qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/memop.h"
  23#include "exec/ramlist.h"
  24#include "qemu/bswap.h"
  25#include "qemu/queue.h"
  26#include "qemu/int128.h"
  27#include "qemu/notify.h"
  28#include "qom/object.h"
  29#include "qemu/rcu.h"
  30
  31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  32
  33#define MAX_PHYS_ADDR_SPACE_BITS 62
  34#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  35
  36#define TYPE_MEMORY_REGION "qemu:memory-region"
  37#define MEMORY_REGION(obj) \
  38        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
  39
  40#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
  41#define IOMMU_MEMORY_REGION(obj) \
  42        OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
  43#define IOMMU_MEMORY_REGION_CLASS(klass) \
  44        OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
  45                         TYPE_IOMMU_MEMORY_REGION)
  46#define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
  47        OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
  48                         TYPE_IOMMU_MEMORY_REGION)
  49
  50extern bool global_dirty_log;
  51
  52typedef struct MemoryRegionOps MemoryRegionOps;
  53typedef struct MemoryRegionMmio MemoryRegionMmio;
  54
  55struct MemoryRegionMmio {
  56    CPUReadMemoryFunc *read[3];
  57    CPUWriteMemoryFunc *write[3];
  58};
  59
  60typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  61
  62/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  63typedef enum {
  64    IOMMU_NONE = 0,
  65    IOMMU_RO   = 1,
  66    IOMMU_WO   = 2,
  67    IOMMU_RW   = 3,
  68} IOMMUAccessFlags;
  69
  70#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
  71
  72struct IOMMUTLBEntry {
  73    AddressSpace    *target_as;
  74    hwaddr           iova;
  75    hwaddr           translated_addr;
  76    hwaddr           addr_mask;  /* 0xfff = 4k translation */
  77    IOMMUAccessFlags perm;
  78};
  79
  80/*
  81 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
  82 * register with one or multiple IOMMU Notifier capability bit(s).
  83 */
  84typedef enum {
  85    IOMMU_NOTIFIER_NONE = 0,
  86    /* Notify cache invalidations */
  87    IOMMU_NOTIFIER_UNMAP = 0x1,
  88    /* Notify entry changes (newly created entries) */
  89    IOMMU_NOTIFIER_MAP = 0x2,
  90} IOMMUNotifierFlag;
  91
  92#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
  93
  94struct IOMMUNotifier;
  95typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
  96                            IOMMUTLBEntry *data);
  97
  98struct IOMMUNotifier {
  99    IOMMUNotify notify;
 100    IOMMUNotifierFlag notifier_flags;
 101    /* Notify for address space range start <= addr <= end */
 102    hwaddr start;
 103    hwaddr end;
 104    int iommu_idx;
 105    QLIST_ENTRY(IOMMUNotifier) node;
 106};
 107typedef struct IOMMUNotifier IOMMUNotifier;
 108
 109/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 110#define RAM_PREALLOC   (1 << 0)
 111
 112/* RAM is mmap-ed with MAP_SHARED */
 113#define RAM_SHARED     (1 << 1)
 114
 115/* Only a portion of RAM (used_length) is actually used, and migrated.
 116 * This used_length size can change across reboots.
 117 */
 118#define RAM_RESIZEABLE (1 << 2)
 119
 120/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 121 * zero the page and wake waiting processes.
 122 * (Set during postcopy)
 123 */
 124#define RAM_UF_ZEROPAGE (1 << 3)
 125
 126/* RAM can be migrated */
 127#define RAM_MIGRATABLE (1 << 4)
 128
 129/* RAM is a persistent kind memory */
 130#define RAM_PMEM (1 << 5)
 131
 132static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 133                                       IOMMUNotifierFlag flags,
 134                                       hwaddr start, hwaddr end,
 135                                       int iommu_idx)
 136{
 137    n->notify = fn;
 138    n->notifier_flags = flags;
 139    n->start = start;
 140    n->end = end;
 141    n->iommu_idx = iommu_idx;
 142}
 143
 144/*
 145 * Memory region callbacks
 146 */
 147struct MemoryRegionOps {
 148    /* Read from the memory region. @addr is relative to @mr; @size is
 149     * in bytes. */
 150    uint64_t (*read)(void *opaque,
 151                     hwaddr addr,
 152                     unsigned size);
 153    /* Write to the memory region. @addr is relative to @mr; @size is
 154     * in bytes. */
 155    void (*write)(void *opaque,
 156                  hwaddr addr,
 157                  uint64_t data,
 158                  unsigned size);
 159
 160    MemTxResult (*read_with_attrs)(void *opaque,
 161                                   hwaddr addr,
 162                                   uint64_t *data,
 163                                   unsigned size,
 164                                   MemTxAttrs attrs);
 165    MemTxResult (*write_with_attrs)(void *opaque,
 166                                    hwaddr addr,
 167                                    uint64_t data,
 168                                    unsigned size,
 169                                    MemTxAttrs attrs);
 170
 171    enum device_endian endianness;
 172    /* Guest-visible constraints: */
 173    struct {
 174        /* If nonzero, specify bounds on access sizes beyond which a machine
 175         * check is thrown.
 176         */
 177        unsigned min_access_size;
 178        unsigned max_access_size;
 179        /* If true, unaligned accesses are supported.  Otherwise unaligned
 180         * accesses throw machine checks.
 181         */
 182         bool unaligned;
 183        /*
 184         * If present, and returns #false, the transaction is not accepted
 185         * by the device (and results in machine dependent behaviour such
 186         * as a machine check exception).
 187         */
 188        bool (*accepts)(void *opaque, hwaddr addr,
 189                        unsigned size, bool is_write,
 190                        MemTxAttrs attrs);
 191    } valid;
 192    /* Internal implementation constraints: */
 193    struct {
 194        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 195         * will be rounded upwards and a partial result will be returned.
 196         */
 197        unsigned min_access_size;
 198        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 199         * will be done as a series of accesses with smaller sizes.
 200         */
 201        unsigned max_access_size;
 202        /* If true, unaligned accesses are supported.  Otherwise all accesses
 203         * are converted to (possibly multiple) naturally aligned accesses.
 204         */
 205        bool unaligned;
 206    } impl;
 207};
 208
 209typedef struct MemoryRegionClass {
 210    /* private */
 211    ObjectClass parent_class;
 212} MemoryRegionClass;
 213
 214
 215enum IOMMUMemoryRegionAttr {
 216    IOMMU_ATTR_SPAPR_TCE_FD
 217};
 218
 219/**
 220 * IOMMUMemoryRegionClass:
 221 *
 222 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
 223 * and provide an implementation of at least the @translate method here
 224 * to handle requests to the memory region. Other methods are optional.
 225 *
 226 * The IOMMU implementation must use the IOMMU notifier infrastructure
 227 * to report whenever mappings are changed, by calling
 228 * memory_region_notify_iommu() (or, if necessary, by calling
 229 * memory_region_notify_one() for each registered notifier).
 230 *
 231 * Conceptually an IOMMU provides a mapping from input address
 232 * to an output TLB entry. If the IOMMU is aware of memory transaction
 233 * attributes and the output TLB entry depends on the transaction
 234 * attributes, we represent this using IOMMU indexes. Each index
 235 * selects a particular translation table that the IOMMU has:
 236 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
 237 *   @translate takes an input address and an IOMMU index
 238 * and the mapping returned can only depend on the input address and the
 239 * IOMMU index.
 240 *
 241 * Most IOMMUs don't care about the transaction attributes and support
 242 * only a single IOMMU index. A more complex IOMMU might have one index
 243 * for secure transactions and one for non-secure transactions.
 244 */
 245typedef struct IOMMUMemoryRegionClass {
 246    /* private */
 247    MemoryRegionClass parent_class;
 248
 249    /*
 250     * Return a TLB entry that contains a given address.
 251     *
 252     * The IOMMUAccessFlags indicated via @flag are optional and may
 253     * be specified as IOMMU_NONE to indicate that the caller needs
 254     * the full translation information for both reads and writes. If
 255     * the access flags are specified then the IOMMU implementation
 256     * may use this as an optimization, to stop doing a page table
 257     * walk as soon as it knows that the requested permissions are not
 258     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
 259     * full page table walk and report the permissions in the returned
 260     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
 261     * return different mappings for reads and writes.)
 262     *
 263     * The returned information remains valid while the caller is
 264     * holding the big QEMU lock or is inside an RCU critical section;
 265     * if the caller wishes to cache the mapping beyond that it must
 266     * register an IOMMU notifier so it can invalidate its cached
 267     * information when the IOMMU mapping changes.
 268     *
 269     * @iommu: the IOMMUMemoryRegion
 270     * @hwaddr: address to be translated within the memory region
 271     * @flag: requested access permissions
 272     * @iommu_idx: IOMMU index for the translation
 273     */
 274    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 275                               IOMMUAccessFlags flag, int iommu_idx);
 276    /* Returns minimum supported page size in bytes.
 277     * If this method is not provided then the minimum is assumed to
 278     * be TARGET_PAGE_SIZE.
 279     *
 280     * @iommu: the IOMMUMemoryRegion
 281     */
 282    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 283    /* Called when IOMMU Notifier flag changes (ie when the set of
 284     * events which IOMMU users are requesting notification for changes).
 285     * Optional method -- need not be provided if the IOMMU does not
 286     * need to know exactly which events must be notified.
