qemu/target/arm/helper.c
<<
>>
Prefs
   1/*
   2 * ARM generic helpers.
   3 *
   4 * This code is licensed under the GNU GPL v2 or later.
   5 *
   6 * SPDX-License-Identifier: GPL-2.0-or-later
   7 */
   8
   9#include "qemu/osdep.h"
  10#include "qemu/units.h"
  11#include "target/arm/idau.h"
  12#include "trace.h"
  13#include "cpu.h"
  14#include "internals.h"
  15#include "exec/gdbstub.h"
  16#include "exec/helper-proto.h"
  17#include "qemu/host-utils.h"
  18#include "qemu/main-loop.h"
  19#include "qemu/bitops.h"
  20#include "qemu/crc32c.h"
  21#include "qemu/qemu-print.h"
  22#include "exec/exec-all.h"
  23#include <zlib.h> /* For crc32 */
  24#include "hw/irq.h"
  25#include "hw/semihosting/semihost.h"
  26#include "sysemu/cpus.h"
  27#include "sysemu/kvm.h"
  28#include "qemu/range.h"
  29#include "qapi/qapi-commands-machine-target.h"
  30#include "qapi/error.h"
  31#include "qemu/guest-random.h"
  32#ifdef CONFIG_TCG
  33#include "arm_ldst.h"
  34#include "exec/cpu_ldst.h"
  35#endif
  36
  37#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
  38
  39#ifndef CONFIG_USER_ONLY
  40
  41static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
  42                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
  43                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
  44                               target_ulong *page_size_ptr,
  45                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
  46#endif
  47
  48static void switch_mode(CPUARMState *env, int mode);
  49
  50static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
  51{
  52    int nregs;
  53
  54    /* VFP data registers are always little-endian.  */
  55    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
  56    if (reg < nregs) {
  57        stq_le_p(buf, *aa32_vfp_dreg(env, reg));
  58        return 8;
  59    }
  60    if (arm_feature(env, ARM_FEATURE_NEON)) {
  61        /* Aliases for Q regs.  */
  62        nregs += 16;
  63        if (reg < nregs) {
  64            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
  65            stq_le_p(buf, q[0]);
  66            stq_le_p(buf + 8, q[1]);
  67            return 16;
  68        }
  69    }
  70    switch (reg - nregs) {
  71    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
  72    case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
  73    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
  74    }
  75    return 0;
  76}
  77
  78static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
  79{
  80    int nregs;
  81
  82    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
  83    if (reg < nregs) {
  84        *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
  85        return 8;
  86    }
  87    if (arm_feature(env, ARM_FEATURE_NEON)) {
  88        nregs += 16;
  89        if (reg < nregs) {
  90            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
  91            q[0] = ldq_le_p(buf);
  92            q[1] = ldq_le_p(buf + 8);
  93            return 16;
  94        }
  95    }
  96    switch (reg - nregs) {
  97    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
  98    case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
  99    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
 100    }
 101    return 0;
 102}
 103
 104static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
 105{
 106    switch (reg) {
 107    case 0 ... 31:
 108        /* 128 bit FP register */
 109        {
 110            uint64_t *q = aa64_vfp_qreg(env, reg);
 111            stq_le_p(buf, q[0]);
 112            stq_le_p(buf + 8, q[1]);
 113            return 16;
 114        }
 115    case 32:
 116        /* FPSR */
 117        stl_p(buf, vfp_get_fpsr(env));
 118        return 4;
 119    case 33:
 120        /* FPCR */
 121        stl_p(buf, vfp_get_fpcr(env));
 122        return 4;
 123    default:
 124        return 0;
 125    }
 126}
 127
 128static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 129{
 130    switch (reg) {
 131    case 0 ... 31:
 132        /* 128 bit FP register */
 133        {
 134            uint64_t *q = aa64_vfp_qreg(env, reg);
 135            q[0] = ldq_le_p(buf);
 136            q[1] = ldq_le_p(buf + 8);
 137            return 16;
 138        }
 139    case 32:
 140        /* FPSR */
 141        vfp_set_fpsr(env, ldl_p(buf));
 142        return 4;
 143    case 33:
 144        /* FPCR */
 145        vfp_set_fpcr(env, ldl_p(buf));
 146        return 4;
 147    default:
 148        return 0;
 149    }
 150}
 151
 152static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
 153{
 154    assert(ri->fieldoffset);
 155    if (cpreg_field_is_64bit(ri)) {
 156        return CPREG_FIELD64(env, ri);
 157    } else {
 158        return CPREG_FIELD32(env, ri);
 159    }
 160}
 161
 162static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 163                      uint64_t value)
 164{
 165    assert(ri->fieldoffset);
 166    if (cpreg_field_is_64bit(ri)) {
 167        CPREG_FIELD64(env, ri) = value;
 168    } else {
 169        CPREG_FIELD32(env, ri) = value;
 170    }
 171}
 172
 173static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
 174{
 175    return (char *)env + ri->fieldoffset;
 176}
 177
 178uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
 179{
 180    /* Raw read of a coprocessor register (as needed for migration, etc). */
 181    if (ri->type & ARM_CP_CONST) {
 182        return ri->resetvalue;
 183    } else if (ri->raw_readfn) {
 184        return ri->raw_readfn(env, ri);
 185    } else if (ri->readfn) {
 186        return ri->readfn(env, ri);
 187    } else {
 188        return raw_read(env, ri);
 189    }
 190}
 191
 192static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
 193                             uint64_t v)
 194{
 195    /* Raw write of a coprocessor register (as needed for migration, etc).
 196     * Note that constant registers are treated as write-ignored; the
 197     * caller should check for success by whether a readback gives the
 198     * value written.
 199     */
 200    if (ri->type & ARM_CP_CONST) {
 201        return;
 202    } else if (ri->raw_writefn) {
 203        ri->raw_writefn(env, ri, v);
 204    } else if (ri->writefn) {
 205        ri->writefn(env, ri, v);
 206    } else {
 207        raw_write(env, ri, v);
 208    }
 209}
 210
 211static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
 212{
 213    ARMCPU *cpu = env_archcpu(env);
 214    const ARMCPRegInfo *ri;
 215    uint32_t key;
 216
 217    key = cpu->dyn_xml.cpregs_keys[reg];
 218    ri = get_arm_cp_reginfo(cpu->cp_regs, key);
 219    if (ri) {
 220        if (cpreg_field_is_64bit(ri)) {
 221            return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
 222        } else {
 223            return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
 224        }
 225    }
 226    return 0;
 227}
 228
 229static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
 230{
 231    return 0;
 232}
 233
 234static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
 235{
 236   /* Return true if the regdef would cause an assertion if you called
 237    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
 238    * program bug for it not to have the NO_RAW flag).
 239    * NB that returning false here doesn't necessarily mean that calling
 240    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
 241    * read/write access functions which are safe for raw use" from "has
 242    * read/write access functions which have side effects but has forgotten
 243    * to provide raw access functions".
 244    * The tests here line up with the conditions in read/write_raw_cp_reg()
 245    * and assertions in raw_read()/raw_write().
 246    */
 247    if ((ri->type & ARM_CP_CONST) ||
 248        ri->fieldoffset ||
 249        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
 250        return false;
 251    }
 252    return true;
 253}
 254
 255bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
 256{
 257    /* Write the coprocessor state from cpu->env to the (index,value) list. */
 258    int i;
 259    bool ok = true;
 260
 261    for (i = 0; i < cpu->cpreg_array_len; i++) {
 262        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 263        const ARMCPRegInfo *ri;
 264        uint64_t newval;
 265
 266        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 267        if (!ri) {
 268            ok = false;
 269            continue;
 270        }
 271        if (ri->type & ARM_CP_NO_RAW) {
 272            continue;
 273        }
 274
 275        newval = read_raw_cp_reg(&cpu->env, ri);
 276        if (kvm_sync) {
 277            /*
 278             * Only sync if the previous list->cpustate sync succeeded.
 279             * Rather than tracking the success/failure state for every
 280             * item in the list, we just recheck "does the raw write we must
 281             * have made in write_list_to_cpustate() read back OK" here.
 282             */
 283            uint64_t oldval = cpu->cpreg_values[i];
 284
 285            if (oldval == newval) {
 286                continue;
 287            }
 288
 289            write_raw_cp_reg(&cpu->env, ri, oldval);
 290            if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
 291                continue;
 292            }
 293
 294            write_raw_cp_reg(&cpu->env, ri, newval);
 295        }
 296        cpu->cpreg_values[i] = newval;
 297    }
 298    return ok;
 299}
 300
 301bool write_list_to_cpustate(ARMCPU *cpu)
 302{
 303    int i;
 304    bool ok = true;
 305
 306    for (i = 0; i < cpu->cpreg_array_len; i++) {
 307        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 308        uint64_t v = cpu->cpreg_values[i];
 309        const ARMCPRegInfo *ri;
 310
 311        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 312        if (!ri) {
 313            ok = false;
 314            continue;
 315        }
 316        if (ri->type & ARM_CP_NO_RAW) {
 317            continue;
 318        }
 319        /* Write value and confirm it reads back as written
 320         * (to catch read-only registers and partially read-only
 321         * registers where the incoming migration value doesn't match)
 322         */
 323        write_raw_cp_reg(&cpu->env, ri, v);
 324        if (read_raw_cp_reg(&cpu->env, ri) != v) {
 325            ok = false;
 326        }
 327    }
 328    return ok;
 329}
 330
 331static void add_cpreg_to_list(gpointer key, gpointer opaque)
 332{
 333    ARMCPU *cpu = opaque;
 334    uint64_t regidx;
 335    const ARMCPRegInfo *ri;
 336
 337    regidx = *(uint32_t *)key;
 338    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 339
 340    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 341        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
 342        /* The value array need not be initialized at this point */
 343        cpu->cpreg_array_len++;
 344    }
 345}
 346
 347static void count_cpreg(gpointer key, gpointer opaque)
 348{
 349    ARMCPU *cpu = opaque;
 350    uint64_t regidx;
 351    const ARMCPRegInfo *ri;
 352
 353    regidx = *(uint32_t *)key;
 354    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 355
 356    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 357        cpu->cpreg_array_len++;
 358    }
 359}
 360
 361static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 362{
 363    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
 364    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
 365
 366    if (aidx > bidx) {
 367        return 1;
 368    }
 369    if (aidx < bidx) {
 370        return -1;
 371    }
 372    return 0;
 373}
 374
 375void init_cpreg_list(ARMCPU *cpu)
 376{
 377    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
 378     * Note that we require cpreg_tuples[] to be sorted by key ID.
 379     */
 380    GList *keys;
 381    int arraylen;
 382
 383    keys = g_hash_table_get_keys(cpu->cp_regs);
 384    keys = g_list_sort(keys, cpreg_key_compare);
 385
 386    cpu->cpreg_array_len = 0;
 387
 388    g_list_foreach(keys, count_cpreg, cpu);
 389
 390    arraylen = cpu->cpreg_array_len;
 391    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
 392    cpu->cpreg_values = g_new(uint64_t, arraylen);
 393    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
 394    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
 395    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
 396    cpu->cpreg_array_len = 0;
 397
 398    g_list_foreach(keys, add_cpreg_to_list, cpu);
 399
 400    assert(cpu->cpreg_array_len == arraylen);
 401
 402    g_list_free(keys);
 403}
 404
 405/*
 406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
 407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
 408 *
 409 * access_el3_aa32ns: Used to check AArch32 register views.
 410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
 411 */
 412static CPAccessResult access_el3_aa32ns(CPUARMState *env,
 413                                        const ARMCPRegInfo *ri,
 414                                        bool isread)
 415{
 416    bool secure = arm_is_secure_below_el3(env);
 417
 418    assert(!arm_el_is_aa64(env, 3));
 419    if (secure) {
 420        return CP_ACCESS_TRAP_UNCATEGORIZED;
 421    }
 422    return CP_ACCESS_OK;
 423}
 424
 425static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
 426                                                const ARMCPRegInfo *ri,
 427                                                bool isread)
 428{
 429    if (!arm_el_is_aa64(env, 3)) {
 430        return access_el3_aa32ns(env, ri, isread);
 431    }
 432    return CP_ACCESS_OK;
 433}
 434
 435/* Some secure-only AArch32 registers trap to EL3 if used from
 436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 438 * We assume that the .access field is set to PL1_RW.
 439 */
 440static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
 441                                            const ARMCPRegInfo *ri,
 442                                            bool isread)
 443{
 444    if (arm_current_el(env) == 3) {
 445        return CP_ACCESS_OK;
 446    }
 447    if (arm_is_secure_below_el3(env)) {
 448        return CP_ACCESS_TRAP_EL3;
 449    }
 450    /* This will be EL1 NS and EL2 NS, which just UNDEF */
 451    return CP_ACCESS_TRAP_UNCATEGORIZED;
 452}
 453
 454/* Check for traps to "powerdown debug" registers, which are controlled
 455 * by MDCR.TDOSA
 456 */
 457static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
 458                                   bool isread)
 459{
 460    int el = arm_current_el(env);
 461    bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
 462        (env->cp15.mdcr_el2 & MDCR_TDE) ||
 463        (arm_hcr_el2_eff(env) & HCR_TGE);
 464
 465    if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
 466        return CP_ACCESS_TRAP_EL2;
 467    }
 468    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
 469        return CP_ACCESS_TRAP_EL3;
 470    }
 471    return CP_ACCESS_OK;
 472}
 473
 474/* Check for traps to "debug ROM" registers, which are controlled
 475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 476 */
 477static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
 478                                  bool isread)
 479{
 480    int el = arm_current_el(env);
 481    bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
 482        (env->cp15.mdcr_el2 & MDCR_TDE) ||
 483        (arm_hcr_el2_eff(env) & HCR_TGE);
 484
 485    if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
 486        return CP_ACCESS_TRAP_EL2;
 487    }
 488    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 489        return CP_ACCESS_TRAP_EL3;
 490    }
 491    return CP_ACCESS_OK;
 492}
 493
 494/* Check for traps to general debug registers, which are controlled
 495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 496 */
 497static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
 498                                  bool isread)
 499{
 500    int el = arm_current_el(env);
 501    bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
 502        (env->cp15.mdcr_el2 & MDCR_TDE) ||
 503        (arm_hcr_el2_eff(env) & HCR_TGE);
 504
 505    if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
 506        return CP_ACCESS_TRAP_EL2;
 507    }
 508    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 509        return CP_ACCESS_TRAP_EL3;
 510    }
 511    return CP_ACCESS_OK;
 512}
 513
 514/* Check for traps to performance monitor registers, which are controlled
 515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 516 */
 517static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
 518                                 bool isread)
 519{
 520    int el = arm_current_el(env);
 521
 522    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
 523        && !arm_is_secure_below_el3(env)) {
 524        return CP_ACCESS_TRAP_EL2;
 525    }
 526    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 527        return CP_ACCESS_TRAP_EL3;
 528    }
 529    return CP_ACCESS_OK;
 530}
 531
 532static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 533{
 534    ARMCPU *cpu = env_archcpu(env);
 535
 536    raw_write(env, ri, value);
 537    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
 538}
 539
 540static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 541{
 542    ARMCPU *cpu = env_archcpu(env);
 543
 544    if (raw_read(env, ri) != value) {
 545        /* Unlike real hardware the qemu TLB uses virtual addresses,
 546         * not modified virtual addresses, so this causes a TLB flush.
 547         */
 548        tlb_flush(CPU(cpu));
 549        raw_write(env, ri, value);
 550    }
 551}
 552
 553static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 554                             uint64_t value)
 555{
 556    ARMCPU *cpu = env_archcpu(env);
 557
 558    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
 559        && !extended_addresses_enabled(env)) {
 560        /* For VMSA (when not using the LPAE long descriptor page table
 561         * format) this register includes the ASID, so do a TLB flush.
 562         * For PMSA it is purely a process ID and no action is needed.
 563         */
 564        tlb_flush(CPU(cpu));
 565    }
 566    raw_write(env, ri, value);
 567}
 568
 569/* IS variants of TLB operations must affect all cores */
 570static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 571                             uint64_t value)
 572{
 573    CPUState *cs = env_cpu(env);
 574
 575    tlb_flush_all_cpus_synced(cs);
 576}
 577
 578static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 579                             uint64_t value)
 580{
 581    CPUState *cs = env_cpu(env);
 582
 583    tlb_flush_all_cpus_synced(cs);
 584}
 585
 586static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 587                             uint64_t value)
 588{
 589    CPUState *cs = env_cpu(env);
 590
 591    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 592}
 593
 594static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 595                             uint64_t value)
 596{
 597    CPUState *cs = env_cpu(env);
 598
 599    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 600}
 601
 602/*
 603 * Non-IS variants of TLB operations are upgraded to
 604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
 605 * force broadcast of these operations.
 606 */
 607static bool tlb_force_broadcast(CPUARMState *env)
 608{
 609    return (env->cp15.hcr_el2 & HCR_FB) &&
 610        arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
 611}
 612
 613static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 614                          uint64_t value)
 615{
 616    /* Invalidate all (TLBIALL) */
 617    ARMCPU *cpu = env_archcpu(env);
 618
 619    if (tlb_force_broadcast(env)) {
 620        tlbiall_is_write(env, NULL, value);
 621        return;
 622    }
 623
 624    tlb_flush(CPU(cpu));
 625}
 626
 627static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 628                          uint64_t value)
 629{
 630    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 631    ARMCPU *cpu = env_archcpu(env);
 632
 633    if (tlb_force_broadcast(env)) {
 634        tlbimva_is_write(env, NULL, value);
 635        return;
 636    }
 637
 638    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
 639}
 640
 641static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 642                           uint64_t value)
 643{
 644    /* Invalidate by ASID (TLBIASID) */
 645    ARMCPU *cpu = env_archcpu(env);
 646
 647    if (tlb_force_broadcast(env)) {
 648        tlbiasid_is_write(env, NULL, value);
 649        return;
 650    }
 651
 652    tlb_flush(CPU(cpu));
 653}
 654
 655static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 656                           uint64_t value)
 657{
 658    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 659    ARMCPU *cpu = env_archcpu(env);
 660
 661    if (tlb_force_broadcast(env)) {
 662        tlbimvaa_is_write(env, NULL, value);
 663        return;
 664    }
 665
 666    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
 667}
 668
 669static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
 670                               uint64_t value)
 671{
 672    CPUState *cs = env_cpu(env);
 673
 674    tlb_flush_by_mmuidx(cs,
 675                        ARMMMUIdxBit_S12NSE1 |
 676                        ARMMMUIdxBit_S12NSE0 |
 677                        ARMMMUIdxBit_S2NS);
 678}
 679
 680static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 681                                  uint64_t value)
 682{
 683    CPUState *cs = env_cpu(env);
 684
 685    tlb_flush_by_mmuidx_all_cpus_synced(cs,
 686                                        ARMMMUIdxBit_S12NSE1 |
 687                                        ARMMMUIdxBit_S12NSE0 |
 688                                        ARMMMUIdxBit_S2NS);
 689}
 690
 691static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 692                            uint64_t value)
 693{
 694    /* Invalidate by IPA. This has to invalidate any structures that
 695     * contain only stage 2 translation information, but does not need
 696     * to apply to structures that contain combined stage 1 and stage 2
 697     * translation information.
 698     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
 699     */
 700    CPUState *cs = env_cpu(env);
 701    uint64_t pageaddr;
 702
 703    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
 704        return;
 705    }
 706
 707    pageaddr = sextract64(value << 12, 0, 40);
 708
 709    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
 710}
 711
 712static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 713                               uint64_t value)
 714{
 715    CPUState *cs = env_cpu(env);
 716    uint64_t pageaddr;
 717
 718    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
 719        return;
 720    }
 721
 722    pageaddr = sextract64(value << 12, 0, 40);
 723
 724    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 725                                             ARMMMUIdxBit_S2NS);
 726}
 727
 728static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 729                              uint64_t value)
 730{
 731    CPUState *cs = env_cpu(env);
 732
 733    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
 734}
 735
 736static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 737                                 uint64_t value)
 738{
 739    CPUState *cs = env_cpu(env);
 740
 741    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
 742}
 743
 744static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 745                              uint64_t value)
 746{
 747    CPUState *cs = env_cpu(env);
 748    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 749
 750    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
 751}
 752
 753static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 754                                 uint64_t value)
 755{
 756    CPUState *cs = env_cpu(env);
 757    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 758
 759    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 760                                             ARMMMUIdxBit_S1E2);
 761}
 762
 763static const ARMCPRegInfo cp_reginfo[] = {
 764    /* Define the secure and non-secure FCSE identifier CP registers
 765     * separately because there is no secure bank in V8 (no _EL3).  This allows
 766     * the secure register to be properly reset and migrated. There is also no
 767     * v8 EL1 version of the register so the non-secure instance stands alone.
 768     */
 769    { .name = "FCSEIDR",
 770      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 771      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 772      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
 773      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 774    { .name = "FCSEIDR_S",
 775      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 776      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 777      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
 778      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 779    /* Define the secure and non-secure context identifier CP registers
 780     * separately because there is no secure bank in V8 (no _EL3).  This allows
 781     * the secure register to be properly reset and migrated.  In the
 782     * non-secure case, the 32-bit register will have reset and migration
 783     * disabled during registration as it is handled by the 64-bit instance.
 784     */
 785    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
 786      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 787      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 788      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
 789      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 790    { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
 791      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 792      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 793      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
 794      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 795    REGINFO_SENTINEL
 796};
 797
 798static const ARMCPRegInfo not_v8_cp_reginfo[] = {
 799    /* NB: Some of these registers exist in v8 but with more precise
 800     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
 801     */
 802    /* MMU Domain access control / MPU write buffer control */
 803    { .name = "DACR",
 804      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
 805      .access = PL1_RW, .resetvalue = 0,
 806      .writefn = dacr_write, .raw_writefn = raw_write,
 807      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 808                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 809    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
 810     * For v6 and v5, these mappings are overly broad.
 811     */
 812    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
 813      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 814    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
 815      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 816    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
 817      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 818    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
 819      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 820    /* Cache maintenance ops; some of this space may be overridden later. */
 821    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 822      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 823      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 824    REGINFO_SENTINEL
 825};
 826
 827static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 828    /* Not all pre-v6 cores implemented this WFI, so this is slightly
 829     * over-broad.
 830     */
 831    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 832      .access = PL1_W, .type = ARM_CP_WFI },
 833    REGINFO_SENTINEL
 834};
 835
 836static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 837    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 838     * is UNPREDICTABLE; we choose to NOP as most implementations do).
 839     */
 840    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 841      .access = PL1_W, .type = ARM_CP_WFI },
 842    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
 843     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 844     * OMAPCP will override this space.
 845     */
 846    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 847      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 848      .resetvalue = 0 },
 849    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 850      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 851      .resetvalue = 0 },
 852    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 853    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 854      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 855      .resetvalue = 0 },
 856    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
 857     * implementing it as RAZ means the "debug architecture version" bits
 858     * will read as a reserved value, which should cause Linux to not try
 859     * to use the debug hardware.
 860     */
 861    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 862      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 863    /* MMU TLB control. Note that the wildcarding means we cover not just
 864     * the unified TLB ops but also the dside/iside/inner-shareable variants.
 865     */
 866    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 867      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
 868      .type = ARM_CP_NO_RAW },
 869    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 870      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
 871      .type = ARM_CP_NO_RAW },
 872    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 873      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
 874      .type = ARM_CP_NO_RAW },
 875    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 876      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
 877      .type = ARM_CP_NO_RAW },
 878    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
 879      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
 880    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
 881      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
 882    REGINFO_SENTINEL
 883};
 884
 885static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 886                        uint64_t value)
 887{
 888    uint32_t mask = 0;
 889
 890    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
 891    if (!arm_feature(env, ARM_FEATURE_V8)) {
 892        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
 893         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
 894         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
 895         */
 896        if (arm_feature(env, ARM_FEATURE_VFP)) {
 897            /* VFP coprocessor: cp10 & cp11 [23:20] */
 898            mask |= (1 << 31) | (1 << 30) | (0xf << 20);
 899
 900            if (!arm_feature(env, ARM_FEATURE_NEON)) {
 901                /* ASEDIS [31] bit is RAO/WI */
 902                value |= (1 << 31);
 903            }
 904
 905            /* VFPv3 and upwards with NEON implement 32 double precision
 906             * registers (D0-D31).
 907             */
 908            if (!arm_feature(env, ARM_FEATURE_NEON) ||
 909                    !arm_feature(env, ARM_FEATURE_VFP3)) {
 910                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
 911                value |= (1 << 30);
 912            }
 913        }
 914        value &= mask;
 915    }
 916
 917    /*
 918     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
 919     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
 920     */
 921    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 922        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
 923        value &= ~(0xf << 20);
 924        value |= env->cp15.cpacr_el1 & (0xf << 20);
 925    }
 926
 927    env->cp15.cpacr_el1 = value;
 928}
 929
 930static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 931{
 932    /*
 933     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
 934     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
 935     */
 936    uint64_t value = env->cp15.cpacr_el1;
 937
 938    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 939        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
 940        value &= ~(0xf << 20);
 941    }
 942    return value;
 943}
 944
 945
 946static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 947{
 948    /* Call cpacr_write() so that we reset with the correct RAO bits set
 949     * for our CPU features.
 950     */
 951    cpacr_write(env, ri, 0);
 952}
 953
 954static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 955                                   bool isread)
 956{
 957    if (arm_feature(env, ARM_FEATURE_V8)) {
 958        /* Check if CPACR accesses are to be trapped to EL2 */
 959        if (arm_current_el(env) == 1 &&
 960            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
 961            return CP_ACCESS_TRAP_EL2;
 962        /* Check if CPACR accesses are to be trapped to EL3 */
 963        } else if (arm_current_el(env) < 3 &&
 964                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 965            return CP_ACCESS_TRAP_EL3;
 966        }
 967    }
 968
 969    return CP_ACCESS_OK;
 970}
 971
 972static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 973                                  bool isread)
 974{
 975    /* Check if CPTR accesses are set to trap to EL3 */
 976    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 977        return CP_ACCESS_TRAP_EL3;
 978    }
 979
 980    return CP_ACCESS_OK;
 981}
 982
 983static const ARMCPRegInfo v6_cp_reginfo[] = {
 984    /* prefetch by MVA in v6, NOP in v7 */
 985    { .name = "MVA_prefetch",
 986      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
 987      .access = PL1_W, .type = ARM_CP_NOP },
 988    /* We need to break the TB after ISB to execute self-modifying code
 989     * correctly and also to take any pending interrupts immediately.
 990     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
 991     */
 992    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
 993      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
 994    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
 995      .access = PL0_W, .type = ARM_CP_NOP },
 996    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
 997      .access = PL0_W, .type = ARM_CP_NOP },
 998    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
 999      .access = PL1_RW,
1000      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1001                             offsetof(CPUARMState, cp15.ifar_ns) },
1002      .resetvalue = 0, },
1003    /* Watchpoint Fault Address Register : should actually only be present
1004     * for 1136, 1176, 11MPCore.
1005     */
1006    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1007      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1008    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1009      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1010      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1011      .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1012    REGINFO_SENTINEL
1013};
1014
1015/* Definitions for the PMU registers */
1016#define PMCRN_MASK  0xf800
1017#define PMCRN_SHIFT 11
1018#define PMCRLC  0x40
1019#define PMCRDP  0x20
1020#define PMCRX   0x10
1021#define PMCRD   0x8
1022#define PMCRC   0x4
1023#define PMCRP   0x2
1024#define PMCRE   0x1
1025
1026#define PMXEVTYPER_P          0x80000000
1027#define PMXEVTYPER_U          0x40000000
1028#define PMXEVTYPER_NSK        0x20000000
1029#define PMXEVTYPER_NSU        0x10000000
1030#define PMXEVTYPER_NSH        0x08000000
1031#define PMXEVTYPER_M          0x04000000
1032#define PMXEVTYPER_MT         0x02000000
1033#define PMXEVTYPER_EVTCOUNT   0x0000ffff
1034#define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1035                               PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1036                               PMXEVTYPER_M | PMXEVTYPER_MT | \
1037                               PMXEVTYPER_EVTCOUNT)
1038
1039#define PMCCFILTR             0xf8000000
1040#define PMCCFILTR_M           PMXEVTYPER_M
1041#define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1042
1043static inline uint32_t pmu_num_counters(CPUARMState *env)
1044{
1045  return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1046}
1047
1048/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1049static inline uint64_t pmu_counter_mask(CPUARMState *env)
1050{
1051  return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1052}
1053
1054typedef struct pm_event {
1055    uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1056    /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1057    bool (*supported)(CPUARMState *);
1058    /*
1059     * Retrieve the current count of the underlying event. The programmed
1060     * counters hold a difference from the return value from this function
1061     */
1062    uint64_t (*get_count)(CPUARMState *);
1063    /*
1064     * Return how many nanoseconds it will take (at a minimum) for count events
1065     * to occur. A negative value indicates the counter will never overflow, or
1066     * that the counter has otherwise arranged for the overflow bit to be set
1067     * and the PMU interrupt to be raised on overflow.
