qemu/hw/ppc/spapr_drc.c
<<
>>
Prefs
   1/*
   2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
   3 *
   4 * Copyright IBM Corp. 2014
   5 *
   6 * Authors:
   7 *  Michael Roth      <mdroth@linux.vnet.ibm.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "qapi/error.h"
  15#include "qapi/qmp/qnull.h"
  16#include "cpu.h"
  17#include "qemu/cutils.h"
  18#include "hw/ppc/spapr_drc.h"
  19#include "qom/object.h"
  20#include "migration/vmstate.h"
  21#include "qapi/visitor.h"
  22#include "qemu/error-report.h"
  23#include "hw/ppc/spapr.h" /* for RTAS return codes */
  24#include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
  25#include "sysemu/device_tree.h"
  26#include "sysemu/reset.h"
  27#include "trace.h"
  28
  29#define DRC_CONTAINER_PATH "/dr-connector"
  30#define DRC_INDEX_TYPE_SHIFT 28
  31#define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
  32
  33SpaprDrcType spapr_drc_type(SpaprDrc *drc)
  34{
  35    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
  36
  37    return 1 << drck->typeshift;
  38}
  39
  40uint32_t spapr_drc_index(SpaprDrc *drc)
  41{
  42    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
  43
  44    /* no set format for a drc index: it only needs to be globally
  45     * unique. this is how we encode the DRC type on bare-metal
  46     * however, so might as well do that here
  47     */
  48    return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
  49        | (drc->id & DRC_INDEX_ID_MASK);
  50}
  51
  52static uint32_t drc_isolate_physical(SpaprDrc *drc)
  53{
  54    switch (drc->state) {
  55    case SPAPR_DRC_STATE_PHYSICAL_POWERON:
  56        return RTAS_OUT_SUCCESS; /* Nothing to do */
  57    case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
  58        break; /* see below */
  59    case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
  60        return RTAS_OUT_PARAM_ERROR; /* not allowed */
  61    default:
  62        g_assert_not_reached();
  63    }
  64
  65    drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
  66
  67    if (drc->unplug_requested) {
  68        uint32_t drc_index = spapr_drc_index(drc);
  69        trace_spapr_drc_set_isolation_state_finalizing(drc_index);
  70        spapr_drc_detach(drc);
  71    }
  72
  73    return RTAS_OUT_SUCCESS;
  74}
  75
  76static uint32_t drc_unisolate_physical(SpaprDrc *drc)
  77{
  78    switch (drc->state) {
  79    case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
  80    case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
  81        return RTAS_OUT_SUCCESS; /* Nothing to do */
  82    case SPAPR_DRC_STATE_PHYSICAL_POWERON:
  83        break; /* see below */
  84    default:
  85        g_assert_not_reached();
  86    }
  87
  88    /* cannot unisolate a non-existent resource, and, or resources
  89     * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
  90     * 13.5.3.5)
  91     */
  92    if (!drc->dev) {
  93        return RTAS_OUT_NO_SUCH_INDICATOR;
  94    }
  95
  96    drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
  97    drc->ccs_offset = drc->fdt_start_offset;
  98    drc->ccs_depth = 0;
  99
 100    return RTAS_OUT_SUCCESS;
 101}
 102
 103static uint32_t drc_isolate_logical(SpaprDrc *drc)
 104{
 105    switch (drc->state) {
 106    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 107    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 108        return RTAS_OUT_SUCCESS; /* Nothing to do */
 109    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 110        break; /* see below */
 111    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 112        return RTAS_OUT_PARAM_ERROR; /* not allowed */
 113    default:
 114        g_assert_not_reached();
 115    }
 116
 117    /*
 118     * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
 119     * belong to a DIMM device that is marked for removal.
 120     *
 121     * Currently the guest userspace tool drmgr that drives the memory
 122     * hotplug/unplug will just try to remove a set of 'removable' LMBs
 123     * in response to a hot unplug request that is based on drc-count.
 124     * If the LMB being removed doesn't belong to a DIMM device that is
 125     * actually being unplugged, fail the isolation request here.
