qemu/linux-user/elfload.c
<<
>>
Prefs
   1/* This is the Linux kernel elf-loading code, ported into user space */
   2#include "qemu/osdep.h"
   3#include <sys/param.h>
   4
   5#include <sys/resource.h>
   6#include <sys/shm.h>
   7
   8#include "qemu.h"
   9#include "disas/disas.h"
  10#include "qemu/path.h"
  11#include "qemu/queue.h"
  12#include "qemu/guest-random.h"
  13
  14#ifdef _ARCH_PPC64
  15#undef ARCH_DLINFO
  16#undef ELF_PLATFORM
  17#undef ELF_HWCAP
  18#undef ELF_HWCAP2
  19#undef ELF_CLASS
  20#undef ELF_DATA
  21#undef ELF_ARCH
  22#endif
  23
  24#define ELF_OSABI   ELFOSABI_SYSV
  25
  26/* from personality.h */
  27
  28/*
  29 * Flags for bug emulation.
  30 *
  31 * These occupy the top three bytes.
  32 */
  33enum {
  34    ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
  35    FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
  36                                           descriptors (signal handling) */
  37    MMAP_PAGE_ZERO =    0x0100000,
  38    ADDR_COMPAT_LAYOUT = 0x0200000,
  39    READ_IMPLIES_EXEC = 0x0400000,
  40    ADDR_LIMIT_32BIT =  0x0800000,
  41    SHORT_INODE =       0x1000000,
  42    WHOLE_SECONDS =     0x2000000,
  43    STICKY_TIMEOUTS =   0x4000000,
  44    ADDR_LIMIT_3GB =    0x8000000,
  45};
  46
  47/*
  48 * Personality types.
  49 *
  50 * These go in the low byte.  Avoid using the top bit, it will
  51 * conflict with error returns.
  52 */
  53enum {
  54    PER_LINUX =         0x0000,
  55    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
  56    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
  57    PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  58    PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
  59    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
  60    PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
  61    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
  62    PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
  63    PER_BSD =           0x0006,
  64    PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
  65    PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
  66    PER_LINUX32 =       0x0008,
  67    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
  68    PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
  69    PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
  70    PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
  71    PER_RISCOS =        0x000c,
  72    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
  73    PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  74    PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
  75    PER_HPUX =          0x0010,
  76    PER_MASK =          0x00ff,
  77};
  78
  79/*
  80 * Return the base personality without flags.
  81 */
  82#define personality(pers)       (pers & PER_MASK)
  83
  84int info_is_fdpic(struct image_info *info)
  85{
  86    return info->personality == PER_LINUX_FDPIC;
  87}
  88
  89/* this flag is uneffective under linux too, should be deleted */
  90#ifndef MAP_DENYWRITE
  91#define MAP_DENYWRITE 0
  92#endif
  93
  94/* should probably go in elf.h */
  95#ifndef ELIBBAD
  96#define ELIBBAD 80
  97#endif
  98
  99#ifdef TARGET_WORDS_BIGENDIAN
 100#define ELF_DATA        ELFDATA2MSB
 101#else
 102#define ELF_DATA        ELFDATA2LSB
 103#endif
 104
 105#ifdef TARGET_ABI_MIPSN32
 106typedef abi_ullong      target_elf_greg_t;
 107#define tswapreg(ptr)   tswap64(ptr)
 108#else
 109typedef abi_ulong       target_elf_greg_t;
 110#define tswapreg(ptr)   tswapal(ptr)
 111#endif
 112
 113#ifdef USE_UID16
 114typedef abi_ushort      target_uid_t;
 115typedef abi_ushort      target_gid_t;
 116#else
 117typedef abi_uint        target_uid_t;
 118typedef abi_uint        target_gid_t;
 119#endif
 120typedef abi_int         target_pid_t;
 121
 122#ifdef TARGET_I386
 123
 124#define ELF_PLATFORM get_elf_platform()
 125
 126static const char *get_elf_platform(void)
 127{
 128    static char elf_platform[] = "i386";
 129    int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 130    if (family > 6)
 131        family = 6;
 132    if (family >= 3)
 133        elf_platform[1] = '0' + family;
 134    return elf_platform;
 135}
 136
 137#define ELF_HWCAP get_elf_hwcap()
 138
 139static uint32_t get_elf_hwcap(void)
 140{
 141    X86CPU *cpu = X86_CPU(thread_cpu);
 142
 143    return cpu->env.features[FEAT_1_EDX];
 144}
 145
 146#ifdef TARGET_X86_64
 147#define ELF_START_MMAP 0x2aaaaab000ULL
 148
 149#define ELF_CLASS      ELFCLASS64
 150#define ELF_ARCH       EM_X86_64
 151
 152static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 153{
 154    regs->rax = 0;
 155    regs->rsp = infop->start_stack;
 156    regs->rip = infop->entry;
 157}
 158
 159#define ELF_NREG    27
 160typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 161
 162/*
 163 * Note that ELF_NREG should be 29 as there should be place for
 164 * TRAPNO and ERR "registers" as well but linux doesn't dump
 165 * those.
 166 *
 167 * See linux kernel: arch/x86/include/asm/elf.h
 168 */
 169static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 170{
 171    (*regs)[0] = env->regs[15];
 172    (*regs)[1] = env->regs[14];
 173    (*regs)[2] = env->regs[13];
 174    (*regs)[3] = env->regs[12];
 175    (*regs)[4] = env->regs[R_EBP];
 176    (*regs)[5] = env->regs[R_EBX];
 177    (*regs)[6] = env->regs[11];
 178    (*regs)[7] = env->regs[10];
 179    (*regs)[8] = env->regs[9];
 180    (*regs)[9] = env->regs[8];
 181    (*regs)[10] = env->regs[R_EAX];
 182    (*regs)[11] = env->regs[R_ECX];
 183    (*regs)[12] = env->regs[R_EDX];
 184    (*regs)[13] = env->regs[R_ESI];
 185    (*regs)[14] = env->regs[R_EDI];
 186    (*regs)[15] = env->regs[R_EAX]; /* XXX */
 187    (*regs)[16] = env->eip;
 188    (*regs)[17] = env->segs[R_CS].selector & 0xffff;
 189    (*regs)[18] = env->eflags;
 190    (*regs)[19] = env->regs[R_ESP];
 191    (*regs)[20] = env->segs[R_SS].selector & 0xffff;
 192    (*regs)[21] = env->segs[R_FS].selector & 0xffff;
 193    (*regs)[22] = env->segs[R_GS].selector & 0xffff;
 194    (*regs)[23] = env->segs[R_DS].selector & 0xffff;
 195    (*regs)[24] = env->segs[R_ES].selector & 0xffff;
 196    (*regs)[25] = env->segs[R_FS].selector & 0xffff;
 197    (*regs)[26] = env->segs[R_GS].selector & 0xffff;
 198}
 199
 200#else
 201
 202#define ELF_START_MMAP 0x80000000
 203
 204/*
 205 * This is used to ensure we don't load something for the wrong architecture.
 206 */
 207#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 208
 209/*
 210 * These are used to set parameters in the core dumps.
 211 */
 212#define ELF_CLASS       ELFCLASS32
 213#define ELF_ARCH        EM_386
 214
 215static inline void init_thread(struct target_pt_regs *regs,
 216                               struct image_info *infop)
 217{
 218    regs->esp = infop->start_stack;
 219    regs->eip = infop->entry;
 220
 221    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 222       starts %edx contains a pointer to a function which might be
 223       registered using `atexit'.  This provides a mean for the
 224       dynamic linker to call DT_FINI functions for shared libraries
 225       that have been loaded before the code runs.
 226
 227       A value of 0 tells we have no such handler.  */
 228    regs->edx = 0;
 229}
 230
 231#define ELF_NREG    17
 232typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 233
 234/*
 235 * Note that ELF_NREG should be 19 as there should be place for
 236 * TRAPNO and ERR "registers" as well but linux doesn't dump
 237 * those.
 238 *
 239 * See linux kernel: arch/x86/include/asm/elf.h
 240 */
 241static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 242{
 243    (*regs)[0] = env->regs[R_EBX];
 244    (*regs)[1] = env->regs[R_ECX];
 245    (*regs)[2] = env->regs[R_EDX];
 246    (*regs)[3] = env->regs[R_ESI];
 247    (*regs)[4] = env->regs[R_EDI];
 248    (*regs)[5] = env->regs[R_EBP];
 249    (*regs)[6] = env->regs[R_EAX];
 250    (*regs)[7] = env->segs[R_DS].selector & 0xffff;
 251    (*regs)[8] = env->segs[R_ES].selector & 0xffff;
 252    (*regs)[9] = env->segs[R_FS].selector & 0xffff;
 253    (*regs)[10] = env->segs[R_GS].selector & 0xffff;
 254    (*regs)[11] = env->regs[R_EAX]; /* XXX */
 255    (*regs)[12] = env->eip;
 256    (*regs)[13] = env->segs[R_CS].selector & 0xffff;
 257    (*regs)[14] = env->eflags;
 258    (*regs)[15] = env->regs[R_ESP];
 259    (*regs)[16] = env->segs[R_SS].selector & 0xffff;
 260}
 261#endif
 262
 263#define USE_ELF_CORE_DUMP
 264#define ELF_EXEC_PAGESIZE       4096
 265
 266#endif
 267
 268#ifdef TARGET_ARM
 269
 270#ifndef TARGET_AARCH64
 271/* 32 bit ARM definitions */
 272
 273#define ELF_START_MMAP 0x80000000
 274
 275#define ELF_ARCH        EM_ARM
 276#define ELF_CLASS       ELFCLASS32
 277
 278static inline void init_thread(struct target_pt_regs *regs,
 279                               struct image_info *infop)
 280{
 281    abi_long stack = infop->start_stack;
 282    memset(regs, 0, sizeof(*regs));
 283
 284    regs->uregs[16] = ARM_CPU_MODE_USR;
 285    if (infop->entry & 1) {
 286        regs->uregs[16] |= CPSR_T;
 287    }
 288    regs->uregs[15] = infop->entry & 0xfffffffe;
 289    regs->uregs[13] = infop->start_stack;
 290    /* FIXME - what to for failure of get_user()? */
 291    get_user_ual(regs->uregs[2], stack + 8); /* envp */
 292    get_user_ual(regs->uregs[1], stack + 4); /* envp */
 293    /* XXX: it seems that r0 is zeroed after ! */
 294    regs->uregs[0] = 0;
 295    /* For uClinux PIC binaries.  */
 296    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 297    regs->uregs[10] = infop->start_data;
 298
 299    /* Support ARM FDPIC.  */
 300    if (info_is_fdpic(infop)) {
 301        /* As described in the ABI document, r7 points to the loadmap info
 302         * prepared by the kernel. If an interpreter is needed, r8 points
 303         * to the interpreter loadmap and r9 points to the interpreter
 304         * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
 305         * r9 points to the main program PT_DYNAMIC info.
 306         */
 307        regs->uregs[7] = infop->loadmap_addr;
 308        if (infop->interpreter_loadmap_addr) {
 309            /* Executable is dynamically loaded.  */
 310            regs->uregs[8] = infop->interpreter_loadmap_addr;
 311            regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
 312        } else {
 313            regs->uregs[8] = 0;
 314            regs->uregs[9] = infop->pt_dynamic_addr;
 315        }
 316    }
 317}
 318
 319#define ELF_NREG    18
 320typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 321
 322static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 323{
 324    (*regs)[0] = tswapreg(env->regs[0]);
 325    (*regs)[1] = tswapreg(env->regs[1]);
 326    (*regs)[2] = tswapreg(env->regs[2]);
 327    (*regs)[3] = tswapreg(env->regs[3]);
 328    (*regs)[4] = tswapreg(env->regs[4]);
 329    (*regs)[5] = tswapreg(env->regs[5]);
 330    (*regs)[6] = tswapreg(env->regs[6]);
 331    (*regs)[7] = tswapreg(env->regs[7]);
 332    (*regs)[8] = tswapreg(env->regs[8]);
 333    (*regs)[9] = tswapreg(env->regs[9]);
 334    (*regs)[10] = tswapreg(env->regs[10]);
 335    (*regs)[11] = tswapreg(env->regs[11]);
 336    (*regs)[12] = tswapreg(env->regs[12]);
 337    (*regs)[13] = tswapreg(env->regs[13]);
 338    (*regs)[14] = tswapreg(env->regs[14]);
 339    (*regs)[15] = tswapreg(env->regs[15]);
 340
 341    (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 342    (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 343}
 344
 345#define USE_ELF_CORE_DUMP
 346#define ELF_EXEC_PAGESIZE       4096
 347
 348enum
 349{
 350    ARM_HWCAP_ARM_SWP       = 1 << 0,
 351    ARM_HWCAP_ARM_HALF      = 1 << 1,
 352    ARM_HWCAP_ARM_THUMB     = 1 << 2,
 353    ARM_HWCAP_ARM_26BIT     = 1 << 3,
 354    ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 355    ARM_HWCAP_ARM_FPA       = 1 << 5,
 356    ARM_HWCAP_ARM_VFP       = 1 << 6,
 357    ARM_HWCAP_ARM_EDSP      = 1 << 7,
 358    ARM_HWCAP_ARM_JAVA      = 1 << 8,
 359    ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 360    ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 361    ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 362    ARM_HWCAP_ARM_NEON      = 1 << 12,
 363    ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 364    ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 365    ARM_HWCAP_ARM_TLS       = 1 << 15,
 366    ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 367    ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 368    ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 369    ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 370    ARM_HWCAP_ARM_LPAE      = 1 << 20,
 371    ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 372};
 373
 374enum {
 375    ARM_HWCAP2_ARM_AES      = 1 << 0,
 376    ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 377    ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 378    ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 379    ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 380};
 381
 382/* The commpage only exists for 32 bit kernels */
 383
 384/* Return 1 if the proposed guest space is suitable for the guest.
 385 * Return 0 if the proposed guest space isn't suitable, but another
 386 * address space should be tried.
 387 * Return -1 if there is no way the proposed guest space can be
 388 * valid regardless of the base.
 389 * The guest code may leave a page mapped and populate it if the
 390 * address is suitable.
 391 */
 392static int init_guest_commpage(unsigned long guest_base,
 393                               unsigned long guest_size)
 394{
 395    unsigned long real_start, test_page_addr;
 396
 397    /* We need to check that we can force a fault on access to the
 398     * commpage at 0xffff0fxx
 399     */
 400    test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
 401
 402    /* If the commpage lies within the already allocated guest space,
 403     * then there is no way we can allocate it.
 404     *
 405     * You may be thinking that that this check is redundant because
 406     * we already validated the guest size against MAX_RESERVED_VA;
 407     * but if qemu_host_page_mask is unusually large, then
 408     * test_page_addr may be lower.