1068     */
1069    int64_t (*ns_per_count)(uint64_t);
1070} pm_event;
1071
1072static bool event_always_supported(CPUARMState *env)
1073{
1074    return true;
1075}
1076
1077static uint64_t swinc_get_count(CPUARMState *env)
1078{
1079    /*
1080     * SW_INCR events are written directly to the pmevcntr's by writes to
1081     * PMSWINC, so there is no underlying count maintained by the PMU itself
1082     */
1083    return 0;
1084}
1085
1086static int64_t swinc_ns_per(uint64_t ignored)
1087{
1088    return -1;
1089}
1090
1091/*
1092 * Return the underlying cycle count for the PMU cycle counters. If we're in
1093 * usermode, simply return 0.
1094 */
1095static uint64_t cycles_get_count(CPUARMState *env)
1096{
1097#ifndef CONFIG_USER_ONLY
1098    return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1099                   ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1100#else
1101    return cpu_get_host_ticks();
1102#endif
1103}
1104
1105#ifndef CONFIG_USER_ONLY
1106static int64_t cycles_ns_per(uint64_t cycles)
1107{
1108    return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1109}
1110
1111static bool instructions_supported(CPUARMState *env)
1112{
1113    return use_icount == 1 /* Precise instruction counting */;
1114}
1115
1116static uint64_t instructions_get_count(CPUARMState *env)
1117{
1118    return (uint64_t)cpu_get_icount_raw();
1119}
1120
1121static int64_t instructions_ns_per(uint64_t icount)
1122{
1123    return cpu_icount_to_ns((int64_t)icount);
1124}
1125#endif
1126
1127static const pm_event pm_events[] = {
1128    { .number = 0x000, /* SW_INCR */
1129      .supported = event_always_supported,
1130      .get_count = swinc_get_count,
1131      .ns_per_count = swinc_ns_per,
1132    },
1133#ifndef CONFIG_USER_ONLY
1134    { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1135      .supported = instructions_supported,
1136      .get_count = instructions_get_count,
1137      .ns_per_count = instructions_ns_per,
1138    },
1139    { .number = 0x011, /* CPU_CYCLES, Cycle */
1140      .supported = event_always_supported,
1141      .get_count = cycles_get_count,
1142      .ns_per_count = cycles_ns_per,
1143    }
1144#endif
1145};
1146
1147/*
1148 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1149 * events (i.e. the statistical profiling extension), this implementation
1150 * should first be updated to something sparse instead of the current
1151 * supported_event_map[] array.
1152 */
1153#define MAX_EVENT_ID 0x11
1154#define UNSUPPORTED_EVENT UINT16_MAX
1155static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1156
1157/*
1158 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1159 * of ARM event numbers to indices in our pm_events array.
1160 *
1161 * Note: Events in the 0x40XX range are not currently supported.
1162 */
1163void pmu_init(ARMCPU *cpu)
1164{
1165    unsigned int i;
1166
1167    /*
1168     * Empty supported_event_map and cpu->pmceid[01] before adding supported
1169     * events to them
1170     */
1171    for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1172        supported_event_map[i] = UNSUPPORTED_EVENT;
1173    }
1174    cpu->pmceid0 = 0;
1175    cpu->pmceid1 = 0;
1176
1177    for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1178        const pm_event *cnt = &pm_events[i];
1179        assert(cnt->number <= MAX_EVENT_ID);
1180        /* We do not currently support events in the 0x40xx range */
1181        assert(cnt->number <= 0x3f);
1182
1183        if (cnt->supported(&cpu->env)) {
1184            supported_event_map[cnt->number] = i;
1185            uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1186            if (cnt->number & 0x20) {
1187                cpu->pmceid1 |= event_mask;
1188            } else {
1189                cpu->pmceid0 |= event_mask;
1190            }
1191        }
1192    }
1193}
1194
1195/*
1196 * Check at runtime whether a PMU event is supported for the current machine
1197 */
1198static bool event_supported(uint16_t number)
1199{
1200    if (number > MAX_EVENT_ID) {
1201        return false;
1202    }
1203    return supported_event_map[number] != UNSUPPORTED_EVENT;
1204}
1205
1206static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1207                                   bool isread)
1208{
1209    /* Performance monitor registers user accessibility is controlled
1210     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1211     * trapping to EL2 or EL3 for other accesses.
1212     */
1213    int el = arm_current_el(env);
1214
1215    if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1216        return CP_ACCESS_TRAP;
1217    }
1218    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1219        && !arm_is_secure_below_el3(env)) {
1220        return CP_ACCESS_TRAP_EL2;
1221    }
1222    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1223        return CP_ACCESS_TRAP_EL3;
1224    }
1225
1226    return CP_ACCESS_OK;
1227}
1228
1229static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1230                                           const ARMCPRegInfo *ri,
1231                                           bool isread)
1232{
1233    /* ER: event counter read trap control */
1234    if (arm_feature(env, ARM_FEATURE_V8)
1235        && arm_current_el(env) == 0
1236        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1237        && isread) {
1238        return CP_ACCESS_OK;
1239    }
1240
1241    return pmreg_access(env, ri, isread);
1242}
1243
1244static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1245                                         const ARMCPRegInfo *ri,
1246                                         bool isread)
1247{
1248    /* SW: software increment write trap control */
1249    if (arm_feature(env, ARM_FEATURE_V8)
1250        && arm_current_el(env) == 0
1251        && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1252        && !isread) {
1253        return CP_ACCESS_OK;
1254    }
1255
1256    return pmreg_access(env, ri, isread);
1257}
1258
1259static CPAccessResult pmreg_access_selr(CPUARMState *env,
1260                                        const ARMCPRegInfo *ri,
1261                                        bool isread)
1262{
1263    /* ER: event counter read trap control */
1264    if (arm_feature(env, ARM_FEATURE_V8)
1265        && arm_current_el(env) == 0
1266        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1267        return CP_ACCESS_OK;
1268    }
1269
1270    return pmreg_access(env, ri, isread);
1271}
1272
1273static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1274                                         const ARMCPRegInfo *ri,
1275                                         bool isread)
1276{
1277    /* CR: cycle counter read trap control */
1278    if (arm_feature(env, ARM_FEATURE_V8)
1279        && arm_current_el(env) == 0
1280        && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1281        && isread) {
1282        return CP_ACCESS_OK;
1283    }
1284
1285    return pmreg_access(env, ri, isread);
1286}
1287
1288/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1289 * the current EL, security state, and register configuration.
1290 */
1291static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1292{
1293    uint64_t filter;
1294    bool e, p, u, nsk, nsu, nsh, m;
1295    bool enabled, prohibited, filtered;
1296    bool secure = arm_is_secure(env);
1297    int el = arm_current_el(env);
1298    uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1299
1300    if (!arm_feature(env, ARM_FEATURE_PMU)) {
1301        return false;
1302    }
1303
1304    if (!arm_feature(env, ARM_FEATURE_EL2) ||
1305            (counter < hpmn || counter == 31)) {
1306        e = env->cp15.c9_pmcr & PMCRE;
1307    } else {
1308        e = env->cp15.mdcr_el2 & MDCR_HPME;
1309    }
1310    enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1311
1312    if (!secure) {
1313        if (el == 2 && (counter < hpmn || counter == 31)) {
1314            prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1315        } else {
1316            prohibited = false;
1317        }
1318    } else {
1319        prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1320           (env->cp15.mdcr_el3 & MDCR_SPME);
1321    }
1322
1323    if (prohibited && counter == 31) {
1324        prohibited = env->cp15.c9_pmcr & PMCRDP;
1325    }
1326
1327    if (counter == 31) {
1328        filter = env->cp15.pmccfiltr_el0;
1329    } else {
1330        filter = env->cp15.c14_pmevtyper[counter];
1331    }
1332
1333    p   = filter & PMXEVTYPER_P;
1334    u   = filter & PMXEVTYPER_U;
1335    nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1336    nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1337    nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1338    m   = arm_el_is_aa64(env, 1) &&
1339              arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1340
1341    if (el == 0) {
1342        filtered = secure ? u : u != nsu;
1343    } else if (el == 1) {
1344        filtered = secure ? p : p != nsk;
1345    } else if (el == 2) {
1346        filtered = !nsh;
1347    } else { /* EL3 */
1348        filtered = m != p;
1349    }
1350
1351    if (counter != 31) {
1352        /*
1353         * If not checking PMCCNTR, ensure the counter is setup to an event we
1354         * support
1355         */
1356        uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1357        if (!event_supported(event)) {
1358            return false;
1359        }
1360    }
1361
1362    return enabled && !prohibited && !filtered;
1363}
1364
1365static void pmu_update_irq(CPUARMState *env)
1366{
1367    ARMCPU *cpu = env_archcpu(env);
1368    qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1369            (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1370}
1371
1372/*
1373 * Ensure c15_ccnt is the guest-visible count so that operations such as
1374 * enabling/disabling the counter or filtering, modifying the count itself,
1375 * etc. can be done logically. This is essentially a no-op if the counter is
1376 * not enabled at the time of the call.
1377 */
1378static void pmccntr_op_start(CPUARMState *env)
1379{
1380    uint64_t cycles = cycles_get_count(env);
1381
1382    if (pmu_counter_enabled(env, 31)) {
1383        uint64_t eff_cycles = cycles;
1384        if (env->cp15.c9_pmcr & PMCRD) {
1385            /* Increment once every 64 processor clock cycles */
1386            eff_cycles /= 64;
1387        }
1388
1389        uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1390
1391        uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1392                                 1ull << 63 : 1ull << 31;
1393        if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1394            env->cp15.c9_pmovsr |= (1 << 31);
1395            pmu_update_irq(env);
1396        }
1397
1398        env->cp15.c15_ccnt = new_pmccntr;
1399    }
1400    env->cp15.c15_ccnt_delta = cycles;
1401}
1402
1403/*
1404 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1405 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1406 * pmccntr_op_start.
1407 */
1408static void pmccntr_op_finish(CPUARMState *env)
1409{
1410    if (pmu_counter_enabled(env, 31)) {
1411#ifndef CONFIG_USER_ONLY
1412        /* Calculate when the counter will next overflow */
1413        uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1414        if (!(env->cp15.c9_pmcr & PMCRLC)) {
1415            remaining_cycles = (uint32_t)remaining_cycles;
1416        }
1417        int64_t overflow_in = cycles_ns_per(remaining_cycles);
1418
1419        if (overflow_in > 0) {
1420            int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1421                overflow_in;
1422            ARMCPU *cpu = env_archcpu(env);
1423            timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1424        }
1425#endif
1426
1427        uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1428        if (env->cp15.c9_pmcr & PMCRD) {
1429            /* Increment once every 64 processor clock cycles */
1430            prev_cycles /= 64;
1431        }
1432        env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1433    }
1434}
1435
1436static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1437{
1438
1439    uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1440    uint64_t count = 0;
1441    if (event_supported(event)) {
1442        uint16_t event_idx = supported_event_map[event];
1443        count = pm_events[event_idx].get_count(env);
1444    }
1445
1446    if (pmu_counter_enabled(env, counter)) {
1447        uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1448
1449        if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1450            env->cp15.c9_pmovsr |= (1 << counter);
1451            pmu_update_irq(env);
1452        }
1453        env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1454    }
1455    env->cp15.c14_pmevcntr_delta[counter] = count;
1456}
1457
1458static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1459{
1460    if (pmu_counter_enabled(env, counter)) {
1461#ifndef CONFIG_USER_ONLY
1462        uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1463        uint16_t event_idx = supported_event_map[event];
1464        uint64_t delta = UINT32_MAX -
1465            (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1466        int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1467
1468        if (overflow_in > 0) {
1469            int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1470                overflow_in;
1471            ARMCPU *cpu = env_archcpu(env);
1472            timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1473        }
1474#endif
1475
1476        env->cp15.c14_pmevcntr_delta[counter] -=
1477            env->cp15.c14_pmevcntr[counter];
1478    }
1479}
1480
1481void pmu_op_start(CPUARMState *env)
1482{
1483    unsigned int i;
1484    pmccntr_op_start(env);
1485    for (i = 0; i < pmu_num_counters(env); i++) {
1486        pmevcntr_op_start(env, i);
1487    }
1488}
1489
1490void pmu_op_finish(CPUARMState *env)
1491{
1492    unsigned int i;
1493    pmccntr_op_finish(env);
1494    for (i = 0; i < pmu_num_counters(env); i++) {
1495        pmevcntr_op_finish(env, i);
1496    }
1497}
1498
1499void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1500{
1501    pmu_op_start(&cpu->env);
1502}
1503
1504void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1505{
1506    pmu_op_finish(&cpu->env);
1507}
1508
1509void arm_pmu_timer_cb(void *opaque)
1510{
1511    ARMCPU *cpu = opaque;
1512
1513    /*
1514     * Update all the counter values based on the current underlying counts,
1515     * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1516     * has the effect of setting the cpu->pmu_timer to the next earliest time a
1517     * counter may expire.
1518     */
1519    pmu_op_start(&cpu->env);
1520    pmu_op_finish(&cpu->env);
1521}
1522
1523static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524                       uint64_t value)
1525{
1526    pmu_op_start(env);
1527
1528    if (value & PMCRC) {
1529        /* The counter has been reset */
1530        env->cp15.c15_ccnt = 0;
1531    }
1532
1533    if (value & PMCRP) {
1534        unsigned int i;
1535        for (i = 0; i < pmu_num_counters(env); i++) {
1536            env->cp15.c14_pmevcntr[i] = 0;
1537        }
1538    }
1539
1540    /* only the DP, X, D and E bits are writable */
1541    env->cp15.c9_pmcr &= ~0x39;
1542    env->cp15.c9_pmcr |= (value & 0x39);
1543
1544    pmu_op_finish(env);
1545}
1546
1547static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1548                          uint64_t value)
1549{
1550    unsigned int i;
1551    for (i = 0; i < pmu_num_counters(env); i++) {
1552        /* Increment a counter's count iff: */
1553        if ((value & (1 << i)) && /* counter's bit is set */
1554                /* counter is enabled and not filtered */
1555                pmu_counter_enabled(env, i) &&
1556                /* counter is SW_INCR */
1557                (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1558            pmevcntr_op_start(env, i);
1559
1560            /*
1561             * Detect if this write causes an overflow since we can't predict
1562             * PMSWINC overflows like we can for other events
1563             */
1564            uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1565
1566            if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1567                env->cp15.c9_pmovsr |= (1 << i);
1568                pmu_update_irq(env);
1569            }
1570
1571            env->cp15.c14_pmevcntr[i] = new_pmswinc;
1572
1573            pmevcntr_op_finish(env, i);
1574        }
1575    }
1576}
1577
1578static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1579{
1580    uint64_t ret;
1581    pmccntr_op_start(env);
1582    ret = env->cp15.c15_ccnt;
1583    pmccntr_op_finish(env);
1584    return ret;
1585}
1586
1587static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1588                         uint64_t value)
1589{
1590    /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1591     * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1592     * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1593     * accessed.
1594     */
1595    env->cp15.c9_pmselr = value & 0x1f;
1596}
1597
1598static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1599                        uint64_t value)
1600{
1601    pmccntr_op_start(env);
1602    env->cp15.c15_ccnt = value;
1603    pmccntr_op_finish(env);
1604}
1605
1606static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1607                            uint64_t value)
1608{
1609    uint64_t cur_val = pmccntr_read(env, NULL);
1610
1611    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1612}
1613
1614static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1615                            uint64_t value)
1616{
1617    pmccntr_op_start(env);
1618    env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1619    pmccntr_op_finish(env);
1620}
1621
1622static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1623                            uint64_t value)
1624{
1625    pmccntr_op_start(env);
1626    /* M is not accessible from AArch32 */
1627    env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1628        (value & PMCCFILTR);
1629    pmccntr_op_finish(env);
1630}
1631
1632static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1633{
1634    /* M is not visible in AArch32 */
1635    return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1636}
1637
1638static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1639                            uint64_t value)
1640{
1641    value &= pmu_counter_mask(env);
1642    env->cp15.c9_pmcnten |= value;
1643}
1644
1645static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1646                             uint64_t value)
1647{
1648    value &= pmu_counter_mask(env);
1649    env->cp15.c9_pmcnten &= ~value;
1650}
1651
1652static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1653                         uint64_t value)
1654{
1655    value &= pmu_counter_mask(env);
1656    env->cp15.c9_pmovsr &= ~value;
1657    pmu_update_irq(env);
1658}
1659
1660static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1661                         uint64_t value)
1662{
1663    value &= pmu_counter_mask(env);
1664    env->cp15.c9_pmovsr |= value;
1665    pmu_update_irq(env);
1666}
1667
1668static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1669                             uint64_t value, const uint8_t counter)
1670{
1671    if (counter == 31) {
1672        pmccfiltr_write(env, ri, value);
1673    } else if (counter < pmu_num_counters(env)) {
1674        pmevcntr_op_start(env, counter);
1675
1676        /*
1677         * If this counter's event type is changing, store the current
1678         * underlying count for the new type in c14_pmevcntr_delta[counter] so
1679         * pmevcntr_op_finish has the correct baseline when it converts back to
1680         * a delta.
1681         */
1682        uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1683            PMXEVTYPER_EVTCOUNT;
1684        uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1685        if (old_event != new_event) {
1686            uint64_t count = 0;
1687            if (event_supported(new_event)) {
1688                uint16_t event_idx = supported_event_map[new_event];
1689                count = pm_events[event_idx].get_count(env);
1690            }
1691            env->cp15.c14_pmevcntr_delta[counter] = count;
1692        }
1693
1694        env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1695        pmevcntr_op_finish(env, counter);
1696    }
1697    /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1698     * PMSELR value is equal to or greater than the number of implemented
1699     * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1700     */
1701}
1702
1703static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1704                               const uint8_t counter)
1705{
1706    if (counter == 31) {
1707        return env->cp15.pmccfiltr_el0;
1708    } else if (counter < pmu_num_counters(env)) {
1709        return env->cp15.c14_pmevtyper[counter];
1710    } else {
1711      /*
1712       * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1713       * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1714       */
1715        return 0;
1716    }
1717}
1718
1719static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1720                              uint64_t value)
1721{
1722    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1723    pmevtyper_write(env, ri, value, counter);
1724}
1725
1726static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1727                               uint64_t value)
1728{
1729    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1730    env->cp15.c14_pmevtyper[counter] = value;
1731
1732    /*
1733     * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1734     * pmu_op_finish calls when loading saved state for a migration. Because
1735     * we're potentially updating the type of event here, the value written to
1736     * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1737     * different counter type. Therefore, we need to set this value to the
1738     * current count for the counter type we're writing so that pmu_op_finish
1739     * has the correct count for its calculation.
1740     */
1741    uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1742    if (event_supported(event)) {
1743        uint16_t event_idx = supported_event_map[event];
1744        env->cp15.c14_pmevcntr_delta[counter] =
1745            pm_events[event_idx].get_count(env);
1746    }
1747}
1748
1749static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1750{
1751    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1752    return pmevtyper_read(env, ri, counter);
1753}
1754
1755static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756                             uint64_t value)
1757{
1758    pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1759}
1760
1761static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1762{
1763    return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1764}
1765
1766static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1767                             uint64_t value, uint8_t counter)
1768{
1769    if (counter < pmu_num_counters(env)) {
1770        pmevcntr_op_start(env, counter);
1771        env->cp15.c14_pmevcntr[counter] = value;
1772        pmevcntr_op_finish(env, counter);
1773    }
1774    /*
1775     * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1776     * are CONSTRAINED UNPREDICTABLE.
1777     */
1778}
1779
1780static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1781                              uint8_t counter)
1782{
1783    if (counter < pmu_num_counters(env)) {
1784        uint64_t ret;
1785        pmevcntr_op_start(env, counter);
1786        ret = env->cp15.c14_pmevcntr[counter];
1787        pmevcntr_op_finish(env, counter);
1788        return ret;
1789    } else {
1790      /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1791       * are CONSTRAINED UNPREDICTABLE. */
1792        return 0;
1793    }
1794}
1795
1796static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1797                             uint64_t value)
1798{
1799    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1800    pmevcntr_write(env, ri, value, counter);
1801}
1802
1803static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1804{
1805    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1806    return pmevcntr_read(env, ri, counter);
1807}
1808
1809static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1810                             uint64_t value)
1811{
1812    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1813    assert(counter < pmu_num_counters(env));
1814    env->cp15.c14_pmevcntr[counter] = value;
1815    pmevcntr_write(env, ri, value, counter);
1816}
1817
1818static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1819{
1820    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1821    assert(counter < pmu_num_counters(env));
1822    return env->cp15.c14_pmevcntr[counter];
1823}
1824
1825static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1826                             uint64_t value)
1827{
1828    pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1829}
1830
1831static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1832{
1833    return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1834}
1835
1836static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1837                            uint64_t value)
1838{
1839    if (arm_feature(env, ARM_FEATURE_V8)) {
1840        env->cp15.c9_pmuserenr = value & 0xf;
1841    } else {
1842        env->cp15.c9_pmuserenr = value & 1;
1843    }
1844}
1845
1846static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847                             uint64_t value)
1848{
1849    /* We have no event counters so only the C bit can be changed */
1850    value &= pmu_counter_mask(env);
1851    env->cp15.c9_pminten |= value;
1852    pmu_update_irq(env);
1853}
1854
1855static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1856                             uint64_t value)
1857{
1858    value &= pmu_counter_mask(env);
1859    env->cp15.c9_pminten &= ~value;
1860    pmu_update_irq(env);
1861}
1862
1863static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1864                       uint64_t value)
1865{
1866    /* Note that even though the AArch64 view of this register has bits
1867     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1868     * architectural requirements for bits which are RES0 only in some
1869     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1870     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1871     */
1872    raw_write(env, ri, value & ~0x1FULL);
1873}
1874
1875static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1876{
1877    /* Begin with base v8.0 state.  */
1878    uint32_t valid_mask = 0x3fff;
1879    ARMCPU *cpu = env_archcpu(env);
1880
1881    if (arm_el_is_aa64(env, 3)) {
1882        value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1883        valid_mask &= ~SCR_NET;
1884    } else {
1885        valid_mask &= ~(SCR_RW | SCR_ST);
1886    }
1887
1888    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1889        valid_mask &= ~SCR_HCE;
1890
1891        /* On ARMv7, SMD (or SCD as it is called in v7) is only
1892         * supported if EL2 exists. The bit is UNK/SBZP when
1893         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1894         * when EL2 is unavailable.
1895         * On ARMv8, this bit is always available.
1896         */
1897        if (arm_feature(env, ARM_FEATURE_V7) &&
1898            !arm_feature(env, ARM_FEATURE_V8)) {
1899            valid_mask &= ~SCR_SMD;
1900        }
1901    }
1902    if (cpu_isar_feature(aa64_lor, cpu)) {
1903        valid_mask |= SCR_TLOR;
1904    }
1905    if (cpu_isar_feature(aa64_pauth, cpu)) {
1906        valid_mask |= SCR_API | SCR_APK;
1907    }
1908
1909    /* Clear all-context RES0 bits.  */
1910    value &= valid_mask;
1911    raw_write(env, ri, value);
1912}
1913
1914static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1915{
1916    ARMCPU *cpu = env_archcpu(env);
1917
1918    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1919     * bank
1920     */
1921    uint32_t index = A32_BANKED_REG_GET(env, csselr,
1922                                        ri->secure & ARM_CP_SECSTATE_S);
1923
1924    return cpu->ccsidr[index];
1925}
1926
1927static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1928                         uint64_t value)
1929{
1930    raw_write(env, ri, value & 0xf);
1931}
1932
1933static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1934{
1935    CPUState *cs = env_cpu(env);
1936    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1937    uint64_t ret = 0;
1938    bool allow_virt = (arm_current_el(env) == 1 &&
1939                       (!arm_is_secure_below_el3(env) ||
1940                        (env->cp15.scr_el3 & SCR_EEL2)));
1941
1942    if (allow_virt && (hcr_el2 & HCR_IMO)) {
1943        if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1944            ret |= CPSR_I;
1945        }
1946    } else {
1947        if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1948            ret |= CPSR_I;
1949        }
1950    }
1951
1952    if (allow_virt && (hcr_el2 & HCR_FMO)) {
1953        if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1954            ret |= CPSR_F;
1955        }
1956    } else {
1957        if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1958            ret |= CPSR_F;
1959        }
1960    }
1961
1962    /* External aborts are not possible in QEMU so A bit is always clear */
1963    return ret;
1964}
1965
1966static const ARMCPRegInfo v7_cp_reginfo[] = {
1967    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1968    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1969      .access = PL1_W, .type = ARM_CP_NOP },
1970    /* Performance monitors are implementation defined in v7,
1971     * but with an ARM recommended set of registers, which we
1972     * follow.
1973     *
1974     * Performance registers fall into three categories:
1975     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1976     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1977     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1978     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1979     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1980     */
1981    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1982      .access = PL0_RW, .type = ARM_CP_ALIAS,
1983      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1984      .writefn = pmcntenset_write,
1985      .accessfn = pmreg_access,
1986      .raw_writefn = raw_write },
1987    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1988      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1989      .access = PL0_RW, .accessfn = pmreg_access,
1990      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1991      .writefn = pmcntenset_write, .raw_writefn = raw_write },
1992    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1993      .access = PL0_RW,
1994      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1995      .accessfn = pmreg_access,
1996      .writefn = pmcntenclr_write,
1997      .type = ARM_CP_ALIAS },
1998    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1999      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2000      .access = PL0_RW, .accessfn = pmreg_access,
2001      .type = ARM_CP_ALIAS,
2002      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2003      .writefn = pmcntenclr_write },
2004    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2005      .access = PL0_RW, .type = ARM_CP_IO,
2006      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2007      .accessfn = pmreg_access,
2008      .writefn = pmovsr_write,
2009      .raw_writefn = raw_write },
2010    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2011      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2012      .access = PL0_RW, .accessfn = pmreg_access,
2013      .type = ARM_CP_ALIAS | ARM_CP_IO,
2014      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2015      .writefn = pmovsr_write,
2016      .raw_writefn = raw_write },
2017    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2018      .access = PL0_W, .accessfn = pmreg_access_swinc,
2019      .type = ARM_CP_NO_RAW | ARM_CP_IO,
2020      .writefn = pmswinc_write },
2021    { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2022      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2023      .access = PL0_W, .accessfn = pmreg_access_swinc,
2024      .type = ARM_CP_NO_RAW | ARM_CP_IO,
2025      .writefn = pmswinc_write },
2026    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2027      .access = PL0_RW, .type = ARM_CP_ALIAS,
2028      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2029      .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2030      .raw_writefn = raw_write},
2031    { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2032      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2033      .access = PL0_RW, .accessfn = pmreg_access_selr,
2034      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2035      .writefn = pmselr_write, .raw_writefn = raw_write, },
2036    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2037      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2038      .readfn = pmccntr_read, .writefn = pmccntr_write32,
2039      .accessfn = pmreg_access_ccntr },
2040    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2041      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2042      .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2043      .type = ARM_CP_IO,
2044      .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2045      .readfn = pmccntr_read, .writefn = pmccntr_write,
2046      .raw_readfn = raw_read, .raw_writefn = raw_write, },
2047    { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2048      .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2049      .access = PL0_RW, .accessfn = pmreg_access,
2050      .type = ARM_CP_ALIAS | ARM_CP_IO,
2051      .resetvalue = 0, },
2052    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2053      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2054      .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2055      .access = PL0_RW, .accessfn = pmreg_access,
2056      .type = ARM_CP_IO,
2057      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2058      .resetvalue = 0, },
2059    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2060      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2061      .accessfn = pmreg_access,
2062      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2063    { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2064      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2065      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2066      .accessfn = pmreg_access,
2067      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2068    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2069      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2070      .accessfn = pmreg_access_xevcntr,
2071      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2072    { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2073      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2074      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2075      .accessfn = pmreg_access_xevcntr,
2076      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2077    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2078      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2079      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2080      .resetvalue = 0,
2081      .writefn = pmuserenr_write, .raw_writefn = raw_write },
2082    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2083      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2084      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2085      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2086      .resetvalue = 0,
2087      .writefn = pmuserenr_write, .raw_writefn = raw_write },
2088    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2089      .access = PL1_RW, .accessfn = access_tpm,
2090      .type = ARM_CP_ALIAS | ARM_CP_IO,
2091      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2092      .resetvalue = 0,
2093      .writefn = pmintenset_write, .raw_writefn = raw_write },
2094    { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2095      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2096      .access = PL1_RW, .accessfn = access_tpm,
2097      .type = ARM_CP_IO,
2098      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2099      .writefn = pmintenset_write, .raw_writefn = raw_write,
2100      .resetvalue = 0x0 },
2101    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2102      .access = PL1_RW, .accessfn = access_tpm,
2103      .type = ARM_CP_ALIAS | ARM_CP_IO,
2104      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2105      .writefn = pmintenclr_write, },
2106    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2107      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2108      .access = PL1_RW, .accessfn = access_tpm,
2109      .type = ARM_CP_ALIAS | ARM_CP_IO,
2110      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2111      .writefn = pmintenclr_write },
2112    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2113      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2114      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2115    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2116      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2117      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2118      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2119                             offsetof(CPUARMState, cp15.csselr_ns) } },
2120    /* Auxiliary ID register: this actually has an IMPDEF value but for now
2121     * just RAZ for all cores:
2122     */
2123    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2124      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2125      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2126    /* Auxiliary fault status registers: these also are IMPDEF, and we
2127     * choose to RAZ/WI for all cores.
