qemu/hw/ppc/spapr_hcall.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "qapi/error.h"
   3#include "sysemu/hw_accel.h"
   4#include "sysemu/runstate.h"
   5#include "qemu/log.h"
   6#include "qemu/main-loop.h"
   7#include "qemu/module.h"
   8#include "qemu/error-report.h"
   9#include "cpu.h"
  10#include "exec/exec-all.h"
  11#include "helper_regs.h"
  12#include "hw/ppc/spapr.h"
  13#include "hw/ppc/spapr_cpu_core.h"
  14#include "mmu-hash64.h"
  15#include "cpu-models.h"
  16#include "trace.h"
  17#include "kvm_ppc.h"
  18#include "hw/ppc/spapr_ovec.h"
  19#include "mmu-book3s-v3.h"
  20#include "hw/mem/memory-device.h"
  21
  22static bool has_spr(PowerPCCPU *cpu, int spr)
  23{
  24    /* We can test whether the SPR is defined by checking for a valid name */
  25    return cpu->env.spr_cb[spr].name != NULL;
  26}
  27
  28static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
  29{
  30    /*
  31     * hash value/pteg group index is normalized by HPT mask
  32     */
  33    if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
  34        return false;
  35    }
  36    return true;
  37}
  38
  39static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
  40{
  41    MachineState *machine = MACHINE(spapr);
  42    DeviceMemoryState *dms = machine->device_memory;
  43
  44    if (addr < machine->ram_size) {
  45        return true;
  46    }
  47    if ((addr >= dms->base)
  48        && ((addr - dms->base) < memory_region_size(&dms->mr))) {
  49        return true;
  50    }
  51
  52    return false;
  53}
  54
  55static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
  56                            target_ulong opcode, target_ulong *args)
  57{
  58    target_ulong flags = args[0];
  59    target_ulong ptex = args[1];
  60    target_ulong pteh = args[2];
  61    target_ulong ptel = args[3];
  62    unsigned apshift;
  63    target_ulong raddr;
  64    target_ulong slot;
  65    const ppc_hash_pte64_t *hptes;
  66
  67    apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
  68    if (!apshift) {
  69        /* Bad page size encoding */
  70        return H_PARAMETER;
  71    }
  72
  73    raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
  74
  75    if (is_ram_address(spapr, raddr)) {
  76        /* Regular RAM - should have WIMG=0010 */
  77        if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
  78            return H_PARAMETER;
  79        }
  80    } else {
  81        target_ulong wimg_flags;
  82        /* Looks like an IO address */
  83        /* FIXME: What WIMG combinations could be sensible for IO?
  84         * For now we allow WIMG=010x, but are there others? */
  85        /* FIXME: Should we check against registered IO addresses? */
  86        wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
  87
  88        if (wimg_flags != HPTE64_R_I &&
  89            wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
  90            return H_PARAMETER;
  91        }
  92    }
  93
  94    pteh &= ~0x60ULL;
  95
  96    if (!valid_ptex(cpu, ptex)) {
  97        return H_PARAMETER;
  98    }
  99
 100    slot = ptex & 7ULL;
 101    ptex = ptex & ~7ULL;
 102
 103    if (likely((flags & H_EXACT) == 0)) {
 104        hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 105        for (slot = 0; slot < 8; slot++) {
 106            if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
 107                break;
 108            }
 109        }
 110        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 111        if (slot == 8) {
 112            return H_PTEG_FULL;
 113        }
 114    } else {
 115        hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
 116        if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
 117            ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
 118            return H_PTEG_FULL;
 119        }
 120        ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 121    }
 122
 123    spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
 124
 125    args[0] = ptex + slot;
 126    return H_SUCCESS;
 127}
 128
 129typedef enum {
 130    REMOVE_SUCCESS = 0,
 131    REMOVE_NOT_FOUND = 1,
 132    REMOVE_PARM = 2,
 133    REMOVE_HW = 3,
 134} RemoveResult;
 135
 136static RemoveResult remove_hpte(PowerPCCPU *cpu
 137                                , target_ulong ptex,
 138                                target_ulong avpn,
 139                                target_ulong flags,
 140                                target_ulong *vp, target_ulong *rp)
 141{
 142    const ppc_hash_pte64_t *hptes;
 143    target_ulong v, r;
 144
 145    if (!valid_ptex(cpu, ptex)) {
 146        return REMOVE_PARM;
 147    }
 148
 149    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 150    v = ppc_hash64_hpte0(cpu, hptes, 0);
 151    r = ppc_hash64_hpte1(cpu, hptes, 0);
 152    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 153
 154    if ((v & HPTE64_V_VALID) == 0 ||
 155        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
 156        ((flags & H_ANDCOND) && (v & avpn) != 0)) {
 157        return REMOVE_NOT_FOUND;
 158    }
 159    *vp = v;
 160    *rp = r;
 161    spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
 162    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 163    return REMOVE_SUCCESS;
 164}
 165
 166static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
 167                             target_ulong opcode, target_ulong *args)
 168{
 169    CPUPPCState *env = &cpu->env;
 170    target_ulong flags = args[0];
 171    target_ulong ptex = args[1];
 172    target_ulong avpn = args[2];
 173    RemoveResult ret;
 174
 175    ret = remove_hpte(cpu, ptex, avpn, flags,
 176                      &args[0], &args[1]);
 177
 178    switch (ret) {
 179    case REMOVE_SUCCESS:
 180        check_tlb_flush(env, true);
 181        return H_SUCCESS;
 182
 183    case REMOVE_NOT_FOUND:
 184        return H_NOT_FOUND;
 185
 186    case REMOVE_PARM:
 187        return H_PARAMETER;
 188
 189    case REMOVE_HW:
 190        return H_HARDWARE;
 191    }
 192
 193    g_assert_not_reached();
 194}
 195
 196#define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
 197#define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
 198#define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
 199#define   H_BULK_REMOVE_END            0xc000000000000000ULL
 200#define H_BULK_REMOVE_CODE             0x3000000000000000ULL
 201#define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
 202#define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
 203#define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
 204#define   H_BULK_REMOVE_HW             0x3000000000000000ULL
 205#define H_BULK_REMOVE_RC               0x0c00000000000000ULL
 206#define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
 207#define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
 208#define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
 209#define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
 210#define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
 211
 212#define H_BULK_REMOVE_MAX_BATCH        4
 213
 214static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
 215                                  target_ulong opcode, target_ulong *args)
 216{
 217    CPUPPCState *env = &cpu->env;
 218    int i;
 219    target_ulong rc = H_SUCCESS;
 220
 221    for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
 222        target_ulong *tsh = &args[i*2];
 223        target_ulong tsl = args[i*2 + 1];
 224        target_ulong v, r, ret;
 225
 226        if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
 227            break;
 228        } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
 229            return H_PARAMETER;
 230        }
 231
 232        *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
 233        *tsh |= H_BULK_REMOVE_RESPONSE;
 234
 235        if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
 236            *tsh |= H_BULK_REMOVE_PARM;
 237            return H_PARAMETER;
 238        }
 239
 240        ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
 241                          (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
 242                          &v, &r);
 243
 244        *tsh |= ret << 60;
 245
 246        switch (ret) {
 247        case REMOVE_SUCCESS:
