qemu/hw/xtensa/xtfpga.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are met:
   7 *     * Redistributions of source code must retain the above copyright
   8 *       notice, this list of conditions and the following disclaimer.
   9 *     * Redistributions in binary form must reproduce the above copyright
  10 *       notice, this list of conditions and the following disclaimer in the
  11 *       documentation and/or other materials provided with the distribution.
  12 *     * Neither the name of the Open Source and Linux Lab nor the
  13 *       names of its contributors may be used to endorse or promote products
  14 *       derived from this software without specific prior written permission.
  15 *
  16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "qemu/units.h"
  30#include "qapi/error.h"
  31#include "cpu.h"
  32#include "sysemu/sysemu.h"
  33#include "hw/boards.h"
  34#include "hw/loader.h"
  35#include "hw/qdev-properties.h"
  36#include "elf.h"
  37#include "exec/memory.h"
  38#include "exec/address-spaces.h"
  39#include "hw/char/serial.h"
  40#include "net/net.h"
  41#include "hw/sysbus.h"
  42#include "hw/block/flash.h"
  43#include "chardev/char.h"
  44#include "sysemu/device_tree.h"
  45#include "sysemu/reset.h"
  46#include "sysemu/runstate.h"
  47#include "qemu/error-report.h"
  48#include "qemu/option.h"
  49#include "bootparam.h"
  50#include "xtensa_memory.h"
  51#include "hw/xtensa/mx_pic.h"
  52#include "migration/vmstate.h"
  53
  54typedef struct XtfpgaFlashDesc {
  55    hwaddr base;
  56    size_t size;
  57    size_t boot_base;
  58    size_t sector_size;
  59} XtfpgaFlashDesc;
  60
  61typedef struct XtfpgaBoardDesc {
  62    const XtfpgaFlashDesc *flash;
  63    size_t sram_size;
  64    const hwaddr *io;
  65} XtfpgaBoardDesc;
  66
  67typedef struct XtfpgaFpgaState {
  68    MemoryRegion iomem;
  69    uint32_t freq;
  70    uint32_t leds;
  71    uint32_t switches;
  72} XtfpgaFpgaState;
  73
  74static void xtfpga_fpga_reset(void *opaque)
  75{
  76    XtfpgaFpgaState *s = opaque;
  77
  78    s->leds = 0;
  79    s->switches = 0;
  80}
  81
  82static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
  83        unsigned size)
  84{
  85    XtfpgaFpgaState *s = opaque;
  86
  87    switch (addr) {
  88    case 0x0: /*build date code*/
  89        return 0x09272011;
  90
  91    case 0x4: /*processor clock frequency, Hz*/
  92        return s->freq;
  93
  94    case 0x8: /*LEDs (off = 0, on = 1)*/
  95        return s->leds;
  96
  97    case 0xc: /*DIP switches (off = 0, on = 1)*/
  98        return s->switches;
  99    }
 100    return 0;
 101}
 102
 103static void xtfpga_fpga_write(void *opaque, hwaddr addr,
 104        uint64_t val, unsigned size)
 105{
 106    XtfpgaFpgaState *s = opaque;
 107
 108    switch (addr) {
 109    case 0x8: /*LEDs (off = 0, on = 1)*/
 110        s->leds = val;
 111        break;
 112
 113    case 0x10: /*board reset*/
 114        if (val == 0xdead) {
 115            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 116        }
 117        break;
 118    }
 119}
 120
 121static const MemoryRegionOps xtfpga_fpga_ops = {
 122    .read = xtfpga_fpga_read,
 123    .write = xtfpga_fpga_write,
 124    .endianness = DEVICE_NATIVE_ENDIAN,
 125};
 126
 127static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
 128                                         hwaddr base, uint32_t freq)
 129{
 130    XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
 131
 132    memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
 133                          "xtfpga.fpga", 0x10000);
 134    memory_region_add_subregion(address_space, base, &s->iomem);
 135    s->freq = freq;
 136    xtfpga_fpga_reset(s);
 137    qemu_register_reset(xtfpga_fpga_reset, s);
 138    return s;
 139}
 140
 141static void xtfpga_net_init(MemoryRegion *address_space,
 142        hwaddr base,
 143        hwaddr descriptors,
 144        hwaddr buffers,
 145        qemu_irq irq, NICInfo *nd)
 146{
 147    DeviceState *dev;
 148    SysBusDevice *s;
 149    MemoryRegion *ram;
 150
 151    dev = qdev_create(NULL, "open_eth");
 152    qdev_set_nic_properties(dev, nd);
 153    qdev_init_nofail(dev);
 154
 155    s = SYS_BUS_DEVICE(dev);
 156    sysbus_connect_irq(s, 0, irq);
 157    memory_region_add_subregion(address_space, base,
 158            sysbus_mmio_get_region(s, 0));