 409     */
 410    if (test_page_addr >= guest_base
 411        && test_page_addr < (guest_base + guest_size)) {
 412        return -1;
 413    }
 414
 415    /* Note it needs to be writeable to let us initialise it */
 416    real_start = (unsigned long)
 417                 mmap((void *)test_page_addr, qemu_host_page_size,
 418                     PROT_READ | PROT_WRITE,
 419                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 420
 421    /* If we can't map it then try another address */
 422    if (real_start == -1ul) {
 423        return 0;
 424    }
 425
 426    if (real_start != test_page_addr) {
 427        /* OS didn't put the page where we asked - unmap and reject */
 428        munmap((void *)real_start, qemu_host_page_size);
 429        return 0;
 430    }
 431
 432    /* Leave the page mapped
 433     * Populate it (mmap should have left it all 0'd)
 434     */
 435
 436    /* Kernel helper versions */
 437    __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
 438
 439    /* Now it's populated make it RO */
 440    if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
 441        perror("Protecting guest commpage");
 442        exit(-1);
 443    }
 444
 445    return 1; /* All good */
 446}
 447
 448#define ELF_HWCAP get_elf_hwcap()
 449#define ELF_HWCAP2 get_elf_hwcap2()
 450
 451static uint32_t get_elf_hwcap(void)
 452{
 453    ARMCPU *cpu = ARM_CPU(thread_cpu);
 454    uint32_t hwcaps = 0;
 455
 456    hwcaps |= ARM_HWCAP_ARM_SWP;
 457    hwcaps |= ARM_HWCAP_ARM_HALF;
 458    hwcaps |= ARM_HWCAP_ARM_THUMB;
 459    hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 460
 461    /* probe for the extra features */
 462#define GET_FEATURE(feat, hwcap) \
 463    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 464
 465#define GET_FEATURE_ID(feat, hwcap) \
 466    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 467
 468    /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 469    GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 470    GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
 471    GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 472    GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 473    GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 474    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
 475    GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 476    GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
 477    GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
 478    GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
 479    /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
 480     * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
 481     * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
 482     * to our VFP_FP16 feature bit.
 483     */
 484    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
 485    GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 486
 487    return hwcaps;
 488}
 489
 490static uint32_t get_elf_hwcap2(void)
 491{
 492    ARMCPU *cpu = ARM_CPU(thread_cpu);
 493    uint32_t hwcaps = 0;
 494
 495    GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
 496    GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
 497    GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
 498    GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
 499    GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
 500    return hwcaps;
 501}
 502
 503#undef GET_FEATURE
 504#undef GET_FEATURE_ID
 505
 506#define ELF_PLATFORM get_elf_platform()
 507
 508static const char *get_elf_platform(void)
 509{
 510    CPUARMState *env = thread_cpu->env_ptr;
 511
 512#ifdef TARGET_WORDS_BIGENDIAN
 513# define END  "b"
 514#else
 515# define END  "l"
 516#endif
 517
 518    if (arm_feature(env, ARM_FEATURE_V8)) {
 519        return "v8" END;
 520    } else if (arm_feature(env, ARM_FEATURE_V7)) {
 521        if (arm_feature(env, ARM_FEATURE_M)) {
 522            return "v7m" END;
 523        } else {
 524            return "v7" END;
 525        }
 526    } else if (arm_feature(env, ARM_FEATURE_V6)) {
 527        return "v6" END;
 528    } else if (arm_feature(env, ARM_FEATURE_V5)) {
 529        return "v5" END;
 530    } else {
 531        return "v4" END;
 532    }
 533
 534#undef END
 535}
 536
 537#else
 538/* 64 bit ARM definitions */
 539#define ELF_START_MMAP 0x80000000
 540
 541#define ELF_ARCH        EM_AARCH64
 542#define ELF_CLASS       ELFCLASS64
 543#ifdef TARGET_WORDS_BIGENDIAN
 544# define ELF_PLATFORM    "aarch64_be"
 545#else
 546# define ELF_PLATFORM    "aarch64"
 547#endif
 548
 549static inline void init_thread(struct target_pt_regs *regs,
 550                               struct image_info *infop)
 551{
 552    abi_long stack = infop->start_stack;
 553    memset(regs, 0, sizeof(*regs));
 554
 555    regs->pc = infop->entry & ~0x3ULL;
 556    regs->sp = stack;
 557}
 558
 559#define ELF_NREG    34
 560typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 561
 562static void elf_core_copy_regs(target_elf_gregset_t *regs,
 563                               const CPUARMState *env)
 564{
 565    int i;
 566
 567    for (i = 0; i < 32; i++) {
 568        (*regs)[i] = tswapreg(env->xregs[i]);
 569    }
 570    (*regs)[32] = tswapreg(env->pc);
 571    (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 572}
 573
 574#define USE_ELF_CORE_DUMP
 575#define ELF_EXEC_PAGESIZE       4096
 576
 577enum {
 578    ARM_HWCAP_A64_FP            = 1 << 0,
 579    ARM_HWCAP_A64_ASIMD         = 1 << 1,
 580    ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 581    ARM_HWCAP_A64_AES           = 1 << 3,
 582    ARM_HWCAP_A64_PMULL         = 1 << 4,
 583    ARM_HWCAP_A64_SHA1          = 1 << 5,
 584    ARM_HWCAP_A64_SHA2          = 1 << 6,
 585    ARM_HWCAP_A64_CRC32         = 1 << 7,
 586    ARM_HWCAP_A64_ATOMICS       = 1 << 8,
 587    ARM_HWCAP_A64_FPHP          = 1 << 9,
 588    ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
 589    ARM_HWCAP_A64_CPUID         = 1 << 11,
 590    ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
 591    ARM_HWCAP_A64_JSCVT         = 1 << 13,
 592    ARM_HWCAP_A64_FCMA          = 1 << 14,
 593    ARM_HWCAP_A64_LRCPC         = 1 << 15,
 594    ARM_HWCAP_A64_DCPOP         = 1 << 16,
 595    ARM_HWCAP_A64_SHA3          = 1 << 17,
 596    ARM_HWCAP_A64_SM3           = 1 << 18,
 597    ARM_HWCAP_A64_SM4           = 1 << 19,
 598    ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
 599    ARM_HWCAP_A64_SHA512        = 1 << 21,
 600    ARM_HWCAP_A64_SVE           = 1 << 22,
 601    ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
 602    ARM_HWCAP_A64_DIT           = 1 << 24,
 603    ARM_HWCAP_A64_USCAT         = 1 << 25,
 604    ARM_HWCAP_A64_ILRCPC        = 1 << 26,
 605    ARM_HWCAP_A64_FLAGM         = 1 << 27,
 606    ARM_HWCAP_A64_SSBS          = 1 << 28,
 607    ARM_HWCAP_A64_SB            = 1 << 29,
 608    ARM_HWCAP_A64_PACA          = 1 << 30,
 609    ARM_HWCAP_A64_PACG          = 1UL << 31,
 610
 611    ARM_HWCAP2_A64_DCPODP       = 1 << 0,
 612    ARM_HWCAP2_A64_SVE2         = 1 << 1,
 613    ARM_HWCAP2_A64_SVEAES       = 1 << 2,
 614    ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
 615    ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
 616    ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
 617    ARM_HWCAP2_A64_SVESM4       = 1 << 6,
 618    ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
 619    ARM_HWCAP2_A64_FRINT        = 1 << 8,
 620};
 621
 622#define ELF_HWCAP   get_elf_hwcap()
 623#define ELF_HWCAP2  get_elf_hwcap2()
 624
 625#define GET_FEATURE_ID(feat, hwcap) \
 626    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 627
 628static uint32_t get_elf_hwcap(void)
 629{
 630    ARMCPU *cpu = ARM_CPU(thread_cpu);
 631    uint32_t hwcaps = 0;
 632
 633    hwcaps |= ARM_HWCAP_A64_FP;
 634    hwcaps |= ARM_HWCAP_A64_ASIMD;
 635    hwcaps |= ARM_HWCAP_A64_CPUID;
 636
 637    /* probe for the extra features */
 638
 639    GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
 640    GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
 641    GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
 642    GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
 643    GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
 644    GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
 645    GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
 646    GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
 647    GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
 648    GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
 649    GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
 650    GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
 651    GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
 652    GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
 653    GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
 654    GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
 655    GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
 656    GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
 657    GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
 658    GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
 659
 660    return hwcaps;
 661}
 662
 663static uint32_t get_elf_hwcap2(void)
 664{
 665    ARMCPU *cpu = ARM_CPU(thread_cpu);
 666    uint32_t hwcaps = 0;
 667
 668    GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
 669    GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
 670
 671    return hwcaps;
 672}
 673
 674#undef GET_FEATURE_ID
 675
 676#endif /* not TARGET_AARCH64 */
 677#endif /* TARGET_ARM */
 678
 679#ifdef TARGET_SPARC
 680#ifdef TARGET_SPARC64
 681
 682#define ELF_START_MMAP 0x80000000
 683#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 684                    | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 685#ifndef TARGET_ABI32
 686#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 687#else
 688#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 689#endif
 690
 691#define ELF_CLASS   ELFCLASS64
 692#define ELF_ARCH    EM_SPARCV9
 693
 694#define STACK_BIAS              2047
 695
 696static inline void init_thread(struct target_pt_regs *regs,
 697                               struct image_info *infop)
 698{
 699#ifndef TARGET_ABI32
 700    regs->tstate = 0;
 701#endif
 702    regs->pc = infop->entry;
 703    regs->npc = regs->pc + 4;
 704    regs->y = 0;
 705#ifdef TARGET_ABI32
 706    regs->u_regs[14] = infop->start_stack - 16 * 4;
 707#else
 708    if (personality(infop->personality) == PER_LINUX32)
 709        regs->u_regs[14] = infop->start_stack - 16 * 4;
 710    else
 711        regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
 712#endif
 713}
 714
 715#else
 716#define ELF_START_MMAP 0x80000000
 717#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 718                    | HWCAP_SPARC_MULDIV)
 719
 720#define ELF_CLASS   ELFCLASS32
 721#define ELF_ARCH    EM_SPARC
 722
 723static inline void init_thread(struct target_pt_regs *regs,
 724                               struct image_info *infop)
 725{
 726    regs->psr = 0;
 727    regs->pc = infop->entry;
 728    regs->npc = regs->pc + 4;
 729    regs->y = 0;
 730    regs->u_regs[14] = infop->start_stack - 16 * 4;
 731}
 732
 733#endif
 734#endif
 735
 736#ifdef TARGET_PPC
 737
 738#define ELF_MACHINE    PPC_ELF_MACHINE
 739#define ELF_START_MMAP 0x80000000
 740
 741#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 742
 743#define elf_check_arch(x) ( (x) == EM_PPC64 )
 744
 745#define ELF_CLASS       ELFCLASS64
 746
 747#else
 748
 749#define ELF_CLASS       ELFCLASS32
 750
 751#endif
 752
 753#define ELF_ARCH        EM_PPC
 754
 755/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 756   See arch/powerpc/include/asm/cputable.h.  */
 757enum {
 758    QEMU_PPC_FEATURE_32 = 0x80000000,
 759    QEMU_PPC_FEATURE_64 = 0x40000000,
 760    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 761    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 762    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 763    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 764    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 765    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 766    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 767    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 768    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 769    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 770    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 771    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 772    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 773    QEMU_PPC_FEATURE_CELL = 0x00010000,
 774    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 775    QEMU_PPC_FEATURE_SMT = 0x00004000,
 776    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 777    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 778    QEMU_PPC_FEATURE_PA6T = 0x00000800,
 779    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 780    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 781    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 782    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 783    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 784
 785    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 786    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 787
 788    /* Feature definitions in AT_HWCAP2.  */
 789    QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 790    QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 791    QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 792    QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 793    QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 794    QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 795    QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
 796    QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
 797    QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
 798    QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
 799    QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
 800    QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
 801    QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
 802};
 803
 804#define ELF_HWCAP get_elf_hwcap()
 805
 806static uint32_t get_elf_hwcap(void)
 807{
 808    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 809    uint32_t features = 0;
 810
 811    /* We don't have to be terribly complete here; the high points are
 812       Altivec/FP/SPE support.  Anything else is just a bonus.  */
 813#define GET_FEATURE(flag, feature)                                      \
 814    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 815#define GET_FEATURE2(flags, feature) \
 816    do { \
 817        if ((cpu->env.insns_flags2 & flags) == flags) { \
 818            features |= feature; \
 819        } \
 820    } while (0)
 821    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 822    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 823    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 824    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 825    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 826    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 827    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 828    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 829    GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 830    GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 831    GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 832                  PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 833                  QEMU_PPC_FEATURE_ARCH_2_06);
 834#undef GET_FEATURE
 835#undef GET_FEATURE2
 836
 837    return features;
 838}
 839
 840#define ELF_HWCAP2 get_elf_hwcap2()
 841
 842static uint32_t get_elf_hwcap2(void)
 843{
 844    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 845    uint32_t features = 0;
 846
 847#define GET_FEATURE(flag, feature)                                      \
 848    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 849#define GET_FEATURE2(flag, feature)                                      \
 850    do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 851
 852    GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 853    GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 854    GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 855                  PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
 856                  QEMU_PPC_FEATURE2_VEC_CRYPTO);
 857    GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
 858                 QEMU_PPC_FEATURE2_DARN);
 859
 860#undef GET_FEATURE
 861#undef GET_FEATURE2
 862
 863    return features;
 864}
 865
 866/*
 867 * The requirements here are:
 868 * - keep the final alignment of sp (sp & 0xf)
 869 * - make sure the 32-bit value at the first 16 byte aligned position of
 870 *   AUXV is greater than 16 for glibc compatibility.
 871 *   AT_IGNOREPPC is used for that.