 248            *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
 249            break;
 250
 251        case REMOVE_PARM:
 252            rc = H_PARAMETER;
 253            goto exit;
 254
 255        case REMOVE_HW:
 256            rc = H_HARDWARE;
 257            goto exit;
 258        }
 259    }
 260 exit:
 261    check_tlb_flush(env, true);
 262
 263    return rc;
 264}
 265
 266static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
 267                              target_ulong opcode, target_ulong *args)
 268{
 269    CPUPPCState *env = &cpu->env;
 270    target_ulong flags = args[0];
 271    target_ulong ptex = args[1];
 272    target_ulong avpn = args[2];
 273    const ppc_hash_pte64_t *hptes;
 274    target_ulong v, r;
 275
 276    if (!valid_ptex(cpu, ptex)) {
 277        return H_PARAMETER;
 278    }
 279
 280    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 281    v = ppc_hash64_hpte0(cpu, hptes, 0);
 282    r = ppc_hash64_hpte1(cpu, hptes, 0);
 283    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 284
 285    if ((v & HPTE64_V_VALID) == 0 ||
 286        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
 287        return H_NOT_FOUND;
 288    }
 289
 290    r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
 291           HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
 292    r |= (flags << 55) & HPTE64_R_PP0;
 293    r |= (flags << 48) & HPTE64_R_KEY_HI;
 294    r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
 295    spapr_store_hpte(cpu, ptex,
 296                     (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
 297    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 298    /* Flush the tlb */
 299    check_tlb_flush(env, true);
 300    /* Don't need a memory barrier, due to qemu's global lock */
 301    spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
 302    return H_SUCCESS;
 303}
 304
 305static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
 306                           target_ulong opcode, target_ulong *args)
 307{
 308    target_ulong flags = args[0];
 309    target_ulong ptex = args[1];
 310    int i, ridx, n_entries = 1;
 311    const ppc_hash_pte64_t *hptes;
 312
 313    if (!valid_ptex(cpu, ptex)) {
 314        return H_PARAMETER;
 315    }
 316
 317    if (flags & H_READ_4) {
 318        /* Clear the two low order bits */
 319        ptex &= ~(3ULL);
 320        n_entries = 4;
 321    }
 322
 323    hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
 324    for (i = 0, ridx = 0; i < n_entries; i++) {
 325        args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
 326        args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
 327    }
 328    ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);
 329
 330    return H_SUCCESS;
 331}
 332
 333struct SpaprPendingHpt {
 334    /* These fields are read-only after initialization */
 335    int shift;
 336    QemuThread thread;
 337
 338    /* These fields are protected by the BQL */
 339    bool complete;
 340
 341    /* These fields are private to the preparation thread if
 342     * !complete, otherwise protected by the BQL */
 343    int ret;
 344    void *hpt;
 345};
 346
 347static void free_pending_hpt(SpaprPendingHpt *pending)
 348{
 349    if (pending->hpt) {
 350        qemu_vfree(pending->hpt);
 351    }
 352
 353    g_free(pending);
 354}
 355
 356static void *hpt_prepare_thread(void *opaque)
 357{
 358    SpaprPendingHpt *pending = opaque;
 359    size_t size = 1ULL << pending->shift;
 360
 361    pending->hpt = qemu_memalign(size, size);
 362    if (pending->hpt) {
 363        memset(pending->hpt, 0, size);
 364        pending->ret = H_SUCCESS;
 365    } else {
 366        pending->ret = H_NO_MEM;
 367    }
 368
 369    qemu_mutex_lock_iothread();
 370
 371    if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
 372        /* Ready to go */
 373        pending->complete = true;
 374    } else {
 375        /* We've been cancelled, clean ourselves up */
 376        free_pending_hpt(pending);
 377    }
 378
 379    qemu_mutex_unlock_iothread();
 380    return NULL;
 381}
 382
 383/* Must be called with BQL held */
 384static void cancel_hpt_prepare(SpaprMachineState *spapr)
 385{
 386    SpaprPendingHpt *pending = spapr->pending_hpt;
 387
 388    /* Let the thread know it's cancelled */
 389    spapr->pending_hpt = NULL;
 390
 391    if (!pending) {
 392        /* Nothing to do */
 393        return;
 394    }
 395
 396    if (!pending->complete) {
 397        /* thread will clean itself up */
 398        return;
 399    }
 400
 401    free_pending_hpt(pending);
 402}
 403
 404/* Convert a return code from the KVM ioctl()s implementing resize HPT
 405 * into a PAPR hypercall return code */
 406static target_ulong resize_hpt_convert_rc(int ret)
 407{
 408    if (ret >= 100000) {
 409        return H_LONG_BUSY_ORDER_100_SEC;
 410    } else if (ret >= 10000) {
 411        return H_LONG_BUSY_ORDER_10_SEC;
 412    } else if (ret >= 1000) {
 413        return H_LONG_BUSY_ORDER_1_SEC;
 414    } else if (ret >= 100) {
 415        return H_LONG_BUSY_ORDER_100_MSEC;
 416    } else if (ret >= 10) {
 417        return H_LONG_BUSY_ORDER_10_MSEC;
 418    } else if (ret > 0) {
 419        return H_LONG_BUSY_ORDER_1_MSEC;
 420    }
 421
 422    switch (ret) {
 423    case 0:
 424        return H_SUCCESS;
 425    case -EPERM:
 426        return H_AUTHORITY;
 427    case -EINVAL:
 428        return H_PARAMETER;
 429    case -ENXIO:
 430        return H_CLOSED;
 431    case -ENOSPC:
 432        return H_PTEG_FULL;
 433    case -EBUSY:
 434        return H_BUSY;
 435    case -ENOMEM:
 436        return H_NO_MEM;
 437    default:
 438        return H_HARDWARE;
 439    }
 440}
 441
 442static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
 443                                         SpaprMachineState *spapr,
 444                                         target_ulong opcode,
 445                                         target_ulong *args)
 446{
 447    target_ulong flags = args[0];
 448    int shift = args[1];
 449    SpaprPendingHpt *pending = spapr->pending_hpt;
 450    uint64_t current_ram_size;
 451    int rc;
 452
 453    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 454        return H_AUTHORITY;
 455    }
 456
 457    if (!spapr->htab_shift) {
 458        /* Radix guest, no HPT */
 459        return H_NOT_AVAILABLE;
 460    }
 461
 462    trace_spapr_h_resize_hpt_prepare(flags, shift);
 463
 464    if (flags != 0) {
 465        return H_PARAMETER;
 466    }
 467
 468    if (shift && ((shift < 18) || (shift > 46))) {
 469        return H_PARAMETER;
 470    }
 471
 472    current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
 473
 474    /* We only allow the guest to allocate an HPT one order above what
 475     * we'd normally give them (to stop a small guest claiming a huge
 476     * chunk of resources in the HPT */
 477    if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
 478        return H_RESOURCE;
 479    }
 480
 481    rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
 482    if (rc != -ENOSYS) {
 483        return resize_hpt_convert_rc(rc);
 484    }
 485
 486    if (pending) {
 487        /* something already in progress */
 488        if (pending->shift == shift) {
 489            /* and it's suitable */
 490            if (pending->complete) {
 491                return pending->ret;
 492            } else {
 493                return H_LONG_BUSY_ORDER_100_MSEC;
 494            }
 495        }
 496
 497        /* not suitable, cancel and replace */
 498        cancel_hpt_prepare(spapr);
 499    }
 500
 501    if (!shift) {
 502        /* nothing to do */
 503        return H_SUCCESS;
 504    }
 505
 506    /* start new prepare */
 507
 508    pending = g_new0(SpaprPendingHpt, 1);
 509    pending->shift = shift;
 510    pending->ret = H_HARDWARE;
 511
 512    qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
 513                       hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
 514
 515    spapr->pending_hpt = pending;
 516
 517    /* In theory we could estimate the time more accurately based on
 518     * the new size, but there's not much point */
 519    return H_LONG_BUSY_ORDER_100_MSEC;
 520}
 521
 522static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
 523{
 524    uint8_t *addr = htab;
 525
 526    addr += pteg * HASH_PTEG_SIZE_64;
 527    addr += slot * HASH_PTE_SIZE_64;