2128     */
2129    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2130      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2131      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2132    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2133      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2134      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2135    /* MAIR can just read-as-written because we don't implement caches
2136     * and so don't need to care about memory attributes.
2137     */
2138    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2139      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2140      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2141      .resetvalue = 0 },
2142    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2143      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2144      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2145      .resetvalue = 0 },
2146    /* For non-long-descriptor page tables these are PRRR and NMRR;
2147     * regardless they still act as reads-as-written for QEMU.
2148     */
2149     /* MAIR0/1 are defined separately from their 64-bit counterpart which
2150      * allows them to assign the correct fieldoffset based on the endianness
2151      * handled in the field definitions.
2152      */
2153    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2154      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2155      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2156                             offsetof(CPUARMState, cp15.mair0_ns) },
2157      .resetfn = arm_cp_reset_ignore },
2158    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2159      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2160      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2161                             offsetof(CPUARMState, cp15.mair1_ns) },
2162      .resetfn = arm_cp_reset_ignore },
2163    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2164      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2165      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2166    /* 32 bit ITLB invalidates */
2167    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2168      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2169    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2170      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2171    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2172      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2173    /* 32 bit DTLB invalidates */
2174    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2175      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2176    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2177      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2178    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2179      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2180    /* 32 bit TLB invalidates */
2181    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2182      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2183    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2184      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2185    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2186      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2187    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2188      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2189    REGINFO_SENTINEL
2190};
2191
2192static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2193    /* 32 bit TLB invalidates, Inner Shareable */
2194    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2195      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2196    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2197      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2198    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2199      .type = ARM_CP_NO_RAW, .access = PL1_W,
2200      .writefn = tlbiasid_is_write },
2201    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2202      .type = ARM_CP_NO_RAW, .access = PL1_W,
2203      .writefn = tlbimvaa_is_write },
2204    REGINFO_SENTINEL
2205};
2206
2207static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2208    /* PMOVSSET is not implemented in v7 before v7ve */
2209    { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2210      .access = PL0_RW, .accessfn = pmreg_access,
2211      .type = ARM_CP_ALIAS | ARM_CP_IO,
2212      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2213      .writefn = pmovsset_write,
2214      .raw_writefn = raw_write },
2215    { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2216      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2217      .access = PL0_RW, .accessfn = pmreg_access,
2218      .type = ARM_CP_ALIAS | ARM_CP_IO,
2219      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2220      .writefn = pmovsset_write,
2221      .raw_writefn = raw_write },
2222    REGINFO_SENTINEL
2223};
2224
2225static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2226                        uint64_t value)
2227{
2228    value &= 1;
2229    env->teecr = value;
2230}
2231
2232static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2233                                    bool isread)
2234{
2235    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2236        return CP_ACCESS_TRAP;
2237    }
2238    return CP_ACCESS_OK;
2239}
2240
2241static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2242    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2243      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2244      .resetvalue = 0,
2245      .writefn = teecr_write },
2246    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2247      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2248      .accessfn = teehbr_access, .resetvalue = 0 },
2249    REGINFO_SENTINEL
2250};
2251
2252static const ARMCPRegInfo v6k_cp_reginfo[] = {
2253    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2254      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2255      .access = PL0_RW,
2256      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2257    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2258      .access = PL0_RW,
2259      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2260                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2261      .resetfn = arm_cp_reset_ignore },
2262    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2263      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2264      .access = PL0_R|PL1_W,
2265      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2266      .resetvalue = 0},
2267    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2268      .access = PL0_R|PL1_W,
2269      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2270                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2271      .resetfn = arm_cp_reset_ignore },
2272    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2273      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2274      .access = PL1_RW,
2275      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2276    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2277      .access = PL1_RW,
2278      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2279                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2280      .resetvalue = 0 },
2281    REGINFO_SENTINEL
2282};
2283
2284#ifndef CONFIG_USER_ONLY
2285
2286static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2287                                       bool isread)
2288{
2289    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2290     * Writable only at the highest implemented exception level.
2291     */
2292    int el = arm_current_el(env);
2293
2294    switch (el) {
2295    case 0:
2296        if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2297            return CP_ACCESS_TRAP;
2298        }
2299        break;
2300    case 1:
2301        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2302            arm_is_secure_below_el3(env)) {
2303            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2304            return CP_ACCESS_TRAP_UNCATEGORIZED;
2305        }
2306        break;
2307    case 2:
2308    case 3:
2309        break;
2310    }
2311
2312    if (!isread && el < arm_highest_el(env)) {
2313        return CP_ACCESS_TRAP_UNCATEGORIZED;
2314    }
2315
2316    return CP_ACCESS_OK;
2317}
2318
2319static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2320                                        bool isread)
2321{
2322    unsigned int cur_el = arm_current_el(env);
2323    bool secure = arm_is_secure(env);
2324
2325    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2326    if (cur_el == 0 &&
2327        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2328        return CP_ACCESS_TRAP;
2329    }
2330
2331    if (arm_feature(env, ARM_FEATURE_EL2) &&
2332        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2333        !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2334        return CP_ACCESS_TRAP_EL2;
2335    }
2336    return CP_ACCESS_OK;
2337}
2338
2339static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2340                                      bool isread)
2341{
2342    unsigned int cur_el = arm_current_el(env);
2343    bool secure = arm_is_secure(env);
2344
2345    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2346     * EL0[PV]TEN is zero.
2347     */
2348    if (cur_el == 0 &&
2349        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2350        return CP_ACCESS_TRAP;
2351    }
2352
2353    if (arm_feature(env, ARM_FEATURE_EL2) &&
2354        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2355        !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2356        return CP_ACCESS_TRAP_EL2;
2357    }
2358    return CP_ACCESS_OK;
2359}
2360
2361static CPAccessResult gt_pct_access(CPUARMState *env,
2362                                    const ARMCPRegInfo *ri,
2363                                    bool isread)
2364{
2365    return gt_counter_access(env, GTIMER_PHYS, isread);
2366}
2367
2368static CPAccessResult gt_vct_access(CPUARMState *env,
2369                                    const ARMCPRegInfo *ri,
2370                                    bool isread)
2371{
2372    return gt_counter_access(env, GTIMER_VIRT, isread);
2373}
2374
2375static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2376                                       bool isread)
2377{
2378    return gt_timer_access(env, GTIMER_PHYS, isread);
2379}
2380
2381static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2382                                       bool isread)
2383{
2384    return gt_timer_access(env, GTIMER_VIRT, isread);
2385}
2386
2387static CPAccessResult gt_stimer_access(CPUARMState *env,
2388                                       const ARMCPRegInfo *ri,
2389                                       bool isread)
2390{
2391    /* The AArch64 register view of the secure physical timer is
2392     * always accessible from EL3, and configurably accessible from
2393     * Secure EL1.
2394     */
2395    switch (arm_current_el(env)) {
2396    case 1:
2397        if (!arm_is_secure(env)) {
2398            return CP_ACCESS_TRAP;
2399        }
2400        if (!(env->cp15.scr_el3 & SCR_ST)) {
2401            return CP_ACCESS_TRAP_EL3;
2402        }
2403        return CP_ACCESS_OK;
2404    case 0:
2405    case 2:
2406        return CP_ACCESS_TRAP;
2407    case 3:
2408        return CP_ACCESS_OK;
2409    default:
2410        g_assert_not_reached();
2411    }
2412}
2413
2414static uint64_t gt_get_countervalue(CPUARMState *env)
2415{
2416    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2417}
2418
2419static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2420{
2421    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2422
2423    if (gt->ctl & 1) {
2424        /* Timer enabled: calculate and set current ISTATUS, irq, and
2425         * reset timer to when ISTATUS next has to change
2426         */
2427        uint64_t offset = timeridx == GTIMER_VIRT ?
2428                                      cpu->env.cp15.cntvoff_el2 : 0;
2429        uint64_t count = gt_get_countervalue(&cpu->env);
2430        /* Note that this must be unsigned 64 bit arithmetic: */
2431        int istatus = count - offset >= gt->cval;
2432        uint64_t nexttick;
2433        int irqstate;
2434
2435        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2436
2437        irqstate = (istatus && !(gt->ctl & 2));
2438        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2439
2440        if (istatus) {
2441            /* Next transition is when count rolls back over to zero */
2442            nexttick = UINT64_MAX;
2443        } else {
2444            /* Next transition is when we hit cval */
2445            nexttick = gt->cval + offset;
2446        }
2447        /* Note that the desired next expiry time might be beyond the
2448         * signed-64-bit range of a QEMUTimer -- in this case we just
2449         * set the timer for as far in the future as possible. When the
2450         * timer expires we will reset the timer for any remaining period.
2451         */
2452        if (nexttick > INT64_MAX / GTIMER_SCALE) {
2453            nexttick = INT64_MAX / GTIMER_SCALE;
2454        }
2455        timer_mod(cpu->gt_timer[timeridx], nexttick);
2456        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2457    } else {
2458        /* Timer disabled: ISTATUS and timer output always clear */
2459        gt->ctl &= ~4;
2460        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2461        timer_del(cpu->gt_timer[timeridx]);
2462        trace_arm_gt_recalc_disabled(timeridx);
2463    }
2464}
2465
2466static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2467                           int timeridx)
2468{
2469    ARMCPU *cpu = env_archcpu(env);
2470
2471    timer_del(cpu->gt_timer[timeridx]);
2472}
2473
2474static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2475{
2476    return gt_get_countervalue(env);
2477}
2478
2479static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2480{
2481    return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2482}
2483
2484static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2485                          int timeridx,
2486                          uint64_t value)
2487{
2488    trace_arm_gt_cval_write(timeridx, value);
2489    env->cp15.c14_timer[timeridx].cval = value;
2490    gt_recalc_timer(env_archcpu(env), timeridx);
2491}
2492
2493static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2494                             int timeridx)
2495{
2496    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2497
2498    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2499                      (gt_get_countervalue(env) - offset));
2500}
2501
2502static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503                          int timeridx,
2504                          uint64_t value)
2505{
2506    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2507
2508    trace_arm_gt_tval_write(timeridx, value);
2509    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2510                                         sextract64(value, 0, 32);
2511    gt_recalc_timer(env_archcpu(env), timeridx);
2512}
2513
2514static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2515                         int timeridx,
2516                         uint64_t value)
2517{
2518    ARMCPU *cpu = env_archcpu(env);
2519    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2520
2521    trace_arm_gt_ctl_write(timeridx, value);
2522    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2523    if ((oldval ^ value) & 1) {
2524        /* Enable toggled */
2525        gt_recalc_timer(cpu, timeridx);
2526    } else if ((oldval ^ value) & 2) {
2527        /* IMASK toggled: don't need to recalculate,
2528         * just set the interrupt line based on ISTATUS
2529         */
2530        int irqstate = (oldval & 4) && !(value & 2);
2531
2532        trace_arm_gt_imask_toggle(timeridx, irqstate);
2533        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2534    }
2535}
2536
2537static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2538{
2539    gt_timer_reset(env, ri, GTIMER_PHYS);
2540}
2541
2542static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2543                               uint64_t value)
2544{
2545    gt_cval_write(env, ri, GTIMER_PHYS, value);
2546}
2547
2548static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2549{
2550    return gt_tval_read(env, ri, GTIMER_PHYS);
2551}
2552
2553static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2554                               uint64_t value)
2555{
2556    gt_tval_write(env, ri, GTIMER_PHYS, value);
2557}
2558
2559static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2560                              uint64_t value)
2561{
2562    gt_ctl_write(env, ri, GTIMER_PHYS, value);
2563}
2564
2565static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2566{
2567    gt_timer_reset(env, ri, GTIMER_VIRT);
2568}
2569
2570static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2571                               uint64_t value)
2572{
2573    gt_cval_write(env, ri, GTIMER_VIRT, value);
2574}
2575
2576static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2577{
2578    return gt_tval_read(env, ri, GTIMER_VIRT);
2579}
2580
2581static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2582                               uint64_t value)
2583{
2584    gt_tval_write(env, ri, GTIMER_VIRT, value);
2585}
2586
2587static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2588                              uint64_t value)
2589{
2590    gt_ctl_write(env, ri, GTIMER_VIRT, value);
2591}
2592
2593static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2594                              uint64_t value)
2595{
2596    ARMCPU *cpu = env_archcpu(env);
2597
2598    trace_arm_gt_cntvoff_write(value);
2599    raw_write(env, ri, value);
2600    gt_recalc_timer(cpu, GTIMER_VIRT);
2601}
2602
2603static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2604{
2605    gt_timer_reset(env, ri, GTIMER_HYP);
2606}
2607
2608static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2609                              uint64_t value)
2610{
2611    gt_cval_write(env, ri, GTIMER_HYP, value);
2612}
2613
2614static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2615{
2616    return gt_tval_read(env, ri, GTIMER_HYP);
2617}
2618
2619static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2620                              uint64_t value)
2621{
2622    gt_tval_write(env, ri, GTIMER_HYP, value);
2623}
2624
2625static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2626                              uint64_t value)
2627{
2628    gt_ctl_write(env, ri, GTIMER_HYP, value);
2629}
2630
2631static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2632{
2633    gt_timer_reset(env, ri, GTIMER_SEC);
2634}
2635
2636static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2637                              uint64_t value)
2638{
2639    gt_cval_write(env, ri, GTIMER_SEC, value);
2640}
2641
2642static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2643{
2644    return gt_tval_read(env, ri, GTIMER_SEC);
2645}
2646
2647static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2648                              uint64_t value)
2649{
2650    gt_tval_write(env, ri, GTIMER_SEC, value);
2651}
2652
2653static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2654                              uint64_t value)
2655{
2656    gt_ctl_write(env, ri, GTIMER_SEC, value);
2657}
2658
2659void arm_gt_ptimer_cb(void *opaque)
2660{
2661    ARMCPU *cpu = opaque;
2662
2663    gt_recalc_timer(cpu, GTIMER_PHYS);
2664}
2665
2666void arm_gt_vtimer_cb(void *opaque)
2667{
2668    ARMCPU *cpu = opaque;
2669
2670    gt_recalc_timer(cpu, GTIMER_VIRT);
2671}
2672
2673void arm_gt_htimer_cb(void *opaque)
2674{
2675    ARMCPU *cpu = opaque;
2676
2677    gt_recalc_timer(cpu, GTIMER_HYP);
2678}
2679
2680void arm_gt_stimer_cb(void *opaque)
2681{
2682    ARMCPU *cpu = opaque;
2683
2684    gt_recalc_timer(cpu, GTIMER_SEC);
2685}
2686
2687static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2688    /* Note that CNTFRQ is purely reads-as-written for the benefit
2689     * of software; writing it doesn't actually change the timer frequency.
2690     * Our reset value matches the fixed frequency we implement the timer at.
2691     */
2692    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2693      .type = ARM_CP_ALIAS,
2694      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2695      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2696    },
2697    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2698      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2699      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2700      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2701      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2702    },
2703    /* overall control: mostly access permissions */
2704    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2705      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2706      .access = PL1_RW,
2707      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2708      .resetvalue = 0,
2709    },
2710    /* per-timer control */
2711    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2712      .secure = ARM_CP_SECSTATE_NS,
2713      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2714      .accessfn = gt_ptimer_access,
2715      .fieldoffset = offsetoflow32(CPUARMState,
2716                                   cp15.c14_timer[GTIMER_PHYS].ctl),
2717      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2718    },
2719    { .name = "CNTP_CTL_S",
2720      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2721      .secure = ARM_CP_SECSTATE_S,
2722      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2723      .accessfn = gt_ptimer_access,
2724      .fieldoffset = offsetoflow32(CPUARMState,
2725                                   cp15.c14_timer[GTIMER_SEC].ctl),
2726      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2727    },
2728    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2729      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2730      .type = ARM_CP_IO, .access = PL0_RW,
2731      .accessfn = gt_ptimer_access,
2732      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2733      .resetvalue = 0,
2734      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2735    },
2736    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2737      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2738      .accessfn = gt_vtimer_access,
2739      .fieldoffset = offsetoflow32(CPUARMState,
2740                                   cp15.c14_timer[GTIMER_VIRT].ctl),
2741      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2742    },
2743    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2744      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2745      .type = ARM_CP_IO, .access = PL0_RW,
2746      .accessfn = gt_vtimer_access,
2747      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2748      .resetvalue = 0,
2749      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2750    },
2751    /* TimerValue views: a 32 bit downcounting view of the underlying state */
2752    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2753      .secure = ARM_CP_SECSTATE_NS,
2754      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2755      .accessfn = gt_ptimer_access,
2756      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2757    },
2758    { .name = "CNTP_TVAL_S",
2759      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2760      .secure = ARM_CP_SECSTATE_S,
2761      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2762      .accessfn = gt_ptimer_access,
2763      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2764    },
2765    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2766      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2767      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2768      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2769      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2770    },
2771    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2772      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2773      .accessfn = gt_vtimer_access,
2774      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2775    },
2776    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2777      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2778      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2779      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2780      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2781    },
2782    /* The counter itself */
2783    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2784      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2785      .accessfn = gt_pct_access,
2786      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2787    },
2788    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2789      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2790      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2791      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2792    },
2793    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2794      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2795      .accessfn = gt_vct_access,
2796      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2797    },
2798    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2799      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2800      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2801      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2802    },
2803    /* Comparison value, indicating when the timer goes off */
2804    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2805      .secure = ARM_CP_SECSTATE_NS,
2806      .access = PL0_RW,
2807      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2808      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2809      .accessfn = gt_ptimer_access,
2810      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2811    },
2812    { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2813      .secure = ARM_CP_SECSTATE_S,
2814      .access = PL0_RW,
2815      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2816      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2817      .accessfn = gt_ptimer_access,
2818      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2819    },
2820    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2821      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2822      .access = PL0_RW,
2823      .type = ARM_CP_IO,
2824      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2825      .resetvalue = 0, .accessfn = gt_ptimer_access,
2826      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2827    },
2828    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2829      .access = PL0_RW,
2830      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2831      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2832      .accessfn = gt_vtimer_access,
2833      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2834    },
2835    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2836      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2837      .access = PL0_RW,
2838      .type = ARM_CP_IO,
2839      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2840      .resetvalue = 0, .accessfn = gt_vtimer_access,
2841      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2842    },
2843    /* Secure timer -- this is actually restricted to only EL3
2844     * and configurably Secure-EL1 via the accessfn.
2845     */
2846    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2847      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2848      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2849      .accessfn = gt_stimer_access,
2850      .readfn = gt_sec_tval_read,
2851      .writefn = gt_sec_tval_write,
2852      .resetfn = gt_sec_timer_reset,
2853    },
2854    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2855      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2856      .type = ARM_CP_IO, .access = PL1_RW,
2857      .accessfn = gt_stimer_access,
2858      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2859      .resetvalue = 0,
2860      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2861    },
2862    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2863      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2864      .type = ARM_CP_IO, .access = PL1_RW,
2865      .accessfn = gt_stimer_access,
2866      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2867      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2868    },
2869    REGINFO_SENTINEL
2870};
2871
2872#else
2873
2874/* In user-mode most of the generic timer registers are inaccessible
2875 * however modern kernels (4.12+) allow access to cntvct_el0
2876 */
2877
2878static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2879{
2880    /* Currently we have no support for QEMUTimer in linux-user so we
2881     * can't call gt_get_countervalue(env), instead we directly
2882     * call the lower level functions.
2883     */
2884    return cpu_get_clock() / GTIMER_SCALE;
2885}
2886
2887static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2888    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2889      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2890      .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2891      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2892      .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2893    },
2894    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2895      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2896      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2897      .readfn = gt_virt_cnt_read,
2898    },
2899    REGINFO_SENTINEL
2900};
2901
2902#endif
2903
2904static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2905{
2906    if (arm_feature(env, ARM_FEATURE_LPAE)) {
2907        raw_write(env, ri, value);
2908    } else if (arm_feature(env, ARM_FEATURE_V7)) {
2909        raw_write(env, ri, value & 0xfffff6ff);
2910    } else {
2911        raw_write(env, ri, value & 0xfffff1ff);
2912    }
2913}
2914
2915#ifndef CONFIG_USER_ONLY
2916/* get_phys_addr() isn't present for user-mode-only targets */
2917
2918static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2919                                 bool isread)
2920{
2921    if (ri->opc2 & 4) {
2922        /* The ATS12NSO* operations must trap to EL3 if executed in
2923         * Secure EL1 (which can only happen if EL3 is AArch64).
2924         * They are simply UNDEF if executed from NS EL1.
2925         * They function normally from EL2 or EL3.
2926         */
2927        if (arm_current_el(env) == 1) {
2928            if (arm_is_secure_below_el3(env)) {
2929                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2930            }
2931            return CP_ACCESS_TRAP_UNCATEGORIZED;
2932        }
2933    }
2934    return CP_ACCESS_OK;
2935}
2936
2937static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2938                             MMUAccessType access_type, ARMMMUIdx mmu_idx)
2939{
2940    hwaddr phys_addr;
2941    target_ulong page_size;
2942    int prot;
2943    bool ret;
2944    uint64_t par64;
2945    bool format64 = false;
2946    MemTxAttrs attrs = {};
2947    ARMMMUFaultInfo fi = {};
2948    ARMCacheAttrs cacheattrs = {};
2949
2950    ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2951                        &prot, &page_size, &fi, &cacheattrs);
2952
2953    if (ret) {
2954        /*
2955         * Some kinds of translation fault must cause exceptions rather
2956         * than being reported in the PAR.
2957         */
2958        int current_el = arm_current_el(env);
2959        int target_el;
2960        uint32_t syn, fsr, fsc;
2961        bool take_exc = false;
2962
2963        if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
2964            && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) {
2965            /*
2966             * Synchronous stage 2 fault on an access made as part of the
2967             * translation table walk for AT S1E0* or AT S1E1* insn
2968             * executed from NS EL1. If this is a synchronous external abort
2969             * and SCR_EL3.EA == 1, then we take a synchronous external abort
2970             * to EL3. Otherwise the fault is taken as an exception to EL2,
2971             * and HPFAR_EL2 holds the faulting IPA.
2972             */
2973            if (fi.type == ARMFault_SyncExternalOnWalk &&
2974                (env->cp15.scr_el3 & SCR_EA)) {
2975                target_el = 3;
2976            } else {
2977                env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
2978                target_el = 2;
2979            }
2980            take_exc = true;
2981        } else if (fi.type == ARMFault_SyncExternalOnWalk) {
2982            /*
2983             * Synchronous external aborts during a translation table walk
2984             * are taken as Data Abort exceptions.
2985             */
2986            if (fi.stage2) {
2987                if (current_el == 3) {
2988                    target_el = 3;
2989                } else {
2990                    target_el = 2;
2991                }
2992            } else {
2993                target_el = exception_target_el(env);
2994            }
2995            take_exc = true;
2996        }
2997
2998        if (take_exc) {
2999            /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3000            if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3001                arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3002                fsr = arm_fi_to_lfsc(&fi);
3003                fsc = extract32(fsr, 0, 6);
3004            } else {
3005                fsr = arm_fi_to_sfsc(&fi);
3006                fsc = 0x3f;
3007            }
3008            /*
3009             * Report exception with ESR indicating a fault due to a
3010             * translation table walk for a cache maintenance instruction.
3011             */
3012            syn = syn_data_abort_no_iss(current_el == target_el,
3013                                        fi.ea, 1, fi.s1ptw, 1, fsc);
3014            env->exception.vaddress = value;
3015            env->exception.fsr = fsr;
3016            raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3017        }
3018    }
3019
3020    if (is_a64(env)) {
3021        format64 = true;
3022    } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3023        /*
3024         * ATS1Cxx:
3025         * * TTBCR.EAE determines whether the result is returned using the
3026         *   32-bit or the 64-bit PAR format
3027         * * Instructions executed in Hyp mode always use the 64bit format
3028         *
3029         * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3030         * * The Non-secure TTBCR.EAE bit is set to 1
3031         * * The implementation includes EL2, and the value of HCR.VM is 1
3032         *
3033         * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3034         *
3035         * ATS1Hx always uses the 64bit format.
3036         */
3037        format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3038
3039        if (arm_feature(env, ARM_FEATURE_EL2)) {
3040            if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
3041                format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3042            } else {
3043                format64 |= arm_current_el(env) == 2;
3044            }
3045        }
3046    }
3047
3048    if (format64) {
3049        /* Create a 64-bit PAR */
3050        par64 = (1 << 11); /* LPAE bit always set */
3051        if (!ret) {
3052            par64 |= phys_addr & ~0xfffULL;
3053            if (!attrs.secure) {
3054                par64 |= (1 << 9); /* NS */
3055            }
3056            par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3057            par64 |= cacheattrs.shareability << 7; /* SH */
3058        } else {
3059            uint32_t fsr = arm_fi_to_lfsc(&fi);
3060
3061            par64 |= 1; /* F */
3062            par64 |= (fsr & 0x3f) << 1; /* FS */
3063            if (fi.stage2) {
3064                par64 |= (1 << 9); /* S */
3065            }
3066            if (fi.s1ptw) {
3067                par64 |= (1 << 8); /* PTW */
3068            }
3069        }
3070    } else {
3071        /* fsr is a DFSR/IFSR value for the short descriptor
3072         * translation table format (with WnR always clear).
3073         * Convert it to a 32-bit PAR.
3074         */
3075        if (!ret) {
3076            /* We do not set any attribute bits in the PAR */
3077            if (page_size == (1 << 24)
3078                && arm_feature(env, ARM_FEATURE_V7)) {
3079                par64 = (phys_addr & 0xff000000) | (1 << 1);
3080            } else {
3081                par64 = phys_addr & 0xfffff000;
3082            }
3083            if (!attrs.secure) {
3084                par64 |= (1 << 9); /* NS */
3085            }
3086        } else {
3087            uint32_t fsr = arm_fi_to_sfsc(&fi);
3088
3089            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3090                    ((fsr & 0xf) << 1) | 1;
3091        }
3092    }
3093    return par64;
3094}
3095
3096static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3097{
3098    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3099    uint64_t par64;
3100    ARMMMUIdx mmu_idx;
3101    int el = arm_current_el(env);
3102    bool secure = arm_is_secure_below_el3(env);
3103
3104    switch (ri->opc2 & 6) {
3105    case 0:
3106        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3107        switch (el) {
3108        case 3:
3109            mmu_idx = ARMMMUIdx_S1E3;
3110            break;
3111        case 2:
3112            mmu_idx = ARMMMUIdx_S1NSE1;
3113            break;
3114        case 1:
3115            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3116            break;
3117        default:
3118            g_assert_not_reached();
3119        }
3120        break;
3121    case 2:
3122        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3123        switch (el) {
3124        case 3:
3125            mmu_idx = ARMMMUIdx_S1SE0;
3126            break;
3127        case 2:
3128            mmu_idx = ARMMMUIdx_S1NSE0;
3129            break;
3130        case 1:
3131            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3132            break;
3133        default:
3134            g_assert_not_reached();
3135        }
3136        break;
3137    case 4:
3138        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3139        mmu_idx = ARMMMUIdx_S12NSE1;
3140        break;
3141    case 6:
3142        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3143        mmu_idx = ARMMMUIdx_S12NSE0;
3144        break;
3145    default:
3146        g_assert_not_reached();
3147    }
3148
3149    par64 = do_ats_write(env, value, access_type, mmu_idx);
3150
3151    A32_BANKED_CURRENT_REG_SET(env, par, par64);
3152}
3153
3154static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3155                        uint64_t value)
3156{
3157    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3158    uint64_t par64;
3159
3160    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3161
3162    A32_BANKED_CURRENT_REG_SET(env, par, par64);
3163}
3164
3165static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3166                                     bool isread)
3167{
3168    if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3169        return CP_ACCESS_TRAP;
3170    }
3171    return CP_ACCESS_OK;
3172}
3173
3174static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3175                        uint64_t value)
3176{
3177    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3178    ARMMMUIdx mmu_idx;
3179    int secure = arm_is_secure_below_el3(env);
3180
3181    switch (ri->opc2 & 6) {
3182    case 0:
3183        switch (ri->opc1) {
3184        case 0: /* AT S1E1R, AT S1E1W */
3185            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3186            break;
3187        case 4: /* AT S1E2R, AT S1E2W */
3188            mmu_idx = ARMMMUIdx_S1E2;
3189            break;
3190        case 6: /* AT S1E3R, AT S1E3W */
3191            mmu_idx = ARMMMUIdx_S1E3;
3192            break;
3193        default:
3194            g_assert_not_reached();
3195        }
3196        break;
3197    case 2: /* AT S1E0R, AT S1E0W */
3198        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3199        break;
3200    case 4: /* AT S12E1R, AT S12E1W */
3201        mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3202        break;
3203    case 6: /* AT S12E0R, AT S12E0W */
3204        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3205        break;
3206    default:
3207        g_assert_not_reached();
3208    }
3209
3210    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3211}
3212#endif
3213
3214static const ARMCPRegInfo vapa_cp_reginfo[] = {
3215    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3216      .access = PL1_RW, .resetvalue = 0,
3217      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3218                             offsetoflow32(CPUARMState, cp15.par_ns) },
3219      .writefn = par_write },
3220#ifndef CONFIG_USER_ONLY
3221    /* This underdecoding is safe because the reginfo is NO_RAW. */
3222    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3223      .access = PL1_W, .accessfn = ats_access,
3224      .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3225#endif
3226    REGINFO_SENTINEL
3227};
3228
3229/* Return basic MPU access permission bits.  */
3230static uint32_t simple_mpu_ap_bits(uint32_t val)
3231{
3232    uint32_t ret;
3233    uint32_t mask;
3234    int i;
3235    ret = 0;
3236    mask = 3;
3237    for (i = 0; i < 16; i += 2) {
3238        ret |= (val >> i) & mask;
3239        mask <<= 2;
3240    }
3241    return ret;
3242}
3243
3244/* Pad basic MPU access permission bits to extended format.  */
3245static uint32_t extended_mpu_ap_bits(uint32_t val)
3246{
3247    uint32_t ret;
3248    uint32_t mask;
3249    int i;
3250    ret = 0;
3251    mask = 3;
3252    for (i = 0; i < 16; i += 2) {
3253        ret |= (val & mask) << i;
3254        mask <<= 2;
3255    }
3256    return ret;
3257}
3258
3259static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3260                                 uint64_t value)
3261{
3262    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3263}
3264
3265static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3266{
3267    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3268}
3269
3270static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3271                                 uint64_t value)
3272{
3273    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3274}
3275
3276static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3277{
3278    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3279}
3280
3281static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3282{
3283    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3284
3285    if (!u32p) {
3286        return 0;
3287    }
3288
3289    u32p += env->pmsav7.rnr[M_REG_NS];
3290    return *u32p;
3291}
3292
3293static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3294                         uint64_t value)
3295{
3296    ARMCPU *cpu = env_archcpu(env);
3297    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3298
3299    if (!u32p) {
3300        return;
3301    }
3302
3303    u32p += env->pmsav7.rnr[M_REG_NS];
3304    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3305    *u32p = value;
3306}
3307
3308static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3309                              uint64_t value)
3310{
3311    ARMCPU *cpu = env_archcpu(env);
3312    uint32_t nrgs = cpu->pmsav7_dregion;
3313
3314    if (value >= nrgs) {
3315        qemu_log_mask(LOG_GUEST_ERROR,
3316                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3317                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3318        return;
3319    }
3320
3321    raw_write(env, ri, value);
3322}
3323
3324static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3325    /* Reset for all these registers is handled in arm_cpu_reset(),
3326     * because the PMSAv7 is also used by M-profile CPUs, which do
3327     * not register cpregs but still need the state to be reset.
