fail to compile for
 532         * backends like these.
 533         */
 534        trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
 535        trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
 536                                ip6info->has_ext_hdrs,
 537                                ip6info->rss_ex_dst_valid,
 538                                ip6info->rss_ex_src_valid,
 539                                core->mac[MRQC],
 540                                E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
 541                                E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
 542                                E1000_MRQC_EN_IPV6(core->mac[MRQC]));
 543
 544        if ((!ex_dis || !ip6info->has_ext_hdrs) &&
 545            (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
 546                              ip6info->rss_ex_src_valid))) {
 547
 548            if (istcp && !ip6info->fragment &&
 549                E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
 550                return E1000_MRQ_RSS_TYPE_IPV6TCP;
 551            }
 552
 553            if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
 554                return E1000_MRQ_RSS_TYPE_IPV6EX;
 555            }
 556
 557        }
 558
 559        if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
 560            return E1000_MRQ_RSS_TYPE_IPV6;
 561        }
 562
 563    }
 564
 565    return E1000_MRQ_RSS_TYPE_NONE;
 566}
 567
 568static uint32_t
 569e1000e_rss_calc_hash(E1000ECore *core,
 570                     struct NetRxPkt *pkt,
 571                     E1000E_RSSInfo *info)
 572{
 573    NetRxPktRssType type;
 574
 575    assert(e1000e_rss_enabled(core));
 576
 577    switch (info->type) {
 578    case E1000_MRQ_RSS_TYPE_IPV4:
 579        type = NetPktRssIpV4;
 580        break;
 581    case E1000_MRQ_RSS_TYPE_IPV4TCP:
 582        type = NetPktRssIpV4Tcp;
 583        break;
 584    case E1000_MRQ_RSS_TYPE_IPV6TCP:
 585        type = NetPktRssIpV6Tcp;
 586        break;
 587    case E1000_MRQ_RSS_TYPE_IPV6:
 588        type = NetPktRssIpV6;
 589        break;
 590    case E1000_MRQ_RSS_TYPE_IPV6EX:
 591        type = NetPktRssIpV6Ex;
 592        break;
 593    default:
 594        assert(false);
 595        return 0;
 596    }
 597
 598    return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
 599}
 600
 601static void
 602e1000e_rss_parse_packet(E1000ECore *core,
 603                        struct NetRxPkt *pkt,
 604                        E1000E_RSSInfo *info)
 605{
 606    trace_e1000e_rx_rss_started();
 607
 608    if (!e1000e_rss_enabled(core)) {
 609        info->enabled = false;
 610        info->hash = 0;
 611        info->queue = 0;
 612        info->type = 0;
 613        trace_e1000e_rx_rss_disabled();
 614        return;
 615    }
 616
 617    info->enabled = true;
 618
 619    info->type = e1000e_rss_get_hash_type(core, pkt);
 620
 621    trace_e1000e_rx_rss_type(info->type);
 622
 623    if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
 624        info->hash = 0;
 625        info->queue = 0;
 626        return;
 627    }
 628
 629    info->hash = e1000e_rss_calc_hash(core, pkt, info);
 630    info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
 631}
 632
 633static void
 634e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
 635{
 636    if (tx->props.tse && tx->cptse) {
 637        net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
 638        net_tx_pkt_update_ip_checksums(tx->tx_pkt);
 639        e1000x_inc_reg_if_not_full(core->mac, TSCTC);
 640        return;
 641    }
 642
 643    if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
 644        net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
 645    }
 646
 647    if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
 648        net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
 649    }
 650}
 651
 652static bool
 653e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
 654{
 655    int target_queue = MIN(core->max_queue_num, queue_index);
 656    NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
 657
 658    e1000e_setup_tx_offloads(core, tx);
 659
 660    net_tx_pkt_dump(tx->tx_pkt);
 661
 662    if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
 663        ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
 664        return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
 665    } else {
 666        return net_tx_pkt_send(tx->tx_pkt, queue);
 667    }
 668}
 669
 670static void
 671e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
 672{
 673    static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
 674                                    PTC1023, PTC1522 };
 675
 676    size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
 677
 678    e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
 679    e1000x_inc_reg_if_not_full(core->mac, TPT);
 680    e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
 681
 682    switch (net_tx_pkt_get_packet_type(tx_pkt)) {
 683    case ETH_PKT_BCAST:
 684        e1000x_inc_reg_if_not_full(core->mac, BPTC);
 685        break;
 686    case ETH_PKT_MCAST:
 687        e1000x_inc_reg_if_not_full(core->mac, MPTC);
 688        break;
 689    case ETH_PKT_UCAST:
 690        break;
 691    default:
 692        g_assert_not_reached();
 693    }
 694
 695    core->mac[GPTC] = core->mac[TPT];
 696    core->mac[GOTCL] = core->mac[TOTL];
 697    core->mac[GOTCH] = core->mac[TOTH];
 698}
 699
 700static void
 701e1000e_process_tx_desc(E1000ECore *core,
 702                       struct e1000e_tx *tx,
 703                       struct e1000_tx_desc *dp,
 704                       int queue_index)
 705{
 706    uint32_t txd_lower = le32_to_cpu(dp->lower.data);
 707    uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
 708    unsigned int split_size = txd_lower & 0xffff;
 709    uint64_t addr;
 710    struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
 711    bool eop = txd_lower & E1000_TXD_CMD_EOP;
 712
 713    if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
 714        e1000x_read_tx_ctx_descr(xp, &tx->props);
 715        e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
 716        return;
 717    } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
 718        /* data descriptor */
 719        tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
 720        tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
 721        e1000e_process_ts_option(core, dp);
 722    } else {
 723        /* legacy descriptor */
 724        e1000e_process_ts_option(core, dp);
 725        tx->cptse = 0;
 726    }
 727
 728    addr = le64_to_cpu(dp->buffer_addr);
 729
 730    if (!tx->skip_cp) {
 731        if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
 732            tx->skip_cp = true;
 733        }
 734    }
 735
 736    if (eop) {
 737        if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
 738            if (e1000x_vlan_enabled(core->mac) &&
 739                e1000x_is_vlan_txd(txd_lower)) {
 740                net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
 741                    le16_to_cpu(dp->upper.fields.special), core->vet);
 742            }
 743            if (e1000e_tx_pkt_send(core, tx, queue_index)) {
 744                e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
 745            }
 746        }
 747
 748        tx->skip_cp = false;
 749        net_tx_pkt_reset(tx->tx_pkt);
 750
 751        tx->sum_needed = 0;
 752        tx->cptse = 0;
 753    }
 754}
 755
 756static inline uint32_t
 757e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
 758{
 759    if (!msix_enabled(core->owner)) {
 760        return E1000_ICR_TXDW;
 761    }
 762
 763    return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
 764}
 765
 766static inline uint32_t
 767e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
 768                             bool min_threshold_hit)
 769{
 770    if (!msix_enabled(core->owner)) {
 771        return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
 772    }
 773
 774    return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
 775}
 776
 777static uint32_t
 778e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
 779                        struct e1000_tx_desc *dp, bool *ide, int queue_idx)
 780{
 781    uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
 782
 783    if (!(txd_lower & E1000_TXD_CMD_RS) &&
 784        !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
 785        return 0;
 786    }
 787
 788    *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
 789
 790    txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
 791
 792    dp->upper.data = cpu_to_le32(txd_upper);
 793    pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
 794                  &dp->upper, sizeof(dp->upper));
 795    return e1000e_tx_wb_interrupt_cause(core, queue_idx);
 796}
 797
 798typedef struct E1000E_RingInfo_st {
 799    int dbah;
 800    int dbal;
 801    int dlen;
 802    int dh;
 803    int dt;
 804    int idx;
 805} E1000E_RingInfo;
 806
 807static inline bool
 808e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
 809{
 810    return core->mac[r->dh] == core->mac[r->dt] ||
 811                core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
 812}
 813
 814static inline uint64_t
 815e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
 816{
 817    uint64_t bah = core->mac[r->dbah];
 818    uint64_t bal = core->mac[r->dbal];
 819
 820    return (bah << 32) + bal;
 821}
 822
 823static inline uint64_t
 824e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
 825{
 826    return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
 827}
 828
 829static inline void
 830e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
 831{
 832    core->mac[r->dh] += count;
 833
 834    if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
 835        core->mac[r->dh] = 0;
 836    }
 837}
 838
 839static inline uint32_t
 840e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
 841{
 842    trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
 843                                 core->mac[r->dh],  core->mac[r->dt]);
 844
 845    if (core->mac[r->dh] <= core->mac[r->dt]) {
 846        return core->mac[r->dt] - core->mac[r->dh];
 847    }
 848
 849    if (core->mac[r->dh] > core->mac[r->dt]) {
 850        return core->mac[r->dlen] / E1000_RING_DESC_LEN +
 851               core->mac[r->dt] - core->mac[r->dh];
 852    }
 853
 854    g_assert_not_reached();
 855    return 0;
 856}
 857
 858static inline bool
 859e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
 860{
 861    return core->mac[r->dlen] > 0;
 862}
 863
 864static inline uint32_t
 865e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
 866{
 867    return core->mac[r->dlen];
 868}
 869
 870typedef struct E1000E_TxRing_st {
 871    const E1000E_RingInfo *i;
 872    struct e1000e_tx *tx;
 873} E1000E_TxRing;
 874
 875static inline int
 876e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
 877{
 878    return (reg_idx - base_reg_idx) / (0x100 >> 2);
 879}
 880
 881static inline void
 882e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
 883{
 884    static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
 885        { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
 886        { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
 887    };
 888
 889    assert(idx < ARRAY_SIZE(i));
 890
 891    txr->i     = &i[idx];
 892    txr->tx    = &core->tx[idx];
 893}
 894
 895typedef struct E1000E_RxRing_st {
 896    const E1000E_RingInfo *i;
 897} E1000E_RxRing;
 898
 899static inline void
 900e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
 901{
 902    static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
 903        { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
 904        { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
 905    };
 906
 907    assert(idx < ARRAY_SIZE(i));
 908
 909    rxr->i      = &i[idx];
 910}
 911
 912static void
 913e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
 914{
 915    dma_addr_t base;
 916    struct e1000_tx_desc desc;
 917    bool ide = false;
 918    const E1000E_RingInfo *txi = txr->i;
 919    uint32_t cause = E1000_ICS_TXQE;
 920
 921    if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
 922        trace_e1000e_tx_disabled();
 923        return;
 924    }
 925
 926    while (!e1000e_ring_empty(core, txi)) {
 927        base = e1000e_ring_head_descr(core, txi);
 928
 929        pci_dma_read(core->owner, base, &desc, sizeof(desc));
 930
 931        trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
 932                              desc.lower.data, desc.upper.data);
 933
 934        e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
 935        cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
 936
 937        e1000e_ring_advance(core, txi, 1);
 938    }
 939
 940    if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
 941        e1000e_set_interrupt_cause(core, cause);
 942    }
 943}
 944
 945static bool
 946e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
 947                  size_t total_size)
 948{
 949    uint32_t bufs = e1000e_ring_free_descr_num(core, r);
 950
 951    trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
 952                                core->rx_desc_buf_size);
 953
 954    return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
 955                         core->rx_desc_buf_size;
 956}
 957
 958void