 872 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 873 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 874 */
 875#define DLINFO_ARCH_ITEMS       5
 876#define ARCH_DLINFO                                     \
 877    do {                                                \
 878        PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 879        /*                                              \
 880         * Handle glibc compatibility: these magic entries must \
 881         * be at the lowest addresses in the final auxv.        \
 882         */                                             \
 883        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 884        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 885        NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 886        NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 887        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 888    } while (0)
 889
 890static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 891{
 892    _regs->gpr[1] = infop->start_stack;
 893#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 894    if (get_ppc64_abi(infop) < 2) {
 895        uint64_t val;
 896        get_user_u64(val, infop->entry + 8);
 897        _regs->gpr[2] = val + infop->load_bias;
 898        get_user_u64(val, infop->entry);
 899        infop->entry = val + infop->load_bias;
 900    } else {
 901        _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 902    }
 903#endif
 904    _regs->nip = infop->entry;
 905}
 906
 907/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 908#define ELF_NREG 48
 909typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 910
 911static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 912{
 913    int i;
 914    target_ulong ccr = 0;
 915
 916    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 917        (*regs)[i] = tswapreg(env->gpr[i]);
 918    }
 919
 920    (*regs)[32] = tswapreg(env->nip);
 921    (*regs)[33] = tswapreg(env->msr);
 922    (*regs)[35] = tswapreg(env->ctr);
 923    (*regs)[36] = tswapreg(env->lr);
 924    (*regs)[37] = tswapreg(env->xer);
 925
 926    for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
 927        ccr |= env->crf[i] << (32 - ((i + 1) * 4));
 928    }
 929    (*regs)[38] = tswapreg(ccr);
 930}
 931
 932#define USE_ELF_CORE_DUMP
 933#define ELF_EXEC_PAGESIZE       4096
 934
 935#endif
 936
 937#ifdef TARGET_MIPS
 938
 939#define ELF_START_MMAP 0x80000000
 940
 941#ifdef TARGET_MIPS64
 942#define ELF_CLASS   ELFCLASS64
 943#else
 944#define ELF_CLASS   ELFCLASS32
 945#endif
 946#define ELF_ARCH    EM_MIPS
 947
 948#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
 949
 950static inline void init_thread(struct target_pt_regs *regs,
 951                               struct image_info *infop)
 952{
 953    regs->cp0_status = 2 << CP0St_KSU;
 954    regs->cp0_epc = infop->entry;
 955    regs->regs[29] = infop->start_stack;
 956}
 957
 958/* See linux kernel: arch/mips/include/asm/elf.h.  */
 959#define ELF_NREG 45
 960typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 961
 962/* See linux kernel: arch/mips/include/asm/reg.h.  */
 963enum {
 964#ifdef TARGET_MIPS64
 965    TARGET_EF_R0 = 0,
 966#else
 967    TARGET_EF_R0 = 6,
 968#endif
 969    TARGET_EF_R26 = TARGET_EF_R0 + 26,
 970    TARGET_EF_R27 = TARGET_EF_R0 + 27,
 971    TARGET_EF_LO = TARGET_EF_R0 + 32,
 972    TARGET_EF_HI = TARGET_EF_R0 + 33,
 973    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
 974    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
 975    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
 976    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
 977};
 978
 979/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 980static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
 981{
 982    int i;
 983
 984    for (i = 0; i < TARGET_EF_R0; i++) {
 985        (*regs)[i] = 0;
 986    }
 987    (*regs)[TARGET_EF_R0] = 0;
 988
 989    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
 990        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
 991    }
 992
 993    (*regs)[TARGET_EF_R26] = 0;
 994    (*regs)[TARGET_EF_R27] = 0;
 995    (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
 996    (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
 997    (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
 998    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
 999    (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1000    (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1001}
1002
1003#define USE_ELF_CORE_DUMP
1004#define ELF_EXEC_PAGESIZE        4096
1005
1006/* See arch/mips/include/uapi/asm/hwcap.h.  */
1007enum {
1008    HWCAP_MIPS_R6           = (1 << 0),
1009    HWCAP_MIPS_MSA          = (1 << 1),
1010};
1011
1012#define ELF_HWCAP get_elf_hwcap()
1013
1014static uint32_t get_elf_hwcap(void)
1015{
1016    MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1017    uint32_t hwcaps = 0;
1018
1019#define GET_FEATURE(flag, hwcap) \
1020    do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
1021
1022    GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
1023    GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1024
1025#undef GET_FEATURE
1026
1027    return hwcaps;
1028}
1029
1030#endif /* TARGET_MIPS */
1031
1032#ifdef TARGET_MICROBLAZE
1033
1034#define ELF_START_MMAP 0x80000000
1035
1036#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1037
1038#define ELF_CLASS   ELFCLASS32
1039#define ELF_ARCH    EM_MICROBLAZE
1040
1041static inline void init_thread(struct target_pt_regs *regs,
1042                               struct image_info *infop)
1043{
1044    regs->pc = infop->entry;
1045    regs->r1 = infop->start_stack;
1046
1047}
1048
1049#define ELF_EXEC_PAGESIZE        4096
1050
1051#define USE_ELF_CORE_DUMP
1052#define ELF_NREG 38
1053typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1054
1055/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1056static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1057{
1058    int i, pos = 0;
1059
1060    for (i = 0; i < 32; i++) {
1061        (*regs)[pos++] = tswapreg(env->regs[i]);
1062    }
1063
1064    for (i = 0; i < 6; i++) {
1065        (*regs)[pos++] = tswapreg(env->sregs[i]);
1066    }
1067}
1068
1069#endif /* TARGET_MICROBLAZE */
1070
1071#ifdef TARGET_NIOS2
1072
1073#define ELF_START_MMAP 0x80000000
1074
1075#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1076
1077#define ELF_CLASS   ELFCLASS32
1078#define ELF_ARCH    EM_ALTERA_NIOS2
1079
1080static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1081{
1082    regs->ea = infop->entry;
1083    regs->sp = infop->start_stack;
1084    regs->estatus = 0x3;
1085}
1086
1087#define ELF_EXEC_PAGESIZE        4096
1088
1089#define USE_ELF_CORE_DUMP
1090#define ELF_NREG 49
1091typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1092
1093/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1094static void elf_core_copy_regs(target_elf_gregset_t *regs,
1095                               const CPUNios2State *env)
1096{
1097    int i;
1098
1099    (*regs)[0] = -1;
1100    for (i = 1; i < 8; i++)    /* r0-r7 */
1101        (*regs)[i] = tswapreg(env->regs[i + 7]);
1102
1103    for (i = 8; i < 16; i++)   /* r8-r15 */
1104        (*regs)[i] = tswapreg(env->regs[i - 8]);
1105
1106    for (i = 16; i < 24; i++)  /* r16-r23 */
1107        (*regs)[i] = tswapreg(env->regs[i + 7]);
1108    (*regs)[24] = -1;    /* R_ET */
1109    (*regs)[25] = -1;    /* R_BT */
1110    (*regs)[26] = tswapreg(env->regs[R_GP]);
1111    (*regs)[27] = tswapreg(env->regs[R_SP]);
1112    (*regs)[28] = tswapreg(env->regs[R_FP]);
1113    (*regs)[29] = tswapreg(env->regs[R_EA]);
1114    (*regs)[30] = -1;    /* R_SSTATUS */
1115    (*regs)[31] = tswapreg(env->regs[R_RA]);
1116
1117    (*regs)[32] = tswapreg(env->regs[R_PC]);
1118
1119    (*regs)[33] = -1; /* R_STATUS */
1120    (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1121
1122    for (i = 35; i < 49; i++)    /* ... */
1123        (*regs)[i] = -1;
1124}
1125
1126#endif /* TARGET_NIOS2 */
1127
1128#ifdef TARGET_OPENRISC
1129
1130#define ELF_START_MMAP 0x08000000
1131
1132#define ELF_ARCH EM_OPENRISC
1133#define ELF_CLASS ELFCLASS32
1134#define ELF_DATA  ELFDATA2MSB
1135
1136static inline void init_thread(struct target_pt_regs *regs,
1137                               struct image_info *infop)
1138{
1139    regs->pc = infop->entry;
1140    regs->gpr[1] = infop->start_stack;
1141}
1142
1143#define USE_ELF_CORE_DUMP
1144#define ELF_EXEC_PAGESIZE 8192
1145
1146/* See linux kernel arch/openrisc/include/asm/elf.h.  */
1147#define ELF_NREG 34 /* gprs and pc, sr */
1148typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1149
1150static void elf_core_copy_regs(target_elf_gregset_t *regs,
1151                               const CPUOpenRISCState *env)
1152{
1153    int i;
1154
1155    for (i = 0; i < 32; i++) {
1156        (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1157    }
1158    (*regs)[32] = tswapreg(env->pc);
1159    (*regs)[33] = tswapreg(cpu_get_sr(env));
1160}
1161#define ELF_HWCAP 0
1162#define ELF_PLATFORM NULL
1163
1164#endif /* TARGET_OPENRISC */
1165
1166#ifdef TARGET_SH4
1167
1168#define ELF_START_MMAP 0x80000000
1169
1170#define ELF_CLASS ELFCLASS32
1171#define ELF_ARCH  EM_SH
1172
1173static inline void init_thread(struct target_pt_regs *regs,
1174                               struct image_info *infop)
1175{
1176    /* Check other registers XXXXX */
1177    regs->pc = infop->entry;
1178    regs->regs[15] = infop->start_stack;
1179}
1180
1181/* See linux kernel: arch/sh/include/asm/elf.h.  */
1182#define ELF_NREG 23
1183typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1184
1185/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1186enum {
1187    TARGET_REG_PC = 16,
1188    TARGET_REG_PR = 17,
1189    TARGET_REG_SR = 18,
1190    TARGET_REG_GBR = 19,
1191    TARGET_REG_MACH = 20,
1192    TARGET_REG_MACL = 21,
1193    TARGET_REG_SYSCALL = 22
1194};
1195
1196static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1197                                      const CPUSH4State *env)
1198{
1199    int i;
1200
1201    for (i = 0; i < 16; i++) {
1202        (*regs)[i] = tswapreg(env->gregs[i]);
1203    }
1204
1205    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1206    (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1207    (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1208    (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1209    (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1210    (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1211    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1212}
1213
1214#define USE_ELF_CORE_DUMP
1215#define ELF_EXEC_PAGESIZE        4096
1216
1217enum {
1218    SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1219    SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1220    SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1221    SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1222    SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1223    SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1224    SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1225    SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1226    SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1227    SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1228};
1229
1230#define ELF_HWCAP get_elf_hwcap()
1231
1232static uint32_t get_elf_hwcap(void)
1233{
1234    SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1235    uint32_t hwcap = 0;
1236
1237    hwcap |= SH_CPU_HAS_FPU;
1238
1239    if (cpu->env.features & SH_FEATURE_SH4A) {
1240        hwcap |= SH_CPU_HAS_LLSC;
1241    }
1242
1243    return hwcap;
1244}
1245
1246#endif
1247
1248#ifdef TARGET_CRIS
1249
1250#define ELF_START_MMAP 0x80000000
1251
1252#define ELF_CLASS ELFCLASS32
1253#define ELF_ARCH  EM_CRIS
1254
1255static inline void init_thread(struct target_pt_regs *regs,
1256                               struct image_info *infop)
1257{
1258    regs->erp = infop->entry;
1259}
1260
1261#define ELF_EXEC_PAGESIZE        8192
1262
1263#endif
1264
1265#ifdef TARGET_M68K
1266
1267#define ELF_START_MMAP 0x80000000
1268
1269#define ELF_CLASS       ELFCLASS32
1270#define ELF_ARCH        EM_68K
1271
1272/* ??? Does this need to do anything?
1273   #define ELF_PLAT_INIT(_r) */
1274
1275static inline void init_thread(struct target_pt_regs *regs,
1276                               struct image_info *infop)
1277{
1278    regs->usp = infop->start_stack;
1279    regs->sr = 0;
1280    regs->pc = infop->entry;
1281}
1282
1283/* See linux kernel: arch/m68k/include/asm/elf.h.  */
1284#define ELF_NREG 20
1285typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1286
1287static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1288{
1289    (*regs)[0] = tswapreg(env->dregs[1]);
1290    (*regs)[1] = tswapreg(env->dregs[2]);
1291    (*regs)[2] = tswapreg(env->dregs[3]);
1292    (*regs)[3] = tswapreg(env->dregs[4]);
1293    (*regs)[4] = tswapreg(env->dregs[5]);
1294    (*regs)[5] = tswapreg(env->dregs[6]);
1295    (*regs)[6] = tswapreg(env->dregs[7]);
1296    (*regs)[7] = tswapreg(env->aregs[0]);
1297    (*regs)[8] = tswapreg(env->aregs[1]);
1298    (*regs)[9] = tswapreg(env->aregs[2]);
1299    (*regs)[10] = tswapreg(env->aregs[3]);
1300    (*regs)[11] = tswapreg(env->aregs[4]);
1301    (*regs)[12] = tswapreg(env->aregs[5]);
1302    (*regs)[13] = tswapreg(env->aregs[6]);
1303    (*regs)[14] = tswapreg(env->dregs[0]);
1304    (*regs)[15] = tswapreg(env->aregs[7]);
1305    (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1306    (*regs)[17] = tswapreg(env->sr);
1307    (*regs)[18] = tswapreg(env->pc);
1308    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1309}
1310
1311#define USE_ELF_CORE_DUMP
1312#define ELF_EXEC_PAGESIZE       8192
1313
1314#endif
1315
1316#ifdef TARGET_ALPHA
1317
1318#define ELF_START_MMAP (0x30000000000ULL)
1319
1320#define ELF_CLASS      ELFCLASS64
1321#define ELF_ARCH       EM_ALPHA
1322
1323static inline void init_thread(struct target_pt_regs *regs,
1324                               struct image_info *infop)
1325{
1326    regs->pc = infop->entry;
1327    regs->ps = 8;
1328    regs->usp = infop->start_stack;
1329}
1330
1331#define ELF_EXEC_PAGESIZE        8192
1332
1333#endif /* TARGET_ALPHA */
1334
1335#ifdef TARGET_S390X
1336
1337#define ELF_START_MMAP (0x20000000000ULL)
1338
1339#define ELF_CLASS       ELFCLASS64
1340#define ELF_DATA        ELFDATA2MSB
1341#define ELF_ARCH        EM_S390
1342
1343#include "elf.h"
1344
1345#define ELF_HWCAP get_elf_hwcap()
1346
1347#define GET_FEATURE(_feat, _hwcap) \
1348    do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1349
1350static uint32_t get_elf_hwcap(void)
1351{
1352    /*
1353     * Let's assume we always have esan3 and zarch.
1354     * 31-bit processes can use 64-bit registers (high gprs).