3328     */
3329    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3330      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3331      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3332      .readfn = pmsav7_read, .writefn = pmsav7_write,
3333      .resetfn = arm_cp_reset_ignore },
3334    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3335      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3336      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3337      .readfn = pmsav7_read, .writefn = pmsav7_write,
3338      .resetfn = arm_cp_reset_ignore },
3339    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3340      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3341      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3342      .readfn = pmsav7_read, .writefn = pmsav7_write,
3343      .resetfn = arm_cp_reset_ignore },
3344    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3345      .access = PL1_RW,
3346      .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3347      .writefn = pmsav7_rgnr_write,
3348      .resetfn = arm_cp_reset_ignore },
3349    REGINFO_SENTINEL
3350};
3351
3352static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3353    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3354      .access = PL1_RW, .type = ARM_CP_ALIAS,
3355      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3356      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3357    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3358      .access = PL1_RW, .type = ARM_CP_ALIAS,
3359      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3360      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3361    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3362      .access = PL1_RW,
3363      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3364      .resetvalue = 0, },
3365    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3366      .access = PL1_RW,
3367      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3368      .resetvalue = 0, },
3369    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3370      .access = PL1_RW,
3371      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3372    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3373      .access = PL1_RW,
3374      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3375    /* Protection region base and size registers */
3376    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3377      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3378      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3379    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3380      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3381      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3382    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3383      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3384      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3385    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3386      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3387      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3388    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3389      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3390      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3391    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3392      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3393      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3394    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3395      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3396      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3397    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3398      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3399      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3400    REGINFO_SENTINEL
3401};
3402
3403static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3404                                 uint64_t value)
3405{
3406    TCR *tcr = raw_ptr(env, ri);
3407    int maskshift = extract32(value, 0, 3);
3408
3409    if (!arm_feature(env, ARM_FEATURE_V8)) {
3410        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3411            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3412             * using Long-desciptor translation table format */
3413            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3414        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3415            /* In an implementation that includes the Security Extensions
3416             * TTBCR has additional fields PD0 [4] and PD1 [5] for
3417             * Short-descriptor translation table format.
3418             */
3419            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3420        } else {
3421            value &= TTBCR_N;
3422        }
3423    }
3424
3425    /* Update the masks corresponding to the TCR bank being written
3426     * Note that we always calculate mask and base_mask, but
3427     * they are only used for short-descriptor tables (ie if EAE is 0);
3428     * for long-descriptor tables the TCR fields are used differently
3429     * and the mask and base_mask values are meaningless.
3430     */
3431    tcr->raw_tcr = value;
3432    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3433    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3434}
3435
3436static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3437                             uint64_t value)
3438{
3439    ARMCPU *cpu = env_archcpu(env);
3440    TCR *tcr = raw_ptr(env, ri);
3441
3442    if (arm_feature(env, ARM_FEATURE_LPAE)) {
3443        /* With LPAE the TTBCR could result in a change of ASID
3444         * via the TTBCR.A1 bit, so do a TLB flush.
3445         */
3446        tlb_flush(CPU(cpu));
3447    }
3448    /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3449    value = deposit64(tcr->raw_tcr, 0, 32, value);
3450    vmsa_ttbcr_raw_write(env, ri, value);
3451}
3452
3453static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3454{
3455    TCR *tcr = raw_ptr(env, ri);
3456
3457    /* Reset both the TCR as well as the masks corresponding to the bank of
3458     * the TCR being reset.
3459     */
3460    tcr->raw_tcr = 0;
3461    tcr->mask = 0;
3462    tcr->base_mask = 0xffffc000u;
3463}
3464
3465static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3466                               uint64_t value)
3467{
3468    ARMCPU *cpu = env_archcpu(env);
3469    TCR *tcr = raw_ptr(env, ri);
3470
3471    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3472    tlb_flush(CPU(cpu));
3473    tcr->raw_tcr = value;
3474}
3475
3476static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3477                            uint64_t value)
3478{
3479    /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3480    if (cpreg_field_is_64bit(ri) &&
3481        extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3482        ARMCPU *cpu = env_archcpu(env);
3483        tlb_flush(CPU(cpu));
3484    }
3485    raw_write(env, ri, value);
3486}
3487
3488static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3489                        uint64_t value)
3490{
3491    ARMCPU *cpu = env_archcpu(env);
3492    CPUState *cs = CPU(cpu);
3493
3494    /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
3495    if (raw_read(env, ri) != value) {
3496        tlb_flush_by_mmuidx(cs,
3497                            ARMMMUIdxBit_S12NSE1 |
3498                            ARMMMUIdxBit_S12NSE0 |
3499                            ARMMMUIdxBit_S2NS);
3500        raw_write(env, ri, value);
3501    }
3502}
3503
3504static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3505    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3506      .access = PL1_RW, .type = ARM_CP_ALIAS,
3507      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3508                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3509    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3510      .access = PL1_RW, .resetvalue = 0,
3511      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3512                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3513    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3514      .access = PL1_RW, .resetvalue = 0,
3515      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3516                             offsetof(CPUARMState, cp15.dfar_ns) } },
3517    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3518      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3519      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3520      .resetvalue = 0, },
3521    REGINFO_SENTINEL
3522};
3523
3524static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3525    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3526      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3527      .access = PL1_RW,
3528      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3529    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3530      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3531      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3532      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3533                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
3534    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3535      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3536      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3537      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3538                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
3539    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3540      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3541      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3542      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3543      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3544    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3545      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3546      .raw_writefn = vmsa_ttbcr_raw_write,
3547      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3548                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3549    REGINFO_SENTINEL
3550};
3551
3552/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3553 * qemu tlbs nor adjusting cached masks.
3554 */
3555static const ARMCPRegInfo ttbcr2_reginfo = {
3556    .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3557    .access = PL1_RW, .type = ARM_CP_ALIAS,
3558    .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3559                           offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3560};
3561
3562static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3563                                uint64_t value)
3564{
3565    env->cp15.c15_ticonfig = value & 0xe7;
3566    /* The OS_TYPE bit in this register changes the reported CPUID! */
3567    env->cp15.c0_cpuid = (value & (1 << 5)) ?
3568        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3569}
3570
3571static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3572                                uint64_t value)
3573{
3574    env->cp15.c15_threadid = value & 0xffff;
3575}
3576
3577static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3578                           uint64_t value)
3579{
3580    /* Wait-for-interrupt (deprecated) */
3581    cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3582}
3583
3584static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3585                                  uint64_t value)
3586{
3587    /* On OMAP there are registers indicating the max/min index of dcache lines
3588     * containing a dirty line; cache flush operations have to reset these.
3589     */
3590    env->cp15.c15_i_max = 0x000;
3591    env->cp15.c15_i_min = 0xff0;
3592}
3593
3594static const ARMCPRegInfo omap_cp_reginfo[] = {
3595    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3596      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3597      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3598      .resetvalue = 0, },
3599    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3600      .access = PL1_RW, .type = ARM_CP_NOP },
3601    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3602      .access = PL1_RW,
3603      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3604      .writefn = omap_ticonfig_write },
3605    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3606      .access = PL1_RW,
3607      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3608    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3609      .access = PL1_RW, .resetvalue = 0xff0,
3610      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3611    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3612      .access = PL1_RW,
3613      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3614      .writefn = omap_threadid_write },
3615    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3616      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3617      .type = ARM_CP_NO_RAW,
3618      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3619    /* TODO: Peripheral port remap register:
3620     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3621     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3622     * when MMU is off.
3623     */
3624    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3625      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3626      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3627      .writefn = omap_cachemaint_write },
3628    { .name = "C9", .cp = 15, .crn = 9,
3629      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3630      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3631    REGINFO_SENTINEL
3632};
3633
3634static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3635                              uint64_t value)
3636{
3637    env->cp15.c15_cpar = value & 0x3fff;
3638}
3639
3640static const ARMCPRegInfo xscale_cp_reginfo[] = {
3641    { .name = "XSCALE_CPAR",
3642      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3643      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3644      .writefn = xscale_cpar_write, },
3645    { .name = "XSCALE_AUXCR",
3646      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3647      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3648      .resetvalue = 0, },
3649    /* XScale specific cache-lockdown: since we have no cache we NOP these
3650     * and hope the guest does not really rely on cache behaviour.
3651     */
3652    { .name = "XSCALE_LOCK_ICACHE_LINE",
3653      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3654      .access = PL1_W, .type = ARM_CP_NOP },
3655    { .name = "XSCALE_UNLOCK_ICACHE",
3656      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3657      .access = PL1_W, .type = ARM_CP_NOP },
3658    { .name = "XSCALE_DCACHE_LOCK",
3659      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3660      .access = PL1_RW, .type = ARM_CP_NOP },
3661    { .name = "XSCALE_UNLOCK_DCACHE",
3662      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3663      .access = PL1_W, .type = ARM_CP_NOP },
3664    REGINFO_SENTINEL
3665};
3666
3667static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3668    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3669     * implementation of this implementation-defined space.
3670     * Ideally this should eventually disappear in favour of actually
3671     * implementing the correct behaviour for all cores.
3672     */
3673    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3674      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3675      .access = PL1_RW,
3676      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3677      .resetvalue = 0 },
3678    REGINFO_SENTINEL
3679};
3680
3681static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3682    /* Cache status: RAZ because we have no cache so it's always clean */
3683    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3684      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3685      .resetvalue = 0 },
3686    REGINFO_SENTINEL
3687};
3688
3689static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3690    /* We never have a a block transfer operation in progress */
3691    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3692      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3693      .resetvalue = 0 },
3694    /* The cache ops themselves: these all NOP for QEMU */
3695    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3696      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3697    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3698      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3699    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3700      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3701    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3702      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3703    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3704      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3705    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3706      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3707    REGINFO_SENTINEL
3708};
3709
3710static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3711    /* The cache test-and-clean instructions always return (1 << 30)
3712     * to indicate that there are no dirty cache lines.
3713     */
3714    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3715      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3716      .resetvalue = (1 << 30) },
3717    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3718      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3719      .resetvalue = (1 << 30) },
3720    REGINFO_SENTINEL
3721};
3722
3723static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3724    /* Ignore ReadBuffer accesses */
3725    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3726      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3727      .access = PL1_RW, .resetvalue = 0,
3728      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3729    REGINFO_SENTINEL
3730};
3731
3732static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3733{
3734    ARMCPU *cpu = env_archcpu(env);
3735    unsigned int cur_el = arm_current_el(env);
3736    bool secure = arm_is_secure(env);
3737
3738    if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3739        return env->cp15.vpidr_el2;
3740    }
3741    return raw_read(env, ri);
3742}
3743
3744static uint64_t mpidr_read_val(CPUARMState *env)
3745{
3746    ARMCPU *cpu = env_archcpu(env);
3747    uint64_t mpidr = cpu->mp_affinity;
3748
3749    if (arm_feature(env, ARM_FEATURE_V7MP)) {
3750        mpidr |= (1U << 31);
3751        /* Cores which are uniprocessor (non-coherent)
3752         * but still implement the MP extensions set
3753         * bit 30. (For instance, Cortex-R5).
3754         */
3755        if (cpu->mp_is_up) {
3756            mpidr |= (1u << 30);
3757        }
3758    }
3759    return mpidr;
3760}
3761
3762static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3763{
3764    unsigned int cur_el = arm_current_el(env);
3765    bool secure = arm_is_secure(env);
3766
3767    if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3768        return env->cp15.vmpidr_el2;
3769    }
3770    return mpidr_read_val(env);
3771}
3772
3773static const ARMCPRegInfo lpae_cp_reginfo[] = {
3774    /* NOP AMAIR0/1 */
3775    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3776      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3777      .access = PL1_RW, .type = ARM_CP_CONST,
3778      .resetvalue = 0 },
3779    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3780    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3781      .access = PL1_RW, .type = ARM_CP_CONST,
3782      .resetvalue = 0 },
3783    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3784      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3785      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3786                             offsetof(CPUARMState, cp15.par_ns)} },
3787    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3788      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3789      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3790                             offsetof(CPUARMState, cp15.ttbr0_ns) },
3791      .writefn = vmsa_ttbr_write, },
3792    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3793      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3794      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3795                             offsetof(CPUARMState, cp15.ttbr1_ns) },
3796      .writefn = vmsa_ttbr_write, },
3797    REGINFO_SENTINEL
3798};
3799
3800static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3801{
3802    return vfp_get_fpcr(env);
3803}
3804
3805static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3806                            uint64_t value)
3807{
3808    vfp_set_fpcr(env, value);
3809}
3810
3811static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3812{
3813    return vfp_get_fpsr(env);
3814}
3815
3816static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3817                            uint64_t value)
3818{
3819    vfp_set_fpsr(env, value);
3820}
3821
3822static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3823                                       bool isread)
3824{
3825    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3826        return CP_ACCESS_TRAP;
3827    }
3828    return CP_ACCESS_OK;
3829}
3830
3831static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3832                            uint64_t value)
3833{
3834    env->daif = value & PSTATE_DAIF;
3835}
3836
3837static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3838                                          const ARMCPRegInfo *ri,
3839                                          bool isread)
3840{
3841    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3842     * SCTLR_EL1.UCI is set.
3843     */
3844    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3845        return CP_ACCESS_TRAP;
3846    }
3847    return CP_ACCESS_OK;
3848}
3849
3850/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3851 * Page D4-1736 (DDI0487A.b)
3852 */
3853
3854static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3855                                      uint64_t value)
3856{
3857    CPUState *cs = env_cpu(env);
3858    bool sec = arm_is_secure_below_el3(env);
3859
3860    if (sec) {
3861        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3862                                            ARMMMUIdxBit_S1SE1 |
3863                                            ARMMMUIdxBit_S1SE0);
3864    } else {
3865        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3866                                            ARMMMUIdxBit_S12NSE1 |
3867                                            ARMMMUIdxBit_S12NSE0);
3868    }
3869}
3870
3871static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3872                                    uint64_t value)
3873{
3874    CPUState *cs = env_cpu(env);
3875
3876    if (tlb_force_broadcast(env)) {
3877        tlbi_aa64_vmalle1is_write(env, NULL, value);
3878        return;
3879    }
3880
3881    if (arm_is_secure_below_el3(env)) {
3882        tlb_flush_by_mmuidx(cs,
3883                            ARMMMUIdxBit_S1SE1 |
3884                            ARMMMUIdxBit_S1SE0);
3885    } else {
3886        tlb_flush_by_mmuidx(cs,
3887                            ARMMMUIdxBit_S12NSE1 |
3888                            ARMMMUIdxBit_S12NSE0);
3889    }
3890}
3891
3892static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893                                  uint64_t value)
3894{
3895    /* Note that the 'ALL' scope must invalidate both stage 1 and
3896     * stage 2 translations, whereas most other scopes only invalidate
3897     * stage 1 translations.
3898     */
3899    ARMCPU *cpu = env_archcpu(env);
3900    CPUState *cs = CPU(cpu);
3901
3902    if (arm_is_secure_below_el3(env)) {
3903        tlb_flush_by_mmuidx(cs,
3904                            ARMMMUIdxBit_S1SE1 |
3905                            ARMMMUIdxBit_S1SE0);
3906    } else {
3907        if (arm_feature(env, ARM_FEATURE_EL2)) {
3908            tlb_flush_by_mmuidx(cs,
3909                                ARMMMUIdxBit_S12NSE1 |
3910                                ARMMMUIdxBit_S12NSE0 |
3911                                ARMMMUIdxBit_S2NS);
3912        } else {
3913            tlb_flush_by_mmuidx(cs,
3914                                ARMMMUIdxBit_S12NSE1 |
3915                                ARMMMUIdxBit_S12NSE0);
3916        }
3917    }
3918}
3919
3920static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3921                                  uint64_t value)
3922{
3923    ARMCPU *cpu = env_archcpu(env);
3924    CPUState *cs = CPU(cpu);
3925
3926    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3927}
3928
3929static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3930                                  uint64_t value)
3931{
3932    ARMCPU *cpu = env_archcpu(env);
3933    CPUState *cs = CPU(cpu);
3934
3935    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3936}
3937
3938static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3939                                    uint64_t value)
3940{
3941    /* Note that the 'ALL' scope must invalidate both stage 1 and
3942     * stage 2 translations, whereas most other scopes only invalidate
3943     * stage 1 translations.
3944     */
3945    CPUState *cs = env_cpu(env);
3946    bool sec = arm_is_secure_below_el3(env);
3947    bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3948
3949    if (sec) {
3950        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3951                                            ARMMMUIdxBit_S1SE1 |
3952                                            ARMMMUIdxBit_S1SE0);
3953    } else if (has_el2) {
3954        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3955                                            ARMMMUIdxBit_S12NSE1 |
3956                                            ARMMMUIdxBit_S12NSE0 |
3957                                            ARMMMUIdxBit_S2NS);
3958    } else {
3959          tlb_flush_by_mmuidx_all_cpus_synced(cs,
3960                                              ARMMMUIdxBit_S12NSE1 |
3961                                              ARMMMUIdxBit_S12NSE0);
3962    }
3963}
3964
3965static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3966                                    uint64_t value)
3967{
3968    CPUState *cs = env_cpu(env);
3969
3970    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3971}
3972
3973static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3974                                    uint64_t value)
3975{
3976    CPUState *cs = env_cpu(env);
3977
3978    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3979}
3980
3981static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3982                                 uint64_t value)
3983{
3984    /* Invalidate by VA, EL2
3985     * Currently handles both VAE2 and VALE2, since we don't support
3986     * flush-last-level-only.
3987     */
3988    ARMCPU *cpu = env_archcpu(env);
3989    CPUState *cs = CPU(cpu);
3990    uint64_t pageaddr = sextract64(value << 12, 0, 56);
3991
3992    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3993}
3994
3995static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3996                                 uint64_t value)
3997{
3998    /* Invalidate by VA, EL3
3999     * Currently handles both VAE3 and VALE3, since we don't support
4000     * flush-last-level-only.
4001     */
4002    ARMCPU *cpu = env_archcpu(env);
4003    CPUState *cs = CPU(cpu);
4004    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4005
4006    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
4007}
4008
4009static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4010                                   uint64_t value)
4011{
4012    ARMCPU *cpu = env_archcpu(env);
4013    CPUState *cs = CPU(cpu);
4014    bool sec = arm_is_secure_below_el3(env);
4015    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4016
4017    if (sec) {
4018        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4019                                                 ARMMMUIdxBit_S1SE1 |
4020                                                 ARMMMUIdxBit_S1SE0);
4021    } else {
4022        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4023                                                 ARMMMUIdxBit_S12NSE1 |
4024                                                 ARMMMUIdxBit_S12NSE0);
4025    }
4026}
4027
4028static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4029                                 uint64_t value)
4030{
4031    /* Invalidate by VA, EL1&0 (AArch64 version).
4032     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4033     * since we don't support flush-for-specific-ASID-only or
4034     * flush-last-level-only.
4035     */
4036    ARMCPU *cpu = env_archcpu(env);
4037    CPUState *cs = CPU(cpu);
4038    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4039
4040    if (tlb_force_broadcast(env)) {
4041        tlbi_aa64_vae1is_write(env, NULL, value);
4042        return;
4043    }
4044
4045    if (arm_is_secure_below_el3(env)) {
4046        tlb_flush_page_by_mmuidx(cs, pageaddr,
4047                                 ARMMMUIdxBit_S1SE1 |
4048                                 ARMMMUIdxBit_S1SE0);
4049    } else {
4050        tlb_flush_page_by_mmuidx(cs, pageaddr,
4051                                 ARMMMUIdxBit_S12NSE1 |
4052                                 ARMMMUIdxBit_S12NSE0);
4053    }
4054}
4055
4056static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4057                                   uint64_t value)
4058{
4059    CPUState *cs = env_cpu(env);
4060    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4061
4062    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4063                                             ARMMMUIdxBit_S1E2);
4064}
4065
4066static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4067                                   uint64_t value)
4068{
4069    CPUState *cs = env_cpu(env);
4070    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4071
4072    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4073                                             ARMMMUIdxBit_S1E3);
4074}
4075
4076static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4077                                    uint64_t value)
4078{
4079    /* Invalidate by IPA. This has to invalidate any structures that
4080     * contain only stage 2 translation information, but does not need
4081     * to apply to structures that contain combined stage 1 and stage 2
4082     * translation information.
4083     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4084     */
4085    ARMCPU *cpu = env_archcpu(env);
4086    CPUState *cs = CPU(cpu);
4087    uint64_t pageaddr;
4088
4089    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4090        return;
4091    }
4092
4093    pageaddr = sextract64(value << 12, 0, 48);
4094
4095    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4096}
4097
4098static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4099                                      uint64_t value)
4100{
4101    CPUState *cs = env_cpu(env);
4102    uint64_t pageaddr;
4103
4104    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4105        return;
4106    }
4107
4108    pageaddr = sextract64(value << 12, 0, 48);
4109
4110    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4111                                             ARMMMUIdxBit_S2NS);
4112}
4113
4114static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4115                                      bool isread)
4116{
4117    /* We don't implement EL2, so the only control on DC ZVA is the
4118     * bit in the SCTLR which can prohibit access for EL0.
4119     */
4120    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4121        return CP_ACCESS_TRAP;
4122    }
4123    return CP_ACCESS_OK;
4124}
4125
4126static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4127{
4128    ARMCPU *cpu = env_archcpu(env);
4129    int dzp_bit = 1 << 4;
4130
4131    /* DZP indicates whether DC ZVA access is allowed */
4132    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4133        dzp_bit = 0;
4134    }
4135    return cpu->dcz_blocksize | dzp_bit;
4136}
4137
4138static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4139                                    bool isread)
4140{
4141    if (!(env->pstate & PSTATE_SP)) {
4142        /* Access to SP_EL0 is undefined if it's being used as
4143         * the stack pointer.
4144         */
4145        return CP_ACCESS_TRAP_UNCATEGORIZED;
4146    }
4147    return CP_ACCESS_OK;
4148}
4149
4150static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4151{
4152    return env->pstate & PSTATE_SP;
4153}
4154
4155static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4156{
4157    update_spsel(env, val);
4158}
4159
4160static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4161                        uint64_t value)
4162{
4163    ARMCPU *cpu = env_archcpu(env);
4164
4165    if (raw_read(env, ri) == value) {
4166        /* Skip the TLB flush if nothing actually changed; Linux likes
4167         * to do a lot of pointless SCTLR writes.
4168         */
4169        return;
4170    }
4171
4172    if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4173        /* M bit is RAZ/WI for PMSA with no MPU implemented */
4174        value &= ~SCTLR_M;
4175    }
4176
4177    raw_write(env, ri, value);
4178    /* ??? Lots of these bits are not implemented.  */
4179    /* This may enable/disable the MMU, so do a TLB flush.  */
4180    tlb_flush(CPU(cpu));
4181
4182    if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4183        /*
4184         * Normally we would always end the TB on an SCTLR write; see the
4185         * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4186         * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4187         * of hflags from the translator, so do it here.
4188         */
4189        arm_rebuild_hflags(env);
4190    }
4191}
4192
4193static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4194                                     bool isread)
4195{
4196    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4197        return CP_ACCESS_TRAP_FP_EL2;
4198    }
4199    if (env->cp15.cptr_el[3] & CPTR_TFP) {
4200        return CP_ACCESS_TRAP_FP_EL3;
4201    }
4202    return CP_ACCESS_OK;
4203}
4204
4205static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4206                       uint64_t value)
4207{
4208    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4209}
4210
4211static const ARMCPRegInfo v8_cp_reginfo[] = {
4212    /* Minimal set of EL0-visible registers. This will need to be expanded
4213     * significantly for system emulation of AArch64 CPUs.