 959e1000e_start_recv(E1000ECore *core)
 960{
 961    int i;
 962
 963    trace_e1000e_rx_start_recv();
 964
 965    for (i = 0; i <= core->max_queue_num; i++) {
 966        qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
 967    }
 968}
 969
 970int
 971e1000e_can_receive(E1000ECore *core)
 972{
 973    int i;
 974
 975    if (!e1000x_rx_ready(core->owner, core->mac)) {
 976        return false;
 977    }
 978
 979    for (i = 0; i < E1000E_NUM_QUEUES; i++) {
 980        E1000E_RxRing rxr;
 981
 982        e1000e_rx_ring_init(core, &rxr, i);
 983        if (e1000e_ring_enabled(core, rxr.i) &&
 984            e1000e_has_rxbufs(core, rxr.i, 1)) {
 985            trace_e1000e_rx_can_recv();
 986            return true;
 987        }
 988    }
 989
 990    trace_e1000e_rx_can_recv_rings_full();
 991    return false;
 992}
 993
 994ssize_t
 995e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
 996{
 997    const struct iovec iov = {
 998        .iov_base = (uint8_t *)buf,
 999        .iov_len = size
1000    };
1001
1002    return e1000e_receive_iov(core, &iov, 1);
1003}
1004
1005static inline bool
1006e1000e_rx_l3_cso_enabled(E1000ECore *core)
1007{
1008    return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1009}
1010
1011static inline bool
1012e1000e_rx_l4_cso_enabled(E1000ECore *core)
1013{
1014    return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1015}
1016
1017static bool
1018e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1019{
1020    uint32_t rctl = core->mac[RCTL];
1021
1022    if (e1000x_is_vlan_packet(buf, core->vet) &&
1023        e1000x_vlan_rx_filter_enabled(core->mac)) {
1024        uint16_t vid = lduw_be_p(buf + 14);
1025        uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1026                                 ((vid >> 5) & 0x7f));
1027        if ((vfta & (1 << (vid & 0x1f))) == 0) {
1028            trace_e1000e_rx_flt_vlan_mismatch(vid);
1029            return false;
1030        } else {
1031            trace_e1000e_rx_flt_vlan_match(vid);
1032        }
1033    }
1034
1035    switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1036    case ETH_PKT_UCAST:
1037        if (rctl & E1000_RCTL_UPE) {
1038            return true; /* promiscuous ucast */
1039        }
1040        break;
1041
1042    case ETH_PKT_BCAST:
1043        if (rctl & E1000_RCTL_BAM) {
1044            return true; /* broadcast enabled */
1045        }
1046        break;
1047
1048    case ETH_PKT_MCAST:
1049        if (rctl & E1000_RCTL_MPE) {
1050            return true; /* promiscuous mcast */
1051        }
1052        break;
1053
1054    default:
1055        g_assert_not_reached();
1056    }
1057
1058    return e1000x_rx_group_filter(core->mac, buf);
1059}
1060
1061static inline void
1062e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1063{
1064    struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1065    *buff_addr = le64_to_cpu(d->buffer_addr);
1066}
1067
1068static inline void
1069e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1070{
1071    union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1072    *buff_addr = le64_to_cpu(d->read.buffer_addr);
1073}
1074
1075static inline void
1076e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1077                        hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1078{
1079    int i;
1080    union e1000_rx_desc_packet_split *d =
1081        (union e1000_rx_desc_packet_split *) desc;
1082
1083    for (i = 0; i < MAX_PS_BUFFERS; i++) {
1084        (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1085    }
1086
1087    trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1088                                 (*buff_addr)[2], (*buff_addr)[3]);
1089}
1090
1091static inline void
1092e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1093                     hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1094{
1095    if (e1000e_rx_use_legacy_descriptor(core)) {
1096        e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1097        (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1098    } else {
1099        if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1100            e1000e_read_ps_rx_descr(core, desc, buff_addr);
1101        } else {
1102            e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1103            (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1104        }
1105    }
1106}
1107
1108static void
1109e1000e_verify_csum_in_sw(E1000ECore *core,
1110                         struct NetRxPkt *pkt,
1111                         uint32_t *status_flags,
1112                         bool istcp, bool isudp)
1113{
1114    bool csum_valid;
1115    uint32_t csum_error;
1116
1117    if (e1000e_rx_l3_cso_enabled(core)) {
1118        if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1119            trace_e1000e_rx_metadata_l3_csum_validation_failed();
1120        } else {
1121            csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1122            *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1123        }
1124    } else {
1125        trace_e1000e_rx_metadata_l3_cso_disabled();
1126    }
1127
1128    if (!e1000e_rx_l4_cso_enabled(core)) {
1129        trace_e1000e_rx_metadata_l4_cso_disabled();
1130        return;
1131    }
1132
1133    if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1134        trace_e1000e_rx_metadata_l4_csum_validation_failed();
1135        return;
1136    }
1137
1138    csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1139
1140    if (istcp) {
1141        *status_flags |= E1000_RXD_STAT_TCPCS |
1142                         csum_error;
1143    } else if (isudp) {
1144        *status_flags |= E1000_RXD_STAT_TCPCS |
1145                         E1000_RXD_STAT_UDPCS |
1146                         csum_error;
1147    }
1148}
1149
1150static inline bool
1151e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1152{
1153    if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1154        return false;
1155    }
1156
1157    if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1158        return !net_rx_pkt_has_tcp_data(rx_pkt);
1159    }
1160
1161    return true;
1162}
1163
1164static void
1165e1000e_build_rx_metadata(E1000ECore *core,
1166                         struct NetRxPkt *pkt,
1167                         bool is_eop,
1168                         const E1000E_RSSInfo *rss_info,
1169                         uint32_t *rss, uint32_t *mrq,
1170                         uint32_t *status_flags,
1171                         uint16_t *ip_id,
1172                         uint16_t *vlan_tag)
1173{
1174    struct virtio_net_hdr *vhdr;
1175    bool isip4, isip6, istcp, isudp;
1176    uint32_t pkt_type;
1177
1178    *status_flags = E1000_RXD_STAT_DD;
1179
1180    /* No additional metadata needed for non-EOP descriptors */
1181    if (!is_eop) {
1182        goto func_exit;
1183    }
1184
1185    *status_flags |= E1000_RXD_STAT_EOP;
1186
1187    net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1188    trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1189
1190    /* VLAN state */
1191    if (net_rx_pkt_is_vlan_stripped(pkt)) {
1192        *status_flags |= E1000_RXD_STAT_VP;
1193        *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1194        trace_e1000e_rx_metadata_vlan(*vlan_tag);
1195    }
1196
1197    /* Packet parsing results */
1198    if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1199        if (rss_info->enabled) {
1200            *rss = cpu_to_le32(rss_info->hash);
1201            *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1202            trace_e1000e_rx_metadata_rss(*rss, *mrq);
1203        }
1204    } else if (isip4) {
1205            *status_flags |= E1000_RXD_STAT_IPIDV;
1206            *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1207            trace_e1000e_rx_metadata_ip_id(*ip_id);
1208    }
1209
1210    if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1211        *status_flags |= E1000_RXD_STAT_ACK;
1212        trace_e1000e_rx_metadata_ack();
1213    }
1214
1215    if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1216        trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1217        pkt_type = E1000_RXD_PKT_MAC;
1218    } else if (istcp || isudp) {
1219        pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1220    } else if (isip4 || isip6) {
1221        pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1222    } else {
1223        pkt_type = E1000_RXD_PKT_MAC;
1224    }
1225
1226    *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1227    trace_e1000e_rx_metadata_pkt_type(pkt_type);
1228
1229    /* RX CSO information */
1230    if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1231        trace_e1000e_rx_metadata_ipv6_sum_disabled();
1232        goto func_exit;
1233    }
1234
1235    if (!net_rx_pkt_has_virt_hdr(pkt)) {
1236        trace_e1000e_rx_metadata_no_virthdr();
1237        e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1238        goto func_exit;
1239    }
1240
1241    vhdr = net_rx_pkt_get_vhdr(pkt);
1242
1243    if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1244        !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1245        trace_e1000e_rx_metadata_virthdr_no_csum_info();
1246        e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1247        goto func_exit;
1248    }
1249
1250    if (e1000e_rx_l3_cso_enabled(core)) {
1251        *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1252    } else {
1253        trace_e1000e_rx_metadata_l3_cso_disabled();
1254    }
1255
1256    if (e1000e_rx_l4_cso_enabled(core)) {
1257        if (istcp) {
1258            *status_flags |= E1000_RXD_STAT_TCPCS;
1259        } else if (isudp) {
1260            *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1261        }
1262    } else {
1263        trace_e1000e_rx_metadata_l4_cso_disabled();
1264    }
1265
1266    trace_e1000e_rx_metadata_status_flags(*status_flags);
1267
1268func_exit:
1269    *status_flags = cpu_to_le32(*status_flags);
1270}
1271
1272static inline void
1273e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1274                           struct NetRxPkt *pkt,
1275                           const E1000E_RSSInfo *rss_info,
1276                           uint16_t length)
1277{
1278    uint32_t status_flags, rss, mrq;
1279    uint16_t ip_id;
1280
1281    struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1282
1283    assert(!rss_info->enabled);
1284
1285    d->length = cpu_to_le16(length);
1286    d->csum = 0;
1287
1288    e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1289                             rss_info,
1290                             &rss, &mrq,
1291                             &status_flags, &ip_id,
1292                             &d->special);
1293    d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1294    d->status = (uint8_t) le32_to_cpu(status_flags);
1295    d->special = 0;
1296}
1297
1298static inline void
1299e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1300                          struct NetRxPkt *pkt,
1301                          const E1000E_RSSInfo *rss_info,
1302                          uint16_t length)
1303{
1304    union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1305
1306    memset(&d->wb, 0, sizeof(d->wb));
1307
1308    d->wb.upper.length = cpu_to_le16(length);
1309
1310    e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1311                             rss_info,
1312                             &d->wb.lower.hi_dword.rss,
1313                             &d->wb.lower.mrq,
1314                             &d->wb.upper.status_error,
1315                             &d->wb.lower.hi_dword.csum_ip.ip_id,
1316                             &d->wb.upper.vlan);
1317}
1318
1319static inline void
1320e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1321                         struct NetRxPkt *pkt,
1322                         const E1000E_RSSInfo *rss_info,
1323                         size_t ps_hdr_len,
1324                         uint16_t(*written)[MAX_PS_BUFFERS])
1325{
1326    int i;
1327    union e1000_rx_desc_packet_split *d =
1328        (union e1000_rx_desc_packet_split *) desc;
1329
1330    memset(&d->wb, 0, sizeof(d->wb));
1331
1332    d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1333
1334    for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1335        d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1336    }
1337
1338    e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1339                             rss_info,
1340                             &d->wb.lower.hi_dword.rss,
1341                             &d->wb.lower.mrq,
1342                             &d->wb.middle.status_error,
1343                             &d->wb.lower.hi_dword.csum_ip.ip_id,
1344                             &d->wb.middle.vlan);
1345
1346    d->wb.upper.header_status =
1347        cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1348
1349    trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1350                                  (*written)[2], (*written)[3]);
1351}
1352
1353static inline void
1354e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1355struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1356    size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1357{
1358    if (e1000e_rx_use_legacy_descriptor(core)) {
1359        assert(ps_hdr_len == 0);
1360        e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1361    } else {