1355     */
1356    uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1357
1358    GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1359    GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1360    GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1361    GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1362    if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1363        s390_has_feat(S390_FEAT_ETF3_ENH)) {
1364        hwcap |= HWCAP_S390_ETF3EH;
1365    }
1366    GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1367
1368    return hwcap;
1369}
1370
1371static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1372{
1373    regs->psw.addr = infop->entry;
1374    regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1375    regs->gprs[15] = infop->start_stack;
1376}
1377
1378#endif /* TARGET_S390X */
1379
1380#ifdef TARGET_TILEGX
1381
1382/* 42 bits real used address, a half for user mode */
1383#define ELF_START_MMAP (0x00000020000000000ULL)
1384
1385#define elf_check_arch(x) ((x) == EM_TILEGX)
1386
1387#define ELF_CLASS   ELFCLASS64
1388#define ELF_DATA    ELFDATA2LSB
1389#define ELF_ARCH    EM_TILEGX
1390
1391static inline void init_thread(struct target_pt_regs *regs,
1392                               struct image_info *infop)
1393{
1394    regs->pc = infop->entry;
1395    regs->sp = infop->start_stack;
1396
1397}
1398
1399#define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1400
1401#endif /* TARGET_TILEGX */
1402
1403#ifdef TARGET_RISCV
1404
1405#define ELF_START_MMAP 0x80000000
1406#define ELF_ARCH  EM_RISCV
1407
1408#ifdef TARGET_RISCV32
1409#define ELF_CLASS ELFCLASS32
1410#else
1411#define ELF_CLASS ELFCLASS64
1412#endif
1413
1414static inline void init_thread(struct target_pt_regs *regs,
1415                               struct image_info *infop)
1416{
1417    regs->sepc = infop->entry;
1418    regs->sp = infop->start_stack;
1419}
1420
1421#define ELF_EXEC_PAGESIZE 4096
1422
1423#endif /* TARGET_RISCV */
1424
1425#ifdef TARGET_HPPA
1426
1427#define ELF_START_MMAP  0x80000000
1428#define ELF_CLASS       ELFCLASS32
1429#define ELF_ARCH        EM_PARISC
1430#define ELF_PLATFORM    "PARISC"
1431#define STACK_GROWS_DOWN 0
1432#define STACK_ALIGNMENT  64
1433
1434static inline void init_thread(struct target_pt_regs *regs,
1435                               struct image_info *infop)
1436{
1437    regs->iaoq[0] = infop->entry;
1438    regs->iaoq[1] = infop->entry + 4;
1439    regs->gr[23] = 0;
1440    regs->gr[24] = infop->arg_start;
1441    regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1442    /* The top-of-stack contains a linkage buffer.  */
1443    regs->gr[30] = infop->start_stack + 64;
1444    regs->gr[31] = infop->entry;
1445}
1446
1447#endif /* TARGET_HPPA */
1448
1449#ifdef TARGET_XTENSA
1450
1451#define ELF_START_MMAP 0x20000000
1452
1453#define ELF_CLASS       ELFCLASS32
1454#define ELF_ARCH        EM_XTENSA
1455
1456static inline void init_thread(struct target_pt_regs *regs,
1457                               struct image_info *infop)
1458{
1459    regs->windowbase = 0;
1460    regs->windowstart = 1;
1461    regs->areg[1] = infop->start_stack;
1462    regs->pc = infop->entry;
1463}
1464
1465/* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1466#define ELF_NREG 128
1467typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1468
1469enum {
1470    TARGET_REG_PC,
1471    TARGET_REG_PS,
1472    TARGET_REG_LBEG,
1473    TARGET_REG_LEND,
1474    TARGET_REG_LCOUNT,
1475    TARGET_REG_SAR,
1476    TARGET_REG_WINDOWSTART,
1477    TARGET_REG_WINDOWBASE,
1478    TARGET_REG_THREADPTR,
1479    TARGET_REG_AR0 = 64,
1480};
1481
1482static void elf_core_copy_regs(target_elf_gregset_t *regs,
1483                               const CPUXtensaState *env)
1484{
1485    unsigned i;
1486
1487    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1488    (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1489    (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1490    (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1491    (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1492    (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1493    (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1494    (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1495    (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1496    xtensa_sync_phys_from_window((CPUXtensaState *)env);
1497    for (i = 0; i < env->config->nareg; ++i) {
1498        (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1499    }
1500}
1501
1502#define USE_ELF_CORE_DUMP
1503#define ELF_EXEC_PAGESIZE       4096
1504
1505#endif /* TARGET_XTENSA */
1506
1507#ifndef ELF_PLATFORM
1508#define ELF_PLATFORM (NULL)
1509#endif
1510
1511#ifndef ELF_MACHINE
1512#define ELF_MACHINE ELF_ARCH
1513#endif
1514
1515#ifndef elf_check_arch
1516#define elf_check_arch(x) ((x) == ELF_ARCH)
1517#endif
1518
1519#ifndef ELF_HWCAP
1520#define ELF_HWCAP 0
1521#endif
1522
1523#ifndef STACK_GROWS_DOWN
1524#define STACK_GROWS_DOWN 1
1525#endif
1526
1527#ifndef STACK_ALIGNMENT
1528#define STACK_ALIGNMENT 16
1529#endif
1530
1531#ifdef TARGET_ABI32
1532#undef ELF_CLASS
1533#define ELF_CLASS ELFCLASS32
1534#undef bswaptls
1535#define bswaptls(ptr) bswap32s(ptr)
1536#endif
1537
1538#include "elf.h"
1539
1540struct exec
1541{
1542    unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1543    unsigned int a_text;   /* length of text, in bytes */
1544    unsigned int a_data;   /* length of data, in bytes */
1545    unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1546    unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1547    unsigned int a_entry;  /* start address */
1548    unsigned int a_trsize; /* length of relocation info for text, in bytes */
1549    unsigned int a_drsize; /* length of relocation info for data, in bytes */
1550};
1551
1552
1553#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1554#define OMAGIC 0407
1555#define NMAGIC 0410
1556#define ZMAGIC 0413
1557#define QMAGIC 0314
1558
1559/* Necessary parameters */
1560#define TARGET_ELF_EXEC_PAGESIZE \
1561        (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1562         TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1563#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1564#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1565                                 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1566#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1567
1568#define DLINFO_ITEMS 15
1569
1570static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1571{
1572    memcpy(to, from, n);
1573}
1574
1575#ifdef BSWAP_NEEDED
1576static void bswap_ehdr(struct elfhdr *ehdr)
1577{
1578    bswap16s(&ehdr->e_type);            /* Object file type */
1579    bswap16s(&ehdr->e_machine);         /* Architecture */
1580    bswap32s(&ehdr->e_version);         /* Object file version */
1581    bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1582    bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1583    bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1584    bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1585    bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1586    bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1587    bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1588    bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1589    bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1590    bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1591}
1592
1593static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1594{
1595    int i;
1596    for (i = 0; i < phnum; ++i, ++phdr) {
1597        bswap32s(&phdr->p_type);        /* Segment type */
1598        bswap32s(&phdr->p_flags);       /* Segment flags */
1599        bswaptls(&phdr->p_offset);      /* Segment file offset */
1600        bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1601        bswaptls(&phdr->p_paddr);       /* Segment physical address */
1602        bswaptls(&phdr->p_filesz);      /* Segment size in file */
1603        bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1604        bswaptls(&phdr->p_align);       /* Segment alignment */
1605    }
1606}
1607
1608static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1609{
1610    int i;
1611    for (i = 0; i < shnum; ++i, ++shdr) {
1612        bswap32s(&shdr->sh_name);
1613        bswap32s(&shdr->sh_type);
1614        bswaptls(&shdr->sh_flags);
1615        bswaptls(&shdr->sh_addr);
1616        bswaptls(&shdr->sh_offset);
1617        bswaptls(&shdr->sh_size);
1618        bswap32s(&shdr->sh_link);
1619        bswap32s(&shdr->sh_info);
1620        bswaptls(&shdr->sh_addralign);
1621        bswaptls(&shdr->sh_entsize);
1622    }
1623}
1624
1625static void bswap_sym(struct elf_sym *sym)
1626{
1627    bswap32s(&sym->st_name);
1628    bswaptls(&sym->st_value);
1629    bswaptls(&sym->st_size);
1630    bswap16s(&sym->st_shndx);
1631}
1632
1633#ifdef TARGET_MIPS
1634static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1635{
1636    bswap16s(&abiflags->version);
1637    bswap32s(&abiflags->ases);
1638    bswap32s(&abiflags->isa_ext);
1639    bswap32s(&abiflags->flags1);
1640    bswap32s(&abiflags->flags2);
1641}
1642#endif
1643#else
1644static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1645static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1646static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1647static inline void bswap_sym(struct elf_sym *sym) { }
1648#ifdef TARGET_MIPS
1649static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1650#endif
1651#endif
1652
1653#ifdef USE_ELF_CORE_DUMP
1654static int elf_core_dump(int, const CPUArchState *);
1655#endif /* USE_ELF_CORE_DUMP */
1656static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1657
1658/* Verify the portions of EHDR within E_IDENT for the target.
1659   This can be performed before bswapping the entire header.  */
1660static bool elf_check_ident(struct elfhdr *ehdr)
1661{
1662    return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1663            && ehdr->e_ident[EI_MAG1] == ELFMAG1
1664            && ehdr->e_ident[EI_MAG2] == ELFMAG2
1665            && ehdr->e_ident[EI_MAG3] == ELFMAG3
1666            && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1667            && ehdr->e_ident[EI_DATA] == ELF_DATA
1668            && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1669}
1670
1671/* Verify the portions of EHDR outside of E_IDENT for the target.
1672   This has to wait until after bswapping the header.  */
1673static bool elf_check_ehdr(struct elfhdr *ehdr)
1674{
1675    return (elf_check_arch(ehdr->e_machine)
1676            && ehdr->e_ehsize == sizeof(struct elfhdr)
1677            && ehdr->e_phentsize == sizeof(struct elf_phdr)
1678            && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1679}
1680
1681/*
1682 * 'copy_elf_strings()' copies argument/envelope strings from user
1683 * memory to free pages in kernel mem. These are in a format ready
1684 * to be put directly into the top of new user memory.
1685 *
1686 */
1687static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1688                                  abi_ulong p, abi_ulong stack_limit)
1689{
1690    char *tmp;
1691    int len, i;
1692    abi_ulong top = p;
1693
1694    if (!p) {
1695        return 0;       /* bullet-proofing */
1696    }
1697
1698    if (STACK_GROWS_DOWN) {
1699        int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1700        for (i = argc - 1; i >= 0; --i) {
1701            tmp = argv[i];
1702            if (!tmp) {
1703                fprintf(stderr, "VFS: argc is wrong");
1704                exit(-1);
1705            }
1706            len = strlen(tmp) + 1;
1707            tmp += len;
1708
1709            if (len > (p - stack_limit)) {
1710                return 0;
1711            }
1712            while (len) {
1713                int bytes_to_copy = (len > offset) ? offset : len;
1714                tmp -= bytes_to_copy;
1715                p -= bytes_to_copy;
1716                offset -= bytes_to_copy;
1717                len -= bytes_to_copy;
1718
1719                memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1720
1721                if (offset == 0) {
1722                    memcpy_to_target(p, scratch, top - p);
1723                    top = p;
1724                    offset = TARGET_PAGE_SIZE;
1725                }
1726            }
1727        }
1728        if (p != top) {
1729            memcpy_to_target(p, scratch + offset, top - p);
1730        }
1731    } else {
1732        int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1733        for (i = 0; i < argc; ++i) {
1734            tmp = argv[i];
1735            if (!tmp) {
1736                fprintf(stderr, "VFS: argc is wrong");
1737                exit(-1);
1738            }
1739            len = strlen(tmp) + 1;
1740            if (len > (stack_limit - p)) {
1741                return 0;
1742            }
1743            while (len) {
1744                int bytes_to_copy = (len > remaining) ? remaining : len;
1745
1746                memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1747
1748                tmp += bytes_to_copy;
1749                remaining -= bytes_to_copy;
1750                p += bytes_to_copy;
1751                len -= bytes_to_copy;
1752
1753                if (remaining == 0) {
1754                    memcpy_to_target(top, scratch, p - top);
1755                    top = p;
1756                    remaining = TARGET_PAGE_SIZE;
1757                }
1758            }
1759        }
1760        if (p != top) {
1761            memcpy_to_target(top, scratch, p - top);
1762        }
1763    }
1764
1765    return p;
1766}
1767
1768/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1769 * argument/environment space. Newer kernels (>2.6.33) allow more,
1770 * dependent on stack size, but guarantee at least 32 pages for
1771 * backwards compatibility.
1772 */
1773#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1774
1775static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1776                                 struct image_info *info)
1777{
1778    abi_ulong size, error, guard;
1779
1780    size = guest_stack_size;
1781    if (size < STACK_LOWER_LIMIT) {
1782        size = STACK_LOWER_LIMIT;
1783    }
1784    guard = TARGET_PAGE_SIZE;
1785    if (guard < qemu_real_host_page_size) {
1786        guard = qemu_real_host_page_size;
1787    }
1788
1789    error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1790                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1791    if (error == -1) {
1792        perror("mmap stack");
1793        exit(-1);
1794    }
1795
1796    /* We reserve one extra page at the top of the stack as guard.  */
1797    if (STACK_GROWS_DOWN) {
1798        target_mprotect(error, guard, PROT_NONE);
1799        info->stack_limit = error + guard;
1800        return info->stack_limit + size - sizeof(void *);
1801    } else {
1802        target_mprotect(error + size, guard, PROT_NONE);
1803        info->stack_limit = error + size;
1804        return error;
1805    }
1806}
1807
1808/* Map and zero the bss.  We need to explicitly zero any fractional pages
1809   after the data section (i.e. bss).  */
1810static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1811{
1812    uintptr_t host_start, host_map_start, host_end;
1813
1814    last_bss = TARGET_PAGE_ALIGN(last_bss);
1815
1816    /* ??? There is confusion between qemu_real_host_page_size and
1817       qemu_host_page_size here and elsewhere in target_mmap, which
1818       may lead to the end of the data section mapping from the file
1819       not being mapped.  At least there was an explicit test and
1820       comment for that here, suggesting that "the file size must
1821       be known".  The comment probably pre-dates the introduction
1822       of the fstat system call in target_mmap which does in fact
1823       find out the size.  What isn't clear is if the workaround
1824       here is still actually needed.  For now, continue with it,
1825       but merge it with the "normal" mmap that would allocate the bss.  */
1826
1827    host_start = (uintptr_t) g2h(elf_bss);
1828    host_end = (uintptr_t) g2h(last_bss);
1829    host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1830
1831    if (host_map_start < host_end) {
1832        void *p = mmap((void *)host_map_start, host_end - host_map_start,
1833                       prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1834        if (p == MAP_FAILED) {
1835            perror("cannot mmap brk");
1836            exit(-1);
1837        }
1838    }
1839
1840    /* Ensure that the bss page(s) are valid */
1841    if ((page_get_flags(last_bss-1) & prot) != prot) {
1842        page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1843    }
1844
1845    if (host_start < host_map_start) {
1846        memset((void *)host_start, 0, host_map_start - host_start);
1847    }
1848}
1849
1850#ifdef TARGET_ARM
1851static int elf_is_fdpic(struct elfhdr *exec)
1852{
1853    return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1854}
1855#else
1856/* Default implementation, always false.  */
1857static int elf_is_fdpic(struct elfhdr *exec)
1858{
1859    return 0;
1860}
1861#endif
1862
1863static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1864{
1865    uint16_t n;
1866    struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1867
1868    /* elf32_fdpic_loadseg */
1869    n = info->nsegs;
1870    while (n--) {
1871        sp -= 12;
1872        put_user_u32(loadsegs[n].addr, sp+0);
1873        put_user_u32(loadsegs[n].p_vaddr, sp+4);
1874        put_user_u32(loadsegs[n].p_memsz, sp+8);
1875    }
1876
1877    /* elf32_fdpic_loadmap */
1878    sp -= 4;
1879    put_user_u16(0, sp+0); /* version */
1880    put_user_u16(info->nsegs, sp+2); /* nsegs */
1881
1882    info->personality = PER_LINUX_FDPIC;
1883    info->loadmap_addr = sp;
1884
1885    return sp;
1886}
1887
1888static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1889                                   struct elfhdr *exec,
1890                                   struct image_info *info,
1891                                   struct image_info *interp_info)
1892{
1893    abi_ulong sp;
1894    abi_ulong u_argc, u_argv, u_envp, u_auxv;
1895    int size;
1896    int i;
1897    abi_ulong u_rand_bytes;
1898    uint8_t k_rand_bytes[16];
1899    abi_ulong u_platform;
1900    const char *k_platform;
1901    const int n = sizeof(elf_addr_t);
1902
1903    sp = p;
1904
1905    /* Needs to be before we load the env/argc/... */
1906    if (elf_is_fdpic(exec)) {
1907        /* Need 4 byte alignment for these structs */
1908        sp &= ~3;
1909        sp = loader_build_fdpic_loadmap(info, sp);
1910        info->other_info = interp_info;
1911        if (interp_info) {
1912            interp_info->other_info = info;
1913            sp = loader_build_fdpic_loadmap(interp_info, sp);
1914            info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1915            info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1916        } else {
1917            info->interpreter_loadmap_addr = 0;
1918            info->interpreter_pt_dynamic_addr = 0;
1919        }
1920    }
1921
1922    u_platform = 0;
1923    k_platform = ELF_PLATFORM;
1924    if (k_platform) {
1925        size_t len = strlen(k_platform) + 1;
1926        if (STACK_GROWS_DOWN) {
1927            sp -= (len + n - 1) & ~(n - 1);
1928            u_platform = sp;
1929            /* FIXME - check return value of memcpy_to_target() for failure */
1930            memcpy_to_target(sp, k_platform, len);
1931        } else {
1932            memcpy_to_target(sp, k_platform, len);
1933            u_platform = sp;
1934            sp += len + 1;
1935        }
1936    }
1937
1938    /* Provide 16 byte alignment for the PRNG, and basic alignment for
1939     * the argv and envp pointers.