 126     */
 127    if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
 128        && !drc->unplug_requested) {
 129        return RTAS_OUT_HW_ERROR;
 130    }
 131
 132    drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
 133
 134    /* if we're awaiting release, but still in an unconfigured state,
 135     * it's likely the guest is still in the process of configuring
 136     * the device and is transitioning the devices to an ISOLATED
 137     * state as a part of that process. so we only complete the
 138     * removal when this transition happens for a device in a
 139     * configured state, as suggested by the state diagram from PAPR+
 140     * 2.7, 13.4
 141     */
 142    if (drc->unplug_requested) {
 143        uint32_t drc_index = spapr_drc_index(drc);
 144        trace_spapr_drc_set_isolation_state_finalizing(drc_index);
 145        spapr_drc_detach(drc);
 146    }
 147    return RTAS_OUT_SUCCESS;
 148}
 149
 150static uint32_t drc_unisolate_logical(SpaprDrc *drc)
 151{
 152    switch (drc->state) {
 153    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 154    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 155        return RTAS_OUT_SUCCESS; /* Nothing to do */
 156    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 157        break; /* see below */
 158    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 159        return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
 160    default:
 161        g_assert_not_reached();
 162    }
 163
 164    /* Move to AVAILABLE state should have ensured device was present */
 165    g_assert(drc->dev);
 166
 167    drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
 168    drc->ccs_offset = drc->fdt_start_offset;
 169    drc->ccs_depth = 0;
 170
 171    return RTAS_OUT_SUCCESS;
 172}
 173
 174static uint32_t drc_set_usable(SpaprDrc *drc)
 175{
 176    switch (drc->state) {
 177    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 178    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 179    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 180        return RTAS_OUT_SUCCESS; /* Nothing to do */
 181    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 182        break; /* see below */
 183    default:
 184        g_assert_not_reached();
 185    }
 186
 187    /* if there's no resource/device associated with the DRC, there's
 188     * no way for us to put it in an allocation state consistent with
 189     * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
 190     * result in an RTAS return code of -3 / "no such indicator"
 191     */
 192    if (!drc->dev) {
 193        return RTAS_OUT_NO_SUCH_INDICATOR;
 194    }
 195    if (drc->unplug_requested) {
 196        /* Don't allow the guest to move a device away from UNUSABLE
 197         * state when we want to unplug it */
 198        return RTAS_OUT_NO_SUCH_INDICATOR;
 199    }
 200
 201    drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
 202
 203    return RTAS_OUT_SUCCESS;
 204}
 205
 206static uint32_t drc_set_unusable(SpaprDrc *drc)
 207{
 208    switch (drc->state) {
 209    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 210        return RTAS_OUT_SUCCESS; /* Nothing to do */
 211    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 212        break; /* see below */
 213    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 214    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 215        return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
 216    default:
 217        g_assert_not_reached();
 218    }
 219
 220    drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
 221    if (drc->unplug_requested) {
 222        uint32_t drc_index = spapr_drc_index(drc);
 223        trace_spapr_drc_set_allocation_state_finalizing(drc_index);
 224        spapr_drc_detach(drc);
 225    }
 226
 227    return RTAS_OUT_SUCCESS;
 228}
 229
 230static char *spapr_drc_name(SpaprDrc *drc)
 231{
 232    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 233
 234    /* human-readable name for a DRC to encode into the DT
 235     * description. this is mainly only used within a guest in place
 236     * of the unique DRC index.
 237     *
 238     * in the case of VIO/PCI devices, it corresponds to a "location
 239     * code" that maps a logical device/function (DRC index) to a
 240     * physical (or virtual in the case of VIO) location in the system
 241     * by chaining together the "location label" for each
 242     * encapsulating component.
 243     *
 244     * since this is more to do with diagnosing physical hardware
 245     * issues than guest compatibility, we choose location codes/DRC
 246     * names that adhere to the documented format, but avoid encoding
 247     * the entire topology information into the label/code, instead
 248     * just using the location codes based on the labels for the
 249     * endpoints (VIO/PCI adaptor connectors), which is basically just
 250     * "C" followed by an integer ID.
 251     *
 252     * DRC names as documented by PAPR+ v2.7, 13.5.2.4
 253     * location codes as documented by PAPR+ v2.7, 12.3.1.5
 254     */
 255    return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
 256}
 257
 258/*
 259 * dr-entity-sense sensor value
 260 * returned via get-sensor-state RTAS calls
 261 * as expected by state diagram in PAPR+ 2.7, 13.4
 262 * based on the current allocation/indicator/power states
 263 * for the DR connector.
 264 */
 265static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
 266{
 267    /* this assumes all PCI devices are assigned to a 'live insertion'
 268     * power domain, where QEMU manages power state automatically as
 269     * opposed to the guest. present, non-PCI resources are unaffected
 270     * by power state.