 528    return  ldq_p(addr);
 529}
 530
 531static void new_hpte_store(void *htab, uint64_t pteg, int slot,
 532                           uint64_t pte0, uint64_t pte1)
 533{
 534    uint8_t *addr = htab;
 535
 536    addr += pteg * HASH_PTEG_SIZE_64;
 537    addr += slot * HASH_PTE_SIZE_64;
 538
 539    stq_p(addr, pte0);
 540    stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
 541}
 542
 543static int rehash_hpte(PowerPCCPU *cpu,
 544                       const ppc_hash_pte64_t *hptes,
 545                       void *old_hpt, uint64_t oldsize,
 546                       void *new_hpt, uint64_t newsize,
 547                       uint64_t pteg, int slot)
 548{
 549    uint64_t old_hash_mask = (oldsize >> 7) - 1;
 550    uint64_t new_hash_mask = (newsize >> 7) - 1;
 551    target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
 552    target_ulong pte1;
 553    uint64_t avpn;
 554    unsigned base_pg_shift;
 555    uint64_t hash, new_pteg, replace_pte0;
 556
 557    if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
 558        return H_SUCCESS;
 559    }
 560
 561    pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
 562
 563    base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
 564    assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
 565    avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
 566
 567    if (pte0 & HPTE64_V_SECONDARY) {
 568        pteg = ~pteg;
 569    }
 570
 571    if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
 572        uint64_t offset, vsid;
 573
 574        /* We only have 28 - 23 bits of offset in avpn */
 575        offset = (avpn & 0x1f) << 23;
 576        vsid = avpn >> 5;
 577        /* We can find more bits from the pteg value */
 578        if (base_pg_shift < 23) {
 579            offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
 580        }
 581
 582        hash = vsid ^ (offset >> base_pg_shift);
 583    } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
 584        uint64_t offset, vsid;
 585
 586        /* We only have 40 - 23 bits of seg_off in avpn */
 587        offset = (avpn & 0x1ffff) << 23;
 588        vsid = avpn >> 17;
 589        if (base_pg_shift < 23) {
 590            offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
 591                << base_pg_shift;
 592        }
 593
 594        hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
 595    } else {
 596        error_report("rehash_pte: Bad segment size in HPTE");
 597        return H_HARDWARE;
 598    }
 599
 600    new_pteg = hash & new_hash_mask;
 601    if (pte0 & HPTE64_V_SECONDARY) {
 602        assert(~pteg == (hash & old_hash_mask));
 603        new_pteg = ~new_pteg;
 604    } else {
 605        assert(pteg == (hash & old_hash_mask));
 606    }
 607    assert((oldsize != newsize) || (pteg == new_pteg));
 608    replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
 609    /*
 610     * Strictly speaking, we don't need all these tests, since we only
 611     * ever rehash bolted HPTEs.  We might in future handle non-bolted
 612     * HPTEs, though so make the logic correct for those cases as
 613     * well.
 614     */
 615    if (replace_pte0 & HPTE64_V_VALID) {
 616        assert(newsize < oldsize);
 617        if (replace_pte0 & HPTE64_V_BOLTED) {
 618            if (pte0 & HPTE64_V_BOLTED) {
 619                /* Bolted collision, nothing we can do */
 620                return H_PTEG_FULL;
 621            } else {
 622                /* Discard this hpte */
 623                return H_SUCCESS;
 624            }
 625        }
 626    }
 627
 628    new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
 629    return H_SUCCESS;
 630}
 631
 632static int rehash_hpt(PowerPCCPU *cpu,
 633                      void *old_hpt, uint64_t oldsize,
 634                      void *new_hpt, uint64_t newsize)
 635{
 636    uint64_t n_ptegs = oldsize >> 7;
 637    uint64_t pteg;
 638    int slot;
 639    int rc;
 640
 641    for (pteg = 0; pteg < n_ptegs; pteg++) {
 642        hwaddr ptex = pteg * HPTES_PER_GROUP;
 643        const ppc_hash_pte64_t *hptes
 644            = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 645
 646        if (!hptes) {
 647            return H_HARDWARE;
 648        }
 649
 650        for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
 651            rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
 652                             pteg, slot);
 653            if (rc != H_SUCCESS) {
 654                ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 655                return rc;
 656            }
 657        }
 658        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 659    }
 660
 661    return H_SUCCESS;
 662}
 663
 664static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
 665{
 666    int ret;
 667
 668    cpu_synchronize_state(cs);
 669
 670    ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
 671    if (ret < 0) {
 672        error_report("failed to push sregs to KVM: %s", strerror(-ret));
 673        exit(1);
 674    }
 675}
 676
 677static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
 678{
 679    CPUState *cs;
 680
 681    /*
 682     * This is a hack for the benefit of KVM PR - it abuses the SDR1
 683     * slot in kvm_sregs to communicate the userspace address of the
 684     * HPT
 685     */
 686    if (!kvm_enabled() || !spapr->htab) {
 687        return;
 688    }
 689
 690    CPU_FOREACH(cs) {
 691        run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
 692    }
 693}
 694
 695static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
 696                                        SpaprMachineState *spapr,
 697                                        target_ulong opcode,
 698                                        target_ulong *args)
 699{
 700    target_ulong flags = args[0];
 701    target_ulong shift = args[1];
 702    SpaprPendingHpt *pending = spapr->pending_hpt;
 703    int rc;
 704    size_t newsize;
 705
 706    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 707        return H_AUTHORITY;
 708    }
 709
 710    if (!spapr->htab_shift) {
 711        /* Radix guest, no HPT */
 712        return H_NOT_AVAILABLE;
 713    }
 714
 715    trace_spapr_h_resize_hpt_commit(flags, shift);
 716
 717    rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
 718    if (rc != -ENOSYS) {
 719        rc = resize_hpt_convert_rc(rc);
 720        if (rc == H_SUCCESS) {
 721            /* Need to set the new htab_shift in the machine state */
 722            spapr->htab_shift = shift;
 723        }
 724        return rc;
 725    }
 726
 727    if (flags != 0) {
 728        return H_PARAMETER;
 729    }
 730
 731    if (!pending || (pending->shift != shift)) {
 732        /* no matching prepare */
 733        return H_CLOSED;
 734    }
 735
 736    if (!pending->complete) {
 737        /* prepare has not completed */
 738        return H_BUSY;
 739    }
 740
 741    /* Shouldn't have got past PREPARE without an HPT */
 742    g_assert(spapr->htab_shift);
 743
 744    newsize = 1ULL << pending->shift;
 745    rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
 746                    pending->hpt, newsize);
 747    if (rc == H_SUCCESS) {
 748        qemu_vfree(spapr->htab);
 749        spapr->htab = pending->hpt;
 750        spapr->htab_shift = pending->shift;
 751
 752        push_sregs_to_kvm_pr(spapr);
 753
 754        pending->hpt = NULL; /* so it's not free()d */
 755    }
 756
 757    /* Clean up */
 758    spapr->pending_hpt = NULL;
 759    free_pending_hpt(pending);
 760
 761    return rc;
 762}
 763
 764static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
 765                                target_ulong opcode, target_ulong *args)
 766{
 767    cpu_synchronize_state(CPU(cpu));
 768    cpu->env.spr[SPR_SPRG0] = args[0];
 769
 770    return H_SUCCESS;
 771}
 772
 773static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 774                               target_ulong opcode, target_ulong *args)
 775{
 776    if (!has_spr(cpu, SPR_DABR)) {
 777        return H_HARDWARE;              /* DABR register not available */
 778    }
 779    cpu_synchronize_state(CPU(cpu));
 780
 781    if (has_spr(cpu, SPR_DABRX)) {
 782        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
 783    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