1362        if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1363            e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1364                                      ps_hdr_len, written);
1365        } else {
1366            assert(ps_hdr_len == 0);
1367            e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1368                                       (*written)[0]);
1369        }
1370    }
1371}
1372
1373typedef struct e1000e_ba_state_st {
1374    uint16_t written[MAX_PS_BUFFERS];
1375    uint8_t cur_idx;
1376} e1000e_ba_state;
1377
1378static inline void
1379e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1380                               hwaddr (*ba)[MAX_PS_BUFFERS],
1381                               e1000e_ba_state *bastate,
1382                               const char *data,
1383                               dma_addr_t data_len)
1384{
1385    assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1386
1387    pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1388    bastate->written[0] += data_len;
1389
1390    bastate->cur_idx = 1;
1391}
1392
1393static void
1394e1000e_write_to_rx_buffers(E1000ECore *core,
1395                           hwaddr (*ba)[MAX_PS_BUFFERS],
1396                           e1000e_ba_state *bastate,
1397                           const char *data,
1398                           dma_addr_t data_len)
1399{
1400    while (data_len > 0) {
1401        uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1402        uint32_t cur_buf_bytes_left = cur_buf_len -
1403                                      bastate->written[bastate->cur_idx];
1404        uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1405
1406        trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1407                                        (*ba)[bastate->cur_idx],
1408                                        bastate->written[bastate->cur_idx],
1409                                        data,
1410                                        bytes_to_write);
1411
1412        pci_dma_write(core->owner,
1413            (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1414            data, bytes_to_write);
1415
1416        bastate->written[bastate->cur_idx] += bytes_to_write;
1417        data += bytes_to_write;
1418        data_len -= bytes_to_write;
1419
1420        if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1421            bastate->cur_idx++;
1422        }
1423
1424        assert(bastate->cur_idx < MAX_PS_BUFFERS);
1425    }
1426}
1427
1428static void
1429e1000e_update_rx_stats(E1000ECore *core,
1430                       size_t data_size,
1431                       size_t data_fcs_size)
1432{
1433    e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1434
1435    switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1436    case ETH_PKT_BCAST:
1437        e1000x_inc_reg_if_not_full(core->mac, BPRC);
1438        break;
1439
1440    case ETH_PKT_MCAST:
1441        e1000x_inc_reg_if_not_full(core->mac, MPRC);
1442        break;
1443
1444    default:
1445        break;
1446    }
1447}
1448
1449static inline bool
1450e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1451{
1452    return e1000e_ring_free_descr_num(core, rxi) ==
1453           e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1454}
1455
1456static bool
1457e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1458{
1459    bool isip4, isip6, isudp, istcp;
1460    bool fragment;
1461
1462    if (!e1000e_rx_use_ps_descriptor(core)) {
1463        return false;
1464    }
1465
1466    net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1467
1468    if (isip4) {
1469        fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1470    } else if (isip6) {
1471        fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1472    } else {
1473        return false;
1474    }
1475
1476    if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1477        return false;
1478    }
1479
1480    if (!fragment && (isudp || istcp)) {
1481        *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1482    } else {
1483        *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1484    }
1485
1486    if ((*hdr_len > core->rxbuf_sizes[0]) ||
1487        (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1488        return false;
1489    }
1490
1491    return true;
1492}
1493
1494static void
1495e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1496                             const E1000E_RxRing *rxr,
1497                             const E1000E_RSSInfo *rss_info)
1498{
1499    PCIDevice *d = core->owner;
1500    dma_addr_t base;
1501    uint8_t desc[E1000_MAX_RX_DESC_LEN];
1502    size_t desc_size;
1503    size_t desc_offset = 0;
1504    size_t iov_ofs = 0;
1505
1506    struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1507    size_t size = net_rx_pkt_get_total_len(pkt);
1508    size_t total_size = size + e1000x_fcs_len(core->mac);
1509    const E1000E_RingInfo *rxi;
1510    size_t ps_hdr_len = 0;
1511    bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1512    bool is_first = true;
1513
1514    rxi = rxr->i;
1515
1516    do {
1517        hwaddr ba[MAX_PS_BUFFERS];
1518        e1000e_ba_state bastate = { { 0 } };
1519        bool is_last = false;
1520
1521        desc_size = total_size - desc_offset;
1522
1523        if (desc_size > core->rx_desc_buf_size) {
1524            desc_size = core->rx_desc_buf_size;
1525        }
1526
1527        if (e1000e_ring_empty(core, rxi)) {
1528            return;
1529        }
1530
1531        base = e1000e_ring_head_descr(core, rxi);
1532
1533        pci_dma_read(d, base, &desc, core->rx_desc_len);
1534
1535        trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1536
1537        e1000e_read_rx_descr(core, desc, &ba);
1538
1539        if (ba[0]) {
1540            if (desc_offset < size) {
1541                static const uint32_t fcs_pad;
1542                size_t iov_copy;
1543                size_t copy_size = size - desc_offset;
1544                if (copy_size > core->rx_desc_buf_size) {
1545                    copy_size = core->rx_desc_buf_size;
1546                }
1547
1548                /* For PS mode copy the packet header first */
1549                if (do_ps) {
1550                    if (is_first) {
1551                        size_t ps_hdr_copied = 0;
1552                        do {
1553                            iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1554                                           iov->iov_len - iov_ofs);
1555
1556                            e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1557                                                      iov->iov_base, iov_copy);
1558
1559                            copy_size -= iov_copy;
1560                            ps_hdr_copied += iov_copy;
1561
1562                            iov_ofs += iov_copy;
1563                            if (iov_ofs == iov->iov_len) {
1564                                iov++;
1565                                iov_ofs = 0;
1566                            }
1567                        } while (ps_hdr_copied < ps_hdr_len);
1568
1569                        is_first = false;
1570                    } else {
1571                        /* Leave buffer 0 of each descriptor except first */
1572                        /* empty as per spec 7.1.5.1                      */
1573                        e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1574                                                       NULL, 0);
1575                    }
1576                }
1577
1578                /* Copy packet payload */
1579                while (copy_size) {
1580                    iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1581
1582                    e1000e_write_to_rx_buffers(core, &ba, &bastate,
1583                                            iov->iov_base + iov_ofs, iov_copy);
1584
1585                    copy_size -= iov_copy;
1586                    iov_ofs += iov_copy;
1587                    if (iov_ofs == iov->iov_len) {
1588                        iov++;
1589                        iov_ofs = 0;
1590                    }
1591                }
1592
1593                if (desc_offset + desc_size >= total_size) {
1594                    /* Simulate FCS checksum presence in the last descriptor */
1595                    e1000e_write_to_rx_buffers(core, &ba, &bastate,
1596                          (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1597                }
1598            }
1599            desc_offset += desc_size;
1600            if (desc_offset >= total_size) {
1601                is_last = true;
1602            }
1603        } else { /* as per intel docs; skip descriptors with null buf addr */
1604            trace_e1000e_rx_null_descriptor();
1605        }
1606
1607        e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1608                           rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1609        pci_dma_write(d, base, &desc, core->rx_desc_len);
1610
1611        e1000e_ring_advance(core, rxi,
1612                            core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1613
1614    } while (desc_offset < total_size);
1615
1616    e1000e_update_rx_stats(core, size, total_size);
1617}
1618
1619static inline void
1620e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1621{
1622    if (net_rx_pkt_has_virt_hdr(pkt)) {
1623        struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1624
1625        if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1626            net_rx_pkt_fix_l4_csum(pkt);
1627        }
1628    }
1629}
1630
1631ssize_t
1632e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1633{
1634    static const int maximum_ethernet_hdr_len = (14 + 4);
1635    /* Min. octets in an ethernet frame sans FCS */
1636    static const int min_buf_size = 60;
1637
1638    uint32_t n = 0;
1639    uint8_t min_buf[min_buf_size];
1640    struct iovec min_iov;
1641    uint8_t *filter_buf;
1642    size_t size, orig_size;
1643    size_t iov_ofs = 0;
1644    E1000E_RxRing rxr;
1645    E1000E_RSSInfo rss_info;
1646    size_t total_size;
1647    ssize_t retval;
1648    bool rdmts_hit;
1649
1650    trace_e1000e_rx_receive_iov(iovcnt);
1651
1652    if (!e1000x_hw_rx_enabled(core->mac)) {
1653        return -1;
1654    }
1655
1656    /* Pull virtio header in */
1657    if (core->has_vnet) {
1658        net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1659        iov_ofs = sizeof(struct virtio_net_hdr);
1660    }
1661
1662    filter_buf = iov->iov_base + iov_ofs;
1663    orig_size = iov_size(iov, iovcnt);
1664    size = orig_size - iov_ofs;
1665
1666    /* Pad to minimum Ethernet frame length */
1667    if (size < sizeof(min_buf)) {
1668        iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1669        memset(&min_buf[size], 0, sizeof(min_buf) - size);
1670        e1000x_inc_reg_if_not_full(core->mac, RUC);
1671        min_iov.iov_base = filter_buf = min_buf;
1672        min_iov.iov_len = size = sizeof(min_buf);
1673        iovcnt = 1;
1674        iov = &min_iov;
1675        iov_ofs = 0;
1676    } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1677        /* This is very unlikely, but may happen. */
1678        iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1679        filter_buf = min_buf;
1680    }
1681
1682    /* Discard oversized packets if !LPE and !SBP. */
1683    if (e1000x_is_oversized(core->mac, size)) {
1684        return orig_size;
1685    }
1686
1687    net_rx_pkt_set_packet_type(core->rx_pkt,
1688        get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1689
1690    if (!e1000e_receive_filter(core, filter_buf, size)) {
1691        trace_e1000e_rx_flt_dropped();
1692        return orig_size;
1693    }
1694
1695    net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1696                               e1000x_vlan_enabled(core->mac), core->vet);
1697
1698    e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1699    e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1700
1701    trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1702
1703    total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1704        e1000x_fcs_len(core->mac);
1705
1706    if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1707        e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1708
1709        e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1710
1711        retval = orig_size;
1712
1713        /* Perform small receive detection (RSRPD) */
1714        if (total_size < core->mac[RSRPD]) {
1715            n |= E1000_ICS_SRPD;
1716        }
1717
1718        /* Perform ACK receive detection */
1719        if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1720             (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1721            n |= E1000_ICS_ACK;
1722        }
1723
1724        /* Check if receive descriptor minimum threshold hit */
1725        rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1726        n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1727
1728        trace_e1000e_rx_written_to_guest(n);
1729    } else {
1730        n |= E1000_ICS_RXO;
1731        retval = 0;
1732
1733        trace_e1000e_rx_not_written_to_guest(n);
1734    }
1735
1736    if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1737        trace_e1000e_rx_interrupt_set(n);
1738        e1000e_set_interrupt_cause(core, n);
1739    } else {
1740        trace_e1000e_rx_interrupt_delayed(n);
1741    }
1742
1743    return retval;
1744}
1745
1746static inline bool
1747e1000e_have_autoneg(E1000ECore *core)
1748{