 271     */
 272    return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
 273        : SPAPR_DR_ENTITY_SENSE_EMPTY;
 274}
 275
 276static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
 277{
 278    switch (drc->state) {
 279    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 280        return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
 281    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 282    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 283    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 284        g_assert(drc->dev);
 285        return SPAPR_DR_ENTITY_SENSE_PRESENT;
 286    default:
 287        g_assert_not_reached();
 288    }
 289}
 290
 291static void prop_get_index(Object *obj, Visitor *v, const char *name,
 292                           void *opaque, Error **errp)
 293{
 294    SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
 295    uint32_t value = spapr_drc_index(drc);
 296    visit_type_uint32(v, name, &value, errp);
 297}
 298
 299static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
 300                         void *opaque, Error **errp)
 301{
 302    SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
 303    QNull *null = NULL;
 304    Error *err = NULL;
 305    int fdt_offset_next, fdt_offset, fdt_depth;
 306    void *fdt;
 307
 308    if (!drc->fdt) {
 309        visit_type_null(v, NULL, &null, errp);
 310        qobject_unref(null);
 311        return;
 312    }
 313
 314    fdt = drc->fdt;
 315    fdt_offset = drc->fdt_start_offset;
 316    fdt_depth = 0;
 317
 318    do {
 319        const char *name = NULL;
 320        const struct fdt_property *prop = NULL;
 321        int prop_len = 0, name_len = 0;
 322        uint32_t tag;
 323
 324        tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
 325        switch (tag) {
 326        case FDT_BEGIN_NODE:
 327            fdt_depth++;
 328            name = fdt_get_name(fdt, fdt_offset, &name_len);
 329            visit_start_struct(v, name, NULL, 0, &err);
 330            if (err) {
 331                error_propagate(errp, err);
 332                return;
 333            }
 334            break;
 335        case FDT_END_NODE:
 336            /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
 337            g_assert(fdt_depth > 0);
 338            visit_check_struct(v, &err);
 339            visit_end_struct(v, NULL);
 340            if (err) {
 341                error_propagate(errp, err);
 342                return;
 343            }
 344            fdt_depth--;
 345            break;
 346        case FDT_PROP: {
 347            int i;
 348            prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
 349            name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
 350            visit_start_list(v, name, NULL, 0, &err);
 351            if (err) {
 352                error_propagate(errp, err);
 353                return;
 354            }
 355            for (i = 0; i < prop_len; i++) {
 356                visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
 357                if (err) {
 358                    error_propagate(errp, err);
 359                    return;
 360                }
 361            }
 362            visit_check_list(v, &err);
 363            visit_end_list(v, NULL);
 364            if (err) {
 365                error_propagate(errp, err);
 366                return;
 367            }
 368            break;
 369        }
 370        default:
 371            error_report("device FDT in unexpected state: %d", tag);
 372            abort();
 373        }
 374        fdt_offset = fdt_offset_next;
 375    } while (fdt_depth != 0);
 376}
 377
 378void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
 379{
 380    trace_spapr_drc_attach(spapr_drc_index(drc));
 381
 382    if (drc->dev) {
 383        error_setg(errp, "an attached device is still awaiting release");
 384        return;
 385    }
 386    g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
 387             || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
 388
 389    drc->dev = d;
 390
 391    object_property_add_link(OBJECT(drc), "device",
 392                             object_get_typename(OBJECT(drc->dev)),
 393                             (Object **)(&drc->dev),
 394                             NULL, 0, NULL);
 395}
 396
 397static void spapr_drc_release(SpaprDrc *drc)
 398{
 399    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 400
 401    drck->release(drc->dev);
 402
 403    drc->unplug_requested = false;
 404    g_free(drc->fdt);
 405    drc->fdt = NULL;
 406    drc->fdt_start_offset = 0;
 407    object_property_del(OBJECT(drc), "device", &error_abort);
 408    drc->dev = NULL;
 409}
 410
 411void spapr_drc_detach(SpaprDrc *drc)
 412{
 413    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 414
 415    trace_spapr_drc_detach(spapr_drc_index(drc));
 416
 417    g_assert(drc->dev);
 418
 419    drc->unplug_requested = true;
 420
 421    if (drc->state != drck->empty_state) {
 422        trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
 423        return;
 424    }
 425
 426    spapr_drc_release(drc);
 427}
 428
 429void spapr_drc_reset(SpaprDrc *drc)
 430{
 431    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 432
 433    trace_spapr_drc_reset(spapr_drc_index(drc));
 434
 435    /* immediately upon reset we can safely assume DRCs whose devices
 436     * are pending removal can be safely removed.
 437     */
 438    if (drc->unplug_requested) {
 439        spapr_drc_release(drc);
 440    }
 441
 442    if (drc->dev) {
 443        /* A device present at reset is ready to go, same as coldplugged */
 444        drc->state = drck->ready_state;
 445        /*
 446         * Ensure that we are able to send the FDT fragment again
 447         * via configure-connector call if the guest requests.