 287     *
 288     * @iommu: the IOMMUMemoryRegion
 289     * @old_flags: events which previously needed to be notified
 290     * @new_flags: events which now need to be notified
 291     *
 292     * Returns 0 on success, or a negative errno; in particular
 293     * returns -EINVAL if the new flag bitmap is not supported by the
 294     * IOMMU memory region. In case of failure, the error object
 295     * must be created
 296     */
 297    int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 298                               IOMMUNotifierFlag old_flags,
 299                               IOMMUNotifierFlag new_flags,
 300                               Error **errp);
 301    /* Called to handle memory_region_iommu_replay().
 302     *
 303     * The default implementation of memory_region_iommu_replay() is to
 304     * call the IOMMU translate method for every page in the address space
 305     * with flag == IOMMU_NONE and then call the notifier if translate
 306     * returns a valid mapping. If this method is implemented then it
 307     * overrides the default behaviour, and must provide the full semantics
 308     * of memory_region_iommu_replay(), by calling @notifier for every
 309     * translation present in the IOMMU.
 310     *
 311     * Optional method -- an IOMMU only needs to provide this method
 312     * if the default is inefficient or produces undesirable side effects.
 313     *
 314     * Note: this is not related to record-and-replay functionality.
 315     */
 316    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 317
 318    /* Get IOMMU misc attributes. This is an optional method that
 319     * can be used to allow users of the IOMMU to get implementation-specific
 320     * information. The IOMMU implements this method to handle calls
 321     * by IOMMU users to memory_region_iommu_get_attr() by filling in
 322     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
 323     * the IOMMU supports. If the method is unimplemented then
 324     * memory_region_iommu_get_attr() will always return -EINVAL.
 325     *
 326     * @iommu: the IOMMUMemoryRegion
 327     * @attr: attribute being queried
 328     * @data: memory to fill in with the attribute data
 329     *
 330     * Returns 0 on success, or a negative errno; in particular
 331     * returns -EINVAL for unrecognized or unimplemented attribute types.
 332     */
 333    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
 334                    void *data);
 335
 336    /* Return the IOMMU index to use for a given set of transaction attributes.
 337     *
 338     * Optional method: if an IOMMU only supports a single IOMMU index then
 339     * the default implementation of memory_region_iommu_attrs_to_index()
 340     * will return 0.
 341     *
 342     * The indexes supported by an IOMMU must be contiguous, starting at 0.
 343     *
 344     * @iommu: the IOMMUMemoryRegion
 345     * @attrs: memory transaction attributes
 346     */
 347    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
 348
 349    /* Return the number of IOMMU indexes this IOMMU supports.
 350     *
 351     * Optional method: if this method is not provided, then
 352     * memory_region_iommu_num_indexes() will return 1, indicating that
 353     * only a single IOMMU index is supported.
 354     *
 355     * @iommu: the IOMMUMemoryRegion
 356     */
 357    int (*num_indexes)(IOMMUMemoryRegion *iommu);
 358} IOMMUMemoryRegionClass;
 359
 360typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 361typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 362
 363struct MemoryRegion {
 364    Object parent_obj;
 365
 366    /* All fields are private - violators will be prosecuted */
 367
 368    /* The following fields should fit in a cache line */
 369    bool romd_mode;
 370    bool ram;
 371    bool subpage;
 372    bool readonly; /* For RAM regions */
 373    bool nonvolatile;
 374    bool rom_device;
 375    bool flush_coalesced_mmio;
 376    bool global_locking;
 377    uint8_t dirty_log_mask;
 378    bool is_iommu;
 379    RAMBlock *ram_block;
 380    Object *owner;
 381
 382    const MemoryRegionOps *ops;
 383    void *opaque;
 384    MemoryRegion *container;
 385    Int128 size;
 386    hwaddr addr;
 387    void (*destructor)(MemoryRegion *mr);
 388    uint64_t align;
 389    bool terminates;
 390    bool ram_device;
 391    bool enabled;
 392    bool warning_printed; /* For reservations */
 393    uint8_t vga_logging_count;
 394    MemoryRegion *alias;
 395    hwaddr alias_offset;
 396    int32_t priority;
 397    QTAILQ_HEAD(, MemoryRegion) subregions;
 398    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 399    QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
 400    const char *name;
 401    unsigned ioeventfd_nb;
 402    MemoryRegionIoeventfd *ioeventfds;
 403};
 404
 405struct IOMMUMemoryRegion {
 406    MemoryRegion parent_obj;
 407
 408    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 409    IOMMUNotifierFlag iommu_notify_flags;
 410};
 411
 412#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 413    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 414
 415/**
 416 * MemoryListener: callbacks structure for updates to the physical memory map
 417 *
 418 * Allows a component to adjust to changes in the guest-visible memory map.
 419 * Use with memory_listener_register() and memory_listener_unregister().
 420 */
 421struct MemoryListener {
 422    void (*begin)(MemoryListener *listener);
 423    void (*commit)(MemoryListener *listener);
 424    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 425    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 426    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 427    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 428                      int old, int new);
 429    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 430                     int old, int new);
 431    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 432    void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
 433    void (*log_global_start)(MemoryListener *listener);
 434    void (*log_global_stop)(MemoryListener *listener);
 435    void (*log_global_after_sync)(MemoryListener *listener);
 436    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 437                        bool match_data, uint64_t data, EventNotifier *e);
 438    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 439                        bool match_data, uint64_t data, EventNotifier *e);
 440    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
 441                               hwaddr addr, hwaddr len);
 442    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
 443                               hwaddr addr, hwaddr len);
 444    /* Lower = earlier (during add), later (during del) */
 445    unsigned priority;
 446    AddressSpace *address_space;
 447    QTAILQ_ENTRY(MemoryListener) link;
 448    QTAILQ_ENTRY(MemoryListener) link_as;
 449};
 450
 451/**
 452 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 453 */
 454struct AddressSpace {
 455    /* All fields are private. */
 456    struct rcu_head rcu;
 457    char *name;
 458    MemoryRegion *root;
 459
 460    /* Accessed via RCU.  */
 461    struct FlatView *current_map;
 462
 463    int ioeventfd_nb;
 464    struct MemoryRegionIoeventfd *ioeventfds;
 465    QTAILQ_HEAD(, MemoryListener) listeners;
 466    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 467};
 468
 469typedef struct AddressSpaceDispatch AddressSpaceDispatch;
 470typedef struct FlatRange FlatRange;
 471
 472/* Flattened global view of current active memory hierarchy.  Kept in sorted
 473 * order.
 474 */
 475struct FlatView {
 476    struct rcu_head rcu;
 477    unsigned ref;
 478    FlatRange *ranges;
 479    unsigned nr;
 480    unsigned nr_allocated;
 481    struct AddressSpaceDispatch *dispatch;
 482    MemoryRegion *root;
 483};
 484
 485static inline FlatView *address_space_to_flatview(AddressSpace *as)
 486{
 487    return atomic_rcu_read(&as->current_map);
 488}
 489
 490
 491/**
 492 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 493 *
 494 * @mr: the region, or %NULL if empty
 495 * @fv: the flat view of the address space the region is mapped in
 496 * @offset_within_region: the beginning of the section, relative to @mr's start
 497 * @size: the size of the section; will not exceed @mr's boundaries
 498 * @offset_within_address_space: the address of the first byte of the section
 499 *     relative to the region's address space
 500 * @readonly: writes to this section are ignored
 501 * @nonvolatile: this section is non-volatile
 502 */
 503struct MemoryRegionSection {
 504    Int128 size;
 505    MemoryRegion *mr;
 506    FlatView *fv;
 507    hwaddr offset_within_region;
 508    hwaddr offset_within_address_space;
 509    bool readonly;
 510    bool nonvolatile;
 511};
 512
 513static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
 514                                          MemoryRegionSection *b)
 515{
 516    return a->mr == b->mr &&
 517           a->fv == b->fv &&
 518           a->offset_within_region == b->offset_within_region &&
 519           a->offset_within_address_space == b->offset_within_address_space &&
 520           int128_eq(a->size, b->size) &&
 521           a->readonly == b->readonly &&
 522           a->nonvolatile == b->nonvolatile;
 523}
 524
 525/**
 526 * memory_region_init: Initialize a memory region
 527 *
 528 * The region typically acts as a container for other memory regions.  Use
 529 * memory_region_add_subregion() to add subregions.
 530 *
 531 * @mr: the #MemoryRegion to be initialized
 532 * @owner: the object that tracks the region's reference count
 533 * @name: used for debugging; not visible to the user or ABI
 534 * @size: size of the region; any subregions beyond this size will be clipped
 535 */
 536void memory_region_init(MemoryRegion *mr,
 537                        struct Object *owner,
 538                        const char *name,
 539                        uint64_t size);
 540
 541/**
 542 * memory_region_ref: Add 1 to a memory region's reference count
 543 *
 544 * Whenever memory regions are accessed outside the BQL, they need to be
 545 * preserved against hot-unplug.  MemoryRegions actually do not have their
 546 * own reference count; they piggyback on a QOM object, their "owner".
 547 * This function adds a reference to the owner.
 548 *
 549 * All MemoryRegions must have an owner if they can disappear, even if the
 550 * device they belong to operates exclusively under the BQL.  This is because
 551 * the region could be returned at any time by memory_region_find, and this
 552 * is usually under guest control.
 553 *
 554 * @mr: the #MemoryRegion
 555 */
 556void memory_region_ref(MemoryRegion *mr);
 557
 558/**
 559 * memory_region_unref: Remove 1 to a memory region's reference count
 560 *
 561 * Whenever memory regions are accessed outside the BQL, they need to be
 562 * preserved against hot-unplug.  MemoryRegions actually do not have their
 563 * own reference count; they piggyback on a QOM object, their "owner".
 564 * This function removes a reference to the owner and possibly destroys it.