1749    return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1750}
1751
1752static void e1000e_update_flowctl_status(E1000ECore *core)
1753{
1754    if (e1000e_have_autoneg(core) &&
1755        core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1756        trace_e1000e_link_autoneg_flowctl(true);
1757        core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1758    } else {
1759        trace_e1000e_link_autoneg_flowctl(false);
1760    }
1761}
1762
1763static inline void
1764e1000e_link_down(E1000ECore *core)
1765{
1766    e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1767    e1000e_update_flowctl_status(core);
1768}
1769
1770static inline void
1771e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1772{
1773    /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1774    core->phy[0][PHY_CTRL] = val & ~(0x3f |
1775                                     MII_CR_RESET |
1776                                     MII_CR_RESTART_AUTO_NEG);
1777
1778    if ((val & MII_CR_RESTART_AUTO_NEG) &&
1779        e1000e_have_autoneg(core)) {
1780        e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1781    }
1782}
1783
1784static void
1785e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1786{
1787    core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1788
1789    if (val & BIT(10)) {
1790        e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1791    }
1792}
1793
1794static void
1795e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1796{
1797    core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1798}
1799
1800void
1801e1000e_core_set_link_status(E1000ECore *core)
1802{
1803    NetClientState *nc = qemu_get_queue(core->owner_nic);
1804    uint32_t old_status = core->mac[STATUS];
1805
1806    trace_e1000e_link_status_changed(nc->link_down ? false : true);
1807
1808    if (nc->link_down) {
1809        e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1810    } else {
1811        if (e1000e_have_autoneg(core) &&
1812            !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1813            e1000x_restart_autoneg(core->mac, core->phy[0],
1814                                   core->autoneg_timer);
1815        } else {
1816            e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1817            e1000e_start_recv(core);
1818        }
1819    }
1820
1821    if (core->mac[STATUS] != old_status) {
1822        e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1823    }
1824}
1825
1826static void
1827e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1828{
1829    trace_e1000e_core_ctrl_write(index, val);
1830
1831    /* RST is self clearing */
1832    core->mac[CTRL] = val & ~E1000_CTRL_RST;
1833    core->mac[CTRL_DUP] = core->mac[CTRL];
1834
1835    trace_e1000e_link_set_params(
1836        !!(val & E1000_CTRL_ASDE),
1837        (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1838        !!(val & E1000_CTRL_FRCSPD),
1839        !!(val & E1000_CTRL_FRCDPX),
1840        !!(val & E1000_CTRL_RFCE),
1841        !!(val & E1000_CTRL_TFCE));
1842
1843    if (val & E1000_CTRL_RST) {
1844        trace_e1000e_core_ctrl_sw_reset();
1845        e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1846    }
1847
1848    if (val & E1000_CTRL_PHY_RST) {
1849        trace_e1000e_core_ctrl_phy_reset();
1850        core->mac[STATUS] |= E1000_STATUS_PHYRA;
1851    }
1852}
1853
1854static void
1855e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1856{
1857    trace_e1000e_rx_set_rfctl(val);
1858
1859    if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1860        trace_e1000e_wrn_iscsi_filtering_not_supported();
1861    }
1862
1863    if (!(val & E1000_RFCTL_NFSW_DIS)) {
1864        trace_e1000e_wrn_nfsw_filtering_not_supported();
1865    }
1866
1867    if (!(val & E1000_RFCTL_NFSR_DIS)) {
1868        trace_e1000e_wrn_nfsr_filtering_not_supported();
1869    }
1870
1871    core->mac[RFCTL] = val;
1872}
1873
1874static void
1875e1000e_calc_per_desc_buf_size(E1000ECore *core)
1876{
1877    int i;
1878    core->rx_desc_buf_size = 0;
1879
1880    for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1881        core->rx_desc_buf_size += core->rxbuf_sizes[i];
1882    }
1883}
1884
1885static void
1886e1000e_parse_rxbufsize(E1000ECore *core)
1887{
1888    uint32_t rctl = core->mac[RCTL];
1889
1890    memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1891
1892    if (rctl & E1000_RCTL_DTYP_MASK) {
1893        uint32_t bsize;
1894
1895        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1896        core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1897
1898        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1899        core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1900
1901        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1902        core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1903
1904        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1905        core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1906    } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1907        int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1908        core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1909    } else {
1910        core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1911    }
1912
1913    trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1914                                    core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1915
1916    e1000e_calc_per_desc_buf_size(core);
1917}
1918
1919static void
1920e1000e_calc_rxdesclen(E1000ECore *core)
1921{
1922    if (e1000e_rx_use_legacy_descriptor(core)) {
1923        core->rx_desc_len = sizeof(struct e1000_rx_desc);
1924    } else {
1925        if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1926            core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1927        } else {
1928            core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1929        }
1930    }
1931    trace_e1000e_rx_desc_len(core->rx_desc_len);
1932}
1933
1934static void
1935e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1936{
1937    core->mac[RCTL] = val;
1938    trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1939
1940    if (val & E1000_RCTL_EN) {
1941        e1000e_parse_rxbufsize(core);
1942        e1000e_calc_rxdesclen(core);
1943        core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1944                                E1000_RING_DESC_LEN_SHIFT;
1945
1946        e1000e_start_recv(core);
1947    }
1948}
1949
1950static
1951void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1952(E1000ECore *, int, uint16_t) = {
1953    [0] = {
1954        [PHY_CTRL]     = e1000e_set_phy_ctrl,
1955        [PHY_PAGE]     = e1000e_set_phy_page,
1956        [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1957    }
1958};
1959
1960static inline void
1961e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1962{
1963    trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1964    core->mac[IMS] &= ~bits;
1965}
1966
1967static inline bool
1968e1000e_postpone_interrupt(bool *interrupt_pending,
1969                           E1000IntrDelayTimer *timer)
1970{
1971    if (timer->running) {
1972        trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1973
1974        *interrupt_pending = true;
1975        return true;
1976    }
1977
1978    if (timer->core->mac[timer->delay_reg] != 0) {
1979        e1000e_intrmgr_rearm_timer(timer);
1980    }
1981
1982    return false;
1983}
1984
1985static inline bool
1986e1000e_itr_should_postpone(E1000ECore *core)
1987{
1988    return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1989}
1990
1991static inline bool
1992e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1993{
1994    return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1995                                     &core->eitr[idx]);
1996}
1997
1998static void
1999e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2000{
2001    uint32_t effective_eiac;
2002
2003    if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2004        uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2005        if (vec < E1000E_MSIX_VEC_NUM) {
2006            if (!e1000e_eitr_should_postpone(core, vec)) {
2007                trace_e1000e_irq_msix_notify_vec(vec);
2008                msix_notify(core->owner, vec);
2009            }
2010        } else {
2011            trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2012        }
2013    } else {
2014        trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2015    }
2016
2017    if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2018        trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2019        core->mac[IAM] &= ~cause;
2020    }
2021
2022    trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2023
2024    effective_eiac = core->mac[EIAC] & cause;
2025
2026    core->mac[ICR] &= ~effective_eiac;
2027    core->msi_causes_pending &= ~effective_eiac;
2028
2029    if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2030        core->mac[IMS] &= ~effective_eiac;
2031    }
2032}
2033
2034static void
2035e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2036{
2037    if (causes & E1000_ICR_RXQ0) {
2038        e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2039                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2040    }
2041
2042    if (causes & E1000_ICR_RXQ1) {
2043        e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2044                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2045    }
2046
2047    if (causes & E1000_ICR_TXQ0) {
2048        e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2049                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2050    }
2051
2052    if (causes & E1000_ICR_TXQ1) {
2053        e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2054                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2055    }
2056
2057    if (causes & E1000_ICR_OTHER) {
2058        e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2059                               E1000_IVAR_OTHER(core->mac[IVAR]));
2060    }
2061}
2062
2063static void
2064e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2065{
2066    if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2067        uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2068        if (vec < E1000E_MSIX_VEC_NUM) {
2069            trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2070            msix_clr_pending(core->owner, vec);
2071        } else {
2072            trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2073        }
2074    } else {
2075        trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2076    }
2077}
2078
2079static void
2080e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2081{
2082    if (causes & E1000_ICR_RXQ0) {
2083        e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2084                              E1000_IVAR_RXQ0(core->mac[IVAR]));
2085    }
2086
2087    if (causes & E1000_ICR_RXQ1) {
2088        e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2089                              E1000_IVAR_RXQ1(core->mac[IVAR]));
2090    }
2091
2092    if (causes & E1000_ICR_TXQ0) {
2093        e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2094                              E1000_IVAR_TXQ0(core->mac[IVAR]));
2095    }
2096
2097    if (causes & E1000_ICR_TXQ1) {
2098        e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2099                              E1000_IVAR_TXQ1(core->mac[IVAR]));
2100    }
2101
2102    if (causes & E1000_ICR_OTHER) {
2103        e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2104                              E1000_IVAR_OTHER(core->mac[IVAR]));
2105    }
2106}
2107
2108static inline void
2109e1000e_fix_icr_asserted(E1000ECore *core)
2110{
2111    core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2112    if (core->mac[ICR]) {
2113        core->mac[ICR] |= E1000_ICR_ASSERTED;
2114    }
2115
2116    trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2117}
2118
2119static void
2120e1000e_send_msi(E1000ECore *core, bool msix)
2121{
2122    uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2123
2124    core->msi_causes_pending &= causes;
2125    causes ^= core->msi_causes_pending;
2126    if (causes == 0) {
2127        return;
2128    }
2129    core->msi_causes_pending |= causes;
2130
2131    if (msix) {
2132        e1000e_msix_notify(core, causes);
2133    } else {
2134        if (!e1000e_itr_should_postpone(core)) {
2135            trace_e1000e_irq_msi_notify(causes);
2136            msi_notify(core->owner, 0);
2137        }
2138    }
2139}
2140
2141static void
2142e1000e_update_interrupt_state(E1000ECore *core)
2143{
2144    bool interrupts_pending;
2145    bool is_msix = msix_enabled(core->owner);
2146
2147    /* Set ICR[OTHER] for MSI-X */
2148    if (is_msix) {
2149        if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2150            core->mac[ICR] |= E1000_ICR_OTHER;
2151            trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2152        }
2153    }
2154
2155    e1000e_fix_icr_asserted(core);
2156
2157    /*
2158     * Make sure ICR and ICS registers have the same value.
2159     * The spec says that the ICS register is write-only.  However in practice,
2160     * on real hardware ICS is readable, and for reads it has the same value as
2161     * ICR (except that ICS does not have the clear on read behaviour of ICR).
2162     *
2163     * The VxWorks PRO/1000 driver uses this behaviour.