 159    memory_region_add_subregion(address_space, descriptors,
 160            sysbus_mmio_get_region(s, 1));
 161
 162    ram = g_malloc(sizeof(*ram));
 163    memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
 164                           &error_fatal);
 165    vmstate_register_ram_global(ram);
 166    memory_region_add_subregion(address_space, buffers, ram);
 167}
 168
 169static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
 170                                      const XtfpgaBoardDesc *board,
 171                                      DriveInfo *dinfo, int be)
 172{
 173    SysBusDevice *s;
 174    DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
 175
 176    qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 177                        &error_abort);
 178    qdev_prop_set_uint32(dev, "num-blocks",
 179                         board->flash->size / board->flash->sector_size);
 180    qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
 181    qdev_prop_set_uint8(dev, "width", 2);
 182    qdev_prop_set_bit(dev, "big-endian", be);
 183    qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
 184    qdev_init_nofail(dev);
 185    s = SYS_BUS_DEVICE(dev);
 186    memory_region_add_subregion(address_space, board->flash->base,
 187                                sysbus_mmio_get_region(s, 0));
 188    return PFLASH_CFI01(dev);
 189}
 190
 191static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
 192{
 193    XtensaCPU *cpu = opaque;
 194
 195    return cpu_get_phys_page_debug(CPU(cpu), addr);
 196}
 197
 198static void xtfpga_reset(void *opaque)
 199{
 200    XtensaCPU *cpu = opaque;
 201
 202    cpu_reset(CPU(cpu));
 203}
 204
 205static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
 206        unsigned size)
 207{
 208    return 0;
 209}
 210
 211static void xtfpga_io_write(void *opaque, hwaddr addr,
 212        uint64_t val, unsigned size)
 213{
 214}
 215
 216static const MemoryRegionOps xtfpga_io_ops = {
 217    .read = xtfpga_io_read,
 218    .write = xtfpga_io_write,
 219    .endianness = DEVICE_NATIVE_ENDIAN,
 220};
 221
 222static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
 223{
 224#ifdef TARGET_WORDS_BIGENDIAN
 225    int be = 1;
 226#else
 227    int be = 0;
 228#endif
 229    MemoryRegion *system_memory = get_system_memory();
 230    XtensaCPU *cpu = NULL;
 231    CPUXtensaState *env = NULL;
 232    MemoryRegion *system_io;
 233    XtensaMxPic *mx_pic = NULL;
 234    qemu_irq *extints;
 235    DriveInfo *dinfo;
 236    PFlashCFI01 *flash = NULL;
 237    QemuOpts *machine_opts = qemu_get_machine_opts();
 238    const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
 239    const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
 240    const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
 241    const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
 242    const unsigned system_io_size = 224 * MiB;
 243    uint32_t freq = 10000000;
 244    int n;
 245    unsigned int smp_cpus = machine->smp.cpus;
 246
 247    if (smp_cpus > 1) {
 248        mx_pic = xtensa_mx_pic_init(31);
 249        qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
 250    }
 251    for (n = 0; n < smp_cpus; n++) {
 252        CPUXtensaState *cenv = NULL;
 253
 254        cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
 255        cenv = &cpu->env;
 256        if (!env) {
 257            env = cenv;
 258            freq = env->config->clock_freq_khz * 1000;
 259        }
 260
 261        if (mx_pic) {
 262            MemoryRegion *mx_eri;
 263
 264            mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
 265                                                xtensa_get_extints(cenv),
 266                                                xtensa_get_runstall(cenv));
 267            memory_region_add_subregion(xtensa_get_er_region(cenv),
 268                                        0, mx_eri);
 269        }
 270        cenv->sregs[PRID] = n;
 271        xtensa_select_static_vectors(cenv, n != 0);
 272        qemu_register_reset(xtfpga_reset, cpu);
 273        /* Need MMU initialized prior to ELF loading,
 274         * so that ELF gets loaded into virtual addresses
 275         */
 276        cpu_reset(CPU(cpu));
 277    }
 278    if (smp_cpus > 1) {
 279        extints = xtensa_mx_pic_get_extints(mx_pic);
 280    } else {