 565 *
 566 * @mr: the #MemoryRegion
 567 */
 568void memory_region_unref(MemoryRegion *mr);
 569
 570/**
 571 * memory_region_init_io: Initialize an I/O memory region.
 572 *
 573 * Accesses into the region will cause the callbacks in @ops to be called.
 574 * if @size is nonzero, subregions will be clipped to @size.
 575 *
 576 * @mr: the #MemoryRegion to be initialized.
 577 * @owner: the object that tracks the region's reference count
 578 * @ops: a structure containing read and write callbacks to be used when
 579 *       I/O is performed on the region.
 580 * @opaque: passed to the read and write callbacks of the @ops structure.
 581 * @name: used for debugging; not visible to the user or ABI
 582 * @size: size of the region.
 583 */
 584void memory_region_init_io(MemoryRegion *mr,
 585                           struct Object *owner,
 586                           const MemoryRegionOps *ops,
 587                           void *opaque,
 588                           const char *name,
 589                           uint64_t size);
 590
 591/**
 592 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
 593 *                                    into the region will modify memory
 594 *                                    directly.
 595 *
 596 * @mr: the #MemoryRegion to be initialized.
 597 * @owner: the object that tracks the region's reference count
 598 * @name: Region name, becomes part of RAMBlock name used in migration stream
 599 *        must be unique within any device
 600 * @size: size of the region.
 601 * @errp: pointer to Error*, to store an error if it happens.
 602 *
 603 * Note that this function does not do anything to cause the data in the
 604 * RAM memory region to be migrated; that is the responsibility of the caller.
 605 */
 606void memory_region_init_ram_nomigrate(MemoryRegion *mr,
 607                                      struct Object *owner,
 608                                      const char *name,
 609                                      uint64_t size,
 610                                      Error **errp);
 611
 612/**
 613 * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
 614 *                                           Accesses into the region will
 615 *                                           modify memory directly.
 616 *
 617 * @mr: the #MemoryRegion to be initialized.
 618 * @owner: the object that tracks the region's reference count
 619 * @name: Region name, becomes part of RAMBlock name used in migration stream
 620 *        must be unique within any device
 621 * @size: size of the region.
 622 * @share: allow remapping RAM to different addresses
 623 * @errp: pointer to Error*, to store an error if it happens.
 624 *
 625 * Note that this function is similar to memory_region_init_ram_nomigrate.
 626 * The only difference is part of the RAM region can be remapped.
 627 */
 628void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
 629                                             struct Object *owner,
 630                                             const char *name,
 631                                             uint64_t size,
 632                                             bool share,
 633                                             Error **errp);
 634
 635/**
 636 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 637 *                                     RAM.  Accesses into the region will
 638 *                                     modify memory directly.  Only an initial
 639 *                                     portion of this RAM is actually used.
 640 *                                     The used size can change across reboots.
 641 *
 642 * @mr: the #MemoryRegion to be initialized.
 643 * @owner: the object that tracks the region's reference count
 644 * @name: Region name, becomes part of RAMBlock name used in migration stream
 645 *        must be unique within any device
 646 * @size: used size of the region.
 647 * @max_size: max size of the region.
 648 * @resized: callback to notify owner about used size change.
 649 * @errp: pointer to Error*, to store an error if it happens.
 650 *
 651 * Note that this function does not do anything to cause the data in the
 652 * RAM memory region to be migrated; that is the responsibility of the caller.
 653 */
 654void memory_region_init_resizeable_ram(MemoryRegion *mr,
 655                                       struct Object *owner,
 656                                       const char *name,
 657                                       uint64_t size,
 658                                       uint64_t max_size,
 659                                       void (*resized)(const char*,
 660                                                       uint64_t length,
 661                                                       void *host),
 662                                       Error **errp);
 663#ifdef CONFIG_POSIX
 664
 665/**
 666 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 667 *                                    mmap-ed backend.
 668 *
 669 * @mr: the #MemoryRegion to be initialized.
 670 * @owner: the object that tracks the region's reference count
 671 * @name: Region name, becomes part of RAMBlock name used in migration stream
 672 *        must be unique within any device
 673 * @size: size of the region.
 674 * @align: alignment of the region base address; if 0, the default alignment
 675 *         (getpagesize()) will be used.
 676 * @ram_flags: Memory region features:
 677 *             - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
 678 *             - RAM_PMEM: the memory is persistent memory
 679 *             Other bits are ignored now.
 680 * @path: the path in which to allocate the RAM.
 681 * @errp: pointer to Error*, to store an error if it happens.
 682 *
 683 * Note that this function does not do anything to cause the data in the
 684 * RAM memory region to be migrated; that is the responsibility of the caller.
 685 */
 686void memory_region_init_ram_from_file(MemoryRegion *mr,
 687                                      struct Object *owner,
 688                                      const char *name,
 689                                      uint64_t size,
 690                                      uint64_t align,
 691                                      uint32_t ram_flags,
 692                                      const char *path,
 693                                      Error **errp);
 694
 695/**
 696 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
 697 *                                  mmap-ed backend.
 698 *
 699 * @mr: the #MemoryRegion to be initialized.
 700 * @owner: the object that tracks the region's reference count
 701 * @name: the name of the region.
 702 * @size: size of the region.
 703 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 704 * @fd: the fd to mmap.
 705 * @errp: pointer to Error*, to store an error if it happens.
 706 *
 707 * Note that this function does not do anything to cause the data in the
 708 * RAM memory region to be migrated; that is the responsibility of the caller.
 709 */
 710void memory_region_init_ram_from_fd(MemoryRegion *mr,
 711                                    struct Object *owner,
 712                                    const char *name,
 713                                    uint64_t size,
 714                                    bool share,
 715                                    int fd,
 716                                    Error **errp);
 717#endif
 718
 719/**
 720 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 721 *                              user-provided pointer.  Accesses into the
 722 *                              region will modify memory directly.
 723 *
 724 * @mr: the #MemoryRegion to be initialized.
 725 * @owner: the object that tracks the region's reference count
 726 * @name: Region name, becomes part of RAMBlock name used in migration stream
 727 *        must be unique within any device
 728 * @size: size of the region.
 729 * @ptr: memory to be mapped; must contain at least @size bytes.
 730 *
 731 * Note that this function does not do anything to cause the data in the
 732 * RAM memory region to be migrated; that is the responsibility of the caller.
 733 */
 734void memory_region_init_ram_ptr(MemoryRegion *mr,
 735                                struct Object *owner,
 736                                const char *name,
 737                                uint64_t size,
 738                                void *ptr);
 739
 740/**
 741 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
 742 *                                     a user-provided pointer.
 743 *
 744 * A RAM device represents a mapping to a physical device, such as to a PCI
 745 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
 746 * into the VM address space and access to the region will modify memory
 747 * directly.  However, the memory region should not be included in a memory
 748 * dump (device may not be enabled/mapped at the time of the dump), and
 749 * operations incompatible with manipulating MMIO should be avoided.  Replaces
 750 * skip_dump flag.
 751 *
 752 * @mr: the #MemoryRegion to be initialized.
 753 * @owner: the object that tracks the region's reference count
 754 * @name: the name of the region.
 755 * @size: size of the region.
 756 * @ptr: memory to be mapped; must contain at least @size bytes.
 757 *
 758 * Note that this function does not do anything to cause the data in the
 759 * RAM memory region to be migrated; that is the responsibility of the caller.
 760 * (For RAM device memory regions, migrating the contents rarely makes sense.)
 761 */
 762void memory_region_init_ram_device_ptr(MemoryRegion *mr,
 763                                       struct Object *owner,
 764                                       const char *name,
 765                                       uint64_t size,
 766                                       void *ptr);
 767
 768/**
 769 * memory_region_init_alias: Initialize a memory region that aliases all or a
 770 *                           part of another memory region.
 771 *
 772 * @mr: the #MemoryRegion to be initialized.
 773 * @owner: the object that tracks the region's reference count
 774 * @name: used for debugging; not visible to the user or ABI
 775 * @orig: the region to be referenced; @mr will be equivalent to
 776 *        @orig between @offset and @offset + @size - 1.
 777 * @offset: start of the section in @orig to be referenced.
 778 * @size: size of the region.
 779 */
 780void memory_region_init_alias(MemoryRegion *mr,
 781                              struct Object *owner,
 782                              const char *name,
 783                              MemoryRegion *orig,
 784                              hwaddr offset,
 785                              uint64_t size);
 786
 787/**
 788 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
 789 *
 790 * This has the same effect as calling memory_region_init_ram_nomigrate()
 791 * and then marking the resulting region read-only with
 792 * memory_region_set_readonly().
 793 *
 794 * Note that this function does not do anything to cause the data in the
 795 * RAM side of the memory region to be migrated; that is the responsibility
 796 * of the caller.
 797 *
 798 * @mr: the #MemoryRegion to be initialized.
 799 * @owner: the object that tracks the region's reference count
 800 * @name: Region name, becomes part of RAMBlock name used in migration stream
 801 *        must be unique within any device
 802 * @size: size of the region.
 803 * @errp: pointer to Error*, to store an error if it happens.
 804 */
 805void memory_region_init_rom_nomigrate(MemoryRegion *mr,
 806                                      struct Object *owner,
 807                                      const char *name,
 808                                      uint64_t size,
 809                                      Error **errp);
 810
 811/**
 812 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
 813 *                                 Writes are handled via callbacks.
 814 *
 815 * Note that this function does not do anything to cause the data in the
 816 * RAM side of the memory region to be migrated; that is the responsibility
 817 * of the caller.
 818 *
 819 * @mr: the #MemoryRegion to be initialized.