2164     */
2165    core->mac[ICS] = core->mac[ICR];
2166
2167    interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2168    if (!interrupts_pending) {
2169        core->msi_causes_pending = 0;
2170    }
2171
2172    trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2173                                        core->mac[ICR], core->mac[IMS]);
2174
2175    if (is_msix || msi_enabled(core->owner)) {
2176        if (interrupts_pending) {
2177            e1000e_send_msi(core, is_msix);
2178        }
2179    } else {
2180        if (interrupts_pending) {
2181            if (!e1000e_itr_should_postpone(core)) {
2182                e1000e_raise_legacy_irq(core);
2183            }
2184        } else {
2185            e1000e_lower_legacy_irq(core);
2186        }
2187    }
2188}
2189
2190static void
2191e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2192{
2193    trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2194
2195    val |= e1000e_intmgr_collect_delayed_causes(core);
2196    core->mac[ICR] |= val;
2197
2198    trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2199
2200    e1000e_update_interrupt_state(core);
2201}
2202
2203static inline void
2204e1000e_autoneg_timer(void *opaque)
2205{
2206    E1000ECore *core = opaque;
2207    if (!qemu_get_queue(core->owner_nic)->link_down) {
2208        e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2209        e1000e_start_recv(core);
2210
2211        e1000e_update_flowctl_status(core);
2212        /* signal link status change to the guest */
2213        e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2214    }
2215}
2216
2217static inline uint16_t
2218e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2219{
2220    uint16_t index = (addr & 0x1ffff) >> 2;
2221    return index + (mac_reg_access[index] & 0xfffe);
2222}
2223
2224static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2225    [0] = {
2226        [PHY_CTRL]          = PHY_ANYPAGE | PHY_RW,
2227        [PHY_STATUS]        = PHY_ANYPAGE | PHY_R,
2228        [PHY_ID1]           = PHY_ANYPAGE | PHY_R,
2229        [PHY_ID2]           = PHY_ANYPAGE | PHY_R,
2230        [PHY_AUTONEG_ADV]   = PHY_ANYPAGE | PHY_RW,
2231        [PHY_LP_ABILITY]    = PHY_ANYPAGE | PHY_R,
2232        [PHY_AUTONEG_EXP]   = PHY_ANYPAGE | PHY_R,
2233        [PHY_NEXT_PAGE_TX]  = PHY_ANYPAGE | PHY_RW,
2234        [PHY_LP_NEXT_PAGE]  = PHY_ANYPAGE | PHY_R,
2235        [PHY_1000T_CTRL]    = PHY_ANYPAGE | PHY_RW,
2236        [PHY_1000T_STATUS]  = PHY_ANYPAGE | PHY_R,
2237        [PHY_EXT_STATUS]    = PHY_ANYPAGE | PHY_R,
2238        [PHY_PAGE]          = PHY_ANYPAGE | PHY_RW,
2239
2240        [PHY_COPPER_CTRL1]      = PHY_RW,
2241        [PHY_COPPER_STAT1]      = PHY_R,
2242        [PHY_COPPER_CTRL3]      = PHY_RW,
2243        [PHY_RX_ERR_CNTR]       = PHY_R,
2244        [PHY_OEM_BITS]          = PHY_RW,
2245        [PHY_BIAS_1]            = PHY_RW,
2246        [PHY_BIAS_2]            = PHY_RW,
2247        [PHY_COPPER_INT_ENABLE] = PHY_RW,
2248        [PHY_COPPER_STAT2]      = PHY_R,
2249        [PHY_COPPER_CTRL2]      = PHY_RW
2250    },
2251    [2] = {
2252        [PHY_MAC_CTRL1]         = PHY_RW,
2253        [PHY_MAC_INT_ENABLE]    = PHY_RW,
2254        [PHY_MAC_STAT]          = PHY_R,
2255        [PHY_MAC_CTRL2]         = PHY_RW
2256    },
2257    [3] = {
2258        [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2259        [PHY_LED_03_POL_CTRL]   = PHY_RW,
2260        [PHY_LED_TIMER_CTRL]    = PHY_RW,
2261        [PHY_LED_45_CTRL]       = PHY_RW
2262    },
2263    [5] = {
2264        [PHY_1000T_SKEW]        = PHY_R,
2265        [PHY_1000T_SWAP]        = PHY_R
2266    },
2267    [6] = {
2268        [PHY_CRC_COUNTERS]      = PHY_R
2269    }
2270};
2271
2272static bool
2273e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2274                         char cap, uint8_t *page)
2275{
2276    *page =
2277        (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2278                                                    : core->phy[0][PHY_PAGE];
2279
2280    if (*page >= E1000E_PHY_PAGES) {
2281        return false;
2282    }
2283
2284    return e1000e_phy_regcap[*page][addr] & cap;
2285}
2286
2287static void
2288e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2289                     uint32_t addr, uint16_t data)
2290{
2291    assert(page < E1000E_PHY_PAGES);
2292    assert(addr < E1000E_PHY_PAGE_SIZE);
2293
2294    if (e1000e_phyreg_writeops[page][addr]) {
2295        e1000e_phyreg_writeops[page][addr](core, addr, data);
2296    } else {
2297        core->phy[page][addr] = data;
2298    }
2299}
2300
2301static void
2302e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2303{
2304    uint32_t data = val & E1000_MDIC_DATA_MASK;
2305    uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2306    uint8_t page;
2307
2308    if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2309        val = core->mac[MDIC] | E1000_MDIC_ERROR;
2310    } else if (val & E1000_MDIC_OP_READ) {
2311        if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2312            trace_e1000e_core_mdic_read_unhandled(page, addr);
2313            val |= E1000_MDIC_ERROR;
2314        } else {
2315            val = (val ^ data) | core->phy[page][addr];
2316            trace_e1000e_core_mdic_read(page, addr, val);
2317        }
2318    } else if (val & E1000_MDIC_OP_WRITE) {
2319        if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2320            trace_e1000e_core_mdic_write_unhandled(page, addr);
2321            val |= E1000_MDIC_ERROR;
2322        } else {
2323            trace_e1000e_core_mdic_write(page, addr, data);
2324            e1000e_phy_reg_write(core, page, addr, data);
2325        }
2326    }
2327    core->mac[MDIC] = val | E1000_MDIC_READY;
2328
2329    if (val & E1000_MDIC_INT_EN) {
2330        e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2331    }
2332}
2333
2334static void
2335e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2336{
2337    core->mac[index] = val & 0xffff;
2338    trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2339    e1000e_start_recv(core);
2340}
2341
2342static void
2343e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2344{
2345    if ((val & E1000_STATUS_PHYRA) == 0) {
2346        core->mac[index] &= ~E1000_STATUS_PHYRA;
2347    }
2348}
2349
2350static void
2351e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2352{
2353    trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2354                                     !!(val & E1000_CTRL_EXT_SPD_BYPS));
2355
2356    /* Zero self-clearing bits */
2357    val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2358    core->mac[CTRL_EXT] = val;
2359}
2360
2361static void
2362e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2363{
2364    int i;
2365
2366    core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2367
2368    if (!msix_enabled(core->owner)) {
2369        return;
2370    }
2371
2372    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2373        if (core->mac[PBACLR] & BIT(i)) {
2374            msix_clr_pending(core->owner, i);
2375        }
2376    }
2377}
2378
2379static void
2380e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2381{
2382    core->mac[FCRTH] = val & 0xFFF8;
2383}
2384
2385static void
2386e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2387{
2388    core->mac[FCRTL] = val & 0x8000FFF8;
2389}
2390
2391static inline void
2392e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2393{
2394    core->mac[index] = val & 0xffff;
2395}
2396
2397static void
2398e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2399{
2400    core->mac[index] = val & 0xfff;
2401}
2402
2403static void
2404e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2405{
2406    core->mac[VET] = val & 0xffff;
2407    core->vet = le16_to_cpu(core->mac[VET]);
2408    trace_e1000e_vlan_vet(core->vet);
2409}
2410
2411static void
2412e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2413{
2414    core->mac[index] = val & E1000_XDLEN_MASK;
2415}
2416
2417static void
2418e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2419{
2420    core->mac[index] = val & E1000_XDBAL_MASK;
2421}
2422
2423static void
2424e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2425{
2426    E1000E_TxRing txr;
2427    core->mac[index] = val;
2428
2429    if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2430        e1000e_tx_ring_init(core, &txr, 0);
2431        e1000e_start_xmit(core, &txr);
2432    }
2433
2434    if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2435        e1000e_tx_ring_init(core, &txr, 1);
2436        e1000e_start_xmit(core, &txr);
2437    }
2438}
2439
2440static void
2441e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2442{
2443    E1000E_TxRing txr;
2444    int qidx = e1000e_mq_queue_idx(TDT, index);
2445    uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2446
2447    core->mac[index] = val & 0xffff;
2448
2449    if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2450        e1000e_tx_ring_init(core, &txr, qidx);
2451        e1000e_start_xmit(core, &txr);
2452    }
2453}
2454
2455static void
2456e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2457{
2458    trace_e1000e_irq_write_ics(val);
2459    e1000e_set_interrupt_cause(core, val);
2460}
2461
2462static void
2463e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2464{
2465    uint32_t icr = 0;
2466    if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2467        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2468        trace_e1000e_irq_icr_process_iame();
2469        e1000e_clear_ims_bits(core, core->mac[IAM]);
2470    }
2471
2472    icr = core->mac[ICR] & ~val;
2473    /* Windows driver expects that the "receive overrun" bit and other
2474     * ones to be cleared when the "Other" bit (#24) is cleared.