 448         */
 449        drc->ccs_offset = drc->fdt_start_offset;
 450        drc->ccs_depth = 0;
 451    } else {
 452        drc->state = drck->empty_state;
 453        drc->ccs_offset = -1;
 454        drc->ccs_depth = -1;
 455    }
 456}
 457
 458bool spapr_drc_needed(void *opaque)
 459{
 460    SpaprDrc *drc = (SpaprDrc *)opaque;
 461    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 462
 463    /* If no dev is plugged in there is no need to migrate the DRC state */
 464    if (!drc->dev) {
 465        return false;
 466    }
 467
 468    /*
 469     * We need to migrate the state if it's not equal to the expected
 470     * long-term state, which is the same as the coldplugged initial
 471     * state */
 472    return (drc->state != drck->ready_state);
 473}
 474
 475static const VMStateDescription vmstate_spapr_drc = {
 476    .name = "spapr_drc",
 477    .version_id = 1,
 478    .minimum_version_id = 1,
 479    .needed = spapr_drc_needed,
 480    .fields  = (VMStateField []) {
 481        VMSTATE_UINT32(state, SpaprDrc),
 482        VMSTATE_END_OF_LIST()
 483    }
 484};
 485
 486static void realize(DeviceState *d, Error **errp)
 487{
 488    SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
 489    Object *root_container;
 490    gchar *link_name;
 491    gchar *child_name;
 492    Error *err = NULL;
 493
 494    trace_spapr_drc_realize(spapr_drc_index(drc));
 495    /* NOTE: we do this as part of realize/unrealize due to the fact
 496     * that the guest will communicate with the DRC via RTAS calls
 497     * referencing the global DRC index. By unlinking the DRC
 498     * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
 499     * inaccessible by the guest, since lookups rely on this path
 500     * existing in the composition tree
 501     */
 502    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 503    link_name = g_strdup_printf("%x", spapr_drc_index(drc));
 504    child_name = object_get_canonical_path_component(OBJECT(drc));
 505    trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
 506    object_property_add_alias(root_container, link_name,
 507                              drc->owner, child_name, &err);
 508    g_free(child_name);
 509    g_free(link_name);
 510    if (err) {
 511        error_propagate(errp, err);
 512        return;
 513    }
 514    vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
 515                     drc);
 516    trace_spapr_drc_realize_complete(spapr_drc_index(drc));
 517}
 518
 519static void unrealize(DeviceState *d, Error **errp)
 520{
 521    SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
 522    Object *root_container;
 523    gchar *name;
 524
 525    trace_spapr_drc_unrealize(spapr_drc_index(drc));
 526    vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc);
 527    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 528    name = g_strdup_printf("%x", spapr_drc_index(drc));
 529    object_property_del(root_container, name, errp);
 530    g_free(name);
 531}
 532
 533SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
 534                                         uint32_t id)
 535{
 536    SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
 537    char *prop_name;
 538
 539    drc->id = id;
 540    drc->owner = owner;
 541    prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
 542                                spapr_drc_index(drc));
 543    object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
 544    object_unref(OBJECT(drc));
 545    object_property_set_bool(OBJECT(drc), true, "realized", NULL);
 546    g_free(prop_name);
 547
 548    return drc;
 549}
 550
 551static void spapr_dr_connector_instance_init(Object *obj)
 552{
 553    SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
 554    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 555
 556    object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
 557    object_property_add(obj, "index", "uint32", prop_get_index,
 558                        NULL, NULL, NULL, NULL);
 559    object_property_add(obj, "fdt", "struct", prop_get_fdt,
 560                        NULL, NULL, NULL, NULL);
 561    drc->state = drck->empty_state;
 562}
 563
 564static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
 565{
 566    DeviceClass *dk = DEVICE_CLASS(k);
 567
 568    dk->realize = realize;
 569    dk->unrealize = unrealize;
 570    /*
 571     * Reason: it crashes FIXME find and document the real reason
 572     */
 573    dk->user_creatable = false;
 574}
 575
 576static bool drc_physical_needed(void *opaque)
 577{
 578    SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
 579    SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
 580
 581    if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
 582        || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
 583        return false;
 584    }
 585    return true;
 586}
 587
 588static const VMStateDescription vmstate_spapr_drc_physical = {
 589    .name = "spapr_drc/physical",
 590    .version_id = 1,
 591    .minimum_version_id = 1,
 592    .needed = drc_physical_needed,
 593    .fields  = (VMStateField []) {
 594        VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
 595        VMSTATE_END_OF_LIST()
 596    }
 597};
 598
 599static void drc_physical_reset(void *opaque)
 600{
 601    SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
 602    SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
 603
 604    if (drc->dev) {
 605        drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
 606    } else {
 607        drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
 608    }
 609}
 610
 611static void realize_physical(DeviceState *d, Error **errp)
 612{
 613    SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
 614    Error *local_err = NULL;
 615
 616    realize(d, &local_err);
 617    if (local_err) {
 618        error_propagate(errp, local_err);
 619        return;
 620    }
 621
 622    vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
 623                     &vmstate_spapr_drc_physical, drcp);
 624    qemu_register_reset(drc_physical_reset, drcp);
 625}
 626
 627static void unrealize_physical(DeviceState *d, Error **errp)
 628{
 629    SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
 630    Error *local_err = NULL;
 631
 632    unrealize(d, &local_err);