 820 * @owner: the object that tracks the region's reference count
 821 * @ops: callbacks for write access handling (must not be NULL).
 822 * @opaque: passed to the read and write callbacks of the @ops structure.
 823 * @name: Region name, becomes part of RAMBlock name used in migration stream
 824 *        must be unique within any device
 825 * @size: size of the region.
 826 * @errp: pointer to Error*, to store an error if it happens.
 827 */
 828void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
 829                                             struct Object *owner,
 830                                             const MemoryRegionOps *ops,
 831                                             void *opaque,
 832                                             const char *name,
 833                                             uint64_t size,
 834                                             Error **errp);
 835
 836/**
 837 * memory_region_init_iommu: Initialize a memory region of a custom type
 838 * that translates addresses
 839 *
 840 * An IOMMU region translates addresses and forwards accesses to a target
 841 * memory region.
 842 *
 843 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
 844 * @_iommu_mr should be a pointer to enough memory for an instance of
 845 * that subclass, @instance_size is the size of that subclass, and
 846 * @mrtypename is its name. This function will initialize @_iommu_mr as an
 847 * instance of the subclass, and its methods will then be called to handle
 848 * accesses to the memory region. See the documentation of
 849 * #IOMMUMemoryRegionClass for further details.
 850 *
 851 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
 852 * @instance_size: the IOMMUMemoryRegion subclass instance size
 853 * @mrtypename: the type name of the #IOMMUMemoryRegion
 854 * @owner: the object that tracks the region's reference count
 855 * @name: used for debugging; not visible to the user or ABI
 856 * @size: size of the region.
 857 */
 858void memory_region_init_iommu(void *_iommu_mr,
 859                              size_t instance_size,
 860                              const char *mrtypename,
 861                              Object *owner,
 862                              const char *name,
 863                              uint64_t size);
 864
 865/**
 866 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
 867 *                          region will modify memory directly.
 868 *
 869 * @mr: the #MemoryRegion to be initialized
 870 * @owner: the object that tracks the region's reference count (must be
 871 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
 872 * @name: name of the memory region
 873 * @size: size of the region in bytes
 874 * @errp: pointer to Error*, to store an error if it happens.
 875 *
 876 * This function allocates RAM for a board model or device, and
 877 * arranges for it to be migrated (by calling vmstate_register_ram()
 878 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 879 * @owner is NULL).
 880 *
 881 * TODO: Currently we restrict @owner to being either NULL (for
 882 * global RAM regions with no owner) or devices, so that we can
 883 * give the RAM block a unique name for migration purposes.
 884 * We should lift this restriction and allow arbitrary Objects.
 885 * If you pass a non-NULL non-device @owner then we will assert.
 886 */
 887void memory_region_init_ram(MemoryRegion *mr,
 888                            struct Object *owner,
 889                            const char *name,
 890                            uint64_t size,
 891                            Error **errp);
 892
 893/**
 894 * memory_region_init_rom: Initialize a ROM memory region.
 895 *
 896 * This has the same effect as calling memory_region_init_ram()
 897 * and then marking the resulting region read-only with
 898 * memory_region_set_readonly(). This includes arranging for the
 899 * contents to be migrated.
 900 *
 901 * TODO: Currently we restrict @owner to being either NULL (for
 902 * global RAM regions with no owner) or devices, so that we can
 903 * give the RAM block a unique name for migration purposes.
 904 * We should lift this restriction and allow arbitrary Objects.
 905 * If you pass a non-NULL non-device @owner then we will assert.
 906 *
 907 * @mr: the #MemoryRegion to be initialized.
 908 * @owner: the object that tracks the region's reference count
 909 * @name: Region name, becomes part of RAMBlock name used in migration stream
 910 *        must be unique within any device
 911 * @size: size of the region.
 912 * @errp: pointer to Error*, to store an error if it happens.
 913 */
 914void memory_region_init_rom(MemoryRegion *mr,
 915                            struct Object *owner,
 916                            const char *name,
 917                            uint64_t size,
 918                            Error **errp);
 919
 920/**
 921 * memory_region_init_rom_device:  Initialize a ROM memory region.
 922 *                                 Writes are handled via callbacks.
 923 *
 924 * This function initializes a memory region backed by RAM for reads
 925 * and callbacks for writes, and arranges for the RAM backing to
 926 * be migrated (by calling vmstate_register_ram()
 927 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 928 * @owner is NULL).
 929 *
 930 * TODO: Currently we restrict @owner to being either NULL (for
 931 * global RAM regions with no owner) or devices, so that we can
 932 * give the RAM block a unique name for migration purposes.
 933 * We should lift this restriction and allow arbitrary Objects.
 934 * If you pass a non-NULL non-device @owner then we will assert.
 935 *
 936 * @mr: the #MemoryRegion to be initialized.
 937 * @owner: the object that tracks the region's reference count
 938 * @ops: callbacks for write access handling (must not be NULL).
 939 * @name: Region name, becomes part of RAMBlock name used in migration stream
 940 *        must be unique within any device
 941 * @size: size of the region.
 942 * @errp: pointer to Error*, to store an error if it happens.
 943 */
 944void memory_region_init_rom_device(MemoryRegion *mr,
 945                                   struct Object *owner,
 946                                   const MemoryRegionOps *ops,
 947                                   void *opaque,
 948                                   const char *name,
 949                                   uint64_t size,
 950                                   Error **errp);
 951
 952
 953/**
 954 * memory_region_owner: get a memory region's owner.
 955 *
 956 * @mr: the memory region being queried.
 957 */
 958struct Object *memory_region_owner(MemoryRegion *mr);
 959
 960/**
 961 * memory_region_size: get a memory region's size.
 962 *
 963 * @mr: the memory region being queried.
 964 */
 965uint64_t memory_region_size(MemoryRegion *mr);
 966
 967/**
 968 * memory_region_is_ram: check whether a memory region is random access
 969 *
 970 * Returns %true if a memory region is random access.
 971 *
 972 * @mr: the memory region being queried
 973 */
 974static inline bool memory_region_is_ram(MemoryRegion *mr)
 975{
 976    return mr->ram;
 977}
 978
 979/**
 980 * memory_region_is_ram_device: check whether a memory region is a ram device
 981 *
 982 * Returns %true if a memory region is a device backed ram region
 983 *
 984 * @mr: the memory region being queried
 985 */
 986bool memory_region_is_ram_device(MemoryRegion *mr);
 987
 988/**
 989 * memory_region_is_romd: check whether a memory region is in ROMD mode
 990 *
 991 * Returns %true if a memory region is a ROM device and currently set to allow
 992 * direct reads.
 993 *
 994 * @mr: the memory region being queried
 995 */
 996static inline bool memory_region_is_romd(MemoryRegion *mr)
 997{
 998    return mr->rom_device && mr->romd_mode;
 999}
1000
1001/**
1002 * memory_region_get_iommu: check whether a memory region is an iommu
1003 *
1004 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1005 * otherwise NULL.
1006 *
1007 * @mr: the memory region being queried
1008 */
1009static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1010{
1011    if (mr->alias) {
1012        return memory_region_get_iommu(mr->alias);
1013    }
1014    if (mr->is_iommu) {
1015        return (IOMMUMemoryRegion *) mr;
1016    }
1017    return NULL;
1018}
1019
1020/**
1021 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1022 *   if an iommu or NULL if not
1023 *
1024 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1025 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1026 *
1027 * @mr: the memory region being queried
1028 */
1029static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1030        IOMMUMemoryRegion *iommu_mr)
1031{
1032    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1033}
1034
1035#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1036
1037/**
1038 * memory_region_iommu_get_min_page_size: get minimum supported page size
1039 * for an iommu
1040 *
1041 * Returns minimum supported page size for an iommu.
1042 *
1043 * @iommu_mr: the memory region being queried
1044 */
1045uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1046
1047/**
1048 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1049 *
1050 * The notification type will be decided by entry.perm bits:
1051 *
1052 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1053 * - For MAP (newly added entry) notifies: set entry.perm to the
1054 *   permission of the page (which is definitely !IOMMU_NONE).
1055 *
1056 * Note: for any IOMMU implementation, an in-place mapping change
1057 * should be notified with an UNMAP followed by a MAP.
1058 *
1059 * @iommu_mr: the memory region that was changed
1060 * @iommu_idx: the IOMMU index for the translation table which has changed
1061 * @entry: the new entry in the IOMMU translation table.  The entry
1062 *         replaces all old entries for the same virtual I/O address range.
1063 *         Deleted entries have .@perm == 0.
1064 */
1065void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1066                                int iommu_idx,
1067                                IOMMUTLBEntry entry);
1068
1069/**
1070 * memory_region_notify_one: notify a change in an IOMMU translation
1071 *                           entry to a single notifier
1072 *
1073 * This works just like memory_region_notify_iommu(), but it only
1074 * notifies a specific notifier, not all of them.
1075 *
1076 * @notifier: the notifier to be notified
1077 * @entry: the new entry in the IOMMU translation table.  The entry
1078 *         replaces all old entries for the same virtual I/O address range.
1079 *         Deleted entries have .@perm == 0.
1080 */
1081void memory_region_notify_one(IOMMUNotifier *notifier,
1082                              IOMMUTLBEntry *entry);
1083
1084/**
1085 * memory_region_register_iommu_notifier: register a notifier for changes to
1086 * IOMMU translation entries.
1087 *
1088 * Returns 0 on success, or a negative errno otherwise. In particular,
1089 * -EINVAL indicates that at least one of the attributes of the notifier
1090 * is not supported (flag/range) by the IOMMU memory region. In case of error
1091 * the error object must be created.