2475     */
2476    icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2477    trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2478    core->mac[ICR] = icr;
2479    e1000e_update_interrupt_state(core);
2480}
2481
2482static void
2483e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2484{
2485    trace_e1000e_irq_ims_clear_set_imc(val);
2486    e1000e_clear_ims_bits(core, val);
2487    e1000e_update_interrupt_state(core);
2488}
2489
2490static void
2491e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2492{
2493    static const uint32_t ims_ext_mask =
2494        E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2495        E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2496        E1000_IMS_OTHER;
2497
2498    static const uint32_t ims_valid_mask =
2499        E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2500        E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2501        E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2502        E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2503        E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2504        E1000_IMS_OTHER;
2505
2506    uint32_t valid_val = val & ims_valid_mask;
2507
2508    trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2509    core->mac[IMS] |= valid_val;
2510
2511    if ((valid_val & ims_ext_mask) &&
2512        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2513        msix_enabled(core->owner)) {
2514        e1000e_msix_clear(core, valid_val);
2515    }
2516
2517    if ((valid_val == ims_valid_mask) &&
2518        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2519        trace_e1000e_irq_fire_all_timers(val);
2520        e1000e_intrmgr_fire_all_timers(core);
2521    }
2522
2523    e1000e_update_interrupt_state(core);
2524}
2525
2526static void
2527e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2528{
2529    e1000e_set_16bit(core, index, val);
2530
2531    if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2532        trace_e1000e_irq_rdtr_fpd_running();
2533        e1000e_intrmgr_fire_delayed_interrupts(core);
2534    } else {
2535        trace_e1000e_irq_rdtr_fpd_not_running();
2536    }
2537}
2538
2539static void
2540e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2541{
2542    e1000e_set_16bit(core, index, val);
2543
2544    if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2545        trace_e1000e_irq_tidv_fpd_running();
2546        e1000e_intrmgr_fire_delayed_interrupts(core);
2547    } else {
2548        trace_e1000e_irq_tidv_fpd_not_running();
2549    }
2550}
2551
2552static uint32_t
2553e1000e_mac_readreg(E1000ECore *core, int index)
2554{
2555    return core->mac[index];
2556}
2557
2558static uint32_t
2559e1000e_mac_ics_read(E1000ECore *core, int index)
2560{
2561    trace_e1000e_irq_read_ics(core->mac[ICS]);
2562    return core->mac[ICS];
2563}
2564
2565static uint32_t
2566e1000e_mac_ims_read(E1000ECore *core, int index)
2567{
2568    trace_e1000e_irq_read_ims(core->mac[IMS]);
2569    return core->mac[IMS];
2570}
2571
2572#define E1000E_LOW_BITS_READ_FUNC(num)                      \
2573    static uint32_t                                         \
2574    e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2575    {                                                       \
2576        return core->mac[index] & (BIT(num) - 1);           \
2577    }                                                       \
2578
2579#define E1000E_LOW_BITS_READ(num)                           \
2580    e1000e_mac_low##num##_read
2581
2582E1000E_LOW_BITS_READ_FUNC(4);
2583E1000E_LOW_BITS_READ_FUNC(6);
2584E1000E_LOW_BITS_READ_FUNC(11);
2585E1000E_LOW_BITS_READ_FUNC(13);
2586E1000E_LOW_BITS_READ_FUNC(16);
2587
2588static uint32_t
2589e1000e_mac_swsm_read(E1000ECore *core, int index)
2590{
2591    uint32_t val = core->mac[SWSM];
2592    core->mac[SWSM] = val | 1;
2593    return val;
2594}
2595
2596static uint32_t
2597e1000e_mac_itr_read(E1000ECore *core, int index)
2598{
2599    return core->itr_guest_value;
2600}
2601
2602static uint32_t
2603e1000e_mac_eitr_read(E1000ECore *core, int index)
2604{
2605    return core->eitr_guest_value[index - EITR];
2606}
2607
2608static uint32_t
2609e1000e_mac_icr_read(E1000ECore *core, int index)
2610{
2611    uint32_t ret = core->mac[ICR];
2612    trace_e1000e_irq_icr_read_entry(ret);
2613
2614    if (core->mac[IMS] == 0) {
2615        trace_e1000e_irq_icr_clear_zero_ims();
2616        core->mac[ICR] = 0;
2617    }
2618
2619    if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2620        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2621        trace_e1000e_irq_icr_clear_iame();
2622        core->mac[ICR] = 0;
2623        trace_e1000e_irq_icr_process_iame();
2624        e1000e_clear_ims_bits(core, core->mac[IAM]);
2625    }
2626
2627    trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2628    e1000e_update_interrupt_state(core);
2629    return ret;
2630}
2631
2632static uint32_t
2633e1000e_mac_read_clr4(E1000ECore *core, int index)
2634{
2635    uint32_t ret = core->mac[index];
2636
2637    core->mac[index] = 0;
2638    return ret;
2639}
2640
2641static uint32_t
2642e1000e_mac_read_clr8(E1000ECore *core, int index)
2643{
2644    uint32_t ret = core->mac[index];
2645
2646    core->mac[index] = 0;
2647    core->mac[index - 1] = 0;
2648    return ret;
2649}
2650
2651static uint32_t
2652e1000e_get_ctrl(E1000ECore *core, int index)
2653{
2654    uint32_t val = core->mac[CTRL];
2655
2656    trace_e1000e_link_read_params(
2657        !!(val & E1000_CTRL_ASDE),
2658        (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2659        !!(val & E1000_CTRL_FRCSPD),
2660        !!(val & E1000_CTRL_FRCDPX),
2661        !!(val & E1000_CTRL_RFCE),
2662        !!(val & E1000_CTRL_TFCE));
2663
2664    return val;
2665}
2666
2667static uint32_t
2668e1000e_get_status(E1000ECore *core, int index)
2669{
2670    uint32_t res = core->mac[STATUS];
2671
2672    if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2673        res |= E1000_STATUS_GIO_MASTER_ENABLE;
2674    }
2675
2676    if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2677        res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2678    } else {
2679        res |= E1000_STATUS_FD;
2680    }
2681
2682    if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2683        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2684        switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2685        case E1000_CTRL_SPD_10:
2686            res |= E1000_STATUS_SPEED_10;
2687            break;
2688        case E1000_CTRL_SPD_100:
2689            res |= E1000_STATUS_SPEED_100;
2690            break;
2691        case E1000_CTRL_SPD_1000:
2692        default:
2693            res |= E1000_STATUS_SPEED_1000;
2694            break;
2695        }
2696    } else {
2697        res |= E1000_STATUS_SPEED_1000;
2698    }
2699
2700    trace_e1000e_link_status(
2701        !!(res & E1000_STATUS_LU),
2702        !!(res & E1000_STATUS_FD),
2703        (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2704        (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2705
2706    return res;
2707}
2708
2709static uint32_t
2710e1000e_get_tarc(E1000ECore *core, int index)
2711{
2712    return core->mac[index] & ((BIT(11) - 1) |
2713                                BIT(27)      |
2714                                BIT(28)      |
2715                                BIT(29)      |
2716                                BIT(30));
2717}
2718
2719static void
2720e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2721{
2722    core->mac[index] = val;
2723}
2724
2725static void
2726e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2727{
2728    uint32_t macaddr[2];
2729
2730    core->mac[index] = val;
2731
2732    macaddr[0] = cpu_to_le32(core->mac[RA]);
2733    macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2734    qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2735        (uint8_t *) macaddr);
2736
2737    trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2738}
2739
2740static void
2741e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2742{
2743    static const uint32_t ro_bits = E1000_EECD_PRES          |
2744                                    E1000_EECD_AUTO_RD       |
2745                                    E1000_EECD_SIZE_EX_MASK;
2746
2747    core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2748}
2749
2750static void
2751e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2752{
2753    uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2754    uint32_t flags = 0;
2755    uint32_t data = 0;
2756
2757    if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2758        data = core->eeprom[addr];
2759        flags = E1000_EERW_DONE;
2760    }
2761
2762    core->mac[EERD] = flags                           |
2763                      (addr << E1000_EERW_ADDR_SHIFT) |
2764                      (data << E1000_EERW_DATA_SHIFT);
2765}
2766
2767static void
2768e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2769{
2770    uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2771    uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2772    uint32_t flags = 0;
2773
2774    if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2775        core->eeprom[addr] = data;
2776        flags = E1000_EERW_DONE;
2777    }
2778
2779    core->mac[EERD] = flags                           |
2780                      (addr << E1000_EERW_ADDR_SHIFT) |
2781                      (data << E1000_EERW_DATA_SHIFT);
2782}
2783
2784static void
2785e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2786{
2787    core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2788}
2789
2790static void
2791e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2792{
2793    uint32_t interval = val & 0xffff;
2794
2795    trace_e1000e_irq_itr_set(val);
2796
2797    core->itr_guest_value = interval;
2798    core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2799}
2800
2801static void
2802e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2803{
2804    uint32_t interval = val & 0xffff;
2805    uint32_t eitr_num = index - EITR;
2806
2807    trace_e1000e_irq_eitr_set(eitr_num, val);
2808
2809    core->eitr_guest_value[eitr_num] = interval;
2810    core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2811}
2812
2813static void
2814e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2815{
2816    if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2817        hw_error("e1000e: PSRCTL.BSIZE0 cannot be zero");
2818    }
2819
2820    if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2821        hw_error("e1000e: PSRCTL.BSIZE1 cannot be zero");
2822    }
2823
2824    core->mac[PSRCTL] = val;
2825}
2826
2827static void
2828e1000e_update_rx_offloads(E1000ECore *core)
2829{
2830    int cso_state = e1000e_rx_l4_cso_enabled(core);
2831
2832    trace_e1000e_rx_set_cso(cso_state);
2833
2834    if (core->has_vnet) {
2835        qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2836                         cso_state, 0, 0, 0, 0);
2837    }
2838}
2839
2840static void
2841e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2842{
2843    core->mac[RXCSUM] = val;
2844    e1000e_update_rx_offloads(core);
2845}
2846
2847static void
2848e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2849{
2850    uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2851    core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2852}
2853
2854#define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2855static uint32_t (*e1000e_macreg_readops[])(E1000ECore *, int) = {
2856    e1000e_getreg(PBA),
2857    e1000e_getreg(WUFC),
2858    e1000e_getreg(MANC),
2859    e1000e_getreg(TOTL),
2860    e1000e_getreg(RDT0),
2861    e1000e_getreg(RDBAH0),
2862    e1000e_getreg(TDBAL1),
2863    e1000e_getreg(RDLEN0),
2864    e1000e_getreg(RDH1),