 784        return H_RESERVED_DABR;
 785    }
 786
 787    cpu->env.spr[SPR_DABR] = args[0];
 788    return H_SUCCESS;
 789}
 790
 791static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 792                                target_ulong opcode, target_ulong *args)
 793{
 794    target_ulong dabrx = args[1];
 795
 796    if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
 797        return H_HARDWARE;
 798    }
 799
 800    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
 801        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
 802        return H_PARAMETER;
 803    }
 804
 805    cpu_synchronize_state(CPU(cpu));
 806    cpu->env.spr[SPR_DABRX] = dabrx;
 807    cpu->env.spr[SPR_DABR] = args[0];
 808
 809    return H_SUCCESS;
 810}
 811
 812static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
 813                                target_ulong opcode, target_ulong *args)
 814{
 815    target_ulong flags = args[0];
 816    hwaddr dst = args[1];
 817    hwaddr src = args[2];
 818    hwaddr len = TARGET_PAGE_SIZE;
 819    uint8_t *pdst, *psrc;
 820    target_long ret = H_SUCCESS;
 821
 822    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
 823                  | H_COPY_PAGE | H_ZERO_PAGE)) {
 824        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
 825                      flags);
 826        return H_PARAMETER;
 827    }
 828
 829    /* Map-in destination */
 830    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
 831        return H_PARAMETER;
 832    }
 833    pdst = cpu_physical_memory_map(dst, &len, 1);
 834    if (!pdst || len != TARGET_PAGE_SIZE) {
 835        return H_PARAMETER;
 836    }
 837
 838    if (flags & H_COPY_PAGE) {
 839        /* Map-in source, copy to destination, and unmap source again */
 840        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
 841            ret = H_PARAMETER;
 842            goto unmap_out;
 843        }
 844        psrc = cpu_physical_memory_map(src, &len, 0);
 845        if (!psrc || len != TARGET_PAGE_SIZE) {
 846            ret = H_PARAMETER;
 847            goto unmap_out;
 848        }
 849        memcpy(pdst, psrc, len);
 850        cpu_physical_memory_unmap(psrc, len, 0, len);
 851    } else if (flags & H_ZERO_PAGE) {
 852        memset(pdst, 0, len);          /* Just clear the destination page */
 853    }
 854
 855    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
 856        kvmppc_dcbst_range(cpu, pdst, len);
 857    }
 858    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
 859        if (kvm_enabled()) {
 860            kvmppc_icbi_range(cpu, pdst, len);
 861        } else {
 862            tb_flush(CPU(cpu));
 863        }
 864    }
 865
 866unmap_out:
 867    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
 868    return ret;
 869}
 870
 871#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
 872#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
 873#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
 874#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
 875#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
 876#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
 877
 878static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
 879{
 880    CPUState *cs = CPU(cpu);
 881    CPUPPCState *env = &cpu->env;
 882    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 883    uint16_t size;
 884    uint8_t tmp;
 885
 886    if (vpa == 0) {
 887        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
 888        return H_HARDWARE;
 889    }
 890
 891    if (vpa % env->dcache_line_size) {
 892        return H_PARAMETER;
 893    }
 894    /* FIXME: bounds check the address */
 895
 896    size = lduw_be_phys(cs->as, vpa + 0x4);
 897
 898    if (size < VPA_MIN_SIZE) {
 899        return H_PARAMETER;
 900    }
 901
 902    /* VPA is not allowed to cross a page boundary */
 903    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
 904        return H_PARAMETER;
 905    }
 906
 907    spapr_cpu->vpa_addr = vpa;
 908
 909    tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
 910    tmp |= VPA_SHARED_PROC_VAL;
 911    stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
 912
 913    return H_SUCCESS;
 914}
 915
 916static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
 917{
 918    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 919
 920    if (spapr_cpu->slb_shadow_addr) {
 921        return H_RESOURCE;
 922    }
 923
 924    if (spapr_cpu->dtl_addr) {
 925        return H_RESOURCE;
 926    }
 927
 928    spapr_cpu->vpa_addr = 0;
 929    return H_SUCCESS;
 930}
 931
 932static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 933{
 934    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 935    uint32_t size;
 936
 937    if (addr == 0) {
 938        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
 939        return H_HARDWARE;
 940    }
 941
 942    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 943    if (size < 0x8) {
 944        return H_PARAMETER;
 945    }
 946
 947    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
 948        return H_PARAMETER;
 949    }
 950
 951    if (!spapr_cpu->vpa_addr) {
 952        return H_RESOURCE;
 953    }
 954
 955    spapr_cpu->slb_shadow_addr = addr;
 956    spapr_cpu->slb_shadow_size = size;
 957
 958    return H_SUCCESS;
 959}
 960
 961static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 962{
 963    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 964
 965    spapr_cpu->slb_shadow_addr = 0;
 966    spapr_cpu->slb_shadow_size = 0;
 967    return H_SUCCESS;
 968}
 969
 970static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
 971{
 972    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 973    uint32_t size;
 974
 975    if (addr == 0) {
 976        hcall_dprintf("Can't cope with DTL at logical 0\n");
 977        return H_HARDWARE;
 978    }
 979
 980    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 981
 982    if (size < 48) {
 983        return H_PARAMETER;
 984    }
 985
 986    if (!spapr_cpu->vpa_addr) {
 987        return H_RESOURCE;
 988    }
 989
 990    spapr_cpu->dtl_addr = addr;
 991    spapr_cpu->dtl_size = size;
 992
 993    return H_SUCCESS;
 994}
 995
 996static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
 997{
 998    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 999
1000    spapr_cpu->dtl_addr = 0;
1001    spapr_cpu->dtl_size = 0;
1002
1003    return H_SUCCESS;
1004}
1005
1006static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
1007                                   target_ulong opcode, target_ulong *args)
1008{
1009    target_ulong flags = args[0];
1010    target_ulong procno = args[1];
1011    target_ulong vpa = args[2];
1012    target_ulong ret = H_PARAMETER;
1013    PowerPCCPU *tcpu;
1014
1015    tcpu = spapr_find_cpu(procno);
1016    if (!tcpu) {
1017        return H_PARAMETER;
1018    }
1019
1020    switch (flags) {
1021    case FLAGS_REGISTER_VPA:
1022        ret = register_vpa(tcpu, vpa);
1023        break;
1024
1025    case FLAGS_DEREGISTER_VPA:
1026        ret = deregister_vpa(tcpu, vpa);
1027        break;
1028
1029    case FLAGS_REGISTER_SLBSHADOW:
1030        ret = register_slb_shadow(tcpu, vpa);
1031        break;
1032
1033    case FLAGS_DEREGISTER_SLBSHADOW:
1034        ret = deregister_slb_shadow(tcpu, vpa);
1035        break;
1036
1037    case FLAGS_REGISTER_DTL:
1038        ret = register_dtl(tcpu, vpa);
1039        break;
1040
1041    case FLAGS_DEREGISTER_DTL:
1042        ret = deregister_dtl(tcpu, vpa);
1043        break;
1044    }
1045
1046    return ret;
1047}
1048
1049static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
1050                           target_ulong opcode, target_ulong *args)
1051{
1052    CPUPPCState *env = &cpu->env;
1053    CPUState *cs = CPU(cpu);
1054    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1055
1056    env->msr |= (1ULL << MSR_EE);
1057    hreg_compute_hflags(env);
1058
1059    if (spapr_cpu->prod) {
1060        spapr_cpu->prod = false;
1061        return H_SUCCESS;
1062    }
1063
1064    if (!cpu_has_work(cs)) {
1065        cs->halted = 1;
1066        cs->exception_index = EXCP_HLT;
1067        cs->exit_request = 1;
1068    }
1069
1070    return H_SUCCESS;
1071}
1072
1073/*
1074 * Confer to self, aka join. Cede could use the same pattern as well, if
1075 * EXCP_HLT can be changed to ECXP_HALTED.