 633    if (local_err) {
 634        error_propagate(errp, local_err);
 635        return;
 636    }
 637
 638    vmstate_unregister(DEVICE(drcp), &vmstate_spapr_drc_physical, drcp);
 639    qemu_unregister_reset(drc_physical_reset, drcp);
 640}
 641
 642static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
 643{
 644    DeviceClass *dk = DEVICE_CLASS(k);
 645    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 646
 647    dk->realize = realize_physical;
 648    dk->unrealize = unrealize_physical;
 649    drck->dr_entity_sense = physical_entity_sense;
 650    drck->isolate = drc_isolate_physical;
 651    drck->unisolate = drc_unisolate_physical;
 652    drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
 653    drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
 654}
 655
 656static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
 657{
 658    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 659
 660    drck->dr_entity_sense = logical_entity_sense;
 661    drck->isolate = drc_isolate_logical;
 662    drck->unisolate = drc_unisolate_logical;
 663    drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
 664    drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
 665}
 666
 667static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
 668{
 669    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 670
 671    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
 672    drck->typename = "CPU";
 673    drck->drc_name_prefix = "CPU ";
 674    drck->release = spapr_core_release;
 675    drck->dt_populate = spapr_core_dt_populate;
 676}
 677
 678static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
 679{
 680    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 681
 682    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
 683    drck->typename = "28";
 684    drck->drc_name_prefix = "C";
 685    drck->release = spapr_phb_remove_pci_device_cb;
 686    drck->dt_populate = spapr_pci_dt_populate;
 687}
 688
 689static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
 690{
 691    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 692
 693    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
 694    drck->typename = "MEM";
 695    drck->drc_name_prefix = "LMB ";
 696    drck->release = spapr_lmb_release;
 697    drck->dt_populate = spapr_lmb_dt_populate;
 698}
 699
 700static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
 701{
 702    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 703
 704    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
 705    drck->typename = "PHB";
 706    drck->drc_name_prefix = "PHB ";
 707    drck->release = spapr_phb_release;
 708    drck->dt_populate = spapr_phb_dt_populate;
 709}
 710
 711static const TypeInfo spapr_dr_connector_info = {
 712    .name          = TYPE_SPAPR_DR_CONNECTOR,
 713    .parent        = TYPE_DEVICE,
 714    .instance_size = sizeof(SpaprDrc),
 715    .instance_init = spapr_dr_connector_instance_init,
 716    .class_size    = sizeof(SpaprDrcClass),
 717    .class_init    = spapr_dr_connector_class_init,
 718    .abstract      = true,
 719};
 720
 721static const TypeInfo spapr_drc_physical_info = {
 722    .name          = TYPE_SPAPR_DRC_PHYSICAL,
 723    .parent        = TYPE_SPAPR_DR_CONNECTOR,
 724    .instance_size = sizeof(SpaprDrcPhysical),
 725    .class_init    = spapr_drc_physical_class_init,
 726    .abstract      = true,
 727};
 728
 729static const TypeInfo spapr_drc_logical_info = {
 730    .name          = TYPE_SPAPR_DRC_LOGICAL,
 731    .parent        = TYPE_SPAPR_DR_CONNECTOR,
 732    .class_init    = spapr_drc_logical_class_init,
 733    .abstract      = true,
 734};
 735
 736static const TypeInfo spapr_drc_cpu_info = {
 737    .name          = TYPE_SPAPR_DRC_CPU,
 738    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 739    .class_init    = spapr_drc_cpu_class_init,
 740};
 741
 742static const TypeInfo spapr_drc_pci_info = {
 743    .name          = TYPE_SPAPR_DRC_PCI,
 744    .parent        = TYPE_SPAPR_DRC_PHYSICAL,
 745    .class_init    = spapr_drc_pci_class_init,
 746};
 747
 748static const TypeInfo spapr_drc_lmb_info = {
 749    .name          = TYPE_SPAPR_DRC_LMB,
 750    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 751    .class_init    = spapr_drc_lmb_class_init,
 752};
 753
 754static const TypeInfo spapr_drc_phb_info = {
 755    .name          = TYPE_SPAPR_DRC_PHB,
 756    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 757    .instance_size = sizeof(SpaprDrc),
 758    .class_init    = spapr_drc_phb_class_init,
 759};
 760
 761/* helper functions for external users */
 762
 763SpaprDrc *spapr_drc_by_index(uint32_t index)
 764{
 765    Object *obj;
 766    gchar *name;
 767
 768    name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
 769    obj = object_resolve_path(name, NULL);
 770    g_free(name);
 771
 772    return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
 773}
 774
 775SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
 776{
 777    SpaprDrcClass *drck
 778        = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
 779
 780    return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
 781                              | (id & DRC_INDEX_ID_MASK));
 782}
 783
 784/**
 785 * spapr_dt_drc
 786 *
 787 * @fdt: libfdt device tree
 788 * @path: path in the DT to generate properties
 789 * @owner: parent Object/DeviceState for which to generate DRC
 790 *         descriptions for
 791 * @drc_type_mask: mask of SpaprDrcType values corresponding
 792 *   to the types of DRCs to generate entries for
 793 *
 794 * generate OF properties to describe DRC topology/indices to guests
 795 *
 796 * as documented in PAPR+ v2.1, 13.5.2
 797 */
 798int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
 799{
 800    Object *root_container;
 801    ObjectProperty *prop;
 802    ObjectPropertyIterator iter;
 803    uint32_t drc_count = 0;
 804    GArray *drc_indexes, *drc_power_domains;
 805    GString *drc_names, *drc_types;
 806    int ret;
 807
 808    /* the first entry of each properties is a 32-bit integer encoding
 809     * the number of elements in the array. we won't know this until
 810     * we complete the iteration through all the matching DRCs, but
 811     * reserve the space now and set the offsets accordingly so we
 812     * can fill them in later.