2865    e1000e_getreg(LATECOL),
2866    e1000e_getreg(SEQEC),
2867    e1000e_getreg(XONTXC),
2868    e1000e_getreg(WUS),
2869    e1000e_getreg(GORCL),
2870    e1000e_getreg(MGTPRC),
2871    e1000e_getreg(EERD),
2872    e1000e_getreg(EIAC),
2873    e1000e_getreg(PSRCTL),
2874    e1000e_getreg(MANC2H),
2875    e1000e_getreg(RXCSUM),
2876    e1000e_getreg(GSCL_3),
2877    e1000e_getreg(GSCN_2),
2878    e1000e_getreg(RSRPD),
2879    e1000e_getreg(RDBAL1),
2880    e1000e_getreg(FCAH),
2881    e1000e_getreg(FCRTH),
2882    e1000e_getreg(FLOP),
2883    e1000e_getreg(FLASHT),
2884    e1000e_getreg(RXSTMPH),
2885    e1000e_getreg(TXSTMPL),
2886    e1000e_getreg(TIMADJL),
2887    e1000e_getreg(TXDCTL),
2888    e1000e_getreg(RDH0),
2889    e1000e_getreg(TDT1),
2890    e1000e_getreg(TNCRS),
2891    e1000e_getreg(RJC),
2892    e1000e_getreg(IAM),
2893    e1000e_getreg(GSCL_2),
2894    e1000e_getreg(RDBAH1),
2895    e1000e_getreg(FLSWDATA),
2896    e1000e_getreg(RXSATRH),
2897    e1000e_getreg(TIPG),
2898    e1000e_getreg(FLMNGCTL),
2899    e1000e_getreg(FLMNGCNT),
2900    e1000e_getreg(TSYNCTXCTL),
2901    e1000e_getreg(EXTCNF_SIZE),
2902    e1000e_getreg(EXTCNF_CTRL),
2903    e1000e_getreg(EEMNGDATA),
2904    e1000e_getreg(CTRL_EXT),
2905    e1000e_getreg(SYSTIMH),
2906    e1000e_getreg(EEMNGCTL),
2907    e1000e_getreg(FLMNGDATA),
2908    e1000e_getreg(TSYNCRXCTL),
2909    e1000e_getreg(TDH),
2910    e1000e_getreg(LEDCTL),
2911    e1000e_getreg(STATUS),
2912    e1000e_getreg(TCTL),
2913    e1000e_getreg(TDBAL),
2914    e1000e_getreg(TDLEN),
2915    e1000e_getreg(TDH1),
2916    e1000e_getreg(RADV),
2917    e1000e_getreg(ECOL),
2918    e1000e_getreg(DC),
2919    e1000e_getreg(RLEC),
2920    e1000e_getreg(XOFFTXC),
2921    e1000e_getreg(RFC),
2922    e1000e_getreg(RNBC),
2923    e1000e_getreg(MGTPTC),
2924    e1000e_getreg(TIMINCA),
2925    e1000e_getreg(RXCFGL),
2926    e1000e_getreg(MFUTP01),
2927    e1000e_getreg(FACTPS),
2928    e1000e_getreg(GSCL_1),
2929    e1000e_getreg(GSCN_0),
2930    e1000e_getreg(GCR2),
2931    e1000e_getreg(RDT1),
2932    e1000e_getreg(PBACLR),
2933    e1000e_getreg(FCTTV),
2934    e1000e_getreg(EEWR),
2935    e1000e_getreg(FLSWCTL),
2936    e1000e_getreg(RXDCTL1),
2937    e1000e_getreg(RXSATRL),
2938    e1000e_getreg(SYSTIML),
2939    e1000e_getreg(RXUDP),
2940    e1000e_getreg(TORL),
2941    e1000e_getreg(TDLEN1),
2942    e1000e_getreg(MCC),
2943    e1000e_getreg(WUC),
2944    e1000e_getreg(EECD),
2945    e1000e_getreg(MFUTP23),
2946    e1000e_getreg(RAID),
2947    e1000e_getreg(FCRTV),
2948    e1000e_getreg(TXDCTL1),
2949    e1000e_getreg(RCTL),
2950    e1000e_getreg(TDT),
2951    e1000e_getreg(MDIC),
2952    e1000e_getreg(FCRUC),
2953    e1000e_getreg(VET),
2954    e1000e_getreg(RDBAL0),
2955    e1000e_getreg(TDBAH1),
2956    e1000e_getreg(RDTR),
2957    e1000e_getreg(SCC),
2958    e1000e_getreg(COLC),
2959    e1000e_getreg(CEXTERR),
2960    e1000e_getreg(XOFFRXC),
2961    e1000e_getreg(IPAV),
2962    e1000e_getreg(GOTCL),
2963    e1000e_getreg(MGTPDC),
2964    e1000e_getreg(GCR),
2965    e1000e_getreg(IVAR),
2966    e1000e_getreg(POEMB),
2967    e1000e_getreg(MFVAL),
2968    e1000e_getreg(FUNCTAG),
2969    e1000e_getreg(GSCL_4),
2970    e1000e_getreg(GSCN_3),
2971    e1000e_getreg(MRQC),
2972    e1000e_getreg(RDLEN1),
2973    e1000e_getreg(FCT),
2974    e1000e_getreg(FLA),
2975    e1000e_getreg(FLOL),
2976    e1000e_getreg(RXDCTL),
2977    e1000e_getreg(RXSTMPL),
2978    e1000e_getreg(TXSTMPH),
2979    e1000e_getreg(TIMADJH),
2980    e1000e_getreg(FCRTL),
2981    e1000e_getreg(TDBAH),
2982    e1000e_getreg(TADV),
2983    e1000e_getreg(XONRXC),
2984    e1000e_getreg(TSCTFC),
2985    e1000e_getreg(RFCTL),
2986    e1000e_getreg(GSCN_1),
2987    e1000e_getreg(FCAL),
2988    e1000e_getreg(FLSWCNT),
2989
2990    [TOTH]    = e1000e_mac_read_clr8,
2991    [GOTCH]   = e1000e_mac_read_clr8,
2992    [PRC64]   = e1000e_mac_read_clr4,
2993    [PRC255]  = e1000e_mac_read_clr4,
2994    [PRC1023] = e1000e_mac_read_clr4,
2995    [PTC64]   = e1000e_mac_read_clr4,
2996    [PTC255]  = e1000e_mac_read_clr4,
2997    [PTC1023] = e1000e_mac_read_clr4,
2998    [GPRC]    = e1000e_mac_read_clr4,
2999    [TPT]     = e1000e_mac_read_clr4,
3000    [RUC]     = e1000e_mac_read_clr4,
3001    [BPRC]    = e1000e_mac_read_clr4,
3002    [MPTC]    = e1000e_mac_read_clr4,
3003    [IAC]     = e1000e_mac_read_clr4,
3004    [ICR]     = e1000e_mac_icr_read,
3005    [RDFH]    = E1000E_LOW_BITS_READ(13),
3006    [RDFHS]   = E1000E_LOW_BITS_READ(13),
3007    [RDFPC]   = E1000E_LOW_BITS_READ(13),
3008    [TDFH]    = E1000E_LOW_BITS_READ(13),
3009    [TDFHS]   = E1000E_LOW_BITS_READ(13),
3010    [STATUS]  = e1000e_get_status,
3011    [TARC0]   = e1000e_get_tarc,
3012    [PBS]     = E1000E_LOW_BITS_READ(6),
3013    [ICS]     = e1000e_mac_ics_read,
3014    [AIT]     = E1000E_LOW_BITS_READ(16),
3015    [TORH]    = e1000e_mac_read_clr8,
3016    [GORCH]   = e1000e_mac_read_clr8,
3017    [PRC127]  = e1000e_mac_read_clr4,
3018    [PRC511]  = e1000e_mac_read_clr4,
3019    [PRC1522] = e1000e_mac_read_clr4,
3020    [PTC127]  = e1000e_mac_read_clr4,
3021    [PTC511]  = e1000e_mac_read_clr4,
3022    [PTC1522] = e1000e_mac_read_clr4,
3023    [GPTC]    = e1000e_mac_read_clr4,
3024    [TPR]     = e1000e_mac_read_clr4,
3025    [ROC]     = e1000e_mac_read_clr4,
3026    [MPRC]    = e1000e_mac_read_clr4,
3027    [BPTC]    = e1000e_mac_read_clr4,
3028    [TSCTC]   = e1000e_mac_read_clr4,
3029    [ITR]     = e1000e_mac_itr_read,
3030    [RDFT]    = E1000E_LOW_BITS_READ(13),
3031    [RDFTS]   = E1000E_LOW_BITS_READ(13),
3032    [TDFPC]   = E1000E_LOW_BITS_READ(13),
3033    [TDFT]    = E1000E_LOW_BITS_READ(13),
3034    [TDFTS]   = E1000E_LOW_BITS_READ(13),
3035    [CTRL]    = e1000e_get_ctrl,
3036    [TARC1]   = e1000e_get_tarc,
3037    [SWSM]    = e1000e_mac_swsm_read,
3038    [IMS]     = e1000e_mac_ims_read,
3039
3040    [CRCERRS ... MPC]      = e1000e_mac_readreg,
3041    [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3042    [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3043    [RA ... RA + 31]       = e1000e_mac_readreg,
3044    [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3045    [MTA ... MTA + 127]    = e1000e_mac_readreg,
3046    [VFTA ... VFTA + 127]  = e1000e_mac_readreg,
3047    [FFMT ... FFMT + 254]  = E1000E_LOW_BITS_READ(4),
3048    [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3049    [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3050    [FFLT ... FFLT + 10]   = E1000E_LOW_BITS_READ(11),
3051    [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3052    [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3053    [RETA ... RETA + 31]   = e1000e_mac_readreg,
3054    [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3055    [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3056    [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3057};
3058enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3059
3060#define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3061static void (*e1000e_macreg_writeops[])(E1000ECore *, int, uint32_t) = {
3062    e1000e_putreg(PBA),
3063    e1000e_putreg(SWSM),
3064    e1000e_putreg(WUFC),
3065    e1000e_putreg(RDBAH1),
3066    e1000e_putreg(TDBAH),
3067    e1000e_putreg(TXDCTL),
3068    e1000e_putreg(RDBAH0),
3069    e1000e_putreg(LEDCTL),
3070    e1000e_putreg(FCAL),
3071    e1000e_putreg(FCRUC),
3072    e1000e_putreg(AIT),
3073    e1000e_putreg(TDFH),
3074    e1000e_putreg(TDFT),
3075    e1000e_putreg(TDFHS),
3076    e1000e_putreg(TDFTS),
3077    e1000e_putreg(TDFPC),
3078    e1000e_putreg(WUC),
3079    e1000e_putreg(WUS),
3080    e1000e_putreg(RDFH),
3081    e1000e_putreg(RDFT),
3082    e1000e_putreg(RDFHS),
3083    e1000e_putreg(RDFTS),
3084    e1000e_putreg(RDFPC),
3085    e1000e_putreg(IPAV),
3086    e1000e_putreg(TDBAH1),
3087    e1000e_putreg(TIMINCA),
3088    e1000e_putreg(IAM),
3089    e1000e_putreg(EIAC),
3090    e1000e_putreg(IVAR),
3091    e1000e_putreg(TARC0),
3092    e1000e_putreg(TARC1),
3093    e1000e_putreg(FLSWDATA),
3094    e1000e_putreg(POEMB),
3095    e1000e_putreg(PBS),
3096    e1000e_putreg(MFUTP01),
3097    e1000e_putreg(MFUTP23),
3098    e1000e_putreg(MANC),
3099    e1000e_putreg(MANC2H),
3100    e1000e_putreg(MFVAL),
3101    e1000e_putreg(EXTCNF_CTRL),
3102    e1000e_putreg(FACTPS),
3103    e1000e_putreg(FUNCTAG),
3104    e1000e_putreg(GSCL_1),
3105    e1000e_putreg(GSCL_2),
3106    e1000e_putreg(GSCL_3),
3107    e1000e_putreg(GSCL_4),
3108    e1000e_putreg(GSCN_0),
3109    e1000e_putreg(GSCN_1),
3110    e1000e_putreg(GSCN_2),
3111    e1000e_putreg(GSCN_3),
3112    e1000e_putreg(GCR2),
3113    e1000e_putreg(MRQC),
3114    e1000e_putreg(FLOP),
3115    e1000e_putreg(FLOL),
3116    e1000e_putreg(FLSWCTL),
3117    e1000e_putreg(FLSWCNT),
3118    e1000e_putreg(FLA),
3119    e1000e_putreg(RXDCTL1),
3120    e1000e_putreg(TXDCTL1),
3121    e1000e_putreg(TIPG),
3122    e1000e_putreg(RXSTMPH),
3123    e1000e_putreg(RXSTMPL),
3124    e1000e_putreg(RXSATRL),
3125    e1000e_putreg(RXSATRH),
3126    e1000e_putreg(TXSTMPL),
3127    e1000e_putreg(TXSTMPH),
3128    e1000e_putreg(SYSTIML),
3129    e1000e_putreg(SYSTIMH),
3130    e1000e_putreg(TIMADJL),
3131    e1000e_putreg(TIMADJH),
3132    e1000e_putreg(RXUDP),
3133    e1000e_putreg(RXCFGL),
3134    e1000e_putreg(TSYNCRXCTL),
3135    e1000e_putreg(TSYNCTXCTL),
3136    e1000e_putreg(FLSWDATA),
3137    e1000e_putreg(EXTCNF_SIZE),
3138    e1000e_putreg(EEMNGCTL),
3139    e1000e_putreg(RA),
3140
3141    [TDH1]     = e1000e_set_16bit,
3142    [TDT1]     = e1000e_set_tdt,
3143    [TCTL]     = e1000e_set_tctl,
3144    [TDT]      = e1000e_set_tdt,
3145    [MDIC]     = e1000e_set_mdic,
3146    [ICS]      = e1000e_set_ics,
3147    [TDH]      = e1000e_set_16bit,
3148    [RDH0]     = e1000e_set_16bit,
3149    [RDT0]     = e1000e_set_rdt,
3150    [IMC]      = e1000e_set_imc,
3151    [IMS]      = e1000e_set_ims,
3152    [ICR]      = e1000e_set_icr,
3153    [EECD]     = e1000e_set_eecd,
3154    [RCTL]     = e1000e_set_rx_control,
3155    [CTRL]     = e1000e_set_ctrl,
3156    [RDTR]     = e1000e_set_rdtr,
3157    [RADV]     = e1000e_set_16bit,
3158    [TADV]     = e1000e_set_16bit,
3159    [ITR]      = e1000e_set_itr,
3160    [EERD]     = e1000e_set_eerd,
3161    [GCR]      = e1000e_set_gcr,
3162    [PSRCTL]   = e1000e_set_psrctl,
3163    [RXCSUM]   = e1000e_set_rxcsum,
3164    [RAID]     = e1000e_set_16bit,
3165    [RSRPD]    = e1000e_set_12bit,
3166    [TIDV]     = e1000e_set_tidv,
3167    [TDLEN1]   = e1000e_set_dlen,
3168    [TDLEN]    = e1000e_set_dlen,
3169    [RDLEN0]   = e1000e_set_dlen,
3170    [RDLEN1]   = e1000e_set_dlen,
3171    [TDBAL]    = e1000e_set_dbal,
3172    [TDBAL1]   = e1000e_set_dbal,
3173    [RDBAL0]   = e1000e_set_dbal,
3174    [RDBAL1]   = e1000e_set_dbal,
3175    [RDH1]     = e1000e_set_16bit,
3176    [RDT1]     = e1000e_set_rdt,
3177    [STATUS]   = e1000e_set_status,
3178    [PBACLR]   = e1000e_set_pbaclr,
3179    [CTRL_EXT] = e1000e_set_ctrlext,
3180    [FCAH]     = e1000e_set_16bit,
3181    [FCT]      = e1000e_set_16bit,
3182    [FCTTV]    = e1000e_set_16bit,
3183    [FCRTV]    = e1000e_set_16bit,
3184    [FCRTH]    = e1000e_set_fcrth,
3185    [FCRTL]    = e1000e_set_fcrtl,
3186    [VET]      = e1000e_set_vet,
3187    [RXDCTL]   = e1000e_set_rxdctl,
3188    [FLASHT]   = e1000e_set_16bit,
3189    [EEWR]     = e1000e_set_eewr,
3190    [CTRL_DUP] = e1000e_set_ctrl,
3191    [RFCTL]    = e1000e_set_rfctl,
3192    [RA + 1]   = e1000e_mac_setmacaddr,
3193
3194    [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3195    [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3196    [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3197    [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3198    [MTA ... MTA + 127]      = e1000e_mac_writereg,
3199    [VFTA ... VFTA + 127]    = e1000e_mac_writereg,
3200    [FFMT ... FFMT + 254]    = e1000e_mac_writereg,