1940     */
1941    if (STACK_GROWS_DOWN) {
1942        sp = QEMU_ALIGN_DOWN(sp, 16);
1943    } else {
1944        sp = QEMU_ALIGN_UP(sp, 16);
1945    }
1946
1947    /*
1948     * Generate 16 random bytes for userspace PRNG seeding.
1949     */
1950    qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1951    if (STACK_GROWS_DOWN) {
1952        sp -= 16;
1953        u_rand_bytes = sp;
1954        /* FIXME - check return value of memcpy_to_target() for failure */
1955        memcpy_to_target(sp, k_rand_bytes, 16);
1956    } else {
1957        memcpy_to_target(sp, k_rand_bytes, 16);
1958        u_rand_bytes = sp;
1959        sp += 16;
1960    }
1961
1962    size = (DLINFO_ITEMS + 1) * 2;
1963    if (k_platform)
1964        size += 2;
1965#ifdef DLINFO_ARCH_ITEMS
1966    size += DLINFO_ARCH_ITEMS * 2;
1967#endif
1968#ifdef ELF_HWCAP2
1969    size += 2;
1970#endif
1971    info->auxv_len = size * n;
1972
1973    size += envc + argc + 2;
1974    size += 1;  /* argc itself */
1975    size *= n;
1976
1977    /* Allocate space and finalize stack alignment for entry now.  */
1978    if (STACK_GROWS_DOWN) {
1979        u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1980        sp = u_argc;
1981    } else {
1982        u_argc = sp;
1983        sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1984    }
1985
1986    u_argv = u_argc + n;
1987    u_envp = u_argv + (argc + 1) * n;
1988    u_auxv = u_envp + (envc + 1) * n;
1989    info->saved_auxv = u_auxv;
1990    info->arg_start = u_argv;
1991    info->arg_end = u_argv + argc * n;
1992
1993    /* This is correct because Linux defines
1994     * elf_addr_t as Elf32_Off / Elf64_Off
1995     */
1996#define NEW_AUX_ENT(id, val) do {               \
1997        put_user_ual(id, u_auxv);  u_auxv += n; \
1998        put_user_ual(val, u_auxv); u_auxv += n; \
1999    } while(0)
2000
2001#ifdef ARCH_DLINFO
2002    /*
2003     * ARCH_DLINFO must come first so platform specific code can enforce
2004     * special alignment requirements on the AUXV if necessary (eg. PPC).
2005     */
2006    ARCH_DLINFO;
2007#endif
2008    /* There must be exactly DLINFO_ITEMS entries here, or the assert
2009     * on info->auxv_len will trigger.
2010     */
2011    NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2012    NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2013    NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2014    if ((info->alignment & ~qemu_host_page_mask) != 0) {
2015        /* Target doesn't support host page size alignment */
2016        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2017    } else {
2018        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2019                                               qemu_host_page_size)));
2020    }
2021    NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2022    NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2023    NEW_AUX_ENT(AT_ENTRY, info->entry);
2024    NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2025    NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2026    NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2027    NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2028    NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2029    NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2030    NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2031    NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2032
2033#ifdef ELF_HWCAP2
2034    NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2035#endif
2036
2037    if (u_platform) {
2038        NEW_AUX_ENT(AT_PLATFORM, u_platform);
2039    }
2040    NEW_AUX_ENT (AT_NULL, 0);
2041#undef NEW_AUX_ENT
2042
2043    /* Check that our initial calculation of the auxv length matches how much
2044     * we actually put into it.
2045     */
2046    assert(info->auxv_len == u_auxv - info->saved_auxv);
2047
2048    put_user_ual(argc, u_argc);
2049
2050    p = info->arg_strings;
2051    for (i = 0; i < argc; ++i) {
2052        put_user_ual(p, u_argv);
2053        u_argv += n;
2054        p += target_strlen(p) + 1;
2055    }
2056    put_user_ual(0, u_argv);
2057
2058    p = info->env_strings;
2059    for (i = 0; i < envc; ++i) {
2060        put_user_ual(p, u_envp);
2061        u_envp += n;
2062        p += target_strlen(p) + 1;
2063    }
2064    put_user_ual(0, u_envp);
2065
2066    return sp;
2067}
2068
2069unsigned long init_guest_space(unsigned long host_start,
2070                               unsigned long host_size,
2071                               unsigned long guest_start,
2072                               bool fixed)
2073{
2074    /* In order to use host shmat, we must be able to honor SHMLBA.  */
2075    unsigned long align = MAX(SHMLBA, qemu_host_page_size);
2076    unsigned long current_start, aligned_start;
2077    int flags;
2078
2079    assert(host_start || host_size);
2080
2081    /* If just a starting address is given, then just verify that
2082     * address.  */
2083    if (host_start && !host_size) {
2084#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2085        if (init_guest_commpage(host_start, host_size) != 1) {
2086            return (unsigned long)-1;
2087        }
2088#endif
2089        return host_start;
2090    }
2091
2092    /* Setup the initial flags and start address.  */
2093    current_start = host_start & -align;
2094    flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2095    if (fixed) {
2096        flags |= MAP_FIXED;
2097    }
2098
2099    /* Otherwise, a non-zero size region of memory needs to be mapped
2100     * and validated.  */
2101
2102#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2103    /* On 32-bit ARM, we need to map not just the usable memory, but
2104     * also the commpage.  Try to find a suitable place by allocating
2105     * a big chunk for all of it.  If host_start, then the naive
2106     * strategy probably does good enough.
2107     */
2108    if (!host_start) {
2109        unsigned long guest_full_size, host_full_size, real_start;
2110
2111        guest_full_size =
2112            (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2113        host_full_size = guest_full_size - guest_start;
2114        real_start = (unsigned long)
2115            mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2116        if (real_start == (unsigned long)-1) {
2117            if (host_size < host_full_size - qemu_host_page_size) {
2118                /* We failed to map a continous segment, but we're
2119                 * allowed to have a gap between the usable memory and
2120                 * the commpage where other things can be mapped.
2121                 * This sparseness gives us more flexibility to find
2122                 * an address range.
2123                 */
2124                goto naive;
2125            }
2126            return (unsigned long)-1;
2127        }
2128        munmap((void *)real_start, host_full_size);
2129        if (real_start & (align - 1)) {
2130            /* The same thing again, but with extra
2131             * so that we can shift around alignment.
2132             */
2133            unsigned long real_size = host_full_size + qemu_host_page_size;
2134            real_start = (unsigned long)
2135                mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2136            if (real_start == (unsigned long)-1) {
2137                if (host_size < host_full_size - qemu_host_page_size) {
2138                    goto naive;
2139                }
2140                return (unsigned long)-1;
2141            }
2142            munmap((void *)real_start, real_size);
2143            real_start = ROUND_UP(real_start, align);
2144        }
2145        current_start = real_start;
2146    }
2147 naive:
2148#endif
2149
2150    while (1) {
2151        unsigned long real_start, real_size, aligned_size;
2152        aligned_size = real_size = host_size;
2153
2154        /* Do not use mmap_find_vma here because that is limited to the
2155         * guest address space.  We are going to make the
2156         * guest address space fit whatever we're given.
2157         */
2158        real_start = (unsigned long)
2159            mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2160        if (real_start == (unsigned long)-1) {
2161            return (unsigned long)-1;
2162        }
2163
2164        /* Check to see if the address is valid.  */
2165        if (host_start && real_start != current_start) {
2166            goto try_again;
2167        }
2168
2169        /* Ensure the address is properly aligned.  */
2170        if (real_start & (align - 1)) {
2171            /* Ideally, we adjust like
2172             *
2173             *    pages: [  ][  ][  ][  ][  ]
2174             *      old:   [   real   ]
2175             *             [ aligned  ]
2176             *      new:   [     real     ]
2177             *               [ aligned  ]
2178             *
2179             * But if there is something else mapped right after it,
2180             * then obviously it won't have room to grow, and the
2181             * kernel will put the new larger real someplace else with
2182             * unknown alignment (if we made it to here, then
2183             * fixed=false).  Which is why we grow real by a full page
2184             * size, instead of by part of one; so that even if we get
2185             * moved, we can still guarantee alignment.  But this does
2186             * mean that there is a padding of < 1 page both before
2187             * and after the aligned range; the "after" could could
2188             * cause problems for ARM emulation where it could butt in
2189             * to where we need to put the commpage.
2190             */
2191            munmap((void *)real_start, host_size);
2192            real_size = aligned_size + qemu_host_page_size;
2193            real_start = (unsigned long)
2194                mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2195            if (real_start == (unsigned long)-1) {
2196                return (unsigned long)-1;
2197            }
2198            aligned_start = ROUND_UP(real_start, align);
2199        } else {
2200            aligned_start = real_start;
2201        }
2202
2203#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2204        /* On 32-bit ARM, we need to also be able to map the commpage.  */
2205        int valid = init_guest_commpage(aligned_start - guest_start,
2206                                        aligned_size + guest_start);
2207        if (valid == -1) {
2208            munmap((void *)real_start, real_size);
2209            return (unsigned long)-1;
2210        } else if (valid == 0) {
2211            goto try_again;
2212        }
2213#endif
2214
2215        /* If nothing has said `return -1` or `goto try_again` yet,
2216         * then the address we have is good.
2217         */
2218        break;
2219
2220    try_again:
2221        /* That address didn't work.  Unmap and try a different one.
2222         * The address the host picked because is typically right at
2223         * the top of the host address space and leaves the guest with
2224         * no usable address space.  Resort to a linear search.  We
2225         * already compensated for mmap_min_addr, so this should not
2226         * happen often.  Probably means we got unlucky and host
2227         * address space randomization put a shared library somewhere
2228         * inconvenient.
2229         *
2230         * This is probably a good strategy if host_start, but is
2231         * probably a bad strategy if not, which means we got here
2232         * because of trouble with ARM commpage setup.
2233         */
2234        munmap((void *)real_start, real_size);
2235        current_start += align;
2236        if (host_start == current_start) {
2237            /* Theoretically possible if host doesn't have any suitably
2238             * aligned areas.  Normally the first mmap will fail.
2239             */
2240            return (unsigned long)-1;
2241        }
2242    }
2243
2244    qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2245
2246    return aligned_start;
2247}
2248
2249static void probe_guest_base(const char *image_name,
2250                             abi_ulong loaddr, abi_ulong hiaddr)
2251{
2252    /* Probe for a suitable guest base address, if the user has not set
2253     * it explicitly, and set guest_base appropriately.
2254     * In case of error we will print a suitable message and exit.
2255     */
2256    const char *errmsg;
2257    if (!have_guest_base && !reserved_va) {
2258        unsigned long host_start, real_start, host_size;
2259
2260        /* Round addresses to page boundaries.  */
2261        loaddr &= qemu_host_page_mask;
2262        hiaddr = HOST_PAGE_ALIGN(hiaddr);
2263
2264        if (loaddr < mmap_min_addr) {
2265            host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2266        } else {
2267            host_start = loaddr;
2268            if (host_start != loaddr) {
2269                errmsg = "Address overflow loading ELF binary";
2270                goto exit_errmsg;
2271            }
2272        }
2273        host_size = hiaddr - loaddr;
2274
2275        /* Setup the initial guest memory space with ranges gleaned from
2276         * the ELF image that is being loaded.
2277         */
2278        real_start = init_guest_space(host_start, host_size, loaddr, false);
2279        if (real_start == (unsigned long)-1) {
2280            errmsg = "Unable to find space for application";
2281            goto exit_errmsg;
2282        }
2283        guest_base = real_start - loaddr;
2284
2285        qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2286                      TARGET_ABI_FMT_lx " to 0x%lx\n",
2287                      loaddr, real_start);
2288    }
2289    return;
2290
2291exit_errmsg:
2292    fprintf(stderr, "%s: %s\n", image_name, errmsg);
2293    exit(-1);
2294}
2295
2296
2297/* Load an ELF image into the address space.
2298
2299   IMAGE_NAME is the filename of the image, to use in error messages.
2300   IMAGE_FD is the open file descriptor for the image.
2301
2302   BPRM_BUF is a copy of the beginning of the file; this of course
2303   contains the elf file header at offset 0.  It is assumed that this
2304   buffer is sufficiently aligned to present no problems to the host
2305   in accessing data at aligned offsets within the buffer.