 813     */
 814    drc_indexes = g_array_new(false, true, sizeof(uint32_t));
 815    drc_indexes = g_array_set_size(drc_indexes, 1);
 816    drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
 817    drc_power_domains = g_array_set_size(drc_power_domains, 1);
 818    drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
 819    drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
 820
 821    /* aliases for all DRConnector objects will be rooted in QOM
 822     * composition tree at DRC_CONTAINER_PATH
 823     */
 824    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 825
 826    object_property_iter_init(&iter, root_container);
 827    while ((prop = object_property_iter_next(&iter))) {
 828        Object *obj;
 829        SpaprDrc *drc;
 830        SpaprDrcClass *drck;
 831        char *drc_name = NULL;
 832        uint32_t drc_index, drc_power_domain;
 833
 834        if (!strstart(prop->type, "link<", NULL)) {
 835            continue;
 836        }
 837
 838        obj = object_property_get_link(root_container, prop->name, NULL);
 839        drc = SPAPR_DR_CONNECTOR(obj);
 840        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 841
 842        if (owner && (drc->owner != owner)) {
 843            continue;
 844        }
 845
 846        if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
 847            continue;
 848        }
 849
 850        drc_count++;
 851
 852        /* ibm,drc-indexes */
 853        drc_index = cpu_to_be32(spapr_drc_index(drc));
 854        g_array_append_val(drc_indexes, drc_index);
 855
 856        /* ibm,drc-power-domains */
 857        drc_power_domain = cpu_to_be32(-1);
 858        g_array_append_val(drc_power_domains, drc_power_domain);
 859
 860        /* ibm,drc-names */
 861        drc_name = spapr_drc_name(drc);
 862        drc_names = g_string_append(drc_names, drc_name);
 863        drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
 864        g_free(drc_name);
 865
 866        /* ibm,drc-types */
 867        drc_types = g_string_append(drc_types, drck->typename);
 868        drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
 869    }
 870
 871    /* now write the drc count into the space we reserved at the
 872     * beginning of the arrays previously
 873     */
 874    *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
 875    *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
 876    *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
 877    *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
 878
 879    ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
 880                      drc_indexes->data,
 881                      drc_indexes->len * sizeof(uint32_t));
 882    if (ret) {
 883        error_report("Couldn't create ibm,drc-indexes property");
 884        goto out;
 885    }
 886
 887    ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
 888                      drc_power_domains->data,
 889                      drc_power_domains->len * sizeof(uint32_t));
 890    if (ret) {
 891        error_report("Couldn't finalize ibm,drc-power-domains property");
 892        goto out;
 893    }
 894
 895    ret = fdt_setprop(fdt, offset, "ibm,drc-names",
 896                      drc_names->str, drc_names->len);
 897    if (ret) {
 898        error_report("Couldn't finalize ibm,drc-names property");
 899        goto out;
 900    }
 901
 902    ret = fdt_setprop(fdt, offset, "ibm,drc-types",
 903                      drc_types->str, drc_types->len);
 904    if (ret) {
 905        error_report("Couldn't finalize ibm,drc-types property");
 906        goto out;
 907    }
 908
 909out:
 910    g_array_free(drc_indexes, true);
 911    g_array_free(drc_power_domains, true);
 912    g_string_free(drc_names, true);
 913    g_string_free(drc_types, true);
 914
 915    return ret;
 916}
 917
 918/*
 919 * RTAS calls
 920 */
 921
 922static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
 923{
 924    SpaprDrc *drc = spapr_drc_by_index(idx);
 925    SpaprDrcClass *drck;
 926
 927    if (!drc) {
 928        return RTAS_OUT_NO_SUCH_INDICATOR;
 929    }
 930
 931    trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
 932
 933    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 934
 935    switch (state) {