 281        extints = xtensa_get_extints(env);
 282    }
 283
 284    if (env) {
 285        XtensaMemory sysram = env->config->sysram;
 286
 287        sysram.location[0].size = machine->ram_size;
 288        xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
 289                                     system_memory);
 290        xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
 291                                     system_memory);
 292        xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
 293                                     system_memory);
 294        xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
 295                                     system_memory);
 296        xtensa_create_memory_regions(&sysram, "xtensa.sysram",
 297                                     system_memory);
 298    }
 299
 300    system_io = g_malloc(sizeof(*system_io));
 301    memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
 302                          system_io_size);
 303    memory_region_add_subregion(system_memory, board->io[0], system_io);
 304    if (board->io[1]) {
 305        MemoryRegion *io = g_malloc(sizeof(*io));
 306
 307        memory_region_init_alias(io, NULL, "xtfpga.io.cached",
 308                                 system_io, 0, system_io_size);
 309        memory_region_add_subregion(system_memory, board->io[1], io);
 310    }
 311    xtfpga_fpga_init(system_io, 0x0d020000, freq);
 312    if (nd_table[0].used) {
 313        xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
 314                        extints[1], nd_table);
 315    }
 316
 317    serial_mm_init(system_io, 0x0d050020, 2, extints[0],
 318                   115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
 319
 320    dinfo = drive_get(IF_PFLASH, 0, 0);
 321    if (dinfo) {
 322        flash = xtfpga_flash_init(system_io, board, dinfo, be);
 323    }
 324
 325    /* Use presence of kernel file name as 'boot from SRAM' switch. */
 326    if (kernel_filename) {
 327        uint32_t entry_point = env->pc;
 328        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
 329        uint32_t tagptr = env->config->sysrom.location[0].addr +
 330            board->sram_size;
 331        uint32_t cur_tagptr;
 332        BpMemInfo memory_location = {
 333            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
 334            .start = tswap32(env->config->sysram.location[0].addr),
 335            .end = tswap32(env->config->sysram.location[0].addr +
 336                           machine->ram_size),
 337        };
 338        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
 339            machine->ram_size : 0x08000000;
 340        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
 341
 342        lowmem_end += env->config->sysram.location[0].addr;
 343        cur_lowmem += env->config->sysram.location[0].addr;
 344
 345        xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
 346                                     system_memory);
 347
 348        if (kernel_cmdline) {
 349            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
 350        }
 351        if (dtb_filename) {
 352            bp_size += get_tag_size(sizeof(uint32_t));
 353        }
 354        if (initrd_filename) {
 355            bp_size += get_tag_size(sizeof(BpMemInfo));
 356        }
 357
 358        /* Put kernel bootparameters to the end of that SRAM */
 359        tagptr = (tagptr - bp_size) & ~0xff;
 360        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
 361        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
 362                             sizeof(memory_location), &memory_location);
 363
 364        if (kernel_cmdline) {
 365            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
 366                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
 367        }
 368#ifdef CONFIG_FDT
 369        if (dtb_filename) {
 370            int fdt_size;
 371            void *fdt = load_device_tree(dtb_filename, &fdt_size);
 372            uint32_t dtb_addr = tswap32(cur_lowmem);
 373
 374            if (!fdt) {
 375                error_report("could not load DTB '%s'", dtb_filename);
 376                exit(EXIT_FAILURE);
 377            }
 378
 379            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
 380            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