1092 *
1093 * @mr: the memory region to observe
1094 * @n: the IOMMUNotifier to be added; the notify callback receives a
1095 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1096 *     ceases to be valid on exit from the notifier.
1097 */
1098int memory_region_register_iommu_notifier(MemoryRegion *mr,
1099                                          IOMMUNotifier *n, Error **errp);
1100
1101/**
1102 * memory_region_iommu_replay: replay existing IOMMU translations to
1103 * a notifier with the minimum page granularity returned by
1104 * mr->iommu_ops->get_page_size().
1105 *
1106 * Note: this is not related to record-and-replay functionality.
1107 *
1108 * @iommu_mr: the memory region to observe
1109 * @n: the notifier to which to replay iommu mappings
1110 */
1111void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1112
1113/**
1114 * memory_region_unregister_iommu_notifier: unregister a notifier for
1115 * changes to IOMMU translation entries.
1116 *
1117 * @mr: the memory region which was observed and for which notity_stopped()
1118 *      needs to be called
1119 * @n: the notifier to be removed.
1120 */
1121void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1122                                             IOMMUNotifier *n);
1123
1124/**
1125 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1126 * defined on the IOMMU.
1127 *
1128 * Returns 0 on success, or a negative errno otherwise. In particular,
1129 * -EINVAL indicates that the IOMMU does not support the requested
1130 * attribute.
1131 *
1132 * @iommu_mr: the memory region
1133 * @attr: the requested attribute
1134 * @data: a pointer to the requested attribute data
1135 */
1136int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1137                                 enum IOMMUMemoryRegionAttr attr,
1138                                 void *data);
1139
1140/**
1141 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1142 * use for translations with the given memory transaction attributes.
1143 *
1144 * @iommu_mr: the memory region
1145 * @attrs: the memory transaction attributes
1146 */
1147int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1148                                       MemTxAttrs attrs);
1149
1150/**
1151 * memory_region_iommu_num_indexes: return the total number of IOMMU
1152 * indexes that this IOMMU supports.
1153 *
1154 * @iommu_mr: the memory region
1155 */
1156int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1157
1158/**
1159 * memory_region_name: get a memory region's name
1160 *
1161 * Returns the string that was used to initialize the memory region.
1162 *
1163 * @mr: the memory region being queried
1164 */
1165const char *memory_region_name(const MemoryRegion *mr);
1166
1167/**
1168 * memory_region_is_logging: return whether a memory region is logging writes
1169 *
1170 * Returns %true if the memory region is logging writes for the given client
1171 *
1172 * @mr: the memory region being queried
1173 * @client: the client being queried
1174 */
1175bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1176
1177/**
1178 * memory_region_get_dirty_log_mask: return the clients for which a
1179 * memory region is logging writes.
1180 *
1181 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1182 * are the bit indices.
1183 *
1184 * @mr: the memory region being queried
1185 */
1186uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1187
1188/**
1189 * memory_region_is_rom: check whether a memory region is ROM
1190 *
1191 * Returns %true if a memory region is read-only memory.
1192 *
1193 * @mr: the memory region being queried
1194 */
1195static inline bool memory_region_is_rom(MemoryRegion *mr)
1196{
1197    return mr->ram && mr->readonly;
1198}
1199
1200/**
1201 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1202 *
1203 * Returns %true is a memory region is non-volatile memory.
1204 *
1205 * @mr: the memory region being queried
1206 */
1207static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1208{
1209    return mr->nonvolatile;
1210}
1211
1212/**
1213 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1214 *
1215 * Returns a file descriptor backing a file-based RAM memory region,
1216 * or -1 if the region is not a file-based RAM memory region.
1217 *
1218 * @mr: the RAM or alias memory region being queried.
1219 */
1220int memory_region_get_fd(MemoryRegion *mr);
1221
1222/**
1223 * memory_region_from_host: Convert a pointer into a RAM memory region
1224 * and an offset within it.
1225 *
1226 * Given a host pointer inside a RAM memory region (created with
1227 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1228 * the MemoryRegion and the offset within it.
1229 *
1230 * Use with care; by the time this function returns, the returned pointer is
1231 * not protected by RCU anymore.  If the caller is not within an RCU critical
1232 * section and does not hold the iothread lock, it must have other means of
1233 * protecting the pointer, such as a reference to the region that includes
1234 * the incoming ram_addr_t.
1235 *
1236 * @ptr: the host pointer to be converted
1237 * @offset: the offset within memory region
1238 */
1239MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1240
1241/**
1242 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1243 *
1244 * Returns a host pointer to a RAM memory region (created with
1245 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1246 *
1247 * Use with care; by the time this function returns, the returned pointer is
1248 * not protected by RCU anymore.  If the caller is not within an RCU critical
1249 * section and does not hold the iothread lock, it must have other means of
1250 * protecting the pointer, such as a reference to the region that includes
1251 * the incoming ram_addr_t.
1252 *
1253 * @mr: the memory region being queried.
1254 */
1255void *memory_region_get_ram_ptr(MemoryRegion *mr);
1256
1257/* memory_region_ram_resize: Resize a RAM region.
1258 *
1259 * Only legal before guest might have detected the memory size: e.g. on
1260 * incoming migration, or right after reset.
1261 *
1262 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1263 * @newsize: the new size the region
1264 * @errp: pointer to Error*, to store an error if it happens.
1265 */
1266void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1267                              Error **errp);
1268
1269/**
1270 * memory_region_set_log: Turn dirty logging on or off for a region.
1271 *
1272 * Turns dirty logging on or off for a specified client (display, migration).
1273 * Only meaningful for RAM regions.
1274 *
1275 * @mr: the memory region being updated.
1276 * @log: whether dirty logging is to be enabled or disabled.
1277 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1278 */
1279void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1280
1281/**
1282 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1283 *
1284 * Marks a range of bytes as dirty, after it has been dirtied outside
1285 * guest code.
1286 *
1287 * @mr: the memory region being dirtied.
1288 * @addr: the address (relative to the start of the region) being dirtied.
1289 * @size: size of the range being dirtied.
1290 */
1291void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1292                             hwaddr size);
1293
1294/**
1295 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1296 *
1297 * This function is called when the caller wants to clear the remote
1298 * dirty bitmap of a memory range within the memory region.  This can
1299 * be used by e.g. KVM to manually clear dirty log when
1300 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1301 * kernel.
1302 *
1303 * @mr:     the memory region to clear the dirty log upon
1304 * @start:  start address offset within the memory region
1305 * @len:    length of the memory region to clear dirty bitmap
1306 */
1307void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1308                                      hwaddr len);
1309
1310/**
1311 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1312 *                                         bitmap and clear it.
1313 *
1314 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1315 * returns the snapshot.  The snapshot can then be used to query dirty
1316 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1317 * querying the same page multiple times, which is especially useful for
1318 * display updates where the scanlines often are not page aligned.
1319 *
1320 * The dirty bitmap region which gets copyed into the snapshot (and
1321 * cleared afterwards) can be larger than requested.  The boundaries
1322 * are rounded up/down so complete bitmap longs (covering 64 pages on
1323 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1324 * isn't a problem for display updates as the extra pages are outside
1325 * the visible area, and in case the visible area changes a full
1326 * display redraw is due anyway.  Should other use cases for this
1327 * function emerge we might have to revisit this implementation
1328 * detail.
1329 *
1330 * Use g_free to release DirtyBitmapSnapshot.
1331 *
1332 * @mr: the memory region being queried.
1333 * @addr: the address (relative to the start of the region) being queried.
1334 * @size: the size of the range being queried.
1335 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1336 */
1337DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1338                                                            hwaddr addr,
1339                                                            hwaddr size,
1340                                                            unsigned client);
1341
1342/**
1343 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1344 *                                   in the specified dirty bitmap snapshot.
1345 *
1346 * @mr: the memory region being queried.
1347 * @snap: the dirty bitmap snapshot
1348 * @addr: the address (relative to the start of the region) being queried.
1349 * @size: the size of the range being queried.
1350 */
1351bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1352                                      DirtyBitmapSnapshot *snap,
1353                                      hwaddr addr, hwaddr size);
1354
1355/**
1356 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1357 *                            client.
1358 *
1359 * Marks a range of pages as no longer dirty.
1360 *
1361 * @mr: the region being updated.
1362 * @addr: the start of the subrange being cleaned.
1363 * @size: the size of the subrange being cleaned.
1364 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1365 *          %DIRTY_MEMORY_VGA.
1366 */
1367void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1368                               hwaddr size, unsigned client);
1369
1370/**
1371 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1372 *                                 TBs (for self-modifying code).
1373 *
1374 * The MemoryRegionOps->write() callback of a ROM device must use this function
1375 * to mark byte ranges that have been modified internally, such as by directly
1376 * accessing the memory returned by memory_region_get_ram_ptr().
1377 *
1378 * This function marks the range dirty and invalidates TBs so that TCG can
1379 * detect self-modifying code.
1380 *
1381 * @mr: the region being flushed.
1382 * @addr: the start, relative to the start of the region, of the range being
1383 *        flushed.
1384 * @size: the size, in bytes, of the range being flushed.
1385 */
1386void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1387
1388/**
1389 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1390 *
1391 * Allows a memory region to be marked as read-only (turning it into a ROM).
1392 * only useful on RAM regions.
1393 *
1394 * @mr: the region being updated.
1395 * @readonly: whether rhe region is to be ROM or RAM.
1396 */
1397void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1398
1399/**
1400 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1401 *
1402 * Allows a memory region to be marked as non-volatile.
1403 * only useful on RAM regions.
1404 *
1405 * @mr: the region being updated.
1406 * @nonvolatile: whether rhe region is to be non-volatile.