2306
2307   On return: INFO values will be filled in, as necessary or available.  */
2308
2309static void load_elf_image(const char *image_name, int image_fd,
2310                           struct image_info *info, char **pinterp_name,
2311                           char bprm_buf[BPRM_BUF_SIZE])
2312{
2313    struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2314    struct elf_phdr *phdr;
2315    abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2316    int i, retval;
2317    const char *errmsg;
2318
2319    /* First of all, some simple consistency checks */
2320    errmsg = "Invalid ELF image for this architecture";
2321    if (!elf_check_ident(ehdr)) {
2322        goto exit_errmsg;
2323    }
2324    bswap_ehdr(ehdr);
2325    if (!elf_check_ehdr(ehdr)) {
2326        goto exit_errmsg;
2327    }
2328
2329    i = ehdr->e_phnum * sizeof(struct elf_phdr);
2330    if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2331        phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2332    } else {
2333        phdr = (struct elf_phdr *) alloca(i);
2334        retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2335        if (retval != i) {
2336            goto exit_read;
2337        }
2338    }
2339    bswap_phdr(phdr, ehdr->e_phnum);
2340
2341    info->nsegs = 0;
2342    info->pt_dynamic_addr = 0;
2343
2344    mmap_lock();
2345
2346    /* Find the maximum size of the image and allocate an appropriate
2347       amount of memory to handle that.  */
2348    loaddr = -1, hiaddr = 0;
2349    info->alignment = 0;
2350    for (i = 0; i < ehdr->e_phnum; ++i) {
2351        if (phdr[i].p_type == PT_LOAD) {
2352            abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2353            if (a < loaddr) {
2354                loaddr = a;
2355            }
2356            a = phdr[i].p_vaddr + phdr[i].p_memsz;
2357            if (a > hiaddr) {
2358                hiaddr = a;
2359            }
2360            ++info->nsegs;
2361            info->alignment |= phdr[i].p_align;
2362        }
2363    }
2364
2365    load_addr = loaddr;
2366    if (ehdr->e_type == ET_DYN) {
2367        /* The image indicates that it can be loaded anywhere.  Find a
2368           location that can hold the memory space required.  If the
2369           image is pre-linked, LOADDR will be non-zero.  Since we do
2370           not supply MAP_FIXED here we'll use that address if and
2371           only if it remains available.  */
2372        load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2373                                MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2374                                -1, 0);
2375        if (load_addr == -1) {
2376            goto exit_perror;
2377        }
2378    } else if (pinterp_name != NULL) {
2379        /* This is the main executable.  Make sure that the low
2380           address does not conflict with MMAP_MIN_ADDR or the
2381           QEMU application itself.  */
2382        probe_guest_base(image_name, loaddr, hiaddr);
2383    }
2384    load_bias = load_addr - loaddr;
2385
2386    if (elf_is_fdpic(ehdr)) {
2387        struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2388            g_malloc(sizeof(*loadsegs) * info->nsegs);
2389
2390        for (i = 0; i < ehdr->e_phnum; ++i) {
2391            switch (phdr[i].p_type) {
2392            case PT_DYNAMIC:
2393                info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2394                break;
2395            case PT_LOAD:
2396                loadsegs->addr = phdr[i].p_vaddr + load_bias;
2397                loadsegs->p_vaddr = phdr[i].p_vaddr;
2398                loadsegs->p_memsz = phdr[i].p_memsz;
2399                ++loadsegs;
2400                break;
2401            }
2402        }
2403    }
2404
2405    info->load_bias = load_bias;
2406    info->code_offset = load_bias;
2407    info->data_offset = load_bias;
2408    info->load_addr = load_addr;
2409    info->entry = ehdr->e_entry + load_bias;
2410    info->start_code = -1;
2411    info->end_code = 0;
2412    info->start_data = -1;
2413    info->end_data = 0;
2414    info->brk = 0;
2415    info->elf_flags = ehdr->e_flags;
2416
2417    for (i = 0; i < ehdr->e_phnum; i++) {
2418        struct elf_phdr *eppnt = phdr + i;
2419        if (eppnt->p_type == PT_LOAD) {
2420            abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2421            int elf_prot = 0;
2422
2423            if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2424            if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2425            if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2426
2427            vaddr = load_bias + eppnt->p_vaddr;
2428            vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2429            vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2430            vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2431
2432            /*
2433             * Some segments may be completely empty without any backing file
2434             * segment, in that case just let zero_bss allocate an empty buffer
2435             * for it.
2436             */
2437            if (eppnt->p_filesz != 0) {
2438                error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2439                                    MAP_PRIVATE | MAP_FIXED,
2440                                    image_fd, eppnt->p_offset - vaddr_po);
2441
2442                if (error == -1) {
2443                    goto exit_perror;
2444                }
2445            }
2446
2447            vaddr_ef = vaddr + eppnt->p_filesz;
2448            vaddr_em = vaddr + eppnt->p_memsz;
2449
2450            /* If the load segment requests extra zeros (e.g. bss), map it.  */
2451            if (vaddr_ef < vaddr_em) {
2452                zero_bss(vaddr_ef, vaddr_em, elf_prot);
2453            }
2454
2455            /* Find the full program boundaries.  */
2456            if (elf_prot & PROT_EXEC) {
2457                if (vaddr < info->start_code) {
2458                    info->start_code = vaddr;
2459                }
2460                if (vaddr_ef > info->end_code) {
2461                    info->end_code = vaddr_ef;
2462                }
2463            }
2464            if (elf_prot & PROT_WRITE) {
2465                if (vaddr < info->start_data) {
2466                    info->start_data = vaddr;
2467                }
2468                if (vaddr_ef > info->end_data) {
2469                    info->end_data = vaddr_ef;
2470                }
2471                if (vaddr_em > info->brk) {
2472                    info->brk = vaddr_em;
2473                }
2474            }
2475        } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2476            char *interp_name;
2477
2478            if (*pinterp_name) {
2479                errmsg = "Multiple PT_INTERP entries";
2480                goto exit_errmsg;
2481            }
2482            interp_name = malloc(eppnt->p_filesz);
2483            if (!interp_name) {
2484                goto exit_perror;
2485            }
2486
2487            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2488                memcpy(interp_name, bprm_buf + eppnt->p_offset,
2489                       eppnt->p_filesz);
2490            } else {
2491                retval = pread(image_fd, interp_name, eppnt->p_filesz,
2492                               eppnt->p_offset);
2493                if (retval != eppnt->p_filesz) {
2494                    goto exit_perror;
2495                }
2496            }
2497            if (interp_name[eppnt->p_filesz - 1] != 0) {
2498                errmsg = "Invalid PT_INTERP entry";
2499                goto exit_errmsg;
2500            }
2501            *pinterp_name = interp_name;
2502#ifdef TARGET_MIPS
2503        } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2504            Mips_elf_abiflags_v0 abiflags;
2505            if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2506                errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2507                goto exit_errmsg;
2508            }
2509            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2510                memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2511                       sizeof(Mips_elf_abiflags_v0));
2512            } else {
2513                retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2514                               eppnt->p_offset);
2515                if (retval != sizeof(Mips_elf_abiflags_v0)) {
2516                    goto exit_perror;
2517                }
2518            }
2519            bswap_mips_abiflags(&abiflags);
2520            info->fp_abi = abiflags.fp_abi;
2521#endif
2522        }
2523    }
2524
2525    if (info->end_data == 0) {
2526        info->start_data = info->end_code;
2527        info->end_data = info->end_code;
2528        info->brk = info->end_code;
2529    }
2530
2531    if (qemu_log_enabled()) {
2532        load_symbols(ehdr, image_fd, load_bias);
2533    }
2534
2535    mmap_unlock();
2536
2537    close(image_fd);
2538    return;
2539
2540 exit_read:
2541    if (retval >= 0) {
2542        errmsg = "Incomplete read of file header";
2543        goto exit_errmsg;
2544    }
2545 exit_perror:
2546    errmsg = strerror(errno);
2547 exit_errmsg:
2548    fprintf(stderr, "%s: %s\n", image_name, errmsg);
2549    exit(-1);
2550}
2551
2552static void load_elf_interp(const char *filename, struct image_info *info,
2553                            char bprm_buf[BPRM_BUF_SIZE])
2554{
2555    int fd, retval;
2556
2557    fd = open(path(filename), O_RDONLY);
2558    if (fd < 0) {
2559        goto exit_perror;
2560    }
2561
2562    retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2563    if (retval < 0) {
2564        goto exit_perror;
2565    }
2566    if (retval < BPRM_BUF_SIZE) {
2567        memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2568    }
2569
2570    load_elf_image(filename, fd, info, NULL, bprm_buf);
2571    return;
2572
2573 exit_perror:
2574    fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2575    exit(-1);
2576}
2577
2578static int symfind(const void *s0, const void *s1)
2579{
2580    target_ulong addr = *(target_ulong *)s0;
2581    struct elf_sym *sym = (struct elf_sym *)s1;
2582    int result = 0;
2583    if (addr < sym->st_value) {
2584        result = -1;
2585    } else if (addr >= sym->st_value + sym->st_size) {
2586        result = 1;
2587    }
2588    return result;
2589}
2590
2591static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2592{
2593#if ELF_CLASS == ELFCLASS32
2594    struct elf_sym *syms = s->disas_symtab.elf32;
2595#else
2596    struct elf_sym *syms = s->disas_symtab.elf64;
2597#endif
2598
2599    // binary search
2600    struct elf_sym *sym;
2601
2602    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2603    if (sym != NULL) {
2604        return s->disas_strtab + sym->st_name;
2605    }
2606
2607    return "";
2608}
2609
2610/* FIXME: This should use elf_ops.h  */
2611static int symcmp(const void *s0, const void *s1)
2612{
2613    struct elf_sym *sym0 = (struct elf_sym *)s0;
2614    struct elf_sym *sym1 = (struct elf_sym *)s1;
2615    return (sym0->st_value < sym1->st_value)
2616        ? -1
2617        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2618}
2619
2620/* Best attempt to load symbols from this ELF object. */
2621static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2622{
2623    int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2624    uint64_t segsz;
2625    struct elf_shdr *shdr;
2626    char *strings = NULL;
2627    struct syminfo *s = NULL;
2628    struct elf_sym *new_syms, *syms = NULL;
2629
2630    shnum = hdr->e_shnum;
2631    i = shnum * sizeof(struct elf_shdr);
2632    shdr = (struct elf_shdr *)alloca(i);
2633    if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2634        return;
2635    }
2636
2637    bswap_shdr(shdr, shnum);
2638    for (i = 0; i < shnum; ++i) {
2639        if (shdr[i].sh_type == SHT_SYMTAB) {
2640            sym_idx = i;
2641            str_idx = shdr[i].sh_link;
2642            goto found;
2643        }
2644    }
2645
2646    /* There will be no symbol table if the file was stripped.  */
2647    return;
2648
2649 found:
2650    /* Now know where the strtab and symtab are.  Snarf them.  */
2651    s = g_try_new(struct syminfo, 1);
2652    if (!s) {
2653        goto give_up;
2654    }
2655
2656    segsz = shdr[str_idx].sh_size;
2657    s->disas_strtab = strings = g_try_malloc(segsz);
2658    if (!strings ||
2659        pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2660        goto give_up;
2661    }
2662
2663    segsz = shdr[sym_idx].sh_size;
2664    syms = g_try_malloc(segsz);
2665    if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2666        goto give_up;
2667    }
2668
2669    if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2670        /* Implausibly large symbol table: give up rather than ploughing
2671         * on with the number of symbols calculation overflowing
2672         */
2673        goto give_up;
2674    }
2675    nsyms = segsz / sizeof(struct elf_sym);
2676    for (i = 0; i < nsyms; ) {
2677        bswap_sym(syms + i);
2678        /* Throw away entries which we do not need.  */
2679        if (syms[i].st_shndx == SHN_UNDEF
2680            || syms[i].st_shndx >= SHN_LORESERVE
2681            || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2682            if (i < --nsyms) {
2683                syms[i] = syms[nsyms];
2684            }
2685        } else {
2686#if defined(TARGET_ARM) || defined (TARGET_MIPS)
2687            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2688            syms[i].st_value &= ~(target_ulong)1;
2689#endif
2690            syms[i].st_value += load_bias;
2691            i++;
2692        }
2693    }
2694
2695    /* No "useful" symbol.  */
2696    if (nsyms == 0) {
2697        goto give_up;
2698    }
2699
2700    /* Attempt to free the storage associated with the local symbols
2701       that we threw away.  Whether or not this has any effect on the
2702       memory allocation depends on the malloc implementation and how
2703       many symbols we managed to discard.  */
2704    new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2705    if (new_syms == NULL) {
2706        goto give_up;
2707    }
2708    syms = new_syms;
2709
2710    qsort(syms, nsyms, sizeof(*syms), symcmp);
2711
2712    s->disas_num_syms = nsyms;
2713#if ELF_CLASS == ELFCLASS32
2714    s->disas_symtab.elf32 = syms;
2715#else
2716    s->disas_symtab.elf64 = syms;
2717#endif
2718    s->lookup_symbol = lookup_symbolxx;
2719    s->next = syminfos;
2720    syminfos = s;
2721
2722    return;
2723
2724give_up:
2725    g_free(s);
2726    g_free(strings);
2727    g_free(syms);
2728}
2729
2730uint32_t get_elf_eflags(int fd)
2731{
2732    struct elfhdr ehdr;
2733    off_t offset;
2734    int ret;
2735
2736    /* Read ELF header */
2737    offset = lseek(fd, 0, SEEK_SET);
2738    if (offset == (off_t) -1) {
2739        return 0;
2740    }
2741    ret = read(fd, &ehdr, sizeof(ehdr));
2742    if (ret < sizeof(ehdr)) {
2743        return 0;
2744    }
2745    offset = lseek(fd, offset, SEEK_SET);
2746    if (offset == (off_t) -1) {
2747        return 0;
2748    }
2749
2750    /* Check ELF signature */
2751    if (!elf_check_ident(&ehdr)) {
2752        return 0;
2753    }
2754
2755    /* check header */
2756    bswap_ehdr(&ehdr);
2757    if (!elf_check_ehdr(&ehdr)) {
2758        return 0;
2759    }
2760
2761    /* return architecture id */
2762    return ehdr.e_flags;
2763}
2764
2765int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2766{
2767    struct image_info interp_info;
2768    struct elfhdr elf_ex;
2769    char *elf_interpreter = NULL;
2770    char *scratch;
2771
2772    memset(&interp_info, 0, sizeof(interp_info));
2773#ifdef TARGET_MIPS
2774    interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2775#endif
2776
2777    info->start_mmap = (abi_ulong)ELF_START_MMAP;
2778
2779    load_elf_image(bprm->filename, bprm->fd, info,
2780                   &elf_interpreter, bprm->buf);
2781
2782    /* ??? We need a copy of the elf header for passing to create_elf_tables.