 381                                 sizeof(dtb_addr), &dtb_addr);
 382            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
 383        }
 384#else
 385        if (dtb_filename) {
 386            error_report("could not load DTB '%s': "
 387                         "FDT support is not configured in QEMU",
 388                         dtb_filename);
 389            exit(EXIT_FAILURE);
 390        }
 391#endif
 392        if (initrd_filename) {
 393            BpMemInfo initrd_location = { 0 };
 394            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
 395                                           lowmem_end - cur_lowmem);
 396
 397            if (initrd_size < 0) {
 398                initrd_size = load_image_targphys(initrd_filename,
 399                                                  cur_lowmem,
 400                                                  lowmem_end - cur_lowmem);
 401            }
 402            if (initrd_size < 0) {
 403                error_report("could not load initrd '%s'", initrd_filename);
 404                exit(EXIT_FAILURE);
 405            }
 406            initrd_location.start = tswap32(cur_lowmem);
 407            initrd_location.end = tswap32(cur_lowmem + initrd_size);
 408            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
 409                                 sizeof(initrd_location), &initrd_location);
 410            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
 411        }
 412        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
 413        env->regs[2] = tagptr;
 414
 415        uint64_t elf_entry;
 416        uint64_t elf_lowaddr;
 417        int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
 418                &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
 419        if (success > 0) {
 420            entry_point = elf_entry;
 421        } else {
 422            hwaddr ep;
 423            int is_linux;
 424            success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
 425                                  translate_phys_addr, cpu);
 426            if (success > 0 && is_linux) {
 427                entry_point = ep;
 428            } else {
 429                error_report("could not load kernel '%s'",
 430                             kernel_filename);
 431                exit(EXIT_FAILURE);
 432            }
 433        }
 434        if (entry_point != env->pc) {
 435            uint8_t boot[] = {
 436#ifdef TARGET_WORDS_BIGENDIAN
 437                0x60, 0x00, 0x08,       /* j    1f */
 438                0x00,                   /* .literal_position */
 439                0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
 440                0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
 441                                        /* 1: */
 442                0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
 443                0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
 444                0x0a, 0x00, 0x00,       /* jx   a0 */
 445#else
 446                0x06, 0x02, 0x00,       /* j    1f */
 447                0x00,                   /* .literal_position */
 448                0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
 449                0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
 450                                        /* 1: */
 451                0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
 452                0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
 453                0xa0, 0x00, 0x00,       /* jx   a0 */
 454#endif
 455            };
 456            uint32_t entry_pc = tswap32(entry_point);
 457            uint32_t entry_a2 = tswap32(tagptr);
 458
 459            memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
 460            memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
 461            cpu_physical_memory_write(env->pc, boot, sizeof(boot));
 462        }
 463    } else {
 464        if (flash) {
 465            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
 466            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
 467            uint32_t size = env->config->sysrom.location[0].size;
 468
 469            if (board->flash->size - board->flash->boot_base < size) {
 470                size = board->flash->size - board->flash->boot_base;