1076 */
1077static target_ulong h_confer_self(PowerPCCPU *cpu)
1078{
1079    CPUState *cs = CPU(cpu);
1080    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1081
1082    if (spapr_cpu->prod) {
1083        spapr_cpu->prod = false;
1084        return H_SUCCESS;
1085    }
1086    cs->halted = 1;
1087    cs->exception_index = EXCP_HALTED;
1088    cs->exit_request = 1;
1089
1090    return H_SUCCESS;
1091}
1092
1093static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
1094                           target_ulong opcode, target_ulong *args)
1095{
1096    CPUPPCState *env = &cpu->env;
1097    CPUState *cs;
1098    bool last_unjoined = true;
1099
1100    if (env->msr & (1ULL << MSR_EE)) {
1101        return H_BAD_MODE;
1102    }
1103
1104    /*
1105     * Must not join the last CPU running. Interestingly, no such restriction
1106     * for H_CONFER-to-self, but that is probably not intended to be used
1107     * when H_JOIN is available.
1108     */
1109    CPU_FOREACH(cs) {
1110        PowerPCCPU *c = POWERPC_CPU(cs);
1111        CPUPPCState *e = &c->env;
1112        if (c == cpu) {
1113            continue;
1114        }
1115
1116        /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
1117        if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
1118            last_unjoined = false;
1119            break;
1120        }
1121    }
1122    if (last_unjoined) {
1123        return H_CONTINUE;
1124    }
1125
1126    return h_confer_self(cpu);
1127}
1128
1129static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
1130                           target_ulong opcode, target_ulong *args)
1131{
1132    target_long target = args[0];
1133    uint32_t dispatch = args[1];
1134    CPUState *cs = CPU(cpu);
1135    SpaprCpuState *spapr_cpu;
1136
1137    /*
1138     * -1 means confer to all other CPUs without dispatch counter check,
1139     *  otherwise it's a targeted confer.
1140     */
1141    if (target != -1) {
1142        PowerPCCPU *target_cpu = spapr_find_cpu(target);
1143        uint32_t target_dispatch;
1144
1145        if (!target_cpu) {
1146            return H_PARAMETER;
1147        }
1148
1149        /*
1150         * target == self is a special case, we wait until prodded, without
1151         * dispatch counter check.
1152         */
1153        if (cpu == target_cpu) {
1154            return h_confer_self(cpu);
1155        }
1156
1157        spapr_cpu = spapr_cpu_state(target_cpu);
1158        if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
1159            return H_SUCCESS;
1160        }
1161
1162        target_dispatch = ldl_be_phys(cs->as,
1163                                  spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
1164        if (target_dispatch != dispatch) {
1165            return H_SUCCESS;
1166        }
1167
1168        /*
1169         * The targeted confer does not do anything special beyond yielding
1170         * the current vCPU, but even this should be better than nothing.
1171         * At least for single-threaded tcg, it gives the target a chance to
1172         * run before we run again. Multi-threaded tcg does not really do
1173         * anything with EXCP_YIELD yet.
1174         */
1175    }
1176
1177    cs->exception_index = EXCP_YIELD;
1178    cs->exit_request = 1;
1179    cpu_loop_exit(cs);
1180
1181    return H_SUCCESS;
1182}
1183
1184static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
1185                           target_ulong opcode, target_ulong *args)
1186{
1187    target_long target = args[0];
1188    PowerPCCPU *tcpu;
1189    CPUState *cs;
1190    SpaprCpuState *spapr_cpu;
1191
1192    tcpu = spapr_find_cpu(target);
1193    cs = CPU(tcpu);
1194    if (!cs) {
1195        return H_PARAMETER;
1196    }
1197
1198    spapr_cpu = spapr_cpu_state(tcpu);
1199    spapr_cpu->prod = true;
1200    cs->halted = 0;
1201    qemu_cpu_kick(cs);
1202
1203    return H_SUCCESS;
1204}
1205
1206static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
1207                           target_ulong opcode, target_ulong *args)
1208{
1209    target_ulong rtas_r3 = args[0];
1210    uint32_t token = rtas_ld(rtas_r3, 0);
1211    uint32_t nargs = rtas_ld(rtas_r3, 1);
1212    uint32_t nret = rtas_ld(rtas_r3, 2);
1213
1214    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1215                           nret, rtas_r3 + 12 + 4*nargs);
1216}
1217
1218static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
1219                                   target_ulong opcode, target_ulong *args)
1220{
1221    CPUState *cs = CPU(cpu);
1222    target_ulong size = args[0];
1223    target_ulong addr = args[1];
1224
1225    switch (size) {
1226    case 1:
1227        args[0] = ldub_phys(cs->as, addr);
1228        return H_SUCCESS;
1229    case 2:
1230        args[0] = lduw_phys(cs->as, addr);
1231        return H_SUCCESS;
1232    case 4:
1233        args[0] = ldl_phys(cs->as, addr);
1234        return H_SUCCESS;
1235    case 8:
1236        args[0] = ldq_phys(cs->as, addr);
1237        return H_SUCCESS;
1238    }
1239    return H_PARAMETER;
1240}
1241
1242static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
1243                                    target_ulong opcode, target_ulong *args)
1244{
1245    CPUState *cs = CPU(cpu);
1246
1247    target_ulong size = args[0];
1248    target_ulong addr = args[1];
1249    target_ulong val  = args[2];
1250
1251    switch (size) {
1252    case 1:
1253        stb_phys(cs->as, addr, val);
1254        return H_SUCCESS;
1255    case 2:
1256        stw_phys(cs->as, addr, val);
1257        return H_SUCCESS;
1258    case 4:
1259        stl_phys(cs->as, addr, val);
1260        return H_SUCCESS;
1261    case 8:
1262        stq_phys(cs->as, addr, val);
1263        return H_SUCCESS;
1264    }
1265    return H_PARAMETER;
1266}
1267
1268static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
1269                                    target_ulong opcode, target_ulong *args)
1270{
1271    CPUState *cs = CPU(cpu);
1272
1273    target_ulong dst   = args[0]; /* Destination address */
1274    target_ulong src   = args[1]; /* Source address */
1275    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1276    target_ulong count = args[3]; /* Element count */
1277    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1278    uint64_t tmp;
1279    unsigned int mask = (1 << esize) - 1;
1280    int step = 1 << esize;
1281
1282    if (count > 0x80000000) {
1283        return H_PARAMETER;
1284    }
1285
1286    if ((dst & mask) || (src & mask) || (op > 1)) {
1287        return H_PARAMETER;
1288    }
1289
1290    if (dst >= src && dst < (src + (count << esize))) {
1291            dst = dst + ((count - 1) << esize);
1292            src = src + ((count - 1) << esize);
1293            step = -step;
1294    }
1295
1296    while (count--) {
1297        switch (esize) {
1298        case 0:
1299            tmp = ldub_phys(cs->as, src);
1300            break;
1301        case 1:
1302            tmp = lduw_phys(cs->as, src);
1303            break;
1304        case 2:
1305            tmp = ldl_phys(cs->as, src);
1306            break;
1307        case 3:
1308            tmp = ldq_phys(cs->as, src);
1309            break;
1310        default:
1311            return H_PARAMETER;
1312        }
1313        if (op == 1) {
1314            tmp = ~tmp;
1315        }
1316        switch (esize) {
1317        case 0:
1318            stb_phys(cs->as, dst, tmp);
1319            break;
1320        case 1:
1321            stw_phys(cs->as, dst, tmp);
1322            break;
1323        case 2:
1324            stl_phys(cs->as, dst, tmp);
1325            break;
1326        case 3:
1327            stq_phys(cs->as, dst, tmp);
1328            break;
1329        }
1330        dst = dst + step;
1331        src = src + step;
1332    }
1333
1334    return H_SUCCESS;
1335}
1336
1337static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
1338                                   target_ulong opcode, target_ulong *args)
1339{
1340    /* Nothing to do on emulation, KVM will trap this in the kernel */
1341    return H_SUCCESS;
1342}
1343
1344static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
1345                                   target_ulong opcode, target_ulong *args)
1346{
1347    /* Nothing to do on emulation, KVM will trap this in the kernel */
1348    return H_SUCCESS;
1349}
1350
1351static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1352                                           target_ulong mflags,
1353                                           target_ulong value1,
1354                                           target_ulong value2)
1355{
1356    if (value1) {
1357        return H_P3;
1358    }
1359    if (value2) {
1360        return H_P4;
1361    }
1362
1363    switch (mflags) {
1364    case H_SET_MODE_ENDIAN_BIG:
1365        spapr_set_all_lpcrs(0, LPCR_ILE);
1366        spapr_pci_switch_vga(true);