2783       If we do nothing, we'll have overwritten this when we re-use bprm->buf
2784       when we load the interpreter.  */
2785    elf_ex = *(struct elfhdr *)bprm->buf;
2786
2787    /* Do this so that we can load the interpreter, if need be.  We will
2788       change some of these later */
2789    bprm->p = setup_arg_pages(bprm, info);
2790
2791    scratch = g_new0(char, TARGET_PAGE_SIZE);
2792    if (STACK_GROWS_DOWN) {
2793        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2794                                   bprm->p, info->stack_limit);
2795        info->file_string = bprm->p;
2796        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2797                                   bprm->p, info->stack_limit);
2798        info->env_strings = bprm->p;
2799        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2800                                   bprm->p, info->stack_limit);
2801        info->arg_strings = bprm->p;
2802    } else {
2803        info->arg_strings = bprm->p;
2804        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2805                                   bprm->p, info->stack_limit);
2806        info->env_strings = bprm->p;
2807        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2808                                   bprm->p, info->stack_limit);
2809        info->file_string = bprm->p;
2810        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2811                                   bprm->p, info->stack_limit);
2812    }
2813
2814    g_free(scratch);
2815
2816    if (!bprm->p) {
2817        fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2818        exit(-1);
2819    }
2820
2821    if (elf_interpreter) {
2822        load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2823
2824        /* If the program interpreter is one of these two, then assume
2825           an iBCS2 image.  Otherwise assume a native linux image.  */
2826
2827        if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2828            || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2829            info->personality = PER_SVR4;
2830
2831            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2832               and some applications "depend" upon this behavior.  Since
2833               we do not have the power to recompile these, we emulate
2834               the SVr4 behavior.  Sigh.  */
2835            target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2836                        MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2837        }
2838#ifdef TARGET_MIPS
2839        info->interp_fp_abi = interp_info.fp_abi;
2840#endif
2841    }
2842
2843    bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2844                                info, (elf_interpreter ? &interp_info : NULL));
2845    info->start_stack = bprm->p;
2846
2847    /* If we have an interpreter, set that as the program's entry point.
2848       Copy the load_bias as well, to help PPC64 interpret the entry
2849       point as a function descriptor.  Do this after creating elf tables
2850       so that we copy the original program entry point into the AUXV.  */
2851    if (elf_interpreter) {
2852        info->load_bias = interp_info.load_bias;
2853        info->entry = interp_info.entry;
2854        free(elf_interpreter);
2855    }
2856
2857#ifdef USE_ELF_CORE_DUMP
2858    bprm->core_dump = &elf_core_dump;
2859#endif
2860
2861    return 0;
2862}
2863
2864#ifdef USE_ELF_CORE_DUMP
2865/*
2866 * Definitions to generate Intel SVR4-like core files.
2867 * These mostly have the same names as the SVR4 types with "target_elf_"
2868 * tacked on the front to prevent clashes with linux definitions,
2869 * and the typedef forms have been avoided.  This is mostly like
2870 * the SVR4 structure, but more Linuxy, with things that Linux does
2871 * not support and which gdb doesn't really use excluded.
2872 *
2873 * Fields we don't dump (their contents is zero) in linux-user qemu
2874 * are marked with XXX.
2875 *
2876 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2877 *
2878 * Porting ELF coredump for target is (quite) simple process.  First you
2879 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2880 * the target resides):
2881 *
2882 * #define USE_ELF_CORE_DUMP
2883 *
2884 * Next you define type of register set used for dumping.  ELF specification
2885 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2886 *
2887 * typedef <target_regtype> target_elf_greg_t;
2888 * #define ELF_NREG <number of registers>
2889 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2890 *
2891 * Last step is to implement target specific function that copies registers
2892 * from given cpu into just specified register set.  Prototype is:
2893 *
2894 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2895 *                                const CPUArchState *env);
2896 *
2897 * Parameters:
2898 *     regs - copy register values into here (allocated and zeroed by caller)
2899 *     env - copy registers from here
2900 *
2901 * Example for ARM target is provided in this file.
2902 */
2903
2904/* An ELF note in memory */
2905struct memelfnote {
2906    const char *name;
2907    size_t     namesz;
2908    size_t     namesz_rounded;
2909    int        type;
2910    size_t     datasz;
2911    size_t     datasz_rounded;
2912    void       *data;
2913    size_t     notesz;
2914};
2915
2916struct target_elf_siginfo {
2917    abi_int    si_signo; /* signal number */
2918    abi_int    si_code;  /* extra code */
2919    abi_int    si_errno; /* errno */
2920};
2921
2922struct target_elf_prstatus {
2923    struct target_elf_siginfo pr_info;      /* Info associated with signal */
2924    abi_short          pr_cursig;    /* Current signal */
2925    abi_ulong          pr_sigpend;   /* XXX */
2926    abi_ulong          pr_sighold;   /* XXX */
2927    target_pid_t       pr_pid;
2928    target_pid_t       pr_ppid;
2929    target_pid_t       pr_pgrp;
2930    target_pid_t       pr_sid;
2931    struct target_timeval pr_utime;  /* XXX User time */
2932    struct target_timeval pr_stime;  /* XXX System time */
2933    struct target_timeval pr_cutime; /* XXX Cumulative user time */
2934    struct target_timeval pr_cstime; /* XXX Cumulative system time */
2935    target_elf_gregset_t      pr_reg;       /* GP registers */
2936    abi_int            pr_fpvalid;   /* XXX */
2937};
2938
2939#define ELF_PRARGSZ     (80) /* Number of chars for args */
2940
2941struct target_elf_prpsinfo {
2942    char         pr_state;       /* numeric process state */
2943    char         pr_sname;       /* char for pr_state */
2944    char         pr_zomb;        /* zombie */
2945    char         pr_nice;        /* nice val */
2946    abi_ulong    pr_flag;        /* flags */
2947    target_uid_t pr_uid;
2948    target_gid_t pr_gid;
2949    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2950    /* Lots missing */
2951    char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
2952    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2953};
2954
2955/* Here is the structure in which status of each thread is captured. */
2956struct elf_thread_status {
2957    QTAILQ_ENTRY(elf_thread_status)  ets_link;
2958    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2959#if 0
2960    elf_fpregset_t fpu;             /* NT_PRFPREG */
2961    struct task_struct *thread;
2962    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2963#endif
2964    struct memelfnote notes[1];
2965    int num_notes;
2966};
2967
2968struct elf_note_info {
2969    struct memelfnote   *notes;
2970    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2971    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2972
2973    QTAILQ_HEAD(, elf_thread_status) thread_list;
2974#if 0
2975    /*
2976     * Current version of ELF coredump doesn't support
2977     * dumping fp regs etc.
2978     */
2979    elf_fpregset_t *fpu;
2980    elf_fpxregset_t *xfpu;
2981    int thread_status_size;
2982#endif
2983    int notes_size;
2984    int numnote;
2985};
2986
2987struct vm_area_struct {
2988    target_ulong   vma_start;  /* start vaddr of memory region */
2989    target_ulong   vma_end;    /* end vaddr of memory region */
2990    abi_ulong      vma_flags;  /* protection etc. flags for the region */
2991    QTAILQ_ENTRY(vm_area_struct) vma_link;
2992};
2993
2994struct mm_struct {
2995    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2996    int mm_count;           /* number of mappings */
2997};
2998
2999static struct mm_struct *vma_init(void);
3000static void vma_delete(struct mm_struct *);
3001static int vma_add_mapping(struct mm_struct *, target_ulong,
3002                           target_ulong, abi_ulong);
3003static int vma_get_mapping_count(const struct mm_struct *);
3004static struct vm_area_struct *vma_first(const struct mm_struct *);
3005static struct vm_area_struct *vma_next(struct vm_area_struct *);
3006static abi_ulong vma_dump_size(const struct vm_area_struct *);
3007static int vma_walker(void *priv, target_ulong start, target_ulong end,
3008                      unsigned long flags);
3009
3010static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3011static void fill_note(struct memelfnote *, const char *, int,
3012                      unsigned int, void *);
3013static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3014static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3015static void fill_auxv_note(struct memelfnote *, const TaskState *);
3016static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3017static size_t note_size(const struct memelfnote *);
3018static void free_note_info(struct elf_note_info *);
3019static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3020static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3021static int core_dump_filename(const TaskState *, char *, size_t);
3022
3023static int dump_write(int, const void *, size_t);
3024static int write_note(struct memelfnote *, int);
3025static int write_note_info(struct elf_note_info *, int);
3026
3027#ifdef BSWAP_NEEDED
3028static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3029{
3030    prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3031    prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3032    prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3033    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3034    prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3035    prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3036    prstatus->pr_pid = tswap32(prstatus->pr_pid);
3037    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3038    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3039    prstatus->pr_sid = tswap32(prstatus->pr_sid);
3040    /* cpu times are not filled, so we skip them */
3041    /* regs should be in correct format already */
3042    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3043}
3044
3045static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3046{
3047    psinfo->pr_flag = tswapal(psinfo->pr_flag);
3048    psinfo->pr_uid = tswap16(psinfo->pr_uid);
3049    psinfo->pr_gid = tswap16(psinfo->pr_gid);
3050    psinfo->pr_pid = tswap32(psinfo->pr_pid);
3051    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3052    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3053    psinfo->pr_sid = tswap32(psinfo->pr_sid);
3054}
3055
3056static void bswap_note(struct elf_note *en)
3057{
3058    bswap32s(&en->n_namesz);
3059    bswap32s(&en->n_descsz);
3060    bswap32s(&en->n_type);
3061}
3062#else
3063static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3064static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3065static inline void bswap_note(struct elf_note *en) { }
3066#endif /* BSWAP_NEEDED */
3067
3068/*
3069 * Minimal support for linux memory regions.  These are needed
3070 * when we are finding out what memory exactly belongs to
3071 * emulated process.  No locks needed here, as long as
3072 * thread that received the signal is stopped.
3073 */
3074
3075static struct mm_struct *vma_init(void)
3076{
3077    struct mm_struct *mm;
3078
3079    if ((mm = g_malloc(sizeof (*mm))) == NULL)
3080        return (NULL);
3081
3082    mm->mm_count = 0;
3083    QTAILQ_INIT(&mm->mm_mmap);
3084
3085    return (mm);
3086}
3087
3088static void vma_delete(struct mm_struct *mm)
3089{
3090    struct vm_area_struct *vma;
3091
3092    while ((vma = vma_first(mm)) != NULL) {
3093        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3094        g_free(vma);
3095    }
3096    g_free(mm);
3097}
3098
3099static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3100                           target_ulong end, abi_ulong flags)
3101{
3102    struct vm_area_struct *vma;
3103
3104    if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3105        return (-1);
3106
3107    vma->vma_start = start;
3108    vma->vma_end = end;
3109    vma->vma_flags = flags;
3110
3111    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3112    mm->mm_count++;
3113
3114    return (0);
3115}
3116
3117static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3118{
3119    return (QTAILQ_FIRST(&mm->mm_mmap));
3120}
3121
3122static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3123{
3124    return (QTAILQ_NEXT(vma, vma_link));
3125}
3126
3127static int vma_get_mapping_count(const struct mm_struct *mm)
3128{
3129    return (mm->mm_count);
3130}
3131
3132/*
3133 * Calculate file (dump) size of given memory region.
3134 */
3135static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3136{
3137    /* if we cannot even read the first page, skip it */
3138    if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3139        return (0);
3140
3141    /*
3142     * Usually we don't dump executable pages as they contain
3143     * non-writable code that debugger can read directly from
3144     * target library etc.  However, thread stacks are marked
3145     * also executable so we read in first page of given region
3146     * and check whether it contains elf header.  If there is
3147     * no elf header, we dump it.
3148     */
3149    if (vma->vma_flags & PROT_EXEC) {
3150        char page[TARGET_PAGE_SIZE];
3151
3152        copy_from_user(page, vma->vma_start, sizeof (page));
3153        if ((page[EI_MAG0] == ELFMAG0) &&
3154            (page[EI_MAG1] == ELFMAG1) &&
3155            (page[EI_MAG2] == ELFMAG2) &&
3156            (page[EI_MAG3] == ELFMAG3)) {
3157            /*
3158             * Mappings are possibly from ELF binary.  Don't dump
3159             * them.
3160             */
3161            return (0);
3162        }
3163    }
3164
3165    return (vma->vma_end - vma->vma_start);
3166}
3167
3168static int vma_walker(void *priv, target_ulong start, target_ulong end,
3169                      unsigned long flags)
3170{
3171    struct mm_struct *mm = (struct mm_struct *)priv;
3172
3173    vma_add_mapping(mm, start, end, flags);
3174    return (0);
3175}
3176
3177static void fill_note(struct memelfnote *note, const char *name, int type,
3178                      unsigned int sz, void *data)
3179{
3180    unsigned int namesz;
3181
3182    namesz = strlen(name) + 1;
3183    note->name = name;
3184    note->namesz = namesz;
3185    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3186    note->type = type;
3187    note->datasz = sz;
3188    note->datasz_rounded = roundup(sz, sizeof (int32_t));
3189
3190    note->data = data;
3191
3192    /*
3193     * We calculate rounded up note size here as specified by
3194     * ELF document.
3195     */
3196    note->notesz = sizeof (struct elf_note) +
3197        note->namesz_rounded + note->datasz_rounded;
3198}
3199
3200static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3201                            uint32_t flags)
3202{
3203    (void) memset(elf, 0, sizeof(*elf));
3204
3205    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3206    elf->e_ident[EI_CLASS] = ELF_CLASS;
3207    elf->e_ident[EI_DATA] = ELF_DATA;
3208    elf->e_ident[EI_VERSION] = EV_CURRENT;
3209    elf->e_ident[EI_OSABI] = ELF_OSABI;
3210
3211    elf->e_type = ET_CORE;
3212    elf->e_machine = machine;
3213    elf->e_version = EV_CURRENT;
3214    elf->e_phoff = sizeof(struct elfhdr);
3215    elf->e_flags = flags;
3216    elf->e_ehsize = sizeof(struct elfhdr);
3217    elf->e_phentsize = sizeof(struct elf_phdr);
3218    elf->e_phnum = segs;
3219
3220    bswap_ehdr(elf);
3221}
3222
3223static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3224{
3225    phdr->p_type = PT_NOTE;
3226    phdr->p_offset = offset;
3227    phdr->p_vaddr = 0;
3228    phdr->p_paddr = 0;
3229    phdr->p_filesz = sz;
3230    phdr->p_memsz = 0;
3231    phdr->p_flags = 0;
3232    phdr->p_align = 0;
3233
3234    bswap_phdr(phdr, 1);
3235}
3236
3237static size_t note_size(const struct memelfnote *note)
3238{
3239    return (note->notesz);
3240}
3241
3242static void fill_prstatus(struct target_elf_prstatus *prstatus,
3243                          const TaskState *ts, int signr)
3244{
3245    (void) memset(prstatus, 0, sizeof (*prstatus));
3246    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3247    prstatus->pr_pid = ts->ts_tid;
3248    prstatus->pr_ppid = getppid();
3249    prstatus->pr_pgrp = getpgrp();
3250    prstatus->pr_sid = getsid(0);
3251
3252    bswap_prstatus(prstatus);
3253}
3254
3255static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3256{
3257    char *base_filename;
3258    unsigned int i, len;
3259
3260    (void) memset(psinfo, 0, sizeof (*psinfo));
3261
3262    len = ts->info->arg_end - ts->info->arg_start;
3263    if (len >= ELF_PRARGSZ)
3264        len = ELF_PRARGSZ - 1;
3265    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3266        return -EFAULT;
3267    for (i = 0; i < len; i++)
3268        if (psinfo->pr_psargs[i] == 0)
3269            psinfo->pr_psargs[i] = ' ';
3270    psinfo->pr_psargs[len] = 0;
3271
3272    psinfo->pr_pid = getpid();
3273    psinfo->pr_ppid = getppid();
3274    psinfo->pr_pgrp = getpgrp();
3275    psinfo->pr_sid = getsid(0);
3276    psinfo->pr_uid = getuid();
3277    psinfo->pr_gid = getgid();
3278
3279    base_filename = g_path_get_basename(ts->bprm->filename);
3280    /*
3281     * Using strncpy here is fine: at max-length,
3282     * this field is not NUL-terminated.