4214     */
4215    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4216      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4217      .access = PL0_RW, .type = ARM_CP_NZCV },
4218    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4219      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4220      .type = ARM_CP_NO_RAW,
4221      .access = PL0_RW, .accessfn = aa64_daif_access,
4222      .fieldoffset = offsetof(CPUARMState, daif),
4223      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4224    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4225      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4226      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4227      .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4228    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4229      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4230      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4231      .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4232    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4233      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4234      .access = PL0_R, .type = ARM_CP_NO_RAW,
4235      .readfn = aa64_dczid_read },
4236    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4237      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4238      .access = PL0_W, .type = ARM_CP_DC_ZVA,
4239#ifndef CONFIG_USER_ONLY
4240      /* Avoid overhead of an access check that always passes in user-mode */
4241      .accessfn = aa64_zva_access,
4242#endif
4243    },
4244    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4245      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4246      .access = PL1_R, .type = ARM_CP_CURRENTEL },
4247    /* Cache ops: all NOPs since we don't emulate caches */
4248    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4249      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4250      .access = PL1_W, .type = ARM_CP_NOP },
4251    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4252      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4253      .access = PL1_W, .type = ARM_CP_NOP },
4254    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4255      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4256      .access = PL0_W, .type = ARM_CP_NOP,
4257      .accessfn = aa64_cacheop_access },
4258    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4259      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4260      .access = PL1_W, .type = ARM_CP_NOP },
4261    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4262      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4263      .access = PL1_W, .type = ARM_CP_NOP },
4264    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4265      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4266      .access = PL0_W, .type = ARM_CP_NOP,
4267      .accessfn = aa64_cacheop_access },
4268    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4269      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4270      .access = PL1_W, .type = ARM_CP_NOP },
4271    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4272      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4273      .access = PL0_W, .type = ARM_CP_NOP,
4274      .accessfn = aa64_cacheop_access },
4275    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4276      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4277      .access = PL0_W, .type = ARM_CP_NOP,
4278      .accessfn = aa64_cacheop_access },
4279    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4280      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4281      .access = PL1_W, .type = ARM_CP_NOP },
4282    /* TLBI operations */
4283    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4284      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4285      .access = PL1_W, .type = ARM_CP_NO_RAW,
4286      .writefn = tlbi_aa64_vmalle1is_write },
4287    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4288      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4289      .access = PL1_W, .type = ARM_CP_NO_RAW,
4290      .writefn = tlbi_aa64_vae1is_write },
4291    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4292      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4293      .access = PL1_W, .type = ARM_CP_NO_RAW,
4294      .writefn = tlbi_aa64_vmalle1is_write },
4295    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4296      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4297      .access = PL1_W, .type = ARM_CP_NO_RAW,
4298      .writefn = tlbi_aa64_vae1is_write },
4299    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4300      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4301      .access = PL1_W, .type = ARM_CP_NO_RAW,
4302      .writefn = tlbi_aa64_vae1is_write },
4303    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4304      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4305      .access = PL1_W, .type = ARM_CP_NO_RAW,
4306      .writefn = tlbi_aa64_vae1is_write },
4307    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4308      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4309      .access = PL1_W, .type = ARM_CP_NO_RAW,
4310      .writefn = tlbi_aa64_vmalle1_write },
4311    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4312      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4313      .access = PL1_W, .type = ARM_CP_NO_RAW,
4314      .writefn = tlbi_aa64_vae1_write },
4315    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4316      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4317      .access = PL1_W, .type = ARM_CP_NO_RAW,
4318      .writefn = tlbi_aa64_vmalle1_write },
4319    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4320      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4321      .access = PL1_W, .type = ARM_CP_NO_RAW,
4322      .writefn = tlbi_aa64_vae1_write },
4323    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4324      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4325      .access = PL1_W, .type = ARM_CP_NO_RAW,
4326      .writefn = tlbi_aa64_vae1_write },
4327    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4328      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4329      .access = PL1_W, .type = ARM_CP_NO_RAW,
4330      .writefn = tlbi_aa64_vae1_write },
4331    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4332      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4333      .access = PL2_W, .type = ARM_CP_NO_RAW,
4334      .writefn = tlbi_aa64_ipas2e1is_write },
4335    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4336      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4337      .access = PL2_W, .type = ARM_CP_NO_RAW,
4338      .writefn = tlbi_aa64_ipas2e1is_write },
4339    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4340      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4341      .access = PL2_W, .type = ARM_CP_NO_RAW,
4342      .writefn = tlbi_aa64_alle1is_write },
4343    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4344      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4345      .access = PL2_W, .type = ARM_CP_NO_RAW,
4346      .writefn = tlbi_aa64_alle1is_write },
4347    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4348      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4349      .access = PL2_W, .type = ARM_CP_NO_RAW,
4350      .writefn = tlbi_aa64_ipas2e1_write },
4351    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4352      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4353      .access = PL2_W, .type = ARM_CP_NO_RAW,
4354      .writefn = tlbi_aa64_ipas2e1_write },
4355    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4356      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4357      .access = PL2_W, .type = ARM_CP_NO_RAW,
4358      .writefn = tlbi_aa64_alle1_write },
4359    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4360      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4361      .access = PL2_W, .type = ARM_CP_NO_RAW,
4362      .writefn = tlbi_aa64_alle1is_write },
4363#ifndef CONFIG_USER_ONLY
4364    /* 64 bit address translation operations */
4365    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4366      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4367      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4368      .writefn = ats_write64 },
4369    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4370      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4371      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4372      .writefn = ats_write64 },
4373    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4374      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4375      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4376      .writefn = ats_write64 },
4377    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4378      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4379      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4380      .writefn = ats_write64 },
4381    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4382      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4383      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4384      .writefn = ats_write64 },
4385    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4386      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4387      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4388      .writefn = ats_write64 },
4389    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4390      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4391      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4392      .writefn = ats_write64 },
4393    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4394      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4395      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4396      .writefn = ats_write64 },
4397    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4398    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4399      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4400      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4401      .writefn = ats_write64 },
4402    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4403      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4404      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4405      .writefn = ats_write64 },
4406    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4407      .type = ARM_CP_ALIAS,
4408      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4409      .access = PL1_RW, .resetvalue = 0,
4410      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4411      .writefn = par_write },
4412#endif
4413    /* TLB invalidate last level of translation table walk */
4414    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4415      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4416    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4417      .type = ARM_CP_NO_RAW, .access = PL1_W,
4418      .writefn = tlbimvaa_is_write },
4419    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4420      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4421    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4422      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4423    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4424      .type = ARM_CP_NO_RAW, .access = PL2_W,
4425      .writefn = tlbimva_hyp_write },
4426    { .name = "TLBIMVALHIS",
4427      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4428      .type = ARM_CP_NO_RAW, .access = PL2_W,
4429      .writefn = tlbimva_hyp_is_write },
4430    { .name = "TLBIIPAS2",
4431      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4432      .type = ARM_CP_NO_RAW, .access = PL2_W,
4433      .writefn = tlbiipas2_write },
4434    { .name = "TLBIIPAS2IS",
4435      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4436      .type = ARM_CP_NO_RAW, .access = PL2_W,
4437      .writefn = tlbiipas2_is_write },
4438    { .name = "TLBIIPAS2L",
4439      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4440      .type = ARM_CP_NO_RAW, .access = PL2_W,
4441      .writefn = tlbiipas2_write },
4442    { .name = "TLBIIPAS2LIS",
4443      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4444      .type = ARM_CP_NO_RAW, .access = PL2_W,
4445      .writefn = tlbiipas2_is_write },
4446    /* 32 bit cache operations */
4447    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4448      .type = ARM_CP_NOP, .access = PL1_W },
4449    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4450      .type = ARM_CP_NOP, .access = PL1_W },
4451    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4452      .type = ARM_CP_NOP, .access = PL1_W },
4453    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4454      .type = ARM_CP_NOP, .access = PL1_W },
4455    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4456      .type = ARM_CP_NOP, .access = PL1_W },
4457    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4458      .type = ARM_CP_NOP, .access = PL1_W },
4459    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4460      .type = ARM_CP_NOP, .access = PL1_W },
4461    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4462      .type = ARM_CP_NOP, .access = PL1_W },
4463    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4464      .type = ARM_CP_NOP, .access = PL1_W },
4465    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4466      .type = ARM_CP_NOP, .access = PL1_W },
4467    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4468      .type = ARM_CP_NOP, .access = PL1_W },
4469    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4470      .type = ARM_CP_NOP, .access = PL1_W },
4471    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4472      .type = ARM_CP_NOP, .access = PL1_W },
4473    /* MMU Domain access control / MPU write buffer control */
4474    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4475      .access = PL1_RW, .resetvalue = 0,
4476      .writefn = dacr_write, .raw_writefn = raw_write,
4477      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4478                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4479    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4480      .type = ARM_CP_ALIAS,
4481      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4482      .access = PL1_RW,
4483      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4484    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4485      .type = ARM_CP_ALIAS,
4486      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4487      .access = PL1_RW,
4488      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4489    /* We rely on the access checks not allowing the guest to write to the
4490     * state field when SPSel indicates that it's being used as the stack
4491     * pointer.
4492     */
4493    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4494      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4495      .access = PL1_RW, .accessfn = sp_el0_access,
4496      .type = ARM_CP_ALIAS,
4497      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4498    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4499      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4500      .access = PL2_RW, .type = ARM_CP_ALIAS,
4501      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4502    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4503      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4504      .type = ARM_CP_NO_RAW,
4505      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4506    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4507      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4508      .type = ARM_CP_ALIAS,
4509      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4510      .access = PL2_RW, .accessfn = fpexc32_access },
4511    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4512      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4513      .access = PL2_RW, .resetvalue = 0,
4514      .writefn = dacr_write, .raw_writefn = raw_write,
4515      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4516    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4517      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4518      .access = PL2_RW, .resetvalue = 0,
4519      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4520    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4521      .type = ARM_CP_ALIAS,
4522      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4523      .access = PL2_RW,
4524      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4525    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4526      .type = ARM_CP_ALIAS,
4527      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4528      .access = PL2_RW,
4529      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4530    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4531      .type = ARM_CP_ALIAS,
4532      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4533      .access = PL2_RW,
4534      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4535    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4536      .type = ARM_CP_ALIAS,
4537      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4538      .access = PL2_RW,
4539      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4540    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4541      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4542      .resetvalue = 0,
4543      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4544    { .name = "SDCR", .type = ARM_CP_ALIAS,
4545      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4546      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4547      .writefn = sdcr_write,
4548      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4549    REGINFO_SENTINEL
4550};
4551
4552/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4553static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4554    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4555      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4556      .access = PL2_RW,
4557      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4558    { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4559      .type = ARM_CP_NO_RAW,
4560      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4561      .access = PL2_RW,
4562      .type = ARM_CP_CONST, .resetvalue = 0 },
4563    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4564      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4565      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4566    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4567      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4568      .access = PL2_RW,
4569      .type = ARM_CP_CONST, .resetvalue = 0 },
4570    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4571      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4572      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4573    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4574      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4575      .access = PL2_RW, .type = ARM_CP_CONST,
4576      .resetvalue = 0 },
4577    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4578      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4579      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4580    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4581      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4582      .access = PL2_RW, .type = ARM_CP_CONST,
4583      .resetvalue = 0 },
4584    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4585      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4586      .access = PL2_RW, .type = ARM_CP_CONST,
4587      .resetvalue = 0 },
4588    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4589      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4590      .access = PL2_RW, .type = ARM_CP_CONST,
4591      .resetvalue = 0 },
4592    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4593      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4594      .access = PL2_RW, .type = ARM_CP_CONST,
4595      .resetvalue = 0 },
4596    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4597      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4598      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4599    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4600      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4601      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4602      .type = ARM_CP_CONST, .resetvalue = 0 },
4603    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4604      .cp = 15, .opc1 = 6, .crm = 2,
4605      .access = PL2_RW, .accessfn = access_el3_aa32ns,
4606      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4607    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4608      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4609      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4610    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4611      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4612      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4613    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4614      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4615      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4616    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4617      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4618      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4619    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4620      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4621      .resetvalue = 0 },
4622    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4623      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4624      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4625    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4626      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4627      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4628    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4629      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4630      .resetvalue = 0 },
4631    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4632      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4633      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4634    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4635      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4636      .resetvalue = 0 },
4637    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4638      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4639      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4640    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4641      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4642      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4643    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4644      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4645      .access = PL2_RW, .accessfn = access_tda,
4646      .type = ARM_CP_CONST, .resetvalue = 0 },
4647    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4648      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4649      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4650      .type = ARM_CP_CONST, .resetvalue = 0 },
4651    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4652      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4653      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4654    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4655      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4656      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4657    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4658      .type = ARM_CP_CONST,
4659      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4660      .access = PL2_RW, .resetvalue = 0 },
4661    REGINFO_SENTINEL
4662};
4663
4664/* Ditto, but for registers which exist in ARMv8 but not v7 */
4665static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4666    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4667      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4668      .access = PL2_RW,
4669      .type = ARM_CP_CONST, .resetvalue = 0 },
4670    REGINFO_SENTINEL
4671};
4672
4673static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4674{
4675    ARMCPU *cpu = env_archcpu(env);
4676    uint64_t valid_mask = HCR_MASK;
4677
4678    if (arm_feature(env, ARM_FEATURE_EL3)) {
4679        valid_mask &= ~HCR_HCD;
4680    } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4681        /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4682         * However, if we're using the SMC PSCI conduit then QEMU is
4683         * effectively acting like EL3 firmware and so the guest at
4684         * EL2 should retain the ability to prevent EL1 from being
4685         * able to make SMC calls into the ersatz firmware, so in
4686         * that case HCR.TSC should be read/write.
4687         */
4688        valid_mask &= ~HCR_TSC;
4689    }
4690    if (cpu_isar_feature(aa64_lor, cpu)) {
4691        valid_mask |= HCR_TLOR;
4692    }
4693    if (cpu_isar_feature(aa64_pauth, cpu)) {
4694        valid_mask |= HCR_API | HCR_APK;
4695    }
4696
4697    /* Clear RES0 bits.  */
4698    value &= valid_mask;
4699
4700    /* These bits change the MMU setup:
4701     * HCR_VM enables stage 2 translation
4702     * HCR_PTW forbids certain page-table setups
4703     * HCR_DC Disables stage1 and enables stage2 translation
4704     */
4705    if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4706        tlb_flush(CPU(cpu));
4707    }
4708    env->cp15.hcr_el2 = value;
4709
4710    /*
4711     * Updates to VI and VF require us to update the status of
4712     * virtual interrupts, which are the logical OR of these bits
4713     * and the state of the input lines from the GIC. (This requires
4714     * that we have the iothread lock, which is done by marking the
4715     * reginfo structs as ARM_CP_IO.)
4716     * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4717     * possible for it to be taken immediately, because VIRQ and
4718     * VFIQ are masked unless running at EL0 or EL1, and HCR
4719     * can only be written at EL2.
4720     */
4721    g_assert(qemu_mutex_iothread_locked());
4722    arm_cpu_update_virq(cpu);
4723    arm_cpu_update_vfiq(cpu);
4724}
4725
4726static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4727                          uint64_t value)
4728{
4729    /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4730    value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4731    hcr_write(env, NULL, value);
4732}
4733
4734static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4735                         uint64_t value)
4736{
4737    /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4738    value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4739    hcr_write(env, NULL, value);
4740}
4741
4742/*
4743 * Return the effective value of HCR_EL2.
4744 * Bits that are not included here:
4745 * RW       (read from SCR_EL3.RW as needed)
4746 */
4747uint64_t arm_hcr_el2_eff(CPUARMState *env)
4748{
4749    uint64_t ret = env->cp15.hcr_el2;
4750
4751    if (arm_is_secure_below_el3(env)) {
4752        /*
4753         * "This register has no effect if EL2 is not enabled in the
4754         * current Security state".  This is ARMv8.4-SecEL2 speak for
4755         * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4756         *
4757         * Prior to that, the language was "In an implementation that
4758         * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4759         * as if this field is 0 for all purposes other than a direct
4760         * read or write access of HCR_EL2".  With lots of enumeration
4761         * on a per-field basis.  In current QEMU, this is condition
4762         * is arm_is_secure_below_el3.
4763         *
4764         * Since the v8.4 language applies to the entire register, and
4765         * appears to be backward compatible, use that.
4766         */
4767        ret = 0;
4768    } else if (ret & HCR_TGE) {
4769        /* These bits are up-to-date as of ARMv8.4.  */
4770        if (ret & HCR_E2H) {
4771            ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4772                     HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4773                     HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4774                     HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4775        } else {
4776            ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4777        }
4778        ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4779                 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4780                 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4781                 HCR_TLOR);
4782    }
4783
4784    return ret;
4785}
4786
4787static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4788                           uint64_t value)
4789{
4790    /*
4791     * For A-profile AArch32 EL3, if NSACR.CP10
4792     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4793     */
4794    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4795        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4796        value &= ~(0x3 << 10);
4797        value |= env->cp15.cptr_el[2] & (0x3 << 10);
4798    }
4799    env->cp15.cptr_el[2] = value;
4800}
4801
4802static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4803{
4804    /*
4805     * For A-profile AArch32 EL3, if NSACR.CP10
4806     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4807     */
4808    uint64_t value = env->cp15.cptr_el[2];
4809
4810    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4811        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4812        value |= 0x3 << 10;
4813    }
4814    return value;
4815}
4816
4817static const ARMCPRegInfo el2_cp_reginfo[] = {
4818    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4819      .type = ARM_CP_IO,
4820      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4821      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4822      .writefn = hcr_write },
4823    { .name = "HCR", .state = ARM_CP_STATE_AA32,
4824      .type = ARM_CP_ALIAS | ARM_CP_IO,
4825      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4826      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4827      .writefn = hcr_writelow },
4828    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4829      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4830      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4831    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4832      .type = ARM_CP_ALIAS,
4833      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4834      .access = PL2_RW,
4835      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4836    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4837      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4838      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4839    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4840      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4841      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4842    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4843      .type = ARM_CP_ALIAS,
4844      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4845      .access = PL2_RW,
4846      .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4847    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4848      .type = ARM_CP_ALIAS,
4849      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4850      .access = PL2_RW,
4851      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4852    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4853      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4854      .access = PL2_RW, .writefn = vbar_write,
4855      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4856      .resetvalue = 0 },
4857    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4858      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4859      .access = PL3_RW, .type = ARM_CP_ALIAS,
4860      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4861    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4862      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4863      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4864      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4865      .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4866    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4867      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4868      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4869      .resetvalue = 0 },
4870    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4871      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4872      .access = PL2_RW, .type = ARM_CP_ALIAS,
4873      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4874    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4875      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4876      .access = PL2_RW, .type = ARM_CP_CONST,
4877      .resetvalue = 0 },
4878    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4879    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4880      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4881      .access = PL2_RW, .type = ARM_CP_CONST,
4882      .resetvalue = 0 },
4883    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4884      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4885      .access = PL2_RW, .type = ARM_CP_CONST,
4886      .resetvalue = 0 },
4887    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4888      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4889      .access = PL2_RW, .type = ARM_CP_CONST,
4890      .resetvalue = 0 },
4891    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4892      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4893      .access = PL2_RW,
4894      /* no .writefn needed as this can't cause an ASID change;
4895       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4896       */
4897      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4898    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4899      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4900      .type = ARM_CP_ALIAS,
4901      .access = PL2_RW, .accessfn = access_el3_aa32ns,
4902      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4903    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4904      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4905      .access = PL2_RW,
4906      /* no .writefn needed as this can't cause an ASID change;
4907       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4908       */
4909      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4910    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4911      .cp = 15, .opc1 = 6, .crm = 2,
4912      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4913      .access = PL2_RW, .accessfn = access_el3_aa32ns,
4914      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4915      .writefn = vttbr_write },
4916    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4917      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4918      .access = PL2_RW, .writefn = vttbr_write,
4919      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4920    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4921      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4922      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4923      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4924    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4925      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4926      .access = PL2_RW, .resetvalue = 0,
4927      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4928    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4929      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4930      .access = PL2_RW, .resetvalue = 0,
4931      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4932    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4933      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4934      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4935    { .name = "TLBIALLNSNH",
4936      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4937      .type = ARM_CP_NO_RAW, .access = PL2_W,
4938      .writefn = tlbiall_nsnh_write },
4939    { .name = "TLBIALLNSNHIS",
4940      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4941      .type = ARM_CP_NO_RAW, .access = PL2_W,
4942      .writefn = tlbiall_nsnh_is_write },
4943    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4944      .type = ARM_CP_NO_RAW, .access = PL2_W,
4945      .writefn = tlbiall_hyp_write },
4946    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4947      .type = ARM_CP_NO_RAW, .access = PL2_W,
4948      .writefn = tlbiall_hyp_is_write },
4949    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4950      .type = ARM_CP_NO_RAW, .access = PL2_W,
4951      .writefn = tlbimva_hyp_write },
4952    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4953      .type = ARM_CP_NO_RAW, .access = PL2_W,
4954      .writefn = tlbimva_hyp_is_write },
4955    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4956      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4957      .type = ARM_CP_NO_RAW, .access = PL2_W,
4958      .writefn = tlbi_aa64_alle2_write },
4959    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4960      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4961      .type = ARM_CP_NO_RAW, .access = PL2_W,
4962      .writefn = tlbi_aa64_vae2_write },
4963    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4964      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4965      .access = PL2_W, .type = ARM_CP_NO_RAW,
4966      .writefn = tlbi_aa64_vae2_write },
4967    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4968      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4969      .access = PL2_W, .type = ARM_CP_NO_RAW,
4970      .writefn = tlbi_aa64_alle2is_write },
4971    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4972      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4973      .type = ARM_CP_NO_RAW, .access = PL2_W,
4974      .writefn = tlbi_aa64_vae2is_write },
4975    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4976      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4977      .access = PL2_W, .type = ARM_CP_NO_RAW,
4978      .writefn = tlbi_aa64_vae2is_write },
4979#ifndef CONFIG_USER_ONLY
4980    /* Unlike the other EL2-related AT operations, these must
4981     * UNDEF from EL3 if EL2 is not implemented, which is why we
4982     * define them here rather than with the rest of the AT ops.
4983     */
4984    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4985      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4986      .access = PL2_W, .accessfn = at_s1e2_access,
4987      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
4988    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4989      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4990      .access = PL2_W, .accessfn = at_s1e2_access,
4991      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
4992    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4993     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4994     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4995     * to behave as if SCR.NS was 1.
4996     */
4997    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4998      .access = PL2_W,
4999      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5000    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5001      .access = PL2_W,
5002      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5003    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5004      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5005      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5006       * reset values as IMPDEF. We choose to reset to 3 to comply with
5007       * both ARMv7 and ARMv8.
5008       */
5009      .access = PL2_RW, .resetvalue = 3,
5010      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5011    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5012      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5013      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5014      .writefn = gt_cntvoff_write,
5015      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5016    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5017      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5018      .writefn = gt_cntvoff_write,
5019      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5020    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5021      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5022      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5023      .type = ARM_CP_IO, .access = PL2_RW,
5024      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5025    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5026      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5027      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5028      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5029    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5030      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5031      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5032      .resetfn = gt_hyp_timer_reset,
5033      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5034    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5035      .type = ARM_CP_IO,
5036      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5037      .access = PL2_RW,
5038      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5039      .resetvalue = 0,
5040      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5041#endif
5042    /* The only field of MDCR_EL2 that has a defined architectural reset value
5043     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5044     * don't implement any PMU event counters, so using zero as a reset
5045     * value for MDCR_EL2 is okay
5046     */
5047    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5048      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5049      .access = PL2_RW, .resetvalue = 0,
5050      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5051    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5052      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5053      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5054      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5055    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5056      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5057      .access = PL2_RW,
5058      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5059    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5060      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5061      .access = PL2_RW,
5062      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5063    REGINFO_SENTINEL
5064};
5065
5066static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5067    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5068      .type = ARM_CP_ALIAS | ARM_CP_IO,
5069      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5070      .access = PL2_RW,
5071      .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5072      .writefn = hcr_writehigh },
5073    REGINFO_SENTINEL
5074};
5075
5076static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5077                                   bool isread)
5078{
5079    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5080     * At Secure EL1 it traps to EL3.
5081     */
5082    if (arm_current_el(env) == 3) {
5083        return CP_ACCESS_OK;
5084    }
5085    if (arm_is_secure_below_el3(env)) {
5086        return CP_ACCESS_TRAP_EL3;
5087    }
5088    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5089    if (isread) {
5090        return CP_ACCESS_OK;
5091    }
5092    return CP_ACCESS_TRAP_UNCATEGORIZED;
5093}
5094
5095static const ARMCPRegInfo el3_cp_reginfo[] = {
5096    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5097      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5098      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5099      .resetvalue = 0, .writefn = scr_write },
5100    { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5101      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5102      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5103      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5104      .writefn = scr_write },
5105    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5106      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5107      .access = PL3_RW, .resetvalue = 0,
5108      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5109    { .name = "SDER",
5110      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5111      .access = PL3_RW, .resetvalue = 0,
5112      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5113    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5114      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5115      .writefn = vbar_write, .resetvalue = 0,
5116      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5117    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5118      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5119      .access = PL3_RW, .resetvalue = 0,
5120      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5121    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5122      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5123      .access = PL3_RW,
5124      /* no .writefn needed as this can't cause an ASID change;
5125       * we must provide a .raw_writefn and .resetfn because we handle
5126       * reset and migration for the AArch32 TTBCR(S), which might be
5127       * using mask and base_mask.
5128       */
5129      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5130      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5131    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5132      .type = ARM_CP_ALIAS,
5133      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5134      .access = PL3_RW,
5135      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5136    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5137      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5138      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5139    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5140      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5141      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5142    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5143      .type = ARM_CP_ALIAS,
5144      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5145      .access = PL3_RW,
5146      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5147    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5148      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5149      .access = PL3_RW, .writefn = vbar_write,
5150      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5151      .resetvalue = 0 },
5152    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5153      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5154      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5155      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5156    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5157      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5158      .access = PL3_RW, .resetvalue = 0,
5159      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5160    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5161      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5162      .access = PL3_RW, .type = ARM_CP_CONST,
5163      .resetvalue = 0 },
5164    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5165      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5166      .access = PL3_RW, .type = ARM_CP_CONST,
5167      .resetvalue = 0 },
5168    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5169      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5170      .access = PL3_RW, .type = ARM_CP_CONST,
5171      .resetvalue = 0 },
5172    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5173      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5174      .access = PL3_W, .type = ARM_CP_NO_RAW,
5175      .writefn = tlbi_aa64_alle3is_write },
5176    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5177      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5178      .access = PL3_W, .type = ARM_CP_NO_RAW,
5179      .writefn = tlbi_aa64_vae3is_write },
5180    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5181      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5182      .access = PL3_W, .type = ARM_CP_NO_RAW,
5183      .writefn = tlbi_aa64_vae3is_write },
5184    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5185      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5186      .access = PL3_W, .type = ARM_CP_NO_RAW,
5187      .writefn = tlbi_aa64_alle3_write },
5188    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5189      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5190      .access = PL3_W, .type = ARM_CP_NO_RAW,
5191      .writefn = tlbi_aa64_vae3_write },
5192    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5193      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5194      .access = PL3_W, .type = ARM_CP_NO_RAW,
5195      .writefn = tlbi_aa64_vae3_write },
5196    REGINFO_SENTINEL
5197};
5198
5199static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5200                                     bool isread)
5201{
5202    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5203     * but the AArch32 CTR has its own reginfo struct)
5204     */
5205    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5206        return CP_ACCESS_TRAP;
5207    }
5208    return CP_ACCESS_OK;
5209}
5210
5211static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5212                        uint64_t value)
5213{
5214    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5215     * read via a bit in OSLSR_EL1.
5216     */
5217    int oslock;
5218
5219    if (ri->state == ARM_CP_STATE_AA32) {
5220        oslock = (value == 0xC5ACCE55);
5221    } else {
5222        oslock = value & 1;
5223    }
5224
5225    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5226}
5227
5228static const ARMCPRegInfo debug_cp_reginfo[] = {
5229    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5230     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5231     * unlike DBGDRAR it is never accessible from EL0.
5232     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5233     * accessor.
5234     */
5235    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5236      .access = PL0_R, .accessfn = access_tdra,
5237      .type = ARM_CP_CONST, .resetvalue = 0 },
5238    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5239      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5240      .access = PL1_R, .accessfn = access_tdra,
5241      .type = ARM_CP_CONST, .resetvalue = 0 },
5242    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5243      .access = PL0_R, .accessfn = access_tdra,
5244      .type = ARM_CP_CONST, .resetvalue = 0 },
5245    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5246    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5247      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5248      .access = PL1_RW, .accessfn = access_tda,
5249      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5250      .resetvalue = 0 },
5251    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5252     * We don't implement the configurable EL0 access.
5253     */
5254    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5255      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5256      .type = ARM_CP_ALIAS,
5257      .access = PL1_R, .accessfn = access_tda,
5258      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5259    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5260      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5261      .access = PL1_W, .type = ARM_CP_NO_RAW,
5262      .accessfn = access_tdosa,
5263      .writefn = oslar_write },
5264    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5265      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5266      .access = PL1_R, .resetvalue = 10,
5267      .accessfn = access_tdosa,
5268      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5269    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5270    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5271      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5272      .access = PL1_RW, .accessfn = access_tdosa,
5273      .type = ARM_CP_NOP },
5274    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5275     * implement vector catch debug events yet.
5276     */
5277    { .name = "DBGVCR",
5278      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5279      .access = PL1_RW, .accessfn = access_tda,
5280      .type = ARM_CP_NOP },
5281    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5282     * to save and restore a 32-bit guest's DBGVCR)
5283     */
5284    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5285      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5286      .access = PL2_RW, .accessfn = access_tda,
5287      .type = ARM_CP_NOP },
5288    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5289     * Channel but Linux may try to access this register. The 32-bit
5290     * alias is DBGDCCINT.
5291     */
5292    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5293      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5294      .access = PL1_RW, .accessfn = access_tda,
5295      .type = ARM_CP_NOP },
5296    REGINFO_SENTINEL
5297};
5298
5299static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5300    /* 64 bit access versions of the (dummy) debug registers */
5301    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5302      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5303    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5304      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5305    REGINFO_SENTINEL
5306};
5307
5308/* Return the exception level to which exceptions should be taken
5309 * via SVEAccessTrap.  If an exception should be routed through
5310 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5311 * take care of raising that exception.
5312 * C.f. the ARM pseudocode function CheckSVEEnabled.
5313 */
5314int sve_exception_el(CPUARMState *env, int el)
5315{
5316#ifndef CONFIG_USER_ONLY
5317    if (el <= 1) {
5318        bool disabled = false;
5319
5320        /* The CPACR.ZEN controls traps to EL1:
5321         * 0, 2 : trap EL0 and EL1 accesses
5322         * 1    : trap only EL0 accesses
5323         * 3    : trap no accesses
5324         */
5325        if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5326            disabled = true;
5327        } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5328            disabled = el == 0;
5329        }
5330        if (disabled) {
5331            /* route_to_el2 */
5332            return (arm_feature(env, ARM_FEATURE_EL2)
5333                    && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5334        }
5335
5336        /* Check CPACR.FPEN.  */
5337        if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5338            disabled = true;
5339        } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5340            disabled = el == 0;
5341        }
5342        if (disabled) {
5343            return 0;
5344        }
5345    }
5346
5347    /* CPTR_EL2.  Since TZ and TFP are positive,
5348     * they will be zero when EL2 is not present.
5349     */
5350    if (el <= 2 && !arm_is_secure_below_el3(env)) {
5351        if (env->cp15.cptr_el[2] & CPTR_TZ) {
5352            return 2;
5353        }
5354        if (env->cp15.cptr_el[2] & CPTR_TFP) {
5355            return 0;
5356        }
5357    }
5358
5359    /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5360    if (arm_feature(env, ARM_FEATURE_EL3)
5361        && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5362        return 3;
5363    }
5364#endif
5365    return 0;
5366}
5367
5368static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
5369{
5370    uint32_t end_len;
5371
5372    end_len = start_len &= 0xf;
5373    if (!test_bit(start_len, cpu->sve_vq_map)) {
5374        end_len = find_last_bit(cpu->sve_vq_map, start_len);
5375        assert(end_len < start_len);
5376    }
5377    return end_len;
5378}
5379
5380/*
5381 * Given that SVE is enabled, return the vector length for EL.