1367        return H_SUCCESS;
1368
1369    case H_SET_MODE_ENDIAN_LITTLE:
1370        spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1371        spapr_pci_switch_vga(false);
1372        return H_SUCCESS;
1373    }
1374
1375    return H_UNSUPPORTED_FLAG;
1376}
1377
1378static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1379                                                        target_ulong mflags,
1380                                                        target_ulong value1,
1381                                                        target_ulong value2)
1382{
1383    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1384
1385    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1386        return H_P2;
1387    }
1388    if (value1) {
1389        return H_P3;
1390    }
1391    if (value2) {
1392        return H_P4;
1393    }
1394
1395    if (mflags == AIL_RESERVED) {
1396        return H_UNSUPPORTED_FLAG;
1397    }
1398
1399    spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1400
1401    return H_SUCCESS;
1402}
1403
1404static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
1405                               target_ulong opcode, target_ulong *args)
1406{
1407    target_ulong resource = args[1];
1408    target_ulong ret = H_P2;
1409
1410    switch (resource) {
1411    case H_SET_MODE_RESOURCE_LE:
1412        ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1413        break;
1414    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1415        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1416                                                  args[2], args[3]);
1417        break;
1418    }
1419
1420    return ret;
1421}
1422
1423static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
1424                                target_ulong opcode, target_ulong *args)
1425{
1426    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1427                  opcode, " (H_CLEAN_SLB)");
1428    return H_FUNCTION;
1429}
1430
1431static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
1432                                     target_ulong opcode, target_ulong *args)
1433{
1434    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1435                  opcode, " (H_INVALIDATE_PID)");
1436    return H_FUNCTION;
1437}
1438
1439static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
1440                                       uint64_t patbe_old, uint64_t patbe_new)
1441{
1442    /*
1443     * We have 4 Options:
1444     * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1445     * HASH->RADIX                                  : Free HPT
1446     * RADIX->HASH                                  : Allocate HPT
1447     * NOTHING->HASH                                : Allocate HPT
1448     * Note: NOTHING implies the case where we said the guest could choose
1449     *       later and so assumed radix and now it's called H_REG_PROC_TBL
1450     */
1451
1452    if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
1453        /* We assume RADIX, so this catches all the "Do Nothing" cases */
1454    } else if (!(patbe_old & PATE1_GR)) {
1455        /* HASH->RADIX : Free HPT */
1456        spapr_free_hpt(spapr);
1457    } else if (!(patbe_new & PATE1_GR)) {
1458        /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1459        spapr_setup_hpt_and_vrma(spapr);
1460    }
1461    return;
1462}
1463
1464#define FLAGS_MASK              0x01FULL
1465#define FLAG_MODIFY             0x10
1466#define FLAG_REGISTER           0x08
1467#define FLAG_RADIX              0x04
1468#define FLAG_HASH_PROC_TBL      0x02
1469#define FLAG_GTSE               0x01
1470
1471static target_ulong h_register_process_table(PowerPCCPU *cpu,
1472                                             SpaprMachineState *spapr,
1473                                             target_ulong opcode,
1474                                             target_ulong *args)
1475{
1476    target_ulong flags = args[0];
1477    target_ulong proc_tbl = args[1];
1478    target_ulong page_size = args[2];
1479    target_ulong table_size = args[3];
1480    target_ulong update_lpcr = 0;
1481    uint64_t cproc;
1482
1483    if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1484        return H_PARAMETER;
1485    }
1486    if (flags & FLAG_MODIFY) {
1487        if (flags & FLAG_REGISTER) {
1488            if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1489                if (proc_tbl & 0xfff || proc_tbl >> 60) {
1490                    return H_P2;
1491                } else if (page_size) {
1492                    return H_P3;
1493                } else if (table_size > 24) {
1494                    return H_P4;
1495                }
1496                cproc = PATE1_GR | proc_tbl | table_size;
1497            } else { /* Register new HPT process table */
1498                if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1499                    /* TODO - Not Supported */
1500                    /* Technically caused by flag bits => H_PARAMETER */
1501                    return H_PARAMETER;
1502                } else { /* Hash with SLB */
1503                    if (proc_tbl >> 38) {
1504                        return H_P2;
1505                    } else if (page_size & ~0x7) {
1506                        return H_P3;
1507                    } else if (table_size > 24) {
1508                        return H_P4;
1509                    }
1510                }
1511                cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1512            }
1513
1514        } else { /* Deregister current process table */
1515            /*
1516             * Set to benign value: (current GR) | 0. This allows
1517             * deregistration in KVM to succeed even if the radix bit
1518             * in flags doesn't match the radix bit in the old PATE.
1519             */
1520            cproc = spapr->patb_entry & PATE1_GR;
1521        }
1522    } else { /* Maintain current registration */
1523        if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1524            /* Technically caused by flag bits => H_PARAMETER */
1525            return H_PARAMETER; /* Existing Process Table Mismatch */
1526        }
1527        cproc = spapr->patb_entry;
1528    }
1529
1530    /* Check if we need to setup OR free the hpt */
1531    spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1532
1533    spapr->patb_entry = cproc; /* Save new process table */
1534
1535    /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1536    if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
1537        update_lpcr |= (LPCR_UPRT | LPCR_HR);
1538    else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1539        update_lpcr |= LPCR_UPRT;
1540    if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
1541        update_lpcr |= LPCR_GTSE;
1542
1543    spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1544
1545    if (kvm_enabled()) {
1546        return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1547                                       flags & FLAG_GTSE, cproc);
1548    }
1549    return H_SUCCESS;
1550}
1551
1552#define H_SIGNAL_SYS_RESET_ALL         -1
1553#define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1554
1555static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1556                                       SpaprMachineState *spapr,
1557                                       target_ulong opcode, target_ulong *args)
1558{
1559    target_long target = args[0];
1560    CPUState *cs;
1561
1562    if (target < 0) {
1563        /* Broadcast */
1564        if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1565            return H_PARAMETER;
1566        }
1567
1568        CPU_FOREACH(cs) {
1569            PowerPCCPU *c = POWERPC_CPU(cs);
1570
1571            if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1572                if (c == cpu) {
1573                    continue;
1574                }
1575            }
1576            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1577        }
1578        return H_SUCCESS;
1579
1580    } else {
1581        /* Unicast */
1582        cs = CPU(spapr_find_cpu(target));
1583        if (cs) {
1584            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1585            return H_SUCCESS;
1586        }
1587        return H_PARAMETER;
1588    }
1589}
1590
1591static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
1592                              target_ulong *addr, bool *raw_mode_supported,
1593                              Error **errp)
1594{
1595    bool explicit_match = false; /* Matched the CPU's real PVR */
1596    uint32_t max_compat = spapr->max_compat_pvr;
1597    uint32_t best_compat = 0;
1598    int i;
1599
1600    /*
1601     * We scan the supplied table of PVRs looking for two things
1602     *   1. Is our real CPU PVR in the list?