1407 */
1408void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1409
1410/**
1411 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1412 *
1413 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1414 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1415 * device is mapped to guest memory and satisfies read access directly.
1416 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1417 * Writes are always handled by the #MemoryRegion.write function.
1418 *
1419 * @mr: the memory region to be updated
1420 * @romd_mode: %true to put the region into ROMD mode
1421 */
1422void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1423
1424/**
1425 * memory_region_set_coalescing: Enable memory coalescing for the region.
1426 *
1427 * Enabled writes to a region to be queued for later processing. MMIO ->write
1428 * callbacks may be delayed until a non-coalesced MMIO is issued.
1429 * Only useful for IO regions.  Roughly similar to write-combining hardware.
1430 *
1431 * @mr: the memory region to be write coalesced
1432 */
1433void memory_region_set_coalescing(MemoryRegion *mr);
1434
1435/**
1436 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1437 *                               a region.
1438 *
1439 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1440 * Multiple calls can be issued coalesced disjoint ranges.
1441 *
1442 * @mr: the memory region to be updated.
1443 * @offset: the start of the range within the region to be coalesced.
1444 * @size: the size of the subrange to be coalesced.
1445 */
1446void memory_region_add_coalescing(MemoryRegion *mr,
1447                                  hwaddr offset,
1448                                  uint64_t size);
1449
1450/**
1451 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1452 *
1453 * Disables any coalescing caused by memory_region_set_coalescing() or
1454 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1455 * hardware.
1456 *
1457 * @mr: the memory region to be updated.
1458 */
1459void memory_region_clear_coalescing(MemoryRegion *mr);
1460
1461/**
1462 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1463 *                                    accesses.
1464 *
1465 * Ensure that pending coalesced MMIO request are flushed before the memory
1466 * region is accessed. This property is automatically enabled for all regions
1467 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1468 *
1469 * @mr: the memory region to be updated.
1470 */
1471void memory_region_set_flush_coalesced(MemoryRegion *mr);
1472
1473/**
1474 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1475 *                                      accesses.
1476 *
1477 * Clear the automatic coalesced MMIO flushing enabled via
1478 * memory_region_set_flush_coalesced. Note that this service has no effect on
1479 * memory regions that have MMIO coalescing enabled for themselves. For them,
1480 * automatic flushing will stop once coalescing is disabled.
1481 *
1482 * @mr: the memory region to be updated.
1483 */
1484void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1485
1486/**
1487 * memory_region_clear_global_locking: Declares that access processing does
1488 *                                     not depend on the QEMU global lock.
1489 *
1490 * By clearing this property, accesses to the memory region will be processed
1491 * outside of QEMU's global lock (unless the lock is held on when issuing the
1492 * access request). In this case, the device model implementing the access
1493 * handlers is responsible for synchronization of concurrency.
1494 *
1495 * @mr: the memory region to be updated.
1496 */
1497void memory_region_clear_global_locking(MemoryRegion *mr);
1498
1499/**
1500 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1501 *                            is written to a location.
1502 *
1503 * Marks a word in an IO region (initialized with memory_region_init_io())
1504 * as a trigger for an eventfd event.  The I/O callback will not be called.
1505 * The caller must be prepared to handle failure (that is, take the required
1506 * action if the callback _is_ called).
1507 *
1508 * @mr: the memory region being updated.
1509 * @addr: the address within @mr that is to be monitored
1510 * @size: the size of the access to trigger the eventfd
1511 * @match_data: whether to match against @data, instead of just @addr
1512 * @data: the data to match against the guest write
1513 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1514 **/
1515void memory_region_add_eventfd(MemoryRegion *mr,
1516                               hwaddr addr,
1517                               unsigned size,
1518                               bool match_data,
1519                               uint64_t data,
1520                               EventNotifier *e);
1521
1522/**
1523 * memory_region_del_eventfd: Cancel an eventfd.
1524 *
1525 * Cancels an eventfd trigger requested by a previous
1526 * memory_region_add_eventfd() call.
1527 *
1528 * @mr: the memory region being updated.
1529 * @addr: the address within @mr that is to be monitored
1530 * @size: the size of the access to trigger the eventfd
1531 * @match_data: whether to match against @data, instead of just @addr
1532 * @data: the data to match against the guest write
1533 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1534 */
1535void memory_region_del_eventfd(MemoryRegion *mr,
1536                               hwaddr addr,
1537                               unsigned size,
1538                               bool match_data,
1539                               uint64_t data,
1540                               EventNotifier *e);
1541
1542/**
1543 * memory_region_add_subregion: Add a subregion to a container.
1544 *
1545 * Adds a subregion at @offset.  The subregion may not overlap with other
1546 * subregions (except for those explicitly marked as overlapping).  A region
1547 * may only be added once as a subregion (unless removed with
1548 * memory_region_del_subregion()); use memory_region_init_alias() if you
1549 * want a region to be a subregion in multiple locations.
1550 *
1551 * @mr: the region to contain the new subregion; must be a container
1552 *      initialized with memory_region_init().
1553 * @offset: the offset relative to @mr where @subregion is added.
1554 * @subregion: the subregion to be added.
1555 */
1556void memory_region_add_subregion(MemoryRegion *mr,
1557                                 hwaddr offset,
1558                                 MemoryRegion *subregion);
1559/**
1560 * memory_region_add_subregion_overlap: Add a subregion to a container
1561 *                                      with overlap.
1562 *
1563 * Adds a subregion at @offset.  The subregion may overlap with other
1564 * subregions.  Conflicts are resolved by having a higher @priority hide a
1565 * lower @priority. Subregions without priority are taken as @priority 0.
1566 * A region may only be added once as a subregion (unless removed with
1567 * memory_region_del_subregion()); use memory_region_init_alias() if you
1568 * want a region to be a subregion in multiple locations.
1569 *
1570 * @mr: the region to contain the new subregion; must be a container
1571 *      initialized with memory_region_init().
1572 * @offset: the offset relative to @mr where @subregion is added.
1573 * @subregion: the subregion to be added.
1574 * @priority: used for resolving overlaps; highest priority wins.
1575 */
1576void memory_region_add_subregion_overlap(MemoryRegion *mr,
1577                                         hwaddr offset,
1578                                         MemoryRegion *subregion,
1579                                         int priority);
1580
1581/**
1582 * memory_region_get_ram_addr: Get the ram address associated with a memory
1583 *                             region
1584 */
1585ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1586
1587uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1588/**
1589 * memory_region_del_subregion: Remove a subregion.
1590 *
1591 * Removes a subregion from its container.
1592 *
1593 * @mr: the container to be updated.
1594 * @subregion: the region being removed; must be a current subregion of @mr.
1595 */
1596void memory_region_del_subregion(MemoryRegion *mr,
1597                                 MemoryRegion *subregion);
1598
1599/*
1600 * memory_region_set_enabled: dynamically enable or disable a region
1601 *
1602 * Enables or disables a memory region.  A disabled memory region
1603 * ignores all accesses to itself and its subregions.  It does not
1604 * obscure sibling subregions with lower priority - it simply behaves as
1605 * if it was removed from the hierarchy.
1606 *
1607 * Regions default to being enabled.
1608 *
1609 * @mr: the region to be updated
1610 * @enabled: whether to enable or disable the region
1611 */
1612void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1613
1614/*
1615 * memory_region_set_address: dynamically update the address of a region
1616 *
1617 * Dynamically updates the address of a region, relative to its container.
1618 * May be used on regions are currently part of a memory hierarchy.
1619 *
1620 * @mr: the region to be updated
1621 * @addr: new address, relative to container region
1622 */
1623void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1624
1625/*
1626 * memory_region_set_size: dynamically update the size of a region.
1627 *
1628 * Dynamically updates the size of a region.
1629 *
1630 * @mr: the region to be updated
1631 * @size: used size of the region.
1632 */
1633void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1634
1635/*
1636 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1637 *
1638 * Dynamically updates the offset into the target region that an alias points
1639 * to, as if the fourth argument to memory_region_init_alias() has changed.
1640 *
1641 * @mr: the #MemoryRegion to be updated; should be an alias.
1642 * @offset: the new offset into the target memory region
1643 */
1644void memory_region_set_alias_offset(MemoryRegion *mr,
1645                                    hwaddr offset);
1646
1647/**
1648 * memory_region_present: checks if an address relative to a @container
1649 * translates into #MemoryRegion within @container
1650 *
1651 * Answer whether a #MemoryRegion within @container covers the address
1652 * @addr.
1653 *
1654 * @container: a #MemoryRegion within which @addr is a relative address
1655 * @addr: the area within @container to be searched
1656 */
1657bool memory_region_present(MemoryRegion *container, hwaddr addr);
1658
1659/**
1660 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1661 * into any address space.
1662 *
1663 * @mr: a #MemoryRegion which should be checked if it's mapped
1664 */
1665bool memory_region_is_mapped(MemoryRegion *mr);
1666
1667/**
1668 * memory_region_find: translate an address/size relative to a
1669 * MemoryRegion into a #MemoryRegionSection.
1670 *
1671 * Locates the first #MemoryRegion within @mr that overlaps the range
1672 * given by @addr and @size.
1673 *
1674 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1675 * It will have the following characteristics:
1676 *    .@size = 0 iff no overlap was found
1677 *    .@mr is non-%NULL iff an overlap was found
1678 *
1679 * Remember that in the return value the @offset_within_region is
1680 * relative to the returned region (in the .@mr field), not to the
1681 * @mr argument.