 471            }
 472
 473            memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
 474                                     flash_mr, board->flash->boot_base, size);
 475            memory_region_add_subregion(system_memory,
 476                                        env->config->sysrom.location[0].addr,
 477                                        flash_io);
 478        } else {
 479            xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
 480                                         system_memory);
 481        }
 482    }
 483}
 484
 485#define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
 486
 487static const hwaddr xtfpga_mmu_io[2] = {
 488    0xf0000000,
 489};
 490
 491static const hwaddr xtfpga_nommu_io[2] = {
 492    0x90000000,
 493    0x70000000,
 494};
 495
 496static const XtfpgaFlashDesc lx60_flash = {
 497    .base = 0x08000000,
 498    .size = 0x00400000,
 499    .sector_size = 0x10000,
 500};
 501
 502static void xtfpga_lx60_init(MachineState *machine)
 503{
 504    static const XtfpgaBoardDesc lx60_board = {
 505        .flash = &lx60_flash,
 506        .sram_size = 0x20000,
 507        .io = xtfpga_mmu_io,
 508    };
 509    xtfpga_init(&lx60_board, machine);
 510}
 511
 512static void xtfpga_lx60_nommu_init(MachineState *machine)
 513{
 514    static const XtfpgaBoardDesc lx60_board = {
 515        .flash = &lx60_flash,
 516        .sram_size = 0x20000,
 517        .io = xtfpga_nommu_io,
 518    };
 519    xtfpga_init(&lx60_board, machine);
 520}
 521
 522static const XtfpgaFlashDesc lx200_flash = {
 523    .base = 0x08000000,
 524    .size = 0x01000000,
 525    .sector_size = 0x20000,
 526};
 527
 528static void xtfpga_lx200_init(MachineState *machine)
 529{
 530    static const XtfpgaBoardDesc lx200_board = {
 531        .flash = &lx200_flash,
 532        .sram_size = 0x2000000,
 533        .io = xtfpga_mmu_io,
 534    };
 535    xtfpga_init(&lx200_board, machine);
 536}
 537
 538static void xtfpga_lx200_nommu_init(MachineState *machine)
 539{
 540    static const XtfpgaBoardDesc lx200_board = {
 541        .flash = &lx200_flash,
 542        .sram_size = 0x2000000,
 543        .io = xtfpga_nommu_io,
 544    };
 545    xtfpga_init(&lx200_board, machine);
 546}
 547
 548static const XtfpgaFlashDesc ml605_flash = {
 549    .base = 0x08000000,
 550    .size = 0x01000000,
 551    .sector_size = 0x20000,
 552};
 553
 554static void xtfpga_ml605_init(MachineState *machine)
 555{
 556    static const XtfpgaBoardDesc ml605_board = {
 557        .flash = &ml605_flash,
 558        .sram_size = 0x2000000,
 559        .io = xtfpga_mmu_io,
 560    };
 561    xtfpga_init(&ml605_board, machine);
 562}
 563
 564static void xtfpga_ml605_nommu_init(MachineState *machine)
 565{
 566    static const XtfpgaBoardDesc ml605_board = {
 567        .flash = &ml605_flash,
 568        .sram_size = 0x2000000,
 569        .io = xtfpga_nommu_io,
 570    };
 571    xtfpga_init(&ml605_board, machine);
 572}
 573
 574static const XtfpgaFlashDesc kc705_flash = {
 575    .base = 0x00000000,
 576    .size = 0x08000000,
 577    .boot_base = 0x06000000,
 578    .sector_size = 0x20000,
 579};
 580
 581static void xtfpga_kc705_init(MachineState *machine)
 582{
 583    static const XtfpgaBoardDesc kc705_board = {
 584        .flash = &kc705_flash,
 585        .sram_size = 0x2000000,
 586        .io = xtfpga_mmu_io,
 587    };
 588    xtfpga_init(&kc705_board, machine);
 589}
 590
 591static void xtfpga_kc705_nommu_init(MachineState *machine)
 592{
 593    static const XtfpgaBoardDesc kc705_board = {
 594        .flash = &kc705_flash,
 595        .sram_size = 0x2000000,
 596        .io = xtfpga_nommu_io,
 597    };
 598    xtfpga_init(&kc705_board, machine);
 599}
 600
 601static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
 602{
 603    MachineClass *mc = MACHINE_CLASS(oc);
 604
 605    mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 606    mc->init = xtfpga_lx60_init;
 607    mc->max_cpus = 32;
 608    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 609    mc->default_ram_size = 64 * MiB;
 610}
 611
 612static const TypeInfo xtfpga_lx60_type = {
 613    .name = MACHINE_TYPE_NAME("lx60"),
 614    .parent = TYPE_MACHINE,
 615    .class_init = xtfpga_lx60_class_init,
 616};
 617
 618static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
 619{