1603     *   2. What's the "best" listed logical PVR
1604     */
1605    for (i = 0; i < 512; ++i) {
1606        uint32_t pvr, pvr_mask;
1607
1608        pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1609        pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1610        *addr += 8;
1611
1612        if (~pvr_mask & pvr) {
1613            break; /* Terminator record */
1614        }
1615
1616        if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1617            explicit_match = true;
1618        } else {
1619            if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1620                best_compat = pvr;
1621            }
1622        }
1623    }
1624
1625    if ((best_compat == 0) && (!explicit_match || max_compat)) {
1626        /* We couldn't find a suitable compatibility mode, and either
1627         * the guest doesn't support "raw" mode for this CPU, or raw
1628         * mode is disabled because a maximum compat mode is set */
1629        error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1630        return 0;
1631    }
1632
1633    *raw_mode_supported = explicit_match;
1634
1635    /* Parsing finished */
1636    trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1637
1638    return best_compat;
1639}
1640
1641static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1642                                                  SpaprMachineState *spapr,
1643                                                  target_ulong opcode,
1644                                                  target_ulong *args)
1645{
1646    /* Working address in data buffer */
1647    target_ulong addr = ppc64_phys_to_real(args[0]);
1648    target_ulong ov_table;
1649    uint32_t cas_pvr;
1650    SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1651    bool guest_radix;
1652    Error *local_err = NULL;
1653    bool raw_mode_supported = false;
1654    bool guest_xive;
1655
1656    cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1657    if (local_err) {
1658        error_report_err(local_err);
1659        return H_HARDWARE;
1660    }
1661
1662    /* Update CPUs */
1663    if (cpu->compat_pvr != cas_pvr) {
1664        ppc_set_compat_all(cas_pvr, &local_err);
1665        if (local_err) {
1666            /* We fail to set compat mode (likely because running with KVM PR),
1667             * but maybe we can fallback to raw mode if the guest supports it.
1668             */
1669            if (!raw_mode_supported) {
1670                error_report_err(local_err);
1671                return H_HARDWARE;
1672            }
1673            error_free(local_err);
1674            local_err = NULL;
1675        }
1676    }
1677
1678    /* For the future use: here @ov_table points to the first option vector */
1679    ov_table = addr;
1680
1681    ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1682    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1683    if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1684        error_report("guest requested hash and radix MMU, which is invalid.");
1685        exit(EXIT_FAILURE);
1686    }
1687    if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1688        error_report("guest requested an invalid interrupt mode");
1689        exit(EXIT_FAILURE);
1690    }
1691
1692    /* The radix/hash bit in byte 24 requires special handling: */
1693    guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1694    spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1695
1696    guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1697
1698    /*
1699     * HPT resizing is a bit of a special case, because when enabled
1700     * we assume an HPT guest will support it until it says it
1701     * doesn't, instead of assuming it won't support it until it says
1702     * it does.  Strictly speaking that approach could break for
1703     * guests which don't make a CAS call, but those are so old we
1704     * don't care about them.  Without that assumption we'd have to
1705     * make at least a temporary allocation of an HPT sized for max
1706     * memory, which could be impossibly difficult under KVM HV if
1707     * maxram is large.
1708     */
1709    if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1710        int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1711
1712        if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1713            error_report(
1714                "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1715            exit(1);
1716        }
1717
1718        if (spapr->htab_shift < maxshift) {
1719            /* Guest doesn't know about HPT resizing, so we
1720             * pre-emptively resize for the maximum permitted RAM.  At
1721             * the point this is called, nothing should have been
1722             * entered into the existing HPT */
1723            spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1724            push_sregs_to_kvm_pr(spapr);
1725        }
1726    }
1727
1728    /* NOTE: there are actually a number of ov5 bits where input from the
1729     * guest is always zero, and the platform/QEMU enables them independently
1730     * of guest input. To model these properly we'd want some sort of mask,
1731     * but since they only currently apply to memory migration as defined
1732     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1733     * to worry about this for now.
1734     */
1735    ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1736
1737    /* also clear the radix/hash bit from the current ov5_cas bits to
1738     * be in sync with the newly ov5 bits. Else the radix bit will be
1739     * seen as being removed and this will generate a reset loop
1740     */
1741    spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1742
1743    /* full range of negotiated ov5 capabilities */
1744    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1745    spapr_ovec_cleanup(ov5_guest);
1746    /* capabilities that have been added since CAS-generated guest reset.
1747     * if capabilities have since been removed, generate another reset
1748     */
1749    ov5_updates = spapr_ovec_new();
1750    spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1751                                        ov5_cas_old, spapr->ov5_cas);
1752    spapr_ovec_cleanup(ov5_cas_old);
1753    /* Now that processing is finished, set the radix/hash bit for the
1754     * guest if it requested a valid mode; otherwise terminate the boot. */
1755    if (guest_radix) {
1756        if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1757            error_report("Guest requested unavailable MMU mode (radix).");
1758            exit(EXIT_FAILURE);
1759        }
1760        spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1761    } else {
1762        if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1763            && !kvmppc_has_cap_mmu_hash_v3()) {
1764            error_report("Guest requested unavailable MMU mode (hash).");
1765            exit(EXIT_FAILURE);
1766        }
1767    }
1768    spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1769    spapr_ovec_cleanup(ov1_guest);
1770    if (!spapr->cas_reboot) {
1771        /* If spapr_machine_reset() did not set up a HPT but one is necessary
1772         * (because the guest isn't going to use radix) then set it up here. */
1773        if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1774            /* legacy hash or new hash: */
1775            spapr_setup_hpt_and_vrma(spapr);
1776        }
1777        spapr->cas_reboot =
1778            (spapr_h_cas_compose_response(spapr, args[1], args[2],
1779                                          ov5_updates) != 0);
1780    }
1781
1782    /*
1783     * Ensure the guest asks for an interrupt mode we support; otherwise
1784     * terminate the boot.
1785     */
1786    if (guest_xive) {
1787        if (!spapr->irq->xive) {
1788            error_report(
1789"Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1790            exit(EXIT_FAILURE);
1791        }
1792    } else {
1793        if (!spapr->irq->xics) {
1794            error_report(
1795"Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1796            exit(EXIT_FAILURE);
1797        }
1798    }
1799
1800    /*
1801     * Generate a machine reset when we have an update of the
1802     * interrupt mode. Only required when the machine supports both
1803     * modes.