1682 *
1683 * Similarly, the .@offset_within_address_space is relative to the
1684 * address space that contains both regions, the passed and the
1685 * returned one.  However, in the special case where the @mr argument
1686 * has no container (and thus is the root of the address space), the
1687 * following will hold:
1688 *    .@offset_within_address_space >= @addr
1689 *    .@offset_within_address_space + .@size <= @addr + @size
1690 *
1691 * @mr: a MemoryRegion within which @addr is a relative address
1692 * @addr: start of the area within @as to be searched
1693 * @size: size of the area to be searched
1694 */
1695MemoryRegionSection memory_region_find(MemoryRegion *mr,
1696                                       hwaddr addr, uint64_t size);
1697
1698/**
1699 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1700 *
1701 * Synchronizes the dirty page log for all address spaces.
1702 */
1703void memory_global_dirty_log_sync(void);
1704
1705/**
1706 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1707 *
1708 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
1709 * This function must be called after the dirty log bitmap is cleared, and
1710 * before dirty guest memory pages are read.  If you are using
1711 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
1712 * care of doing this.
1713 */
1714void memory_global_after_dirty_log_sync(void);
1715
1716/**
1717 * memory_region_transaction_begin: Start a transaction.
1718 *
1719 * During a transaction, changes will be accumulated and made visible
1720 * only when the transaction ends (is committed).
1721 */
1722void memory_region_transaction_begin(void);
1723
1724/**
1725 * memory_region_transaction_commit: Commit a transaction and make changes
1726 *                                   visible to the guest.
1727 */
1728void memory_region_transaction_commit(void);
1729
1730/**
1731 * memory_listener_register: register callbacks to be called when memory
1732 *                           sections are mapped or unmapped into an address
1733 *                           space
1734 *
1735 * @listener: an object containing the callbacks to be called
1736 * @filter: if non-%NULL, only regions in this address space will be observed
1737 */
1738void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1739
1740/**
1741 * memory_listener_unregister: undo the effect of memory_listener_register()
1742 *
1743 * @listener: an object containing the callbacks to be removed
1744 */
1745void memory_listener_unregister(MemoryListener *listener);
1746
1747/**
1748 * memory_global_dirty_log_start: begin dirty logging for all regions
1749 */
1750void memory_global_dirty_log_start(void);
1751
1752/**
1753 * memory_global_dirty_log_stop: end dirty logging for all regions
1754 */
1755void memory_global_dirty_log_stop(void);
1756
1757void mtree_info(bool flatview, bool dispatch_tree, bool owner);
1758
1759/**
1760 * memory_region_dispatch_read: perform a read directly to the specified
1761 * MemoryRegion.
1762 *
1763 * @mr: #MemoryRegion to access
1764 * @addr: address within that region
1765 * @pval: pointer to uint64_t which the data is written to
1766 * @op: size, sign, and endianness of the memory operation
1767 * @attrs: memory transaction attributes to use for the access
1768 */
1769MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1770                                        hwaddr addr,
1771                                        uint64_t *pval,
1772                                        MemOp op,
1773                                        MemTxAttrs attrs);
1774/**
1775 * memory_region_dispatch_write: perform a write directly to the specified
1776 * MemoryRegion.
1777 *
1778 * @mr: #MemoryRegion to access
1779 * @addr: address within that region
1780 * @data: data to write
1781 * @op: size, sign, and endianness of the memory operation
1782 * @attrs: memory transaction attributes to use for the access
1783 */
1784MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1785                                         hwaddr addr,
1786                                         uint64_t data,
1787                                         MemOp op,
1788                                         MemTxAttrs attrs);
1789
1790/**
1791 * address_space_init: initializes an address space
1792 *
1793 * @as: an uninitialized #AddressSpace
1794 * @root: a #MemoryRegion that routes addresses for the address space
1795 * @name: an address space name.  The name is only used for debugging
1796 *        output.
1797 */
1798void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1799
1800/**
1801 * address_space_destroy: destroy an address space
1802 *
1803 * Releases all resources associated with an address space.  After an address space
1804 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1805 * as well.
1806 *
1807 * @as: address space to be destroyed
1808 */
1809void address_space_destroy(AddressSpace *as);
1810
1811/**
1812 * address_space_remove_listeners: unregister all listeners of an address space
1813 *
1814 * Removes all callbacks previously registered with memory_listener_register()
1815 * for @as.
1816 *
1817 * @as: an initialized #AddressSpace
1818 */
1819void address_space_remove_listeners(AddressSpace *as);
1820
1821/**
1822 * address_space_rw: read from or write to an address space.
1823 *
1824 * Return a MemTxResult indicating whether the operation succeeded
1825 * or failed (eg unassigned memory, device rejected the transaction,
1826 * IOMMU fault).
1827 *
1828 * @as: #AddressSpace to be accessed
1829 * @addr: address within that address space
1830 * @attrs: memory transaction attributes
1831 * @buf: buffer with the data transferred
1832 * @len: the number of bytes to read or write
1833 * @is_write: indicates the transfer direction
1834 */
1835MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1836                             MemTxAttrs attrs, uint8_t *buf,
1837                             hwaddr len, bool is_write);
1838
1839/**
1840 * address_space_write: write to address space.
1841 *
1842 * Return a MemTxResult indicating whether the operation succeeded
1843 * or failed (eg unassigned memory, device rejected the transaction,
1844 * IOMMU fault).
1845 *
1846 * @as: #AddressSpace to be accessed
1847 * @addr: address within that address space
1848 * @attrs: memory transaction attributes
1849 * @buf: buffer with the data transferred
1850 * @len: the number of bytes to write
1851 */
1852MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1853                                MemTxAttrs attrs,
1854                                const uint8_t *buf, hwaddr len);
1855
1856/**
1857 * address_space_write_rom: write to address space, including ROM.
1858 *
1859 * This function writes to the specified address space, but will
1860 * write data to both ROM and RAM. This is used for non-guest
1861 * writes like writes from the gdb debug stub or initial loading
1862 * of ROM contents.
1863 *
1864 * Note that portions of the write which attempt to write data to
1865 * a device will be silently ignored -- only real RAM and ROM will
1866 * be written to.
1867 *
1868 * Return a MemTxResult indicating whether the operation succeeded
1869 * or failed (eg unassigned memory, device rejected the transaction,
1870 * IOMMU fault).
1871 *
1872 * @as: #AddressSpace to be accessed
1873 * @addr: address within that address space
1874 * @attrs: memory transaction attributes
1875 * @buf: buffer with the data transferred
1876 * @len: the number of bytes to write
1877 */
1878MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
1879                                    MemTxAttrs attrs,
1880                                    const uint8_t *buf, hwaddr len);
1881
1882/* address_space_ld*: load from an address space
1883 * address_space_st*: store to an address space
1884 *
1885 * These functions perform a load or store of the byte, word,
1886 * longword or quad to the specified address within the AddressSpace.
1887 * The _le suffixed functions treat the data as little endian;
1888 * _be indicates big endian; no suffix indicates "same endianness
1889 * as guest CPU".
1890 *
1891 * The "guest CPU endianness" accessors are deprecated for use outside
1892 * target-* code; devices should be CPU-agnostic and use either the LE
1893 * or the BE accessors.
1894 *
1895 * @as #AddressSpace to be accessed
1896 * @addr: address within that address space
1897 * @val: data value, for stores
1898 * @attrs: memory transaction attributes
1899 * @result: location to write the success/failure of the transaction;
1900 *   if NULL, this information is discarded
1901 */
1902
1903#define SUFFIX
1904#define ARG1         as
1905#define ARG1_DECL    AddressSpace *as
1906#include "exec/memory_ldst.inc.h"
1907
1908#define SUFFIX
1909#define ARG1         as
1910#define ARG1_DECL    AddressSpace *as
1911#include "exec/memory_ldst_phys.inc.h"
1912
1913struct MemoryRegionCache {
1914    void *ptr;
1915    hwaddr xlat;
1916    hwaddr len;
1917    FlatView *fv;
1918    MemoryRegionSection mrs;
1919    bool is_write;
1920};
1921
1922#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1923
1924
1925/* address_space_ld*_cached: load from a cached #MemoryRegion
1926 * address_space_st*_cached: store into a cached #MemoryRegion
1927 *
1928 * These functions perform a load or store of the byte, word,
1929 * longword or quad to the specified address.  The address is
1930 * a physical address in the AddressSpace, but it must lie within
1931 * a #MemoryRegion that was mapped with address_space_cache_init.
1932 *
1933 * The _le suffixed functions treat the data as little endian;
1934 * _be indicates big endian; no suffix indicates "same endianness
1935 * as guest CPU".
1936 *
1937 * The "guest CPU endianness" accessors are deprecated for use outside
1938 * target-* code; devices should be CPU-agnostic and use either the LE
1939 * or the BE accessors.