 620    MachineClass *mc = MACHINE_CLASS(oc);
 621
 622    mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 623    mc->init = xtfpga_lx60_nommu_init;
 624    mc->max_cpus = 32;
 625    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 626    mc->default_ram_size = 64 * MiB;
 627}
 628
 629static const TypeInfo xtfpga_lx60_nommu_type = {
 630    .name = MACHINE_TYPE_NAME("lx60-nommu"),
 631    .parent = TYPE_MACHINE,
 632    .class_init = xtfpga_lx60_nommu_class_init,
 633};
 634
 635static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
 636{
 637    MachineClass *mc = MACHINE_CLASS(oc);
 638
 639    mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 640    mc->init = xtfpga_lx200_init;
 641    mc->max_cpus = 32;
 642    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 643    mc->default_ram_size = 96 * MiB;
 644}
 645
 646static const TypeInfo xtfpga_lx200_type = {
 647    .name = MACHINE_TYPE_NAME("lx200"),
 648    .parent = TYPE_MACHINE,
 649    .class_init = xtfpga_lx200_class_init,
 650};
 651
 652static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
 653{
 654    MachineClass *mc = MACHINE_CLASS(oc);
 655
 656    mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 657    mc->init = xtfpga_lx200_nommu_init;
 658    mc->max_cpus = 32;
 659    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 660    mc->default_ram_size = 96 * MiB;
 661}
 662
 663static const TypeInfo xtfpga_lx200_nommu_type = {
 664    .name = MACHINE_TYPE_NAME("lx200-nommu"),
 665    .parent = TYPE_MACHINE,
 666    .class_init = xtfpga_lx200_nommu_class_init,
 667};
 668
 669static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
 670{
 671    MachineClass *mc = MACHINE_CLASS(oc);
 672
 673    mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 674    mc->init = xtfpga_ml605_init;
 675    mc->max_cpus = 32;
 676    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 677    mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
 678}
 679
 680static const TypeInfo xtfpga_ml605_type = {
 681    .name = MACHINE_TYPE_NAME("ml605"),
 682    .parent = TYPE_MACHINE,
 683    .class_init = xtfpga_ml605_class_init,
 684};
 685
 686static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
 687{
 688    MachineClass *mc = MACHINE_CLASS(oc);
 689
 690    mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 691    mc->init = xtfpga_ml605_nommu_init;
 692    mc->max_cpus = 32;
 693    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 694    mc->default_ram_size = 256 * MiB;
 695}
 696
 697static const TypeInfo xtfpga_ml605_nommu_type = {
 698    .name = MACHINE_TYPE_NAME("ml605-nommu"),
 699    .parent = TYPE_MACHINE,
 700    .class_init = xtfpga_ml605_nommu_class_init,
 701};
 702
 703static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
 704{
 705    MachineClass *mc = MACHINE_CLASS(oc);
 706
 707    mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 708    mc->init = xtfpga_kc705_init;
 709    mc->max_cpus = 32;
 710    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 711    mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
 712}
 713
 714static const TypeInfo xtfpga_kc705_type = {
 715    .name = MACHINE_TYPE_NAME("kc705"),
 716    .parent = TYPE_MACHINE,
 717    .class_init = xtfpga_kc705_class_init,
 718};
 719
 720static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
 721{
 722    MachineClass *mc = MACHINE_CLASS(oc);
 723
 724    mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 725    mc->init = xtfpga_kc705_nommu_init;
 726    mc->max_cpus = 32;
 727    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 728    mc->default_ram_size = 256 * MiB;
 729}
 730
 731static const TypeInfo xtfpga_kc705_nommu_type = {
 732    .name = MACHINE_TYPE_NAME("kc705-nommu"),
 733    .parent = TYPE_MACHINE,
 734    .class_init = xtfpga_kc705_nommu_class_init,
 735};
 736
 737static void xtfpga_machines_init(void)
 738{
 739    type_register_static(&xtfpga_lx60_type);
 740    type_register_static(&xtfpga_lx200_type);
 741    type_register_static(&xtfpga_ml605_type);
 742    type_register_static(&xtfpga_kc705_type);
 743    type_register_static(&xtfpga_lx60_nommu_type);
 744    type_register_static(&xtfpga_lx200_nommu_type);
 745    type_register_static(&xtfpga_ml605_nommu_type);
 746    type_register_static(&xtfpga_kc705_nommu_type);
 747}
 748
 749type_init(xtfpga_machines_init)
 750