3283     */
3284    (void) strncpy(psinfo->pr_fname, base_filename,
3285                   sizeof(psinfo->pr_fname));
3286
3287    g_free(base_filename);
3288    bswap_psinfo(psinfo);
3289    return (0);
3290}
3291
3292static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3293{
3294    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3295    elf_addr_t orig_auxv = auxv;
3296    void *ptr;
3297    int len = ts->info->auxv_len;
3298
3299    /*
3300     * Auxiliary vector is stored in target process stack.  It contains
3301     * {type, value} pairs that we need to dump into note.  This is not
3302     * strictly necessary but we do it here for sake of completeness.
3303     */
3304
3305    /* read in whole auxv vector and copy it to memelfnote */
3306    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3307    if (ptr != NULL) {
3308        fill_note(note, "CORE", NT_AUXV, len, ptr);
3309        unlock_user(ptr, auxv, len);
3310    }
3311}
3312
3313/*
3314 * Constructs name of coredump file.  We have following convention
3315 * for the name:
3316 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3317 *
3318 * Returns 0 in case of success, -1 otherwise (errno is set).
3319 */
3320static int core_dump_filename(const TaskState *ts, char *buf,
3321                              size_t bufsize)
3322{
3323    char timestamp[64];
3324    char *base_filename = NULL;
3325    struct timeval tv;
3326    struct tm tm;
3327
3328    assert(bufsize >= PATH_MAX);
3329
3330    if (gettimeofday(&tv, NULL) < 0) {
3331        (void) fprintf(stderr, "unable to get current timestamp: %s",
3332                       strerror(errno));
3333        return (-1);
3334    }
3335
3336    base_filename = g_path_get_basename(ts->bprm->filename);
3337    (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3338                    localtime_r(&tv.tv_sec, &tm));
3339    (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3340                    base_filename, timestamp, (int)getpid());
3341    g_free(base_filename);
3342
3343    return (0);
3344}
3345
3346static int dump_write(int fd, const void *ptr, size_t size)
3347{
3348    const char *bufp = (const char *)ptr;
3349    ssize_t bytes_written, bytes_left;
3350    struct rlimit dumpsize;
3351    off_t pos;
3352
3353    bytes_written = 0;
3354    getrlimit(RLIMIT_CORE, &dumpsize);
3355    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3356        if (errno == ESPIPE) { /* not a seekable stream */
3357            bytes_left = size;
3358        } else {
3359            return pos;
3360        }
3361    } else {
3362        if (dumpsize.rlim_cur <= pos) {
3363            return -1;
3364        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3365            bytes_left = size;
3366        } else {
3367            size_t limit_left=dumpsize.rlim_cur - pos;
3368            bytes_left = limit_left >= size ? size : limit_left ;
3369        }
3370    }
3371
3372    /*
3373     * In normal conditions, single write(2) should do but
3374     * in case of socket etc. this mechanism is more portable.
3375     */
3376    do {
3377        bytes_written = write(fd, bufp, bytes_left);
3378        if (bytes_written < 0) {
3379            if (errno == EINTR)
3380                continue;
3381            return (-1);
3382        } else if (bytes_written == 0) { /* eof */
3383            return (-1);
3384        }
3385        bufp += bytes_written;
3386        bytes_left -= bytes_written;
3387    } while (bytes_left > 0);
3388
3389    return (0);
3390}
3391
3392static int write_note(struct memelfnote *men, int fd)
3393{
3394    struct elf_note en;
3395
3396    en.n_namesz = men->namesz;
3397    en.n_type = men->type;
3398    en.n_descsz = men->datasz;
3399
3400    bswap_note(&en);
3401
3402    if (dump_write(fd, &en, sizeof(en)) != 0)
3403        return (-1);
3404    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3405        return (-1);
3406    if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3407        return (-1);
3408
3409    return (0);
3410}
3411
3412static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3413{
3414    CPUState *cpu = env_cpu((CPUArchState *)env);
3415    TaskState *ts = (TaskState *)cpu->opaque;
3416    struct elf_thread_status *ets;
3417
3418    ets = g_malloc0(sizeof (*ets));
3419    ets->num_notes = 1; /* only prstatus is dumped */
3420    fill_prstatus(&ets->prstatus, ts, 0);
3421    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3422    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3423              &ets->prstatus);
3424
3425    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3426
3427    info->notes_size += note_size(&ets->notes[0]);
3428}
3429
3430static void init_note_info(struct elf_note_info *info)
3431{
3432    /* Initialize the elf_note_info structure so that it is at
3433     * least safe to call free_note_info() on it. Must be
3434     * called before calling fill_note_info().
3435     */
3436    memset(info, 0, sizeof (*info));
3437    QTAILQ_INIT(&info->thread_list);
3438}
3439
3440static int fill_note_info(struct elf_note_info *info,
3441                          long signr, const CPUArchState *env)
3442{
3443#define NUMNOTES 3
3444    CPUState *cpu = env_cpu((CPUArchState *)env);
3445    TaskState *ts = (TaskState *)cpu->opaque;
3446    int i;
3447
3448    info->notes = g_new0(struct memelfnote, NUMNOTES);
3449    if (info->notes == NULL)
3450        return (-ENOMEM);
3451    info->prstatus = g_malloc0(sizeof (*info->prstatus));
3452    if (info->prstatus == NULL)
3453        return (-ENOMEM);
3454    info->psinfo = g_malloc0(sizeof (*info->psinfo));
3455    if (info->prstatus == NULL)
3456        return (-ENOMEM);
3457
3458    /*
3459     * First fill in status (and registers) of current thread
3460     * including process info & aux vector.
3461     */
3462    fill_prstatus(info->prstatus, ts, signr);
3463    elf_core_copy_regs(&info->prstatus->pr_reg, env);
3464    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3465              sizeof (*info->prstatus), info->prstatus);
3466    fill_psinfo(info->psinfo, ts);
3467    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3468              sizeof (*info->psinfo), info->psinfo);
3469    fill_auxv_note(&info->notes[2], ts);
3470    info->numnote = 3;
3471
3472    info->notes_size = 0;
3473    for (i = 0; i < info->numnote; i++)
3474        info->notes_size += note_size(&info->notes[i]);
3475
3476    /* read and fill status of all threads */
3477    cpu_list_lock();
3478    CPU_FOREACH(cpu) {
3479        if (cpu == thread_cpu) {
3480            continue;
3481        }
3482        fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3483    }
3484    cpu_list_unlock();
3485
3486    return (0);
3487}
3488
3489static void free_note_info(struct elf_note_info *info)
3490{
3491    struct elf_thread_status *ets;
3492
3493    while (!QTAILQ_EMPTY(&info->thread_list)) {
3494        ets = QTAILQ_FIRST(&info->thread_list);
3495        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3496        g_free(ets);
3497    }
3498
3499    g_free(info->prstatus);
3500    g_free(info->psinfo);
3501    g_free(info->notes);
3502}
3503
3504static int write_note_info(struct elf_note_info *info, int fd)
3505{
3506    struct elf_thread_status *ets;
3507    int i, error = 0;
3508
3509    /* write prstatus, psinfo and auxv for current thread */
3510    for (i = 0; i < info->numnote; i++)
3511        if ((error = write_note(&info->notes[i], fd)) != 0)
3512            return (error);
3513
3514    /* write prstatus for each thread */
3515    QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3516        if ((error = write_note(&ets->notes[0], fd)) != 0)
3517            return (error);
3518    }
3519
3520    return (0);
3521}
3522
3523/*
3524 * Write out ELF coredump.
3525 *
3526 * See documentation of ELF object file format in:
3527 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3528 *
3529 * Coredump format in linux is following:
3530 *
3531 * 0   +----------------------+         \
3532 *     | ELF header           | ET_CORE  |
3533 *     +----------------------+          |
3534 *     | ELF program headers  |          |--- headers
3535 *     | - NOTE section       |          |
3536 *     | - PT_LOAD sections   |          |
3537 *     +----------------------+         /
3538 *     | NOTEs:               |
3539 *     | - NT_PRSTATUS        |
3540 *     | - NT_PRSINFO         |
3541 *     | - NT_AUXV            |
3542 *     +----------------------+ <-- aligned to target page
3543 *     | Process memory dump  |
3544 *     :                      :
3545 *     .                      .
3546 *     :                      :
3547 *     |                      |
3548 *     +----------------------+
3549 *
3550 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3551 * NT_PRSINFO  -> struct elf_prpsinfo
3552 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3553 *
3554 * Format follows System V format as close as possible.  Current
3555 * version limitations are as follows:
3556 *     - no floating point registers are dumped
3557 *
3558 * Function returns 0 in case of success, negative errno otherwise.
3559 *
3560 * TODO: make this work also during runtime: it should be
3561 * possible to force coredump from running process and then
3562 * continue processing.  For example qemu could set up SIGUSR2
3563 * handler (provided that target process haven't registered
3564 * handler for that) that does the dump when signal is received.
3565 */
3566static int elf_core_dump(int signr, const CPUArchState *env)
3567{
3568    const CPUState *cpu = env_cpu((CPUArchState *)env);
3569    const TaskState *ts = (const TaskState *)cpu->opaque;
3570    struct vm_area_struct *vma = NULL;
3571    char corefile[PATH_MAX];
3572    struct elf_note_info info;
3573    struct elfhdr elf;
3574    struct elf_phdr phdr;
3575    struct rlimit dumpsize;
3576    struct mm_struct *mm = NULL;
3577    off_t offset = 0, data_offset = 0;
3578    int segs = 0;
3579    int fd = -1;
3580
3581    init_note_info(&info);
3582
3583    errno = 0;
3584    getrlimit(RLIMIT_CORE, &dumpsize);
3585    if (dumpsize.rlim_cur == 0)
3586        return 0;
3587
3588    if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3589        return (-errno);
3590
3591    if ((fd = open(corefile, O_WRONLY | O_CREAT,
3592                   S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3593        return (-errno);
3594
3595    /*
3596     * Walk through target process memory mappings and
3597     * set up structure containing this information.  After
3598     * this point vma_xxx functions can be used.
3599     */
3600    if ((mm = vma_init()) == NULL)
3601        goto out;
3602
3603    walk_memory_regions(mm, vma_walker);
3604    segs = vma_get_mapping_count(mm);
3605
3606    /*
3607     * Construct valid coredump ELF header.  We also
3608     * add one more segment for notes.
3609     */
3610    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3611    if (dump_write(fd, &elf, sizeof (elf)) != 0)
3612        goto out;
3613
3614    /* fill in the in-memory version of notes */
3615    if (fill_note_info(&info, signr, env) < 0)
3616        goto out;
3617
3618    offset += sizeof (elf);                             /* elf header */
3619    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3620
3621    /* write out notes program header */
3622    fill_elf_note_phdr(&phdr, info.notes_size, offset);
3623
3624    offset += info.notes_size;
3625    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3626        goto out;
3627
3628    /*
3629     * ELF specification wants data to start at page boundary so
3630     * we align it here.
3631     */
3632    data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3633
3634    /*
3635     * Write program headers for memory regions mapped in
3636     * the target process.
3637     */
3638    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3639        (void) memset(&phdr, 0, sizeof (phdr));
3640
3641        phdr.p_type = PT_LOAD;
3642        phdr.p_offset = offset;
3643        phdr.p_vaddr = vma->vma_start;
3644        phdr.p_paddr = 0;
3645        phdr.p_filesz = vma_dump_size(vma);
3646        offset += phdr.p_filesz;
3647        phdr.p_memsz = vma->vma_end - vma->vma_start;
3648        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3649        if (vma->vma_flags & PROT_WRITE)
3650            phdr.p_flags |= PF_W;
3651        if (vma->vma_flags & PROT_EXEC)
3652            phdr.p_flags |= PF_X;
3653        phdr.p_align = ELF_EXEC_PAGESIZE;
3654
3655        bswap_phdr(&phdr, 1);
3656        if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3657            goto out;
3658        }
3659    }
3660
3661    /*
3662     * Next we write notes just after program headers.  No
3663     * alignment needed here.
3664     */
3665    if (write_note_info(&info, fd) < 0)
3666        goto out;
3667
3668    /* align data to page boundary */
3669    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3670        goto out;
3671
3672    /*
3673     * Finally we can dump process memory into corefile as well.
3674     */
3675    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3676        abi_ulong addr;
3677        abi_ulong end;
3678
3679        end = vma->vma_start + vma_dump_size(vma);
3680
3681        for (addr = vma->vma_start; addr < end;
3682             addr += TARGET_PAGE_SIZE) {
3683            char page[TARGET_PAGE_SIZE];
3684            int error;
3685
3686            /*
3687             *  Read in page from target process memory and
3688             *  write it to coredump file.
3689             */
3690            error = copy_from_user(page, addr, sizeof (page));
3691            if (error != 0) {
3692                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3693                               addr);
3694                errno = -error;
3695                goto out;
3696            }
3697            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3698                goto out;
3699        }
3700    }
3701
3702 out:
3703    free_note_info(&info);
3704    if (mm != NULL)
3705        vma_delete(mm);
3706    (void) close(fd);
3707
3708    if (errno != 0)
3709        return (-errno);
3710    return (0);
3711}
3712#endif /* USE_ELF_CORE_DUMP */
3713
3714void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3715{
3716    init_thread(regs, infop);
3717}
3718