5382 */
5383uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5384{
5385    ARMCPU *cpu = env_archcpu(env);
5386    uint32_t zcr_len = cpu->sve_max_vq - 1;
5387
5388    if (el <= 1) {
5389        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5390    }
5391    if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5392        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5393    }
5394    if (arm_feature(env, ARM_FEATURE_EL3)) {
5395        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5396    }
5397
5398    return sve_zcr_get_valid_len(cpu, zcr_len);
5399}
5400
5401static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5402                      uint64_t value)
5403{
5404    int cur_el = arm_current_el(env);
5405    int old_len = sve_zcr_len_for_el(env, cur_el);
5406    int new_len;
5407
5408    /* Bits other than [3:0] are RAZ/WI.  */
5409    QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5410    raw_write(env, ri, value & 0xf);
5411
5412    /*
5413     * Because we arrived here, we know both FP and SVE are enabled;
5414     * otherwise we would have trapped access to the ZCR_ELn register.
5415     */
5416    new_len = sve_zcr_len_for_el(env, cur_el);
5417    if (new_len < old_len) {
5418        aarch64_sve_narrow_vq(env, new_len + 1);
5419    }
5420}
5421
5422static const ARMCPRegInfo zcr_el1_reginfo = {
5423    .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5424    .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5425    .access = PL1_RW, .type = ARM_CP_SVE,
5426    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5427    .writefn = zcr_write, .raw_writefn = raw_write
5428};
5429
5430static const ARMCPRegInfo zcr_el2_reginfo = {
5431    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5432    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5433    .access = PL2_RW, .type = ARM_CP_SVE,
5434    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5435    .writefn = zcr_write, .raw_writefn = raw_write
5436};
5437
5438static const ARMCPRegInfo zcr_no_el2_reginfo = {
5439    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5440    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5441    .access = PL2_RW, .type = ARM_CP_SVE,
5442    .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5443};
5444
5445static const ARMCPRegInfo zcr_el3_reginfo = {
5446    .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5447    .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5448    .access = PL3_RW, .type = ARM_CP_SVE,
5449    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5450    .writefn = zcr_write, .raw_writefn = raw_write
5451};
5452
5453void hw_watchpoint_update(ARMCPU *cpu, int n)
5454{
5455    CPUARMState *env = &cpu->env;
5456    vaddr len = 0;
5457    vaddr wvr = env->cp15.dbgwvr[n];
5458    uint64_t wcr = env->cp15.dbgwcr[n];
5459    int mask;
5460    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5461
5462    if (env->cpu_watchpoint[n]) {
5463        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5464        env->cpu_watchpoint[n] = NULL;
5465    }
5466
5467    if (!extract64(wcr, 0, 1)) {
5468        /* E bit clear : watchpoint disabled */
5469        return;
5470    }
5471
5472    switch (extract64(wcr, 3, 2)) {
5473    case 0:
5474        /* LSC 00 is reserved and must behave as if the wp is disabled */
5475        return;
5476    case 1:
5477        flags |= BP_MEM_READ;
5478        break;
5479    case 2:
5480        flags |= BP_MEM_WRITE;
5481        break;
5482    case 3:
5483        flags |= BP_MEM_ACCESS;
5484        break;
5485    }
5486
5487    /* Attempts to use both MASK and BAS fields simultaneously are
5488     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5489     * thus generating a watchpoint for every byte in the masked region.
5490     */
5491    mask = extract64(wcr, 24, 4);
5492    if (mask == 1 || mask == 2) {
5493        /* Reserved values of MASK; we must act as if the mask value was
5494         * some non-reserved value, or as if the watchpoint were disabled.
5495         * We choose the latter.
5496         */
5497        return;
5498    } else if (mask) {
5499        /* Watchpoint covers an aligned area up to 2GB in size */
5500        len = 1ULL << mask;
5501        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5502         * whether the watchpoint fires when the unmasked bits match; we opt
5503         * to generate the exceptions.
5504         */
5505        wvr &= ~(len - 1);
5506    } else {
5507        /* Watchpoint covers bytes defined by the byte address select bits */
5508        int bas = extract64(wcr, 5, 8);
5509        int basstart;
5510
5511        if (bas == 0) {
5512            /* This must act as if the watchpoint is disabled */
5513            return;
5514        }
5515
5516        if (extract64(wvr, 2, 1)) {
5517            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5518             * ignored, and BAS[3:0] define which bytes to watch.
5519             */
5520            bas &= 0xf;
5521        }
5522        /* The BAS bits are supposed to be programmed to indicate a contiguous
5523         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5524         * we fire for each byte in the word/doubleword addressed by the WVR.
5525         * We choose to ignore any non-zero bits after the first range of 1s.
5526         */
5527        basstart = ctz32(bas);
5528        len = cto32(bas >> basstart);
5529        wvr += basstart;
5530    }
5531
5532    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5533                          &env->cpu_watchpoint[n]);
5534}
5535
5536void hw_watchpoint_update_all(ARMCPU *cpu)
5537{
5538    int i;
5539    CPUARMState *env = &cpu->env;
5540
5541    /* Completely clear out existing QEMU watchpoints and our array, to
5542     * avoid possible stale entries following migration load.
5543     */
5544    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5545    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5546
5547    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5548        hw_watchpoint_update(cpu, i);
5549    }
5550}
5551
5552static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5553                         uint64_t value)
5554{
5555    ARMCPU *cpu = env_archcpu(env);
5556    int i = ri->crm;
5557
5558    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5559     * register reads and behaves as if values written are sign extended.
5560     * Bits [1:0] are RES0.
5561     */
5562    value = sextract64(value, 0, 49) & ~3ULL;
5563
5564    raw_write(env, ri, value);
5565    hw_watchpoint_update(cpu, i);
5566}
5567
5568static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5569                         uint64_t value)
5570{
5571    ARMCPU *cpu = env_archcpu(env);
5572    int i = ri->crm;
5573
5574    raw_write(env, ri, value);
5575    hw_watchpoint_update(cpu, i);
5576}
5577
5578void hw_breakpoint_update(ARMCPU *cpu, int n)
5579{
5580    CPUARMState *env = &cpu->env;
5581    uint64_t bvr = env->cp15.dbgbvr[n];
5582    uint64_t bcr = env->cp15.dbgbcr[n];
5583    vaddr addr;
5584    int bt;
5585    int flags = BP_CPU;
5586
5587    if (env->cpu_breakpoint[n]) {
5588        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5589        env->cpu_breakpoint[n] = NULL;
5590    }
5591
5592    if (!extract64(bcr, 0, 1)) {
5593        /* E bit clear : watchpoint disabled */
5594        return;
5595    }
5596
5597    bt = extract64(bcr, 20, 4);
5598
5599    switch (bt) {
5600    case 4: /* unlinked address mismatch (reserved if AArch64) */
5601    case 5: /* linked address mismatch (reserved if AArch64) */
5602        qemu_log_mask(LOG_UNIMP,
5603                      "arm: address mismatch breakpoint types not implemented\n");
5604        return;
5605    case 0: /* unlinked address match */
5606    case 1: /* linked address match */
5607    {
5608        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5609         * we behave as if the register was sign extended. Bits [1:0] are
5610         * RES0. The BAS field is used to allow setting breakpoints on 16
5611         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5612         * a bp will fire if the addresses covered by the bp and the addresses
5613         * covered by the insn overlap but the insn doesn't start at the
5614         * start of the bp address range. We choose to require the insn and
5615         * the bp to have the same address. The constraints on writing to
5616         * BAS enforced in dbgbcr_write mean we have only four cases:
5617         *  0b0000  => no breakpoint
5618         *  0b0011  => breakpoint on addr
5619         *  0b1100  => breakpoint on addr + 2
5620         *  0b1111  => breakpoint on addr
5621         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5622         */
5623        int bas = extract64(bcr, 5, 4);
5624        addr = sextract64(bvr, 0, 49) & ~3ULL;
5625        if (bas == 0) {
5626            return;
5627        }
5628        if (bas == 0xc) {
5629            addr += 2;
5630        }
5631        break;
5632    }
5633    case 2: /* unlinked context ID match */
5634    case 8: /* unlinked VMID match (reserved if no EL2) */
5635    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5636        qemu_log_mask(LOG_UNIMP,
5637                      "arm: unlinked context breakpoint types not implemented\n");
5638        return;
5639    case 9: /* linked VMID match (reserved if no EL2) */
5640    case 11: /* linked context ID and VMID match (reserved if no EL2) */
5641    case 3: /* linked context ID match */
5642    default:
5643        /* We must generate no events for Linked context matches (unless
5644         * they are linked to by some other bp/wp, which is handled in
5645         * updates for the linking bp/wp). We choose to also generate no events
5646         * for reserved values.
5647         */
5648        return;
5649    }
5650
5651    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5652}
5653
5654void hw_breakpoint_update_all(ARMCPU *cpu)
5655{
5656    int i;
5657    CPUARMState *env = &cpu->env;
5658
5659    /* Completely clear out existing QEMU breakpoints and our array, to
5660     * avoid possible stale entries following migration load.
5661     */
5662    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5663    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5664
5665    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5666        hw_breakpoint_update(cpu, i);
5667    }
5668}
5669
5670static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5671                         uint64_t value)
5672{
5673    ARMCPU *cpu = env_archcpu(env);
5674    int i = ri->crm;
5675
5676    raw_write(env, ri, value);
5677    hw_breakpoint_update(cpu, i);
5678}
5679
5680static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5681                         uint64_t value)
5682{
5683    ARMCPU *cpu = env_archcpu(env);
5684    int i = ri->crm;
5685
5686    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5687     * copy of BAS[0].
5688     */
5689    value = deposit64(value, 6, 1, extract64(value, 5, 1));
5690    value = deposit64(value, 8, 1, extract64(value, 7, 1));
5691
5692    raw_write(env, ri, value);
5693    hw_breakpoint_update(cpu, i);
5694}
5695
5696static void define_debug_regs(ARMCPU *cpu)
5697{
5698    /* Define v7 and v8 architectural debug registers.
5699     * These are just dummy implementations for now.
5700     */
5701    int i;
5702    int wrps, brps, ctx_cmps;
5703    ARMCPRegInfo dbgdidr = {
5704        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5705        .access = PL0_R, .accessfn = access_tda,
5706        .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5707    };
5708
5709    /* Note that all these register fields hold "number of Xs minus 1". */
5710    brps = extract32(cpu->dbgdidr, 24, 4);
5711    wrps = extract32(cpu->dbgdidr, 28, 4);
5712    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5713
5714    assert(ctx_cmps <= brps);
5715
5716    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5717     * of the debug registers such as number of breakpoints;
5718     * check that if they both exist then they agree.
5719     */
5720    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5721        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5722        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5723        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5724    }
5725
5726    define_one_arm_cp_reg(cpu, &dbgdidr);
5727    define_arm_cp_regs(cpu, debug_cp_reginfo);
5728
5729    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5730        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5731    }
5732
5733    for (i = 0; i < brps + 1; i++) {
5734        ARMCPRegInfo dbgregs[] = {
5735            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5736              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5737              .access = PL1_RW, .accessfn = access_tda,
5738              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5739              .writefn = dbgbvr_write, .raw_writefn = raw_write
5740            },
5741            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5742              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5743              .access = PL1_RW, .accessfn = access_tda,
5744              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5745              .writefn = dbgbcr_write, .raw_writefn = raw_write
5746            },
5747            REGINFO_SENTINEL
5748        };
5749        define_arm_cp_regs(cpu, dbgregs);
5750    }
5751
5752    for (i = 0; i < wrps + 1; i++) {
5753        ARMCPRegInfo dbgregs[] = {
5754            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5755              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5756              .access = PL1_RW, .accessfn = access_tda,
5757              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5758              .writefn = dbgwvr_write, .raw_writefn = raw_write
5759            },
5760            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5761              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5762              .access = PL1_RW, .accessfn = access_tda,
5763              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5764              .writefn = dbgwcr_write, .raw_writefn = raw_write
5765            },
5766            REGINFO_SENTINEL
5767        };
5768        define_arm_cp_regs(cpu, dbgregs);
5769    }
5770}
5771
5772/* We don't know until after realize whether there's a GICv3
5773 * attached, and that is what registers the gicv3 sysregs.
5774 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5775 * at runtime.
5776 */
5777static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5778{
5779    ARMCPU *cpu = env_archcpu(env);
5780    uint64_t pfr1 = cpu->id_pfr1;
5781
5782    if (env->gicv3state) {
5783        pfr1 |= 1 << 28;
5784    }
5785    return pfr1;
5786}
5787
5788static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5789{
5790    ARMCPU *cpu = env_archcpu(env);
5791    uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5792
5793    if (env->gicv3state) {
5794        pfr0 |= 1 << 24;
5795    }
5796    return pfr0;
5797}
5798
5799/* Shared logic between LORID and the rest of the LOR* registers.
5800 * Secure state has already been delt with.
5801 */
5802static CPAccessResult access_lor_ns(CPUARMState *env)
5803{
5804    int el = arm_current_el(env);
5805
5806    if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5807        return CP_ACCESS_TRAP_EL2;
5808    }
5809    if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5810        return CP_ACCESS_TRAP_EL3;
5811    }
5812    return CP_ACCESS_OK;
5813}
5814
5815static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5816                                   bool isread)
5817{
5818    if (arm_is_secure_below_el3(env)) {
5819        /* Access ok in secure mode.  */
5820        return CP_ACCESS_OK;
5821    }
5822    return access_lor_ns(env);
5823}
5824
5825static CPAccessResult access_lor_other(CPUARMState *env,
5826                                       const ARMCPRegInfo *ri, bool isread)
5827{
5828    if (arm_is_secure_below_el3(env)) {
5829        /* Access denied in secure mode.  */
5830        return CP_ACCESS_TRAP;
5831    }
5832    return access_lor_ns(env);
5833}
5834
5835#ifdef TARGET_AARCH64
5836static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5837                                   bool isread)
5838{
5839    int el = arm_current_el(env);
5840
5841    if (el < 2 &&
5842        arm_feature(env, ARM_FEATURE_EL2) &&
5843        !(arm_hcr_el2_eff(env) & HCR_APK)) {
5844        return CP_ACCESS_TRAP_EL2;
5845    }
5846    if (el < 3 &&
5847        arm_feature(env, ARM_FEATURE_EL3) &&
5848        !(env->cp15.scr_el3 & SCR_APK)) {
5849        return CP_ACCESS_TRAP_EL3;
5850    }
5851    return CP_ACCESS_OK;
5852}
5853
5854static const ARMCPRegInfo pauth_reginfo[] = {
5855    { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5856      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5857      .access = PL1_RW, .accessfn = access_pauth,
5858      .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5859    { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5860      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5861      .access = PL1_RW, .accessfn = access_pauth,
5862      .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5863    { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5864      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5865      .access = PL1_RW, .accessfn = access_pauth,
5866      .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5867    { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5868      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5869      .access = PL1_RW, .accessfn = access_pauth,
5870      .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5871    { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5872      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5873      .access = PL1_RW, .accessfn = access_pauth,
5874      .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5875    { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5876      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5877      .access = PL1_RW, .accessfn = access_pauth,
5878      .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5879    { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5880      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5881      .access = PL1_RW, .accessfn = access_pauth,
5882      .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5883    { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5884      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5885      .access = PL1_RW, .accessfn = access_pauth,
5886      .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5887    { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5888      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5889      .access = PL1_RW, .accessfn = access_pauth,
5890      .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5891    { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5892      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5893      .access = PL1_RW, .accessfn = access_pauth,
5894      .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5895    REGINFO_SENTINEL
5896};
5897
5898static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5899{
5900    Error *err = NULL;
5901    uint64_t ret;
5902
5903    /* Success sets NZCV = 0000.  */
5904    env->NF = env->CF = env->VF = 0, env->ZF = 1;
5905
5906    if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5907        /*
5908         * ??? Failed, for unknown reasons in the crypto subsystem.
5909         * The best we can do is log the reason and return the
5910         * timed-out indication to the guest.  There is no reason
5911         * we know to expect this failure to be transitory, so the
5912         * guest may well hang retrying the operation.
5913         */
5914        qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5915                      ri->name, error_get_pretty(err));
5916        error_free(err);
5917
5918        env->ZF = 0; /* NZCF = 0100 */
5919        return 0;
5920    }
5921    return ret;
5922}
5923
5924/* We do not support re-seeding, so the two registers operate the same.  */
5925static const ARMCPRegInfo rndr_reginfo[] = {
5926    { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5927      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5928      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5929      .access = PL0_R, .readfn = rndr_readfn },
5930    { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5931      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5932      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5933      .access = PL0_R, .readfn = rndr_readfn },
5934    REGINFO_SENTINEL
5935};
5936#endif
5937
5938static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5939                                     bool isread)
5940{
5941    int el = arm_current_el(env);
5942
5943    if (el == 0) {
5944        uint64_t sctlr = arm_sctlr(env, el);
5945        if (!(sctlr & SCTLR_EnRCTX)) {
5946            return CP_ACCESS_TRAP;
5947        }
5948    } else if (el == 1) {
5949        uint64_t hcr = arm_hcr_el2_eff(env);
5950        if (hcr & HCR_NV) {
5951            return CP_ACCESS_TRAP_EL2;
5952        }
5953    }
5954    return CP_ACCESS_OK;
5955}
5956
5957static const ARMCPRegInfo predinv_reginfo[] = {
5958    { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5959      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5960      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5961    { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5962      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5963      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5964    { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5965      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5966      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5967    /*
5968     * Note the AArch32 opcodes have a different OPC1.
5969     */
5970    { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5971      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5972      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5973    { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5974      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5975      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5976    { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5977      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5978      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5979    REGINFO_SENTINEL
5980};
5981
5982static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
5983                                       bool isread)
5984{
5985    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
5986        return CP_ACCESS_TRAP_EL2;
5987    }
5988
5989    return CP_ACCESS_OK;
5990}
5991
5992static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
5993                                       bool isread)
5994{
5995    if (arm_feature(env, ARM_FEATURE_V8)) {
5996        return access_aa64_tid3(env, ri, isread);
5997    }
5998
5999    return CP_ACCESS_OK;
6000}
6001
6002void register_cp_regs_for_features(ARMCPU *cpu)
6003{
6004    /* Register all the coprocessor registers based on feature bits */
6005    CPUARMState *env = &cpu->env;
6006    if (arm_feature(env, ARM_FEATURE_M)) {
6007        /* M profile has no coprocessor registers */
6008        return;
6009    }
6010
6011    define_arm_cp_regs(cpu, cp_reginfo);
6012    if (!arm_feature(env, ARM_FEATURE_V8)) {
6013        /* Must go early as it is full of wildcards that may be
6014         * overridden by later definitions.
6015         */
6016        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
6017    }
6018
6019    if (arm_feature(env, ARM_FEATURE_V6)) {
6020        /* The ID registers all have impdef reset values */
6021        ARMCPRegInfo v6_idregs[] = {
6022            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
6023              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6024              .access = PL1_R, .type = ARM_CP_CONST,
6025              .accessfn = access_aa32_tid3,
6026              .resetvalue = cpu->id_pfr0 },
6027            /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
6028             * the value of the GIC field until after we define these regs.
6029             */
6030            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
6031              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
6032              .access = PL1_R, .type = ARM_CP_NO_RAW,
6033              .accessfn = access_aa32_tid3,
6034              .readfn = id_pfr1_read,
6035              .writefn = arm_cp_write_ignore },
6036            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
6037              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
6038              .access = PL1_R, .type = ARM_CP_CONST,
6039              .accessfn = access_aa32_tid3,
6040              .resetvalue = cpu->id_dfr0 },
6041            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
6042              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
6043              .access = PL1_R, .type = ARM_CP_CONST,
6044              .accessfn = access_aa32_tid3,
6045              .resetvalue = cpu->id_afr0 },
6046            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
6047              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
6048              .access = PL1_R, .type = ARM_CP_CONST,
6049              .accessfn = access_aa32_tid3,
6050              .resetvalue = cpu->id_mmfr0 },
6051            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6052              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6053              .access = PL1_R, .type = ARM_CP_CONST,
6054              .accessfn = access_aa32_tid3,
6055              .resetvalue = cpu->id_mmfr1 },
6056            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6057              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6058              .access = PL1_R, .type = ARM_CP_CONST,
6059              .accessfn = access_aa32_tid3,
6060              .resetvalue = cpu->id_mmfr2 },
6061            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6062              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6063              .access = PL1_R, .type = ARM_CP_CONST,
6064              .accessfn = access_aa32_tid3,
6065              .resetvalue = cpu->id_mmfr3 },
6066            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6067              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6068              .access = PL1_R, .type = ARM_CP_CONST,
6069              .accessfn = access_aa32_tid3,
6070              .resetvalue = cpu->isar.id_isar0 },
6071            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6072              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6073              .access = PL1_R, .type = ARM_CP_CONST,
6074              .accessfn = access_aa32_tid3,
6075              .resetvalue = cpu->isar.id_isar1 },
6076            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6077              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6078              .access = PL1_R, .type = ARM_CP_CONST,
6079              .accessfn = access_aa32_tid3,
6080              .resetvalue = cpu->isar.id_isar2 },
6081            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6082              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6083              .access = PL1_R, .type = ARM_CP_CONST,
6084              .accessfn = access_aa32_tid3,
6085              .resetvalue = cpu->isar.id_isar3 },
6086            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6087              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6088              .access = PL1_R, .type = ARM_CP_CONST,
6089              .accessfn = access_aa32_tid3,
6090              .resetvalue = cpu->isar.id_isar4 },
6091            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6092              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6093              .access = PL1_R, .type = ARM_CP_CONST,
6094              .accessfn = access_aa32_tid3,
6095              .resetvalue = cpu->isar.id_isar5 },
6096            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6097              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6098              .access = PL1_R, .type = ARM_CP_CONST,
6099              .accessfn = access_aa32_tid3,
6100              .resetvalue = cpu->id_mmfr4 },
6101            { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
6102              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6103              .access = PL1_R, .type = ARM_CP_CONST,
6104              .accessfn = access_aa32_tid3,
6105              .resetvalue = cpu->isar.id_isar6 },
6106            REGINFO_SENTINEL
6107        };
6108        define_arm_cp_regs(cpu, v6_idregs);
6109        define_arm_cp_regs(cpu, v6_cp_reginfo);
6110    } else {
6111        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6112    }
6113    if (arm_feature(env, ARM_FEATURE_V6K)) {
6114        define_arm_cp_regs(cpu, v6k_cp_reginfo);
6115    }
6116    if (arm_feature(env, ARM_FEATURE_V7MP) &&
6117        !arm_feature(env, ARM_FEATURE_PMSA)) {
6118        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
6119    }
6120    if (arm_feature(env, ARM_FEATURE_V7VE)) {
6121        define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
6122    }
6123    if (arm_feature(env, ARM_FEATURE_V7)) {
6124        /* v7 performance monitor control register: same implementor
6125         * field as main ID register, and we implement four counters in
6126         * addition to the cycle count register.
6127         */
6128        unsigned int i, pmcrn = 4;
6129        ARMCPRegInfo pmcr = {
6130            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6131            .access = PL0_RW,
6132            .type = ARM_CP_IO | ARM_CP_ALIAS,
6133            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6134            .accessfn = pmreg_access, .writefn = pmcr_write,
6135            .raw_writefn = raw_write,
6136        };
6137        ARMCPRegInfo pmcr64 = {
6138            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6139            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6140            .access = PL0_RW, .accessfn = pmreg_access,
6141            .type = ARM_CP_IO,
6142            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6143            .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6144            .writefn = pmcr_write, .raw_writefn = raw_write,
6145        };
6146        define_one_arm_cp_reg(cpu, &pmcr);
6147        define_one_arm_cp_reg(cpu, &pmcr64);
6148        for (i = 0; i < pmcrn; i++) {
6149            char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6150            char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6151            char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6152            char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6153            ARMCPRegInfo pmev_regs[] = {
6154                { .name = pmevcntr_name, .cp = 15, .crn = 14,
6155                  .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6156                  .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6157                  .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6158                  .accessfn = pmreg_access },
6159                { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6160                  .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6161                  .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6162                  .type = ARM_CP_IO,
6163                  .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6164                  .raw_readfn = pmevcntr_rawread,
6165                  .raw_writefn = pmevcntr_rawwrite },
6166                { .name = pmevtyper_name, .cp = 15, .crn = 14,
6167                  .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6168                  .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6169                  .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6170                  .accessfn = pmreg_access },
6171                { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6172                  .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6173                  .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6174                  .type = ARM_CP_IO,
6175                  .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6176                  .raw_writefn = pmevtyper_rawwrite },
6177                REGINFO_SENTINEL
6178            };
6179            define_arm_cp_regs(cpu, pmev_regs);
6180            g_free(pmevcntr_name);
6181            g_free(pmevcntr_el0_name);
6182            g_free(pmevtyper_name);
6183            g_free(pmevtyper_el0_name);
6184        }
6185        ARMCPRegInfo clidr = {
6186            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6187            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6188            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6189        };
6190        define_one_arm_cp_reg(cpu, &clidr);
6191        define_arm_cp_regs(cpu, v7_cp_reginfo);
6192        define_debug_regs(cpu);
6193    } else {
6194        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6195    }
6196    if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6197            FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6198        ARMCPRegInfo v81_pmu_regs[] = {
6199            { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6200              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6201              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6202              .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6203            { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6204              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6205              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6206              .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6207            REGINFO_SENTINEL
6208        };
6209        define_arm_cp_regs(cpu, v81_pmu_regs);
6210    }
6211    if (arm_feature(env, ARM_FEATURE_V8)) {
6212        /* AArch64 ID registers, which all have impdef reset values.
6213         * Note that within the ID register ranges the unused slots
6214         * must all RAZ, not UNDEF; future architecture versions may
6215         * define new registers here.
6216         */
6217        ARMCPRegInfo v8_idregs[] = {
6218            /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6219             * know the right value for the GIC field until after we
6220             * define these regs.