1940 *
1941 * @cache: previously initialized #MemoryRegionCache to be accessed
1942 * @addr: address within the address space
1943 * @val: data value, for stores
1944 * @attrs: memory transaction attributes
1945 * @result: location to write the success/failure of the transaction;
1946 *   if NULL, this information is discarded
1947 */
1948
1949#define SUFFIX       _cached_slow
1950#define ARG1         cache
1951#define ARG1_DECL    MemoryRegionCache *cache
1952#include "exec/memory_ldst.inc.h"
1953
1954/* Inline fast path for direct RAM access.  */
1955static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1956    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1957{
1958    assert(addr < cache->len);
1959    if (likely(cache->ptr)) {
1960        return ldub_p(cache->ptr + addr);
1961    } else {
1962        return address_space_ldub_cached_slow(cache, addr, attrs, result);
1963    }
1964}
1965
1966static inline void address_space_stb_cached(MemoryRegionCache *cache,
1967    hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1968{
1969    assert(addr < cache->len);
1970    if (likely(cache->ptr)) {
1971        stb_p(cache->ptr + addr, val);
1972    } else {
1973        address_space_stb_cached_slow(cache, addr, val, attrs, result);
1974    }
1975}
1976
1977#define ENDIANNESS   _le
1978#include "exec/memory_ldst_cached.inc.h"
1979
1980#define ENDIANNESS   _be
1981#include "exec/memory_ldst_cached.inc.h"
1982
1983#define SUFFIX       _cached
1984#define ARG1         cache
1985#define ARG1_DECL    MemoryRegionCache *cache
1986#include "exec/memory_ldst_phys.inc.h"
1987
1988/* address_space_cache_init: prepare for repeated access to a physical
1989 * memory region
1990 *
1991 * @cache: #MemoryRegionCache to be filled
1992 * @as: #AddressSpace to be accessed
1993 * @addr: address within that address space
1994 * @len: length of buffer
1995 * @is_write: indicates the transfer direction
1996 *
1997 * Will only work with RAM, and may map a subset of the requested range by
1998 * returning a value that is less than @len.  On failure, return a negative
1999 * errno value.
2000 *
2001 * Because it only works with RAM, this function can be used for
2002 * read-modify-write operations.  In this case, is_write should be %true.
2003 *
2004 * Note that addresses passed to the address_space_*_cached functions
2005 * are relative to @addr.
2006 */
2007int64_t address_space_cache_init(MemoryRegionCache *cache,
2008                                 AddressSpace *as,
2009                                 hwaddr addr,
2010                                 hwaddr len,
2011                                 bool is_write);
2012
2013/**
2014 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2015 *
2016 * @cache: The #MemoryRegionCache to operate on.
2017 * @addr: The first physical address that was written, relative to the
2018 * address that was passed to @address_space_cache_init.
2019 * @access_len: The number of bytes that were written starting at @addr.
2020 */
2021void address_space_cache_invalidate(MemoryRegionCache *cache,
2022                                    hwaddr addr,
2023                                    hwaddr access_len);
2024
2025/**
2026 * address_space_cache_destroy: free a #MemoryRegionCache
2027 *
2028 * @cache: The #MemoryRegionCache whose memory should be released.
2029 */
2030void address_space_cache_destroy(MemoryRegionCache *cache);
2031
2032/* address_space_get_iotlb_entry: translate an address into an IOTLB
2033 * entry. Should be called from an RCU critical section.
2034 */
2035IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2036                                            bool is_write, MemTxAttrs attrs);
2037
2038/* address_space_translate: translate an address range into an address space
2039 * into a MemoryRegion and an address range into that section.  Should be
2040 * called from an RCU critical section, to avoid that the last reference
2041 * to the returned region disappears after address_space_translate returns.
2042 *
2043 * @fv: #FlatView to be accessed
2044 * @addr: address within that address space
2045 * @xlat: pointer to address within the returned memory region section's
2046 * #MemoryRegion.
2047 * @len: pointer to length
2048 * @is_write: indicates the transfer direction
2049 * @attrs: memory attributes
2050 */
2051MemoryRegion *flatview_translate(FlatView *fv,
2052                                 hwaddr addr, hwaddr *xlat,
2053                                 hwaddr *len, bool is_write,
2054                                 MemTxAttrs attrs);
2055
2056static inline MemoryRegion *address_space_translate(AddressSpace *as,
2057                                                    hwaddr addr, hwaddr *xlat,
2058                                                    hwaddr *len, bool is_write,
2059                                                    MemTxAttrs attrs)
2060{
2061    return flatview_translate(address_space_to_flatview(as),
2062                              addr, xlat, len, is_write, attrs);
2063}
2064
2065/* address_space_access_valid: check for validity of accessing an address
2066 * space range
2067 *
2068 * Check whether memory is assigned to the given address space range, and
2069 * access is permitted by any IOMMU regions that are active for the address
2070 * space.
2071 *
2072 * For now, addr and len should be aligned to a page size.  This limitation
2073 * will be lifted in the future.
2074 *
2075 * @as: #AddressSpace to be accessed
2076 * @addr: address within that address space
2077 * @len: length of the area to be checked
2078 * @is_write: indicates the transfer direction
2079 * @attrs: memory attributes
2080 */
2081bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2082                                bool is_write, MemTxAttrs attrs);
2083
2084/* address_space_map: map a physical memory region into a host virtual address
2085 *
2086 * May map a subset of the requested range, given by and returned in @plen.
2087 * May return %NULL if resources needed to perform the mapping are exhausted.
2088 * Use only for reads OR writes - not for read-modify-write operations.
2089 * Use cpu_register_map_client() to know when retrying the map operation is
2090 * likely to succeed.
2091 *
2092 * @as: #AddressSpace to be accessed
2093 * @addr: address within that address space
2094 * @plen: pointer to length of buffer; updated on return
2095 * @is_write: indicates the transfer direction
2096 * @attrs: memory attributes
2097 */
2098void *address_space_map(AddressSpace *as, hwaddr addr,
2099                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
2100
2101/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2102 *
2103 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2104 * the amount of memory that was actually read or written by the caller.
2105 *
2106 * @as: #AddressSpace used
2107 * @buffer: host pointer as returned by address_space_map()
2108 * @len: buffer length as returned by address_space_map()
2109 * @access_len: amount of data actually transferred
2110 * @is_write: indicates the transfer direction
2111 */
2112void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2113                         int is_write, hwaddr access_len);
2114
2115
2116/* Internal functions, part of the implementation of address_space_read.  */
2117MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2118                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2119MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2120                                   MemTxAttrs attrs, uint8_t *buf,
2121                                   hwaddr len, hwaddr addr1, hwaddr l,
2122                                   MemoryRegion *mr);
2123void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2124
2125/* Internal functions, part of the implementation of address_space_read_cached
2126 * and address_space_write_cached.  */
2127void address_space_read_cached_slow(MemoryRegionCache *cache,
2128                                    hwaddr addr, void *buf, hwaddr len);
2129void address_space_write_cached_slow(MemoryRegionCache *cache,
2130                                     hwaddr addr, const void *buf, hwaddr len);
2131
2132static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2133{
2134    if (is_write) {
2135        return memory_region_is_ram(mr) &&
2136               !mr->readonly && !memory_region_is_ram_device(mr);
2137    } else {
2138        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2139               memory_region_is_romd(mr);
2140    }
2141}
2142
2143/**
2144 * address_space_read: read from an address space.
2145 *
2146 * Return a MemTxResult indicating whether the operation succeeded
2147 * or failed (eg unassigned memory, device rejected the transaction,
2148 * IOMMU fault).  Called within RCU critical section.
2149 *
2150 * @as: #AddressSpace to be accessed
2151 * @addr: address within that address space
2152 * @attrs: memory transaction attributes
2153 * @buf: buffer with the data transferred
2154 */
2155static inline __attribute__((__always_inline__))
2156MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2157                               MemTxAttrs attrs, uint8_t *buf,
2158                               hwaddr len)
2159{
2160    MemTxResult result = MEMTX_OK;
2161    hwaddr l, addr1;
2162    void *ptr;
2163    MemoryRegion *mr;
2164    FlatView *fv;
2165
2166    if (__builtin_constant_p(len)) {
2167        if (len) {
2168            rcu_read_lock();
2169            fv = address_space_to_flatview(as);
2170            l = len;
2171            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2172            if (len == l && memory_access_is_direct(mr, false)) {
2173                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2174                memcpy(buf, ptr, len);
2175            } else {
2176                result = flatview_read_continue(fv, addr, attrs, buf, len,
2177                                                addr1, l, mr);
2178            }
2179            rcu_read_unlock();
2180        }
2181    } else {
2182        result = address_space_read_full(as, addr, attrs, buf, len);
2183    }
2184    return result;
2185}
2186
2187/**
2188 * address_space_read_cached: read from a cached RAM region
2189 *
2190 * @cache: Cached region to be addressed
2191 * @addr: address relative to the base of the RAM region
2192 * @buf: buffer with the data transferred
2193 * @len: length of the data transferred
2194 */
2195static inline void
2196address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2197                          void *buf, hwaddr len)
2198{
2199    assert(addr < cache->len && len <= cache->len - addr);
2200    if (likely(cache->ptr)) {
2201        memcpy(buf, cache->ptr + addr, len);
2202    } else {
2203        address_space_read_cached_slow(cache, addr, buf, len);
2204    }
2205}
2206
2207/**
2208 * address_space_write_cached: write to a cached RAM region
2209 *
2210 * @cache: Cached region to be addressed
2211 * @addr: address relative to the base of the RAM region
2212 * @buf: buffer with the data transferred
2213 * @len: length of the data transferred
2214 */
2215static inline void
2216address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2217                           void *buf, hwaddr len)
2218{
2219    assert(addr < cache->len && len <= cache->len - addr);
2220    if (likely(cache->ptr)) {
2221        memcpy(cache->ptr + addr, buf, len);
2222    } else {
2223        address_space_write_cached_slow(cache, addr, buf, len);
2224    }
2225}
2226
2227#ifdef NEED_CPU_H
2228/* enum device_endian to MemOp.  */
2229static inline MemOp devend_memop(enum device_endian end)
2230{
2231    QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2232                      DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2233
2234#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2235    /* Swap if non-host endianness or native (target) endianness */
2236    return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2237#else
2238    const int non_host_endianness =
2239        DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2240
2241    /* In this case, native (target) endianness needs no swap.  */
2242    return (end == non_host_endianness) ? MO_BSWAP : 0;
2243#endif
2244}
2245#endif
2246
2247#endif
2248
2249#endif
2250