 936    case SPAPR_DR_ISOLATION_STATE_ISOLATED:
 937        return drck->isolate(drc);
 938
 939    case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
 940        return drck->unisolate(drc);
 941
 942    default:
 943        return RTAS_OUT_PARAM_ERROR;
 944    }
 945}
 946
 947static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
 948{
 949    SpaprDrc *drc = spapr_drc_by_index(idx);
 950
 951    if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
 952        return RTAS_OUT_NO_SUCH_INDICATOR;
 953    }
 954
 955    trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
 956
 957    switch (state) {
 958    case SPAPR_DR_ALLOCATION_STATE_USABLE:
 959        return drc_set_usable(drc);
 960
 961    case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
 962        return drc_set_unusable(drc);
 963
 964    default:
 965        return RTAS_OUT_PARAM_ERROR;
 966    }
 967}
 968
 969static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
 970{
 971    SpaprDrc *drc = spapr_drc_by_index(idx);
 972
 973    if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
 974        return RTAS_OUT_NO_SUCH_INDICATOR;
 975    }
 976    if ((state != SPAPR_DR_INDICATOR_INACTIVE)
 977        && (state != SPAPR_DR_INDICATOR_ACTIVE)
 978        && (state != SPAPR_DR_INDICATOR_IDENTIFY)
 979        && (state != SPAPR_DR_INDICATOR_ACTION)) {
 980        return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
 981    }
 982
 983    trace_spapr_drc_set_dr_indicator(idx, state);
 984    SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
 985    return RTAS_OUT_SUCCESS;
 986}
 987
 988static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
 989                               uint32_t token,
 990                               uint32_t nargs, target_ulong args,
 991                               uint32_t nret, target_ulong rets)
 992{
 993    uint32_t type, idx, state;
 994    uint32_t ret = RTAS_OUT_SUCCESS;
 995
 996    if (nargs != 3 || nret != 1) {
 997        ret = RTAS_OUT_PARAM_ERROR;
 998        goto out;
 999    }
1000
1001    type = rtas_ld(args, 0);
1002    idx = rtas_ld(args, 1);
1003    state = rtas_ld(args, 2);
1004
1005    switch (type) {
1006    case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1007        ret = rtas_set_isolation_state(idx, state);
1008        break;
1009    case RTAS_SENSOR_TYPE_DR:
1010        ret = rtas_set_dr_indicator(idx, state);
1011        break;
1012    case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1013        ret = rtas_set_allocation_state(idx, state);
1014        break;
1015    default:
1016        ret = RTAS_OUT_NOT_SUPPORTED;
1017    }
1018
1019out:
1020    rtas_st(rets, 0, ret);
1021}
1022
1023static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1024                                  uint32_t token, uint32_t nargs,
1025                                  target_ulong args, uint32_t nret,
1026                                  target_ulong rets)
1027{
1028    uint32_t sensor_type;
1029    uint32_t sensor_index;
1030    uint32_t sensor_state = 0;
1031    SpaprDrc *drc;
1032    SpaprDrcClass *drck;
1033    uint32_t ret = RTAS_OUT_SUCCESS;
1034
1035    if (nargs != 2 || nret != 2) {
1036        ret = RTAS_OUT_PARAM_ERROR;
1037        goto out;
1038    }
1039
1040    sensor_type = rtas_ld(args, 0);
1041    sensor_index = rtas_ld(args, 1);
1042
1043    if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1044        /* currently only DR-related sensors are implemented */
1045        trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1046                                                        sensor_type);
1047        ret = RTAS_OUT_NOT_SUPPORTED;
1048        goto out;
1049    }
1050
1051    drc = spapr_drc_by_index(sensor_index);
1052    if (!drc) {
1053        trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1054        ret = RTAS_OUT_PARAM_ERROR;
1055        goto out;
1056    }
1057    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1058    sensor_state = drck->dr_entity_sense(drc);
1059
1060out:
1061    rtas_st(rets, 0, ret);
1062    rtas_st(rets, 1, sensor_state);
1063}
1064
1065/* configure-connector work area offsets, int32_t units for field
1066 * indexes, bytes for field offset/len values.