6221             */
6222            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6223              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6224              .access = PL1_R, .type = ARM_CP_NO_RAW,
6225              .accessfn = access_aa64_tid3,
6226              .readfn = id_aa64pfr0_read,
6227              .writefn = arm_cp_write_ignore },
6228            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6229              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6230              .access = PL1_R, .type = ARM_CP_CONST,
6231              .accessfn = access_aa64_tid3,
6232              .resetvalue = cpu->isar.id_aa64pfr1},
6233            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6234              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6235              .access = PL1_R, .type = ARM_CP_CONST,
6236              .accessfn = access_aa64_tid3,
6237              .resetvalue = 0 },
6238            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6239              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6240              .access = PL1_R, .type = ARM_CP_CONST,
6241              .accessfn = access_aa64_tid3,
6242              .resetvalue = 0 },
6243            { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6244              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6245              .access = PL1_R, .type = ARM_CP_CONST,
6246              .accessfn = access_aa64_tid3,
6247              /* At present, only SVEver == 0 is defined anyway.  */
6248              .resetvalue = 0 },
6249            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6250              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6251              .access = PL1_R, .type = ARM_CP_CONST,
6252              .accessfn = access_aa64_tid3,
6253              .resetvalue = 0 },
6254            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6255              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6256              .access = PL1_R, .type = ARM_CP_CONST,
6257              .accessfn = access_aa64_tid3,
6258              .resetvalue = 0 },
6259            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6260              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6261              .access = PL1_R, .type = ARM_CP_CONST,
6262              .accessfn = access_aa64_tid3,
6263              .resetvalue = 0 },
6264            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6265              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6266              .access = PL1_R, .type = ARM_CP_CONST,
6267              .accessfn = access_aa64_tid3,
6268              .resetvalue = cpu->id_aa64dfr0 },
6269            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6270              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6271              .access = PL1_R, .type = ARM_CP_CONST,
6272              .accessfn = access_aa64_tid3,
6273              .resetvalue = cpu->id_aa64dfr1 },
6274            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6275              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6276              .access = PL1_R, .type = ARM_CP_CONST,
6277              .accessfn = access_aa64_tid3,
6278              .resetvalue = 0 },
6279            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6280              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6281              .access = PL1_R, .type = ARM_CP_CONST,
6282              .accessfn = access_aa64_tid3,
6283              .resetvalue = 0 },
6284            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6285              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6286              .access = PL1_R, .type = ARM_CP_CONST,
6287              .accessfn = access_aa64_tid3,
6288              .resetvalue = cpu->id_aa64afr0 },
6289            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6290              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6291              .access = PL1_R, .type = ARM_CP_CONST,
6292              .accessfn = access_aa64_tid3,
6293              .resetvalue = cpu->id_aa64afr1 },
6294            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6295              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6296              .access = PL1_R, .type = ARM_CP_CONST,
6297              .accessfn = access_aa64_tid3,
6298              .resetvalue = 0 },
6299            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6300              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6301              .access = PL1_R, .type = ARM_CP_CONST,
6302              .accessfn = access_aa64_tid3,
6303              .resetvalue = 0 },
6304            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6305              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6306              .access = PL1_R, .type = ARM_CP_CONST,
6307              .accessfn = access_aa64_tid3,
6308              .resetvalue = cpu->isar.id_aa64isar0 },
6309            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6310              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6311              .access = PL1_R, .type = ARM_CP_CONST,
6312              .accessfn = access_aa64_tid3,
6313              .resetvalue = cpu->isar.id_aa64isar1 },
6314            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6315              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6316              .access = PL1_R, .type = ARM_CP_CONST,
6317              .accessfn = access_aa64_tid3,
6318              .resetvalue = 0 },
6319            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6320              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6321              .access = PL1_R, .type = ARM_CP_CONST,
6322              .accessfn = access_aa64_tid3,
6323              .resetvalue = 0 },
6324            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6325              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6326              .access = PL1_R, .type = ARM_CP_CONST,
6327              .accessfn = access_aa64_tid3,
6328              .resetvalue = 0 },
6329            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6330              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6331              .access = PL1_R, .type = ARM_CP_CONST,
6332              .accessfn = access_aa64_tid3,
6333              .resetvalue = 0 },
6334            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6335              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6336              .access = PL1_R, .type = ARM_CP_CONST,
6337              .accessfn = access_aa64_tid3,
6338              .resetvalue = 0 },
6339            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6340              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6341              .access = PL1_R, .type = ARM_CP_CONST,
6342              .accessfn = access_aa64_tid3,
6343              .resetvalue = 0 },
6344            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6345              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6346              .access = PL1_R, .type = ARM_CP_CONST,
6347              .accessfn = access_aa64_tid3,
6348              .resetvalue = cpu->isar.id_aa64mmfr0 },
6349            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6350              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6351              .access = PL1_R, .type = ARM_CP_CONST,
6352              .accessfn = access_aa64_tid3,
6353              .resetvalue = cpu->isar.id_aa64mmfr1 },
6354            { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6355              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6356              .access = PL1_R, .type = ARM_CP_CONST,
6357              .accessfn = access_aa64_tid3,
6358              .resetvalue = 0 },
6359            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6360              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6361              .access = PL1_R, .type = ARM_CP_CONST,
6362              .accessfn = access_aa64_tid3,
6363              .resetvalue = 0 },
6364            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6365              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6366              .access = PL1_R, .type = ARM_CP_CONST,
6367              .accessfn = access_aa64_tid3,
6368              .resetvalue = 0 },
6369            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6370              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6371              .access = PL1_R, .type = ARM_CP_CONST,
6372              .accessfn = access_aa64_tid3,
6373              .resetvalue = 0 },
6374            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6375              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6376              .access = PL1_R, .type = ARM_CP_CONST,
6377              .accessfn = access_aa64_tid3,
6378              .resetvalue = 0 },
6379            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6380              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6381              .access = PL1_R, .type = ARM_CP_CONST,
6382              .accessfn = access_aa64_tid3,
6383              .resetvalue = 0 },
6384            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6385              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6386              .access = PL1_R, .type = ARM_CP_CONST,
6387              .accessfn = access_aa64_tid3,
6388              .resetvalue = cpu->isar.mvfr0 },
6389            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6390              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6391              .access = PL1_R, .type = ARM_CP_CONST,
6392              .accessfn = access_aa64_tid3,
6393              .resetvalue = cpu->isar.mvfr1 },
6394            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6395              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6396              .access = PL1_R, .type = ARM_CP_CONST,
6397              .accessfn = access_aa64_tid3,
6398              .resetvalue = cpu->isar.mvfr2 },
6399            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6400              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6401              .access = PL1_R, .type = ARM_CP_CONST,
6402              .accessfn = access_aa64_tid3,
6403              .resetvalue = 0 },
6404            { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6405              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6406              .access = PL1_R, .type = ARM_CP_CONST,
6407              .accessfn = access_aa64_tid3,
6408              .resetvalue = 0 },
6409            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6410              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6411              .access = PL1_R, .type = ARM_CP_CONST,
6412              .accessfn = access_aa64_tid3,
6413              .resetvalue = 0 },
6414            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6415              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6416              .access = PL1_R, .type = ARM_CP_CONST,
6417              .accessfn = access_aa64_tid3,
6418              .resetvalue = 0 },
6419            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6420              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6421              .access = PL1_R, .type = ARM_CP_CONST,
6422              .accessfn = access_aa64_tid3,
6423              .resetvalue = 0 },
6424            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6425              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6426              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6427              .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6428            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6429              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6430              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6431              .resetvalue = cpu->pmceid0 },
6432            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6433              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6434              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6435              .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6436            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6437              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6438              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6439              .resetvalue = cpu->pmceid1 },
6440            REGINFO_SENTINEL
6441        };
6442#ifdef CONFIG_USER_ONLY
6443        ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6444            { .name = "ID_AA64PFR0_EL1",
6445              .exported_bits = 0x000f000f00ff0000,
6446              .fixed_bits    = 0x0000000000000011 },
6447            { .name = "ID_AA64PFR1_EL1",
6448              .exported_bits = 0x00000000000000f0 },
6449            { .name = "ID_AA64PFR*_EL1_RESERVED",
6450              .is_glob = true                     },
6451            { .name = "ID_AA64ZFR0_EL1"           },
6452            { .name = "ID_AA64MMFR0_EL1",
6453              .fixed_bits    = 0x00000000ff000000 },
6454            { .name = "ID_AA64MMFR1_EL1"          },
6455            { .name = "ID_AA64MMFR*_EL1_RESERVED",
6456              .is_glob = true                     },
6457            { .name = "ID_AA64DFR0_EL1",
6458              .fixed_bits    = 0x0000000000000006 },
6459            { .name = "ID_AA64DFR1_EL1"           },
6460            { .name = "ID_AA64DFR*_EL1_RESERVED",
6461              .is_glob = true                     },
6462            { .name = "ID_AA64AFR*",
6463              .is_glob = true                     },
6464            { .name = "ID_AA64ISAR0_EL1",
6465              .exported_bits = 0x00fffffff0fffff0 },
6466            { .name = "ID_AA64ISAR1_EL1",
6467              .exported_bits = 0x000000f0ffffffff },
6468            { .name = "ID_AA64ISAR*_EL1_RESERVED",
6469              .is_glob = true                     },
6470            REGUSERINFO_SENTINEL
6471        };
6472        modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6473#endif
6474        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6475        if (!arm_feature(env, ARM_FEATURE_EL3) &&
6476            !arm_feature(env, ARM_FEATURE_EL2)) {
6477            ARMCPRegInfo rvbar = {
6478                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6479                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6480                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6481            };
6482            define_one_arm_cp_reg(cpu, &rvbar);
6483        }
6484        define_arm_cp_regs(cpu, v8_idregs);
6485        define_arm_cp_regs(cpu, v8_cp_reginfo);
6486    }
6487    if (arm_feature(env, ARM_FEATURE_EL2)) {
6488        uint64_t vmpidr_def = mpidr_read_val(env);
6489        ARMCPRegInfo vpidr_regs[] = {
6490            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6491              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6492              .access = PL2_RW, .accessfn = access_el3_aa32ns,
6493              .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6494              .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6495            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6496              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6497              .access = PL2_RW, .resetvalue = cpu->midr,
6498              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6499            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6500              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6501              .access = PL2_RW, .accessfn = access_el3_aa32ns,
6502              .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6503              .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6504            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6505              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6506              .access = PL2_RW,
6507              .resetvalue = vmpidr_def,
6508              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6509            REGINFO_SENTINEL
6510        };
6511        define_arm_cp_regs(cpu, vpidr_regs);
6512        define_arm_cp_regs(cpu, el2_cp_reginfo);
6513        if (arm_feature(env, ARM_FEATURE_V8)) {
6514            define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6515        }
6516        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6517        if (!arm_feature(env, ARM_FEATURE_EL3)) {
6518            ARMCPRegInfo rvbar = {
6519                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6520                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6521                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6522            };
6523            define_one_arm_cp_reg(cpu, &rvbar);
6524        }
6525    } else {
6526        /* If EL2 is missing but higher ELs are enabled, we need to
6527         * register the no_el2 reginfos.
6528         */
6529        if (arm_feature(env, ARM_FEATURE_EL3)) {
6530            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6531             * of MIDR_EL1 and MPIDR_EL1.
6532             */
6533            ARMCPRegInfo vpidr_regs[] = {
6534                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6535                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6536                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6537                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6538                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6539                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6540                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6541                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6542                  .type = ARM_CP_NO_RAW,
6543                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6544                REGINFO_SENTINEL
6545            };
6546            define_arm_cp_regs(cpu, vpidr_regs);
6547            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6548            if (arm_feature(env, ARM_FEATURE_V8)) {
6549                define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6550            }
6551        }
6552    }
6553    if (arm_feature(env, ARM_FEATURE_EL3)) {
6554        define_arm_cp_regs(cpu, el3_cp_reginfo);
6555        ARMCPRegInfo el3_regs[] = {
6556            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6557              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6558              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6559            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6560              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6561              .access = PL3_RW,
6562              .raw_writefn = raw_write, .writefn = sctlr_write,
6563              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6564              .resetvalue = cpu->reset_sctlr },
6565            REGINFO_SENTINEL
6566        };
6567
6568        define_arm_cp_regs(cpu, el3_regs);
6569    }
6570    /* The behaviour of NSACR is sufficiently various that we don't
6571     * try to describe it in a single reginfo:
6572     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
6573     *     reads as constant 0xc00 from NS EL1 and NS EL2
6574     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6575     *  if v7 without EL3, register doesn't exist
6576     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6577     */
6578    if (arm_feature(env, ARM_FEATURE_EL3)) {
6579        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6580            ARMCPRegInfo nsacr = {
6581                .name = "NSACR", .type = ARM_CP_CONST,
6582                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6583                .access = PL1_RW, .accessfn = nsacr_access,
6584                .resetvalue = 0xc00
6585            };
6586            define_one_arm_cp_reg(cpu, &nsacr);
6587        } else {
6588            ARMCPRegInfo nsacr = {
6589                .name = "NSACR",
6590                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6591                .access = PL3_RW | PL1_R,
6592                .resetvalue = 0,
6593                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6594            };
6595            define_one_arm_cp_reg(cpu, &nsacr);
6596        }
6597    } else {
6598        if (arm_feature(env, ARM_FEATURE_V8)) {
6599            ARMCPRegInfo nsacr = {
6600                .name = "NSACR", .type = ARM_CP_CONST,
6601                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6602                .access = PL1_R,
6603                .resetvalue = 0xc00
6604            };
6605            define_one_arm_cp_reg(cpu, &nsacr);
6606        }
6607    }
6608
6609    if (arm_feature(env, ARM_FEATURE_PMSA)) {
6610        if (arm_feature(env, ARM_FEATURE_V6)) {
6611            /* PMSAv6 not implemented */
6612            assert(arm_feature(env, ARM_FEATURE_V7));
6613            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6614            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6615        } else {
6616            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6617        }
6618    } else {
6619        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6620        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6621        /* TTCBR2 is introduced with ARMv8.2-A32HPD.  */
6622        if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6623            define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6624        }
6625    }
6626    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6627        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6628    }
6629    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6630        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6631    }
6632    if (arm_feature(env, ARM_FEATURE_VAPA)) {
6633        define_arm_cp_regs(cpu, vapa_cp_reginfo);
6634    }
6635    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6636        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6637    }
6638    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6639        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6640    }
6641    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6642        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6643    }
6644    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6645        define_arm_cp_regs(cpu, omap_cp_reginfo);
6646    }
6647    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6648        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6649    }
6650    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6651        define_arm_cp_regs(cpu, xscale_cp_reginfo);
6652    }
6653    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6654        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6655    }
6656    if (arm_feature(env, ARM_FEATURE_LPAE)) {
6657        define_arm_cp_regs(cpu, lpae_cp_reginfo);
6658    }
6659    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6660     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6661     * be read-only (ie write causes UNDEF exception).
6662     */
6663    {
6664        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6665            /* Pre-v8 MIDR space.
6666             * Note that the MIDR isn't a simple constant register because
6667             * of the TI925 behaviour where writes to another register can
6668             * cause the MIDR value to change.
6669             *
6670             * Unimplemented registers in the c15 0 0 0 space default to
6671             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6672             * and friends override accordingly.
6673             */
6674            { .name = "MIDR",
6675              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6676              .access = PL1_R, .resetvalue = cpu->midr,
6677              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6678              .readfn = midr_read,
6679              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6680              .type = ARM_CP_OVERRIDE },
6681            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6682            { .name = "DUMMY",
6683              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6684              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6685            { .name = "DUMMY",
6686              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6687              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6688            { .name = "DUMMY",
6689              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6690              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6691            { .name = "DUMMY",
6692              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6693              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6694            { .name = "DUMMY",
6695              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6696              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6697            REGINFO_SENTINEL
6698        };
6699        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6700            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6701              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6702              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6703              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6704              .readfn = midr_read },
6705            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6706            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6707              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6708              .access = PL1_R, .resetvalue = cpu->midr },
6709            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6710              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6711              .access = PL1_R, .resetvalue = cpu->midr },
6712            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6713              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6714              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6715            REGINFO_SENTINEL
6716        };
6717        ARMCPRegInfo id_cp_reginfo[] = {
6718            /* These are common to v8 and pre-v8 */
6719            { .name = "CTR",
6720              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6721              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6722            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6723              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6724              .access = PL0_R, .accessfn = ctr_el0_access,
6725              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6726            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6727            { .name = "TCMTR",
6728              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6729              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6730            REGINFO_SENTINEL
6731        };
6732        /* TLBTR is specific to VMSA */
6733        ARMCPRegInfo id_tlbtr_reginfo = {
6734              .name = "TLBTR",
6735              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6736              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6737        };
6738        /* MPUIR is specific to PMSA V6+ */
6739        ARMCPRegInfo id_mpuir_reginfo = {
6740              .name = "MPUIR",
6741              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6742              .access = PL1_R, .type = ARM_CP_CONST,
6743              .resetvalue = cpu->pmsav7_dregion << 8
6744        };
6745        ARMCPRegInfo crn0_wi_reginfo = {
6746            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6747            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6748            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6749        };
6750#ifdef CONFIG_USER_ONLY
6751        ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6752            { .name = "MIDR_EL1",
6753              .exported_bits = 0x00000000ffffffff },
6754            { .name = "REVIDR_EL1"                },
6755            REGUSERINFO_SENTINEL
6756        };
6757        modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6758#endif
6759        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6760            arm_feature(env, ARM_FEATURE_STRONGARM)) {
6761            ARMCPRegInfo *r;
6762            /* Register the blanket "writes ignored" value first to cover the
6763             * whole space. Then update the specific ID registers to allow write
6764             * access, so that they ignore writes rather than causing them to
6765             * UNDEF.
6766             */
6767            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6768            for (r = id_pre_v8_midr_cp_reginfo;
6769                 r->type != ARM_CP_SENTINEL; r++) {
6770                r->access = PL1_RW;
6771            }
6772            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6773                r->access = PL1_RW;
6774            }
6775            id_mpuir_reginfo.access = PL1_RW;
6776            id_tlbtr_reginfo.access = PL1_RW;
6777        }
6778        if (arm_feature(env, ARM_FEATURE_V8)) {
6779            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6780        } else {
6781            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6782        }
6783        define_arm_cp_regs(cpu, id_cp_reginfo);
6784        if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6785            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6786        } else if (arm_feature(env, ARM_FEATURE_V7)) {
6787            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6788        }
6789    }
6790
6791    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6792        ARMCPRegInfo mpidr_cp_reginfo[] = {
6793            { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6794              .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6795              .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6796            REGINFO_SENTINEL
6797        };
6798#ifdef CONFIG_USER_ONLY
6799        ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6800            { .name = "MPIDR_EL1",
6801              .fixed_bits = 0x0000000080000000 },
6802            REGUSERINFO_SENTINEL
6803        };
6804        modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6805#endif
6806        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6807    }
6808
6809    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6810        ARMCPRegInfo auxcr_reginfo[] = {
6811            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6812              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6813              .access = PL1_RW, .type = ARM_CP_CONST,
6814              .resetvalue = cpu->reset_auxcr },
6815            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6816              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6817              .access = PL2_RW, .type = ARM_CP_CONST,
6818              .resetvalue = 0 },
6819            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6820              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6821              .access = PL3_RW, .type = ARM_CP_CONST,
6822              .resetvalue = 0 },
6823            REGINFO_SENTINEL
6824        };
6825        define_arm_cp_regs(cpu, auxcr_reginfo);
6826        if (arm_feature(env, ARM_FEATURE_V8)) {
6827            /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6828            ARMCPRegInfo hactlr2_reginfo = {
6829                .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6830                .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6831                .access = PL2_RW, .type = ARM_CP_CONST,
6832                .resetvalue = 0
6833            };
6834            define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6835        }
6836    }
6837
6838    if (arm_feature(env, ARM_FEATURE_CBAR)) {
6839        /*
6840         * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
6841         * There are two flavours:
6842         *  (1) older 32-bit only cores have a simple 32-bit CBAR
6843         *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
6844         *      32-bit register visible to AArch32 at a different encoding
6845         *      to the "flavour 1" register and with the bits rearranged to
6846         *      be able to squash a 64-bit address into the 32-bit view.
6847         * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
6848         * in future if we support AArch32-only configs of some of the
6849         * AArch64 cores we might need to add a specific feature flag
6850         * to indicate cores with "flavour 2" CBAR.
6851         */
6852        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6853            /* 32 bit view is [31:18] 0...0 [43:32]. */
6854            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6855                | extract64(cpu->reset_cbar, 32, 12);
6856            ARMCPRegInfo cbar_reginfo[] = {
6857                { .name = "CBAR",
6858                  .type = ARM_CP_CONST,
6859                  .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
6860                  .access = PL1_R, .resetvalue = cbar32 },
6861                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6862                  .type = ARM_CP_CONST,
6863                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6864                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
6865                REGINFO_SENTINEL
6866            };
6867            /* We don't implement a r/w 64 bit CBAR currently */
6868            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6869            define_arm_cp_regs(cpu, cbar_reginfo);
6870        } else {
6871            ARMCPRegInfo cbar = {
6872                .name = "CBAR",
6873                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6874                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6875                .fieldoffset = offsetof(CPUARMState,
6876                                        cp15.c15_config_base_address)
6877            };
6878            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6879                cbar.access = PL1_R;
6880                cbar.fieldoffset = 0;
6881                cbar.type = ARM_CP_CONST;
6882            }
6883            define_one_arm_cp_reg(cpu, &cbar);
6884        }
6885    }
6886
6887    if (arm_feature(env, ARM_FEATURE_VBAR)) {
6888        ARMCPRegInfo vbar_cp_reginfo[] = {
6889            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6890              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6891              .access = PL1_RW, .writefn = vbar_write,
6892              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6893                                     offsetof(CPUARMState, cp15.vbar_ns) },
6894              .resetvalue = 0 },
6895            REGINFO_SENTINEL
6896        };
6897        define_arm_cp_regs(cpu, vbar_cp_reginfo);
6898    }
6899
6900    /* Generic registers whose values depend on the implementation */
6901    {
6902        ARMCPRegInfo sctlr = {
6903            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6904            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6905            .access = PL1_RW,
6906            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6907                                   offsetof(CPUARMState, cp15.sctlr_ns) },
6908            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6909            .raw_writefn = raw_write,
6910        };
6911        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6912            /* Normally we would always end the TB on an SCTLR write, but Linux
6913             * arch/arm/mach-pxa/sleep.S expects two instructions following
6914             * an MMU enable to execute from cache.  Imitate this behaviour.
6915             */
6916            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6917        }
6918        define_one_arm_cp_reg(cpu, &sctlr);
6919    }
6920
6921    if (cpu_isar_feature(aa64_lor, cpu)) {
6922        /*
6923         * A trivial implementation of ARMv8.1-LOR leaves all of these
6924         * registers fixed at 0, which indicates that there are zero
6925         * supported Limited Ordering regions.
6926         */
6927        static const ARMCPRegInfo lor_reginfo[] = {
6928            { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6929              .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6930              .access = PL1_RW, .accessfn = access_lor_other,
6931              .type = ARM_CP_CONST, .resetvalue = 0 },
6932            { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6933              .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6934              .access = PL1_RW, .accessfn = access_lor_other,
6935              .type = ARM_CP_CONST, .resetvalue = 0 },
6936            { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6937              .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6938              .access = PL1_RW, .accessfn = access_lor_other,
6939              .type = ARM_CP_CONST, .resetvalue = 0 },
6940            { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6941              .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6942              .access = PL1_RW, .accessfn = access_lor_other,
6943              .type = ARM_CP_CONST, .resetvalue = 0 },
6944            { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6945              .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6946              .access = PL1_R, .accessfn = access_lorid,
6947              .type = ARM_CP_CONST, .resetvalue = 0 },
6948            REGINFO_SENTINEL
6949        };
6950        define_arm_cp_regs(cpu, lor_reginfo);
6951    }
6952
6953    if (cpu_isar_feature(aa64_sve, cpu)) {
6954        define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6955        if (arm_feature(env, ARM_FEATURE_EL2)) {
6956            define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6957        } else {
6958            define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6959        }
6960        if (arm_feature(env, ARM_FEATURE_EL3)) {
6961            define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6962        }
6963    }
6964
6965#ifdef TARGET_AARCH64
6966    if (cpu_isar_feature(aa64_pauth, cpu)) {
6967        define_arm_cp_regs(cpu, pauth_reginfo);
6968    }
6969    if (cpu_isar_feature(aa64_rndr, cpu)) {
6970        define_arm_cp_regs(cpu, rndr_reginfo);
6971    }
6972#endif
6973
6974    /*
6975     * While all v8.0 cpus support aarch64, QEMU does have configurations
6976     * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6977     * which will set ID_ISAR6.
6978     */
6979    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6980        ? cpu_isar_feature(aa64_predinv, cpu)
6981        : cpu_isar_feature(aa32_predinv, cpu)) {
6982        define_arm_cp_regs(cpu, predinv_reginfo);
6983    }
6984}
6985
6986void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6987{
6988    CPUState *cs = CPU(cpu);
6989    CPUARMState *env = &cpu->env;
6990
6991    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6992        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6993                                 aarch64_fpu_gdb_set_reg,
6994                                 34, "aarch64-fpu.xml", 0);
6995    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6996        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6997                                 51, "arm-neon.xml", 0);
6998    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6999        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7000                                 35, "arm-vfp3.xml", 0);
7001    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
7002        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7003                                 19, "arm-vfp.xml", 0);
7004    }
7005    gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
7006                             arm_gen_dynamic_xml(cs),
7007                             "system-registers.xml", 0);
7008}
7009
7010/* Sort alphabetically by type name, except for "any". */
7011static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
7012{
7013    ObjectClass *class_a = (ObjectClass *)a;
7014    ObjectClass *class_b = (ObjectClass *)b;
7015    const char *name_a, *name_b;
7016
7017    name_a = object_class_get_name(class_a);
7018    name_b = object_class_get_name(class_b);
7019    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
7020        return 1;
7021    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
7022        return -1;
7023    } else {
7024        return strcmp(name_a, name_b);
7025    }
7026}
7027
7028static void arm_cpu_list_entry(gpointer data, gpointer user_data)
7029{
7030    ObjectClass *oc = data;
7031    const char *typename;
7032    char *name;
7033
7034    typename = object_class_get_name(oc);
7035    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
7036    qemu_printf("  %s\n", name);
7037    g_free(name);
7038}
7039
7040void arm_cpu_list(void)
7041{
7042    GSList *list;
7043
7044    list = object_class_get_list(TYPE_ARM_CPU, false);
7045    list = g_slist_sort(list, arm_cpu_list_compare);
7046    qemu_printf("Available CPUs:\n");
7047    g_slist_foreach(list, arm_cpu_list_entry, NULL);
7048    g_slist_free(list);
7049}
7050
7051static void arm_cpu_add_definition(gpointer data, gpointer user_data)
7052{
7053    ObjectClass *oc = data;
7054    CpuDefinitionInfoList **cpu_list = user_data;
7055    CpuDefinitionInfoList *entry;
7056    CpuDefinitionInfo *info;
7057    const char *typename;
7058
7059    typename = object_class_get_name(oc);
7060    info = g_malloc0(sizeof(*info));
7061    info->name = g_strndup(typename,
7062                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
7063    info->q_typename = g_strdup(typename);
7064
7065    entry = g_malloc0(sizeof(*entry));
7066    entry->value = info;
7067    entry->next = *cpu_list;
7068    *cpu_list = entry;
7069}
7070
7071CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
7072{
7073    CpuDefinitionInfoList *cpu_list = NULL;
7074    GSList *list;
7075
7076    list = object_class_get_list(TYPE_ARM_CPU, false);
7077    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
7078    g_slist_free(list);
7079
7080    return cpu_list;
7081}
7082
7083static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
7084                                   void *opaque, int state, int secstate,
7085                                   int crm, int opc1, int opc2,
7086                                   const char *name)
7087{
7088    /* Private utility function for define_one_arm_cp_reg_with_opaque():
7089     * add a single reginfo struct to the hash table.
7090     */
7091    uint32_t *key = g_new(uint32_t, 1);
7092    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
7093    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
7094    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
7095
7096    r2->name = g_strdup(name);
7097    /* Reset the secure state to the specific incoming state.  This is
7098     * necessary as the register may have been defined with both states.
7099     */
7100    r2->secure = secstate;
7101
7102    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7103        /* Register is banked (using both entries in array).
7104         * Overwriting fieldoffset as the array is only used to define
7105         * banked registers but later only fieldoffset is used.
7106         */
7107        r2->fieldoffset = r->bank_fieldoffsets[ns];
7108    }
7109
7110    if (state == ARM_CP_STATE_AA32) {
7111        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7112            /* If the register is banked then we don't need to migrate or
7113             * reset the 32-bit instance in certain cases:
7114             *
7115             * 1) If the register has both 32-bit and 64-bit instances then we
7116             *    can count on the 64-bit instance taking care of the
7117             *    non-secure bank.
7118             * 2) If ARMv8 is enabled then we can count on a 64-bit version
7119             *    taking care of the secure bank.  This requires that separate
7120             *    32 and 64-bit definitions are provided.
7121             */
7122            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7123                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7124                r2->type |= ARM_CP_ALIAS;
7125            }
7126        } else if ((secstate != r->secure) && !ns) {
7127            /* The register is not banked so we only want to allow migration of
7128             * the non-secure instance.
7129             */
7130            r2->type |= ARM_CP_ALIAS;
7131        }
7132
7133        if (r->state == ARM_CP_STATE_BOTH) {
7134            /* We assume it is a cp15 register if the .cp field is left unset.
7135             */
7136            if (r2->cp == 0) {
7137                r2->cp = 15;
7138            }
7139
7140#ifdef HOST_WORDS_BIGENDIAN
7141            if (r2->fieldoffset) {
7142                r2->fieldoffset += sizeof(uint32_t);
7143            }
7144#endif
7145        }
7146    }
7147    if (state == ARM_CP_STATE_AA64) {
7148        /* To allow abbreviation of ARMCPRegInfo
7149         * definitions, we treat cp == 0 as equivalent to
7150         * the value for "standard guest-visible sysreg".
7151         * STATE_BOTH definitions are also always "standard
7152         * sysreg" in their AArch64 view (the .cp value may
7153         * be non-zero for the benefit of the AArch32 view).
7154         */
7155        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
7156            r2->cp = CP_REG_ARM64_SYSREG_CP;
7157        }
7158        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
7159                                  r2->opc0, opc1, opc2);
7160    } else {
7161        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
7162    }
7163    if (opaque) {
7164        r2->opaque = opaque;
7165    }
7166    /* reginfo passed to helpers is correct for the actual access,
7167     * and is never ARM_CP_STATE_BOTH:
7168     */
7169    r2->state = state;
7170    /* Make sure reginfo passed to helpers for wildcarded regs
7171     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7172     */
7173    r2->crm = crm;
7174    r2->opc1 = opc1;
7175    r2->opc2 = opc2;
7176    /* By convention, for wildcarded registers only the first
7177     * entry is used for migration; the others are marked as
7178     * ALIAS so we don't try to transfer the register
7179     * multiple times. Special registers (ie NOP/WFI) are
7180     * never migratable and not even raw-accessible.
7181     */
7182    if ((r->type & ARM_CP_SPECIAL)) {
7183        r2->type |= ARM_CP_NO_RAW;
7184    }
7185    if (((r->crm == CP_ANY) && crm != 0) ||
7186        ((r->opc1 == CP_ANY) && opc1 != 0) ||
7187        ((r->opc2 == CP_ANY) && opc2 != 0)) {
7188        r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
7189    }
7190
7191    /* Check that raw accesses are either forbidden or handled. Note that
7192     * we can't assert this earlier because the setup of fieldoffset for
7193     * banked registers has to be done first.
7194     */
7195    if (!(r2->type & ARM_CP_NO_RAW)) {
7196        assert(!raw_accessors_invalid(r2));
7197    }
7198
7199    /* Overriding of an existing definition must be explicitly
7200     * requested.
7201     */
7202    if (!(r->type & ARM_CP_OVERRIDE)) {
7203        ARMCPRegInfo *oldreg;
7204        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7205        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7206            fprintf(stderr, "Register redefined: cp=%d %d bit "
7207                    "crn=%d crm=%d opc1=%d opc2=%d, "
7208                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7209                    r2->crn, r2->crm, r2->opc1, r2->opc2,
7210                    oldreg->name, r2->name);
7211            g_assert_not_reached();
7212        }
7213    }
7214    g_hash_table_insert(cpu->cp_regs, key, r2);
7215}
7216
7217
7218void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7219                                       const ARMCPRegInfo *r, void *opaque)
7220{
7221    /* Define implementations of coprocessor registers.
7222     * We store these in a hashtable because typically
7223     * there are less than 150 registers in a space which
7224     * is 16*16*16*8*8 = 262144 in size.
7225     * Wildcarding is supported for the crm, opc1 and opc2 fields.