1804     */
1805    if (!spapr->cas_reboot) {
1806        spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
1807            && spapr->irq->xics && spapr->irq->xive;
1808    }
1809
1810    spapr_ovec_cleanup(ov5_updates);
1811
1812    if (spapr->cas_reboot) {
1813        qemu_system_reset_request(SHUTDOWN_CAUSE_SUBSYSTEM_RESET);
1814    }
1815
1816    return H_SUCCESS;
1817}
1818
1819static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
1820                                              SpaprMachineState *spapr,
1821                                              target_ulong opcode,
1822                                              target_ulong *args)
1823{
1824    target_ulong flags = args[0];
1825    target_ulong procno = args[1];
1826    PowerPCCPU *tcpu;
1827    int idx;
1828
1829    /* only support procno from H_REGISTER_VPA */
1830    if (flags != 0x1) {
1831        return H_FUNCTION;
1832    }
1833
1834    tcpu = spapr_find_cpu(procno);
1835    if (tcpu == NULL) {
1836        return H_P2;
1837    }
1838
1839    /* sequence is the same as in the "ibm,associativity" property */
1840
1841    idx = 0;
1842#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
1843                             ((uint64_t)(b) & 0xffffffff))
1844    args[idx++] = ASSOCIATIVITY(0, 0);
1845    args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
1846    args[idx++] = ASSOCIATIVITY(procno, -1);
1847    for ( ; idx < 6; idx++) {
1848        args[idx] = -1;
1849    }
1850#undef ASSOCIATIVITY
1851
1852    return H_SUCCESS;
1853}
1854
1855static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1856                                              SpaprMachineState *spapr,
1857                                              target_ulong opcode,
1858                                              target_ulong *args)
1859{
1860    uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1861                               ~H_CPU_CHAR_THR_RECONF_TRIG;
1862    uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1863    uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1864    uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1865    uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1866    uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1867                                                     SPAPR_CAP_CCF_ASSIST);
1868
1869    switch (safe_cache) {
1870    case SPAPR_CAP_WORKAROUND:
1871        characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1872        characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1873        characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1874        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1875        break;
1876    case SPAPR_CAP_FIXED:
1877        break;
1878    default: /* broken */
1879        assert(safe_cache == SPAPR_CAP_BROKEN);
1880        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1881        break;
1882    }
1883
1884    switch (safe_bounds_check) {
1885    case SPAPR_CAP_WORKAROUND:
1886        characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1887        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1888        break;
1889    case SPAPR_CAP_FIXED:
1890        break;
1891    default: /* broken */
1892        assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1893        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1894        break;
1895    }
1896
1897    switch (safe_indirect_branch) {
1898    case SPAPR_CAP_FIXED_NA:
1899        break;
1900    case SPAPR_CAP_FIXED_CCD:
1901        characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1902        break;
1903    case SPAPR_CAP_FIXED_IBS:
1904        characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1905        break;
1906    case SPAPR_CAP_WORKAROUND:
1907        behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1908        if (count_cache_flush_assist) {
1909            characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1910        }
1911        break;
1912    default: /* broken */
1913        assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1914        break;
1915    }
1916
1917    args[0] = characteristics;
1918    args[1] = behaviour;
1919    return H_SUCCESS;
1920}
1921
1922static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1923                                target_ulong opcode, target_ulong *args)
1924{
1925    target_ulong dt = ppc64_phys_to_real(args[0]);
1926    struct fdt_header hdr = { 0 };
1927    unsigned cb;
1928    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1929    void *fdt;
1930
1931    cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1932    cb = fdt32_to_cpu(hdr.totalsize);
1933
1934    if (!smc->update_dt_enabled) {
1935        return H_SUCCESS;
1936    }
1937
1938    /* Check that the fdt did not grow out of proportion */
1939    if (cb > spapr->fdt_initial_size * 2) {
1940        trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1941                                          fdt32_to_cpu(hdr.magic));
1942        return H_PARAMETER;
1943    }
1944
1945    fdt = g_malloc0(cb);
1946    cpu_physical_memory_read(dt, fdt, cb);
1947
1948    /* Check the fdt consistency */
1949    if (fdt_check_full(fdt, cb)) {
1950        trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1951                                           fdt32_to_cpu(hdr.magic));
1952        return H_PARAMETER;
1953    }
1954
1955    g_free(spapr->fdt_blob);
1956    spapr->fdt_size = cb;
1957    spapr->fdt_blob = fdt;
1958    trace_spapr_update_dt(cb);
1959
1960    return H_SUCCESS;
1961}
1962
1963static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1964static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1965static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1966
1967void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1968{
1969    spapr_hcall_fn *slot;
1970
1971    if (opcode <= MAX_HCALL_OPCODE) {
1972        assert((opcode & 0x3) == 0);
1973
1974        slot = &papr_hypercall_table[opcode / 4];
1975    } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1976        /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1977        assert((opcode & 0x3) == 0);
1978
1979        slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1980    } else {
1981        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1982
1983        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1984    }
1985
1986    assert(!(*slot));
1987    *slot = fn;
1988}
1989
1990target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1991                             target_ulong *args)
1992{
1993    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1994
1995    if ((opcode <= MAX_HCALL_OPCODE)
1996        && ((opcode & 0x3) == 0)) {
1997        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1998
1999        if (fn) {
2000            return fn(cpu, spapr, opcode, args);
2001        }
2002    } else if ((opcode >= SVM_HCALL_BASE) &&
2003               (opcode <= SVM_HCALL_MAX)) {
2004        spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
2005
2006        if (fn) {
2007            return fn(cpu, spapr, opcode, args);
2008        }
2009    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
2010               (opcode <= KVMPPC_HCALL_MAX)) {
2011        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
2012
2013        if (fn) {
2014            return fn(cpu, spapr, opcode, args);
2015        }
2016    }
2017
2018    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
2019                  opcode);
2020    return H_FUNCTION;
2021}
2022
2023static void hypercall_register_types(void)
2024{
2025    /* hcall-pft */
2026    spapr_register_hypercall(H_ENTER, h_enter);
2027    spapr_register_hypercall(H_REMOVE, h_remove);
2028    spapr_register_hypercall(H_PROTECT, h_protect);
2029    spapr_register_hypercall(H_READ, h_read);
2030
2031    /* hcall-bulk */
2032    spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
2033
2034    /* hcall-hpt-resize */
2035    spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
2036    spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
2037
2038    /* hcall-splpar */
2039    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
2040    spapr_register_hypercall(H_CEDE, h_cede);
2041    spapr_register_hypercall(H_CONFER, h_confer);
2042    spapr_register_hypercall(H_PROD, h_prod);
2043
2044    /* hcall-join */
2045    spapr_register_hypercall(H_JOIN, h_join);
2046
2047    spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
2048
2049    /* processor register resource access h-calls */
2050    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
2051    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
2052    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
2053    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
2054    spapr_register_hypercall(H_SET_MODE, h_set_mode);
2055
2056    /* In Memory Table MMU h-calls */
2057    spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
2058    spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
2059    spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
2060
2061    /* hcall-get-cpu-characteristics */
2062    spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
2063                             h_get_cpu_characteristics);
2064
2065    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
2066     * here between the "CI" and the "CACHE" variants, they will use whatever
2067     * mapping attributes qemu is using. When using KVM, the kernel will
2068     * enforce the attributes more strongly
2069     */
2070    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
2071    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
2072    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
2073    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
2074    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
2075    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
2076    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
2077
2078    /* qemu/KVM-PPC specific hcalls */
2079    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
2080
2081    /* ibm,client-architecture-support support */
2082    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
2083
2084    spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
2085
2086    /* Virtual Processor Home Node */
2087    spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
2088                             h_home_node_associativity);
2089}
2090
2091type_init(hypercall_register_types)
2092