1067 *
1068 * as documented by PAPR+ v2.7, 13.5.3.5
1069 */
1070#define CC_IDX_NODE_NAME_OFFSET 2
1071#define CC_IDX_PROP_NAME_OFFSET 2
1072#define CC_IDX_PROP_LEN 3
1073#define CC_IDX_PROP_DATA_OFFSET 4
1074#define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1075#define CC_WA_LEN 4096
1076
1077static void configure_connector_st(target_ulong addr, target_ulong offset,
1078                                   const void *buf, size_t len)
1079{
1080    cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1081                              buf, MIN(len, CC_WA_LEN - offset));
1082}
1083
1084static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1085                                         SpaprMachineState *spapr,
1086                                         uint32_t token, uint32_t nargs,
1087                                         target_ulong args, uint32_t nret,
1088                                         target_ulong rets)
1089{
1090    uint64_t wa_addr;
1091    uint64_t wa_offset;
1092    uint32_t drc_index;
1093    SpaprDrc *drc;
1094    SpaprDrcClass *drck;
1095    SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1096    int rc;
1097
1098    if (nargs != 2 || nret != 1) {
1099        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1100        return;
1101    }
1102
1103    wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1104
1105    drc_index = rtas_ld(wa_addr, 0);
1106    drc = spapr_drc_by_index(drc_index);
1107    if (!drc) {
1108        trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1109        rc = RTAS_OUT_PARAM_ERROR;
1110        goto out;
1111    }
1112
1113    if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1114        && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1115        && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1116        && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1117        /*
1118         * Need to unisolate the device before configuring
1119         * or it should already be in configured state to
1120         * allow configure-connector be called repeatedly.
1121         */
1122        rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1123        goto out;
1124    }
1125
1126    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1127
1128    if (!drc->fdt) {
1129        Error *local_err = NULL;
1130        void *fdt;
1131        int fdt_size;
1132
1133        fdt = create_device_tree(&fdt_size);
1134
1135        if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1136                              &local_err)) {
1137            g_free(fdt);
1138            error_free(local_err);
1139            rc = SPAPR_DR_CC_RESPONSE_ERROR;
1140            goto out;
1141        }
1142
1143        drc->fdt = fdt;
1144        drc->ccs_offset = drc->fdt_start_offset;
1145        drc->ccs_depth = 0;
1146    }
1147
1148    do {
1149        uint32_t tag;
1150        const char *name;
1151        const struct fdt_property *prop;
1152        int fdt_offset_next, prop_len;
1153
1154        tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1155
1156        switch (tag) {
1157        case FDT_BEGIN_NODE:
1158            drc->ccs_depth++;
1159            name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1160
1161            /* provide the name of the next OF node */
1162            wa_offset = CC_VAL_DATA_OFFSET;
1163            rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1164            configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1165            resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1166            break;
1167        case FDT_END_NODE:
1168            drc->ccs_depth--;
1169            if (drc->ccs_depth == 0) {
1170                uint32_t drc_index = spapr_drc_index(drc);
1171
1172                /* done sending the device tree, move to configured state */
1173                trace_spapr_drc_set_configured(drc_index);
1174                drc->state = drck->ready_state;
1175                /*
1176                 * Ensure that we are able to send the FDT fragment
1177                 * again via configure-connector call if the guest requests.
1178                 */
1179                drc->ccs_offset = drc->fdt_start_offset;
1180                drc->ccs_depth = 0;
1181                fdt_offset_next = drc->fdt_start_offset;
1182                resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1183            } else {
1184                resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1185            }
1186            break;
1187        case FDT_PROP:
1188            prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1189                                              &prop_len);
1190            name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1191
1192            /* provide the name of the next OF property */
1193            wa_offset = CC_VAL_DATA_OFFSET;
1194            rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1195            configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1196
1197            /* provide the length and value of the OF property. data gets
1198             * placed immediately after NULL terminator of the OF property's
1199             * name string
1200             */
1201            wa_offset += strlen(name) + 1,
1202            rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1203            rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1204            configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1205            resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1206            break;
1207        case FDT_END:
1208            resp = SPAPR_DR_CC_RESPONSE_ERROR;
1209        default:
1210            /* keep seeking for an actionable tag */
1211            break;
1212        }
1213        if (drc->ccs_offset >= 0) {
1214            drc->ccs_offset = fdt_offset_next;
1215        }
1216    } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1217
1218    rc = resp;
1219out:
1220    rtas_st(rets, 0, rc);
1221}
1222
1223static void spapr_drc_register_types(void)
1224{
1225    type_register_static(&spapr_dr_connector_info);
1226    type_register_static(&spapr_drc_physical_info);
1227    type_register_static(&spapr_drc_logical_info);
1228    type_register_static(&spapr_drc_cpu_info);
1229    type_register_static(&spapr_drc_pci_info);
1230    type_register_static(&spapr_drc_lmb_info);
1231    type_register_static(&spapr_drc_phb_info);
1232
1233    spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1234                        rtas_set_indicator);
1235    spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1236                        rtas_get_sensor_state);
1237    spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1238                        rtas_ibm_configure_connector);
1239}
1240type_init(spapr_drc_register_types)
1241