3201    [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3202    [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3203    [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3204    [FFLT ... FFLT + 10]     = e1000e_mac_writereg,
3205    [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3206    [RETA ... RETA + 31]     = e1000e_mac_writereg,
3207    [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3208    [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3209    [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3210};
3211enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3212
3213enum { MAC_ACCESS_PARTIAL = 1 };
3214
3215/* The array below combines alias offsets of the index values for the
3216 * MAC registers that have aliases, with the indication of not fully
3217 * implemented registers (lowest bit). This combination is possible
3218 * because all of the offsets are even. */
3219static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3220    /* Alias index offsets */
3221    [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3222    [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3223    [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3224    [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3225    [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3226    [RA_A ... RA_A + 31]      = 0x14f0,
3227    [VFTA_A ... VFTA_A + 127] = 0x1400,
3228    [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3229    [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3230    /* Access options */
3231    [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3232    [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3233    [RDFPC] = MAC_ACCESS_PARTIAL,
3234    [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3235    [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3236    [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3237    [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3238    [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3239    [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3240    [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3241    [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3242    [TXDCTL1] = MAC_ACCESS_PARTIAL,
3243    [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3244};
3245
3246void
3247e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3248{
3249    uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3250
3251    if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3252        if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3253            trace_e1000e_wrn_regs_write_trivial(index << 2);
3254        }
3255        trace_e1000e_core_write(index << 2, size, val);
3256        e1000e_macreg_writeops[index](core, index, val);
3257    } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3258        trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3259    } else {
3260        trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3261    }
3262}
3263
3264uint64_t
3265e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3266{
3267    uint64_t val;
3268    uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3269
3270    if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3271        if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3272            trace_e1000e_wrn_regs_read_trivial(index << 2);
3273        }
3274        val = e1000e_macreg_readops[index](core, index);
3275        trace_e1000e_core_read(index << 2, size, val);
3276        return val;
3277    } else {
3278        trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3279    }
3280    return 0;
3281}
3282
3283static inline void
3284e1000e_autoneg_pause(E1000ECore *core)
3285{
3286    timer_del(core->autoneg_timer);
3287}
3288
3289static void
3290e1000e_autoneg_resume(E1000ECore *core)
3291{
3292    if (e1000e_have_autoneg(core) &&
3293        !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3294        qemu_get_queue(core->owner_nic)->link_down = false;
3295        timer_mod(core->autoneg_timer,
3296                  qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3297    }
3298}
3299
3300static void
3301e1000e_vm_state_change(void *opaque, int running, RunState state)
3302{
3303    E1000ECore *core = opaque;
3304
3305    if (running) {
3306        trace_e1000e_vm_state_running();
3307        e1000e_intrmgr_resume(core);
3308        e1000e_autoneg_resume(core);
3309    } else {
3310        trace_e1000e_vm_state_stopped();
3311        e1000e_autoneg_pause(core);
3312        e1000e_intrmgr_pause(core);
3313    }
3314}
3315
3316void
3317e1000e_core_pci_realize(E1000ECore     *core,
3318                        const uint16_t *eeprom_templ,
3319                        uint32_t        eeprom_size,
3320                        const uint8_t  *macaddr)
3321{
3322    int i;
3323
3324    core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3325                                       e1000e_autoneg_timer, core);
3326    e1000e_intrmgr_pci_realize(core);
3327
3328    core->vmstate =
3329        qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3330
3331    for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3332        net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3333                        E1000E_MAX_TX_FRAGS, core->has_vnet);
3334    }
3335
3336    net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3337
3338    e1000x_core_prepare_eeprom(core->eeprom,
3339                               eeprom_templ,
3340                               eeprom_size,
3341                               PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3342                               macaddr);
3343    e1000e_update_rx_offloads(core);
3344}
3345
3346void
3347e1000e_core_pci_uninit(E1000ECore *core)
3348{
3349    int i;
3350
3351    timer_del(core->autoneg_timer);
3352    timer_free(core->autoneg_timer);
3353
3354    e1000e_intrmgr_pci_unint(core);
3355
3356    qemu_del_vm_change_state_handler(core->vmstate);
3357
3358    for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3359        net_tx_pkt_reset(core->tx[i].tx_pkt);
3360        net_tx_pkt_uninit(core->tx[i].tx_pkt);
3361    }
3362
3363    net_rx_pkt_uninit(core->rx_pkt);
3364}
3365
3366static const uint16_t
3367e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3368    [0] = {
3369        [PHY_CTRL] =   MII_CR_SPEED_SELECT_MSB  |
3370                       MII_CR_FULL_DUPLEX       |
3371                       MII_CR_AUTO_NEG_EN,
3372
3373        [PHY_STATUS] = MII_SR_EXTENDED_CAPS     |
3374                       MII_SR_LINK_STATUS       |
3375                       MII_SR_AUTONEG_CAPS      |
3376                       MII_SR_PREAMBLE_SUPPRESS |
3377                       MII_SR_EXTENDED_STATUS   |
3378                       MII_SR_10T_HD_CAPS       |
3379                       MII_SR_10T_FD_CAPS       |
3380                       MII_SR_100X_HD_CAPS      |
3381                       MII_SR_100X_FD_CAPS,
3382
3383        [PHY_ID1]               = 0x141,
3384        [PHY_ID2]               = E1000_PHY_ID2_82574x,
3385        [PHY_AUTONEG_ADV]       = 0xde1,
3386        [PHY_LP_ABILITY]        = 0x7e0,
3387        [PHY_AUTONEG_EXP]       = BIT(2),
3388        [PHY_NEXT_PAGE_TX]      = BIT(0) | BIT(13),
3389        [PHY_1000T_CTRL]        = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3390        [PHY_1000T_STATUS]      = 0x3c00,
3391        [PHY_EXT_STATUS]        = BIT(12) | BIT(13),
3392
3393        [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3394                                  BIT(12) | BIT(13),
3395        [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3396    },
3397    [2] = {
3398        [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3399        [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3400    },
3401    [3] = {
3402        [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3403    }
3404};
3405
3406static const uint32_t e1000e_mac_reg_init[] = {
3407    [PBA]           =     0x00140014,
3408    [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3409    [EXTCNF_CTRL]   = BIT(3),
3410    [EEMNGCTL]      = BIT(31),
3411    [FLASHT]        = 0x2,
3412    [FLSWCTL]       = BIT(30) | BIT(31),
3413    [FLOL]          = BIT(0),
3414    [RXDCTL]        = BIT(16),
3415    [RXDCTL1]       = BIT(16),
3416    [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3417    [RXCFGL]        = 0x88F7,
3418    [RXUDP]         = 0x319,
3419    [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3420                      E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3421                      E1000_CTRL_ADVD3WUC,
3422    [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3423    [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3424                      (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3425                      (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3426    [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3427    [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3428    [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3429    [EERD]          = E1000_EERW_DONE,
3430    [EEWR]          = E1000_EERW_DONE,
3431    [GCR]           = E1000_L0S_ADJUST |
3432                      E1000_L1_ENTRY_LATENCY_MSB |
3433                      E1000_L1_ENTRY_LATENCY_LSB,
3434    [TDFH]          = 0x600,
3435    [TDFT]          = 0x600,
3436    [TDFHS]         = 0x600,
3437    [TDFTS]         = 0x600,
3438    [POEMB]         = 0x30D,
3439    [PBS]           = 0x028,
3440    [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3441    [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3442    [SWSM]          = 1,
3443    [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3444    [ITR]           = E1000E_MIN_XITR,
3445    [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3446};
3447
3448void
3449e1000e_core_reset(E1000ECore *core)
3450{
3451    int i;
3452
3453    timer_del(core->autoneg_timer);
3454
3455    e1000e_intrmgr_reset(core);
3456
3457    memset(core->phy, 0, sizeof core->phy);
3458    memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3459    memset(core->mac, 0, sizeof core->mac);
3460    memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3461
3462    core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3463
3464    if (qemu_get_queue(core->owner_nic)->link_down) {
3465        e1000e_link_down(core);
3466    }
3467
3468    e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3469
3470    for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3471        net_tx_pkt_reset(core->tx[i].tx_pkt);
3472        memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3473        core->tx[i].skip_cp = false;
3474    }
3475}
3476
3477void e1000e_core_pre_save(E1000ECore *core)
3478{
3479    int i;
3480    NetClientState *nc = qemu_get_queue(core->owner_nic);
3481
3482    /*
3483    * If link is down and auto-negotiation is supported and ongoing,
3484    * complete auto-negotiation immediately. This allows us to look
3485    * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3486    */
3487    if (nc->link_down && e1000e_have_autoneg(core)) {
3488        core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3489        e1000e_update_flowctl_status(core);
3490    }
3491
3492    for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3493        if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3494            core->tx[i].skip_cp = true;
3495        }
3496    }
3497}
3498
3499int
3500e1000e_core_post_load(E1000ECore *core)
3501{
3502    NetClientState *nc = qemu_get_queue(core->owner_nic);
3503
3504    /* nc.link_down can't be migrated, so infer link_down according
3505     * to link status bit in core.mac[STATUS].
3506     */
3507    nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3508
3509    return 0;
3510}
3511