7226     * If a register is defined twice then the second definition is
7227     * used, so this can be used to define some generic registers and
7228     * then override them with implementation specific variations.
7229     * At least one of the original and the second definition should
7230     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7231     * against accidental use.
7232     *
7233     * The state field defines whether the register is to be
7234     * visible in the AArch32 or AArch64 execution state. If the
7235     * state is set to ARM_CP_STATE_BOTH then we synthesise a
7236     * reginfo structure for the AArch32 view, which sees the lower
7237     * 32 bits of the 64 bit register.
7238     *
7239     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7240     * be wildcarded. AArch64 registers are always considered to be 64
7241     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7242     * the register, if any.
7243     */
7244    int crm, opc1, opc2, state;
7245    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7246    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7247    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7248    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7249    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7250    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7251    /* 64 bit registers have only CRm and Opc1 fields */
7252    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7253    /* op0 only exists in the AArch64 encodings */
7254    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7255    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7256    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7257    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7258     * encodes a minimum access level for the register. We roll this
7259     * runtime check into our general permission check code, so check
7260     * here that the reginfo's specified permissions are strict enough
7261     * to encompass the generic architectural permission check.
7262     */
7263    if (r->state != ARM_CP_STATE_AA32) {
7264        int mask = 0;
7265        switch (r->opc1) {
7266        case 0:
7267            /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7268            mask = PL0U_R | PL1_RW;
7269            break;
7270        case 1: case 2:
7271            /* min_EL EL1 */
7272            mask = PL1_RW;
7273            break;
7274        case 3:
7275            /* min_EL EL0 */
7276            mask = PL0_RW;
7277            break;
7278        case 4:
7279            /* min_EL EL2 */
7280            mask = PL2_RW;
7281            break;
7282        case 5:
7283            /* unallocated encoding, so not possible */
7284            assert(false);
7285            break;
7286        case 6:
7287            /* min_EL EL3 */
7288            mask = PL3_RW;
7289            break;
7290        case 7:
7291            /* min_EL EL1, secure mode only (we don't check the latter) */
7292            mask = PL1_RW;
7293            break;
7294        default:
7295            /* broken reginfo with out-of-range opc1 */
7296            assert(false);
7297            break;
7298        }
7299        /* assert our permissions are not too lax (stricter is fine) */
7300        assert((r->access & ~mask) == 0);
7301    }
7302
7303    /* Check that the register definition has enough info to handle
7304     * reads and writes if they are permitted.
7305     */
7306    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7307        if (r->access & PL3_R) {
7308            assert((r->fieldoffset ||
7309                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7310                   r->readfn);
7311        }
7312        if (r->access & PL3_W) {
7313            assert((r->fieldoffset ||
7314                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7315                   r->writefn);
7316        }
7317    }
7318    /* Bad type field probably means missing sentinel at end of reg list */
7319    assert(cptype_valid(r->type));
7320    for (crm = crmmin; crm <= crmmax; crm++) {
7321        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7322            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7323                for (state = ARM_CP_STATE_AA32;
7324                     state <= ARM_CP_STATE_AA64; state++) {
7325                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7326                        continue;
7327                    }
7328                    if (state == ARM_CP_STATE_AA32) {
7329                        /* Under AArch32 CP registers can be common
7330                         * (same for secure and non-secure world) or banked.
7331                         */
7332                        char *name;
7333
7334                        switch (r->secure) {
7335                        case ARM_CP_SECSTATE_S:
7336                        case ARM_CP_SECSTATE_NS:
7337                            add_cpreg_to_hashtable(cpu, r, opaque, state,
7338                                                   r->secure, crm, opc1, opc2,
7339                                                   r->name);
7340                            break;
7341                        default:
7342                            name = g_strdup_printf("%s_S", r->name);
7343                            add_cpreg_to_hashtable(cpu, r, opaque, state,
7344                                                   ARM_CP_SECSTATE_S,
7345                                                   crm, opc1, opc2, name);
7346                            g_free(name);
7347                            add_cpreg_to_hashtable(cpu, r, opaque, state,
7348                                                   ARM_CP_SECSTATE_NS,
7349                                                   crm, opc1, opc2, r->name);
7350                            break;
7351                        }
7352                    } else {
7353                        /* AArch64 registers get mapped to non-secure instance
7354                         * of AArch32 */
7355                        add_cpreg_to_hashtable(cpu, r, opaque, state,
7356                                               ARM_CP_SECSTATE_NS,
7357                                               crm, opc1, opc2, r->name);
7358                    }
7359                }
7360            }
7361        }
7362    }
7363}
7364
7365void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7366                                    const ARMCPRegInfo *regs, void *opaque)
7367{
7368    /* Define a whole list of registers */
7369    const ARMCPRegInfo *r;
7370    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7371        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7372    }
7373}
7374
7375/*
7376 * Modify ARMCPRegInfo for access from userspace.
7377 *
7378 * This is a data driven modification directed by
7379 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7380 * user-space cannot alter any values and dynamic values pertaining to
7381 * execution state are hidden from user space view anyway.
7382 */
7383void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7384{
7385    const ARMCPRegUserSpaceInfo *m;
7386    ARMCPRegInfo *r;
7387
7388    for (m = mods; m->name; m++) {
7389        GPatternSpec *pat = NULL;
7390        if (m->is_glob) {
7391            pat = g_pattern_spec_new(m->name);
7392        }
7393        for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7394            if (pat && g_pattern_match_string(pat, r->name)) {
7395                r->type = ARM_CP_CONST;
7396                r->access = PL0U_R;
7397                r->resetvalue = 0;
7398                /* continue */
7399            } else if (strcmp(r->name, m->name) == 0) {
7400                r->type = ARM_CP_CONST;
7401                r->access = PL0U_R;
7402                r->resetvalue &= m->exported_bits;
7403                r->resetvalue |= m->fixed_bits;
7404                break;
7405            }
7406        }
7407        if (pat) {
7408            g_pattern_spec_free(pat);
7409        }
7410    }
7411}
7412
7413const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7414{
7415    return g_hash_table_lookup(cpregs, &encoded_cp);
7416}
7417
7418void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7419                         uint64_t value)
7420{
7421    /* Helper coprocessor write function for write-ignore registers */
7422}
7423
7424uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7425{
7426    /* Helper coprocessor write function for read-as-zero registers */
7427    return 0;
7428}
7429
7430void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7431{
7432    /* Helper coprocessor reset function for do-nothing-on-reset registers */
7433}
7434
7435static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7436{
7437    /* Return true if it is not valid for us to switch to
7438     * this CPU mode (ie all the UNPREDICTABLE cases in
7439     * the ARM ARM CPSRWriteByInstr pseudocode).
7440     */
7441
7442    /* Changes to or from Hyp via MSR and CPS are illegal. */
7443    if (write_type == CPSRWriteByInstr &&
7444        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7445         mode == ARM_CPU_MODE_HYP)) {
7446        return 1;
7447    }
7448
7449    switch (mode) {
7450    case ARM_CPU_MODE_USR:
7451        return 0;
7452    case ARM_CPU_MODE_SYS:
7453    case ARM_CPU_MODE_SVC:
7454    case ARM_CPU_MODE_ABT:
7455    case ARM_CPU_MODE_UND:
7456    case ARM_CPU_MODE_IRQ:
7457    case ARM_CPU_MODE_FIQ:
7458        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7459         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7460         */
7461        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7462         * and CPS are treated as illegal mode changes.
7463         */
7464        if (write_type == CPSRWriteByInstr &&
7465            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7466            (arm_hcr_el2_eff(env) & HCR_TGE)) {
7467            return 1;
7468        }
7469        return 0;
7470    case ARM_CPU_MODE_HYP:
7471        return !arm_feature(env, ARM_FEATURE_EL2)
7472            || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7473    case ARM_CPU_MODE_MON:
7474        return arm_current_el(env) < 3;
7475    default:
7476        return 1;
7477    }
7478}
7479
7480uint32_t cpsr_read(CPUARMState *env)
7481{
7482    int ZF;
7483    ZF = (env->ZF == 0);
7484    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7485        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7486        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7487        | ((env->condexec_bits & 0xfc) << 8)
7488        | (env->GE << 16) | (env->daif & CPSR_AIF);
7489}
7490
7491void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7492                CPSRWriteType write_type)
7493{
7494    uint32_t changed_daif;
7495
7496    if (mask & CPSR_NZCV) {
7497        env->ZF = (~val) & CPSR_Z;
7498        env->NF = val;
7499        env->CF = (val >> 29) & 1;
7500        env->VF = (val << 3) & 0x80000000;
7501    }
7502    if (mask & CPSR_Q)
7503        env->QF = ((val & CPSR_Q) != 0);
7504    if (mask & CPSR_T)
7505        env->thumb = ((val & CPSR_T) != 0);
7506    if (mask & CPSR_IT_0_1) {
7507        env->condexec_bits &= ~3;
7508        env->condexec_bits |= (val >> 25) & 3;
7509    }
7510    if (mask & CPSR_IT_2_7) {
7511        env->condexec_bits &= 3;
7512        env->condexec_bits |= (val >> 8) & 0xfc;
7513    }
7514    if (mask & CPSR_GE) {
7515        env->GE = (val >> 16) & 0xf;
7516    }
7517
7518    /* In a V7 implementation that includes the security extensions but does
7519     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7520     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7521     * bits respectively.
7522     *
7523     * In a V8 implementation, it is permitted for privileged software to
7524     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7525     */
7526    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7527        arm_feature(env, ARM_FEATURE_EL3) &&
7528        !arm_feature(env, ARM_FEATURE_EL2) &&
7529        !arm_is_secure(env)) {
7530
7531        changed_daif = (env->daif ^ val) & mask;
7532
7533        if (changed_daif & CPSR_A) {
7534            /* Check to see if we are allowed to change the masking of async
7535             * abort exceptions from a non-secure state.
7536             */
7537            if (!(env->cp15.scr_el3 & SCR_AW)) {
7538                qemu_log_mask(LOG_GUEST_ERROR,
7539                              "Ignoring attempt to switch CPSR_A flag from "
7540                              "non-secure world with SCR.AW bit clear\n");
7541                mask &= ~CPSR_A;
7542            }
7543        }
7544
7545        if (changed_daif & CPSR_F) {
7546            /* Check to see if we are allowed to change the masking of FIQ
7547             * exceptions from a non-secure state.
7548             */
7549            if (!(env->cp15.scr_el3 & SCR_FW)) {
7550                qemu_log_mask(LOG_GUEST_ERROR,
7551                              "Ignoring attempt to switch CPSR_F flag from "
7552                              "non-secure world with SCR.FW bit clear\n");
7553                mask &= ~CPSR_F;
7554            }
7555
7556            /* Check whether non-maskable FIQ (NMFI) support is enabled.
7557             * If this bit is set software is not allowed to mask
7558             * FIQs, but is allowed to set CPSR_F to 0.
7559             */
7560            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7561                (val & CPSR_F)) {
7562                qemu_log_mask(LOG_GUEST_ERROR,
7563                              "Ignoring attempt to enable CPSR_F flag "
7564                              "(non-maskable FIQ [NMFI] support enabled)\n");
7565                mask &= ~CPSR_F;
7566            }
7567        }
7568    }
7569
7570    env->daif &= ~(CPSR_AIF & mask);
7571    env->daif |= val & CPSR_AIF & mask;
7572
7573    if (write_type != CPSRWriteRaw &&
7574        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7575        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7576            /* Note that we can only get here in USR mode if this is a
7577             * gdb stub write; for this case we follow the architectural
7578             * behaviour for guest writes in USR mode of ignoring an attempt
7579             * to switch mode. (Those are caught by translate.c for writes
7580             * triggered by guest instructions.)
7581             */
7582            mask &= ~CPSR_M;
7583        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7584            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7585             * v7, and has defined behaviour in v8:
7586             *  + leave CPSR.M untouched
7587             *  + allow changes to the other CPSR fields
7588             *  + set PSTATE.IL
7589             * For user changes via the GDB stub, we don't set PSTATE.IL,
7590             * as this would be unnecessarily harsh for a user error.
7591             */
7592            mask &= ~CPSR_M;
7593            if (write_type != CPSRWriteByGDBStub &&
7594                arm_feature(env, ARM_FEATURE_V8)) {
7595                mask |= CPSR_IL;
7596                val |= CPSR_IL;
7597            }
7598            qemu_log_mask(LOG_GUEST_ERROR,
7599                          "Illegal AArch32 mode switch attempt from %s to %s\n",
7600                          aarch32_mode_name(env->uncached_cpsr),
7601                          aarch32_mode_name(val));
7602        } else {
7603            qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7604                          write_type == CPSRWriteExceptionReturn ?
7605                          "Exception return from AArch32" :
7606                          "AArch32 mode switch from",
7607                          aarch32_mode_name(env->uncached_cpsr),
7608                          aarch32_mode_name(val), env->regs[15]);
7609            switch_mode(env, val & CPSR_M);
7610        }
7611    }
7612    mask &= ~CACHED_CPSR_BITS;
7613    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7614}
7615
7616/* Sign/zero extend */
7617uint32_t HELPER(sxtb16)(uint32_t x)
7618{
7619    uint32_t res;
7620    res = (uint16_t)(int8_t)x;
7621    res |= (uint32_t)(int8_t)(x >> 16) << 16;
7622    return res;
7623}
7624
7625uint32_t HELPER(uxtb16)(uint32_t x)
7626{
7627    uint32_t res;
7628    res = (uint16_t)(uint8_t)x;
7629    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7630    return res;
7631}
7632
7633int32_t HELPER(sdiv)(int32_t num, int32_t den)
7634{
7635    if (den == 0)
7636      return 0;
7637    if (num == INT_MIN && den == -1)
7638      return INT_MIN;
7639    return num / den;
7640}
7641
7642uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7643{
7644    if (den == 0)
7645      return 0;
7646    return num / den;
7647}
7648
7649uint32_t HELPER(rbit)(uint32_t x)
7650{
7651    return revbit32(x);
7652}
7653
7654#ifdef CONFIG_USER_ONLY
7655
7656static void switch_mode(CPUARMState *env, int mode)
7657{
7658    ARMCPU *cpu = env_archcpu(env);
7659
7660    if (mode != ARM_CPU_MODE_USR) {
7661        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7662    }
7663}
7664
7665uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7666                                 uint32_t cur_el, bool secure)
7667{
7668    return 1;
7669}
7670
7671void aarch64_sync_64_to_32(CPUARMState *env)
7672{
7673    g_assert_not_reached();
7674}
7675
7676#else
7677
7678static void switch_mode(CPUARMState *env, int mode)
7679{
7680    int old_mode;
7681    int i;
7682
7683    old_mode = env->uncached_cpsr & CPSR_M;
7684    if (mode == old_mode)
7685        return;
7686
7687    if (old_mode == ARM_CPU_MODE_FIQ) {
7688        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7689        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7690    } else if (mode == ARM_CPU_MODE_FIQ) {
7691        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7692        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7693    }
7694
7695    i = bank_number(old_mode);
7696    env->banked_r13[i] = env->regs[13];
7697    env->banked_spsr[i] = env->spsr;
7698
7699    i = bank_number(mode);
7700    env->regs[13] = env->banked_r13[i];
7701    env->spsr = env->banked_spsr[i];
7702
7703    env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7704    env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7705}
7706
7707/* Physical Interrupt Target EL Lookup Table
7708 *
7709 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7710 *
7711 * The below multi-dimensional table is used for looking up the target
7712 * exception level given numerous condition criteria.  Specifically, the
7713 * target EL is based on SCR and HCR routing controls as well as the
7714 * currently executing EL and secure state.
7715 *
7716 *    Dimensions:
7717 *    target_el_table[2][2][2][2][2][4]
7718 *                    |  |  |  |  |  +--- Current EL
7719 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
7720 *                    |  |  |  +--------- HCR mask override
7721 *                    |  |  +------------ SCR exec state control
7722 *                    |  +--------------- SCR mask override
7723 *                    +------------------ 32-bit(0)/64-bit(1) EL3
7724 *
7725 *    The table values are as such:
7726 *    0-3 = EL0-EL3
7727 *     -1 = Cannot occur
7728 *
7729 * The ARM ARM target EL table includes entries indicating that an "exception
7730 * is not taken".  The two cases where this is applicable are:
7731 *    1) An exception is taken from EL3 but the SCR does not have the exception
7732 *    routed to EL3.
7733 *    2) An exception is taken from EL2 but the HCR does not have the exception
7734 *    routed to EL2.
7735 * In these two cases, the below table contain a target of EL1.  This value is
7736 * returned as it is expected that the consumer of the table data will check
7737 * for "target EL >= current EL" to ensure the exception is not taken.
7738 *
7739 *            SCR     HCR
7740 *         64  EA     AMO                 From
7741 *        BIT IRQ     IMO      Non-secure         Secure
7742 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
7743 */
7744static const int8_t target_el_table[2][2][2][2][2][4] = {
7745    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7746       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
7747      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7748       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
7749     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7750       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
7751      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7752       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
7753    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
7754       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
7755      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
7756       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
7757     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7758       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
7759      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7760       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
7761};
7762
7763/*
7764 * Determine the target EL for physical exceptions
7765 */
7766uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7767                                 uint32_t cur_el, bool secure)
7768{
7769    CPUARMState *env = cs->env_ptr;
7770    bool rw;
7771    bool scr;
7772    bool hcr;
7773    int target_el;
7774    /* Is the highest EL AArch64? */
7775    bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7776    uint64_t hcr_el2;
7777
7778    if (arm_feature(env, ARM_FEATURE_EL3)) {
7779        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7780    } else {
7781        /* Either EL2 is the highest EL (and so the EL2 register width
7782         * is given by is64); or there is no EL2 or EL3, in which case
7783         * the value of 'rw' does not affect the table lookup anyway.
7784         */
7785        rw = is64;
7786    }
7787
7788    hcr_el2 = arm_hcr_el2_eff(env);
7789    switch (excp_idx) {
7790    case EXCP_IRQ:
7791        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7792        hcr = hcr_el2 & HCR_IMO;
7793        break;
7794    case EXCP_FIQ:
7795        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7796        hcr = hcr_el2 & HCR_FMO;
7797        break;
7798    default:
7799        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7800        hcr = hcr_el2 & HCR_AMO;
7801        break;
7802    };
7803
7804    /* Perform a table-lookup for the target EL given the current state */
7805    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7806
7807    assert(target_el > 0);
7808
7809    return target_el;
7810}
7811
7812void arm_log_exception(int idx)
7813{
7814    if (qemu_loglevel_mask(CPU_LOG_INT)) {
7815        const char *exc = NULL;
7816        static const char * const excnames[] = {
7817            [EXCP_UDEF] = "Undefined Instruction",
7818            [EXCP_SWI] = "SVC",
7819            [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7820            [EXCP_DATA_ABORT] = "Data Abort",
7821            [EXCP_IRQ] = "IRQ",
7822            [EXCP_FIQ] = "FIQ",
7823            [EXCP_BKPT] = "Breakpoint",
7824            [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7825            [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7826            [EXCP_HVC] = "Hypervisor Call",
7827            [EXCP_HYP_TRAP] = "Hypervisor Trap",
7828            [EXCP_SMC] = "Secure Monitor Call",
7829            [EXCP_VIRQ] = "Virtual IRQ",
7830            [EXCP_VFIQ] = "Virtual FIQ",
7831            [EXCP_SEMIHOST] = "Semihosting call",
7832            [EXCP_NOCP] = "v7M NOCP UsageFault",
7833            [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7834            [EXCP_STKOF] = "v8M STKOF UsageFault",
7835            [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7836            [EXCP_LSERR] = "v8M LSERR UsageFault",
7837            [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
7838        };
7839
7840        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7841            exc = excnames[idx];
7842        }
7843        if (!exc) {
7844            exc = "unknown";
7845        }
7846        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7847    }
7848}
7849
7850/*
7851 * Function used to synchronize QEMU's AArch64 register set with AArch32
7852 * register set.  This is necessary when switching between AArch32 and AArch64
7853 * execution state.
7854 */
7855void aarch64_sync_32_to_64(CPUARMState *env)
7856{
7857    int i;
7858    uint32_t mode = env->uncached_cpsr & CPSR_M;
7859
7860    /* We can blanket copy R[0:7] to X[0:7] */
7861    for (i = 0; i < 8; i++) {
7862        env->xregs[i] = env->regs[i];
7863    }
7864
7865    /*
7866     * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7867     * Otherwise, they come from the banked user regs.
7868     */
7869    if (mode == ARM_CPU_MODE_FIQ) {
7870        for (i = 8; i < 13; i++) {
7871            env->xregs[i] = env->usr_regs[i - 8];
7872        }
7873    } else {
7874        for (i = 8; i < 13; i++) {
7875            env->xregs[i] = env->regs[i];
7876        }
7877    }
7878
7879    /*
7880     * Registers x13-x23 are the various mode SP and FP registers. Registers
7881     * r13 and r14 are only copied if we are in that mode, otherwise we copy
7882     * from the mode banked register.
7883     */
7884    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7885        env->xregs[13] = env->regs[13];
7886        env->xregs[14] = env->regs[14];
7887    } else {
7888        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7889        /* HYP is an exception in that it is copied from r14 */
7890        if (mode == ARM_CPU_MODE_HYP) {
7891            env->xregs[14] = env->regs[14];
7892        } else {
7893            env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
7894        }
7895    }
7896
7897    if (mode == ARM_CPU_MODE_HYP) {
7898        env->xregs[15] = env->regs[13];
7899    } else {
7900        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7901    }
7902
7903    if (mode == ARM_CPU_MODE_IRQ) {
7904        env->xregs[16] = env->regs[14];
7905        env->xregs[17] = env->regs[13];
7906    } else {
7907        env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
7908        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7909    }
7910
7911    if (mode == ARM_CPU_MODE_SVC) {
7912        env->xregs[18] = env->regs[14];
7913        env->xregs[19] = env->regs[13];
7914    } else {
7915        env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
7916        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7917    }
7918
7919    if (mode == ARM_CPU_MODE_ABT) {
7920        env->xregs[20] = env->regs[14];
7921        env->xregs[21] = env->regs[13];
7922    } else {
7923        env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
7924        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7925    }
7926
7927    if (mode == ARM_CPU_MODE_UND) {
7928        env->xregs[22] = env->regs[14];
7929        env->xregs[23] = env->regs[13];
7930    } else {
7931        env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
7932        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7933    }
7934
7935    /*
7936     * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7937     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7938     * FIQ bank for r8-r14.
7939     */
7940    if (mode == ARM_CPU_MODE_FIQ) {
7941        for (i = 24; i < 31; i++) {
7942            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7943        }
7944    } else {
7945        for (i = 24; i < 29; i++) {
7946            env->xregs[i] = env->fiq_regs[i - 24];
7947        }
7948        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7949        env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
7950    }
7951
7952    env->pc = env->regs[15];
7953}
7954
7955/*
7956 * Function used to synchronize QEMU's AArch32 register set with AArch64
7957 * register set.  This is necessary when switching between AArch32 and AArch64
7958 * execution state.
7959 */
7960void aarch64_sync_64_to_32(CPUARMState *env)
7961{
7962    int i;
7963    uint32_t mode = env->uncached_cpsr & CPSR_M;
7964
7965    /* We can blanket copy X[0:7] to R[0:7] */
7966    for (i = 0; i < 8; i++) {
7967        env->regs[i] = env->xregs[i];
7968    }
7969
7970    /*
7971     * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7972     * Otherwise, we copy x8-x12 into the banked user regs.
7973     */
7974    if (mode == ARM_CPU_MODE_FIQ) {
7975        for (i = 8; i < 13; i++) {
7976            env->usr_regs[i - 8] = env->xregs[i];
7977        }
7978    } else {
7979        for (i = 8; i < 13; i++) {
7980            env->regs[i] = env->xregs[i];
7981        }
7982    }
7983
7984    /*
7985     * Registers r13 & r14 depend on the current mode.
7986     * If we are in a given mode, we copy the corresponding x registers to r13
7987     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7988     * for the mode.
7989     */
7990    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7991        env->regs[13] = env->xregs[13];
7992        env->regs[14] = env->xregs[14];
7993    } else {
7994        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7995
7996        /*
7997         * HYP is an exception in that it does not have its own banked r14 but
7998         * shares the USR r14
7999         */
8000        if (mode == ARM_CPU_MODE_HYP) {
8001            env->regs[14] = env->xregs[14];
8002        } else {
8003            env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8004        }
8005    }
8006
8007    if (mode == ARM_CPU_MODE_HYP) {
8008        env->regs[13] = env->xregs[15];
8009    } else {
8010        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8011    }
8012
8013    if (mode == ARM_CPU_MODE_IRQ) {
8014        env->regs[14] = env->xregs[16];
8015        env->regs[13] = env->xregs[17];
8016    } else {
8017        env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8018        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8019    }
8020
8021    if (mode == ARM_CPU_MODE_SVC) {
8022        env->regs[14] = env->xregs[18];
8023        env->regs[13] = env->xregs[19];
8024    } else {
8025        env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8026        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8027    }
8028
8029    if (mode == ARM_CPU_MODE_ABT) {
8030        env->regs[14] = env->xregs[20];
8031        env->regs[13] = env->xregs[21];
8032    } else {
8033        env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8034        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8035    }
8036
8037    if (mode == ARM_CPU_MODE_UND) {
8038        env->regs[14] = env->xregs[22];
8039        env->regs[13] = env->xregs[23];
8040    } else {
8041        env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8042        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8043    }
8044
8045    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8046     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
8047     * FIQ bank for r8-r14.
8048     */
8049    if (mode == ARM_CPU_MODE_FIQ) {
8050        for (i = 24; i < 31; i++) {
8051            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
8052        }
8053    } else {
8054        for (i = 24; i < 29; i++) {
8055            env->fiq_regs[i - 24] = env->xregs[i];
8056        }
8057        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8058        env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8059    }
8060
8061    env->regs[15] = env->pc;
8062}
8063
8064static void take_aarch32_exception(CPUARMState *env, int new_mode,
8065                                   uint32_t mask, uint32_t offset,
8066                                   uint32_t newpc)
8067{
8068    /* Change the CPU state so as to actually take the exception. */
8069    switch_mode(env, new_mode);
8070    /*
8071     * For exceptions taken to AArch32 we must clear the SS bit in both
8072     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8073     */
8074    env->uncached_cpsr &= ~PSTATE_SS;
8075    env->spsr = cpsr_read(env);
8076    /* Clear IT bits.  */
8077    env->condexec_bits = 0;
8078    /* Switch to the new mode, and to the correct instruction set.  */
8079    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8080    /* Set new mode endianness */
8081    env->uncached_cpsr &= ~CPSR_E;
8082    if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8083        env->uncached_cpsr |= CPSR_E;
8084    }
8085    /* J and IL must always be cleared for exception entry */
8086    env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8087    env->daif |= mask;
8088
8089    if (new_mode == ARM_CPU_MODE_HYP) {
8090        env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8091        env->elr_el[2] = env->regs[15];
8092    } else {
8093        /*
8094         * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8095         * and we should just guard the thumb mode on V4
8096         */
8097        if (arm_feature(env, ARM_FEATURE_V4T)) {
8098            env->thumb =
8099                (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8100        }
8101        env->regs[14] = env->regs[15] + offset;
8102    }
8103    env->regs[15] = newpc;
8104    arm_rebuild_hflags(env);
8105}
8106
8107static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8108{
8109    /*
8110     * Handle exception entry to Hyp mode; this is sufficiently
8111     * different to entry to other AArch32 modes that we handle it
8112     * separately here.
8113     *
8114     * The vector table entry used is always the 0x14 Hyp mode entry point,
8115     * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8116     * The offset applied to the preferred return address is always zero
8117     * (see DDI0487C.a section G1.12.3).
8118     * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8119     */
8120    uint32_t addr, mask;
8121    ARMCPU *cpu = ARM_CPU(cs);
8122    CPUARMState *env = &cpu->env;
8123
8124    switch (cs->exception_index) {
8125    case EXCP_UDEF:
8126        addr = 0x04;
8127        break;
8128    case EXCP_SWI:
8129        addr = 0x14;
8130        break;
8131    case EXCP_BKPT:
8132        /* Fall through to prefetch abort.  */
8133    case EXCP_PREFETCH_ABORT:
8134        env->cp15.ifar_s = env->exception.vaddress;
8135        qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8136                      (uint32_t)env->exception.vaddress);
8137        addr = 0x0c;
8138        break;
8139    case EXCP_DATA_ABORT:
8140        env->cp15.dfar_s = env->exception.vaddress;
8141        qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8142                      (uint32_t)env->exception.vaddress);
8143        addr = 0x10;
8144        break;
8145    case EXCP_IRQ:
8146        addr = 0x18;
8147        break;
8148    case EXCP_FIQ:
8149        addr = 0x1c;
8150        break;
8151    case EXCP_HVC:
8152        addr = 0x08;
8153        break;
8154    case EXCP_HYP_TRAP:
8155        addr = 0x14;
8156        break;
8157    default:
8158        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8159    }
8160
8161    if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8162        if (!arm_feature(env, ARM_FEATURE_V8)) {
8163            /*
8164             * QEMU syndrome values are v8-style. v7 has the IL bit
8165             * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8166             * If this is a v7 CPU, squash the IL bit in those cases.
8167             */
8168            if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8169                (cs->exception_index == EXCP_DATA_ABORT &&
8170                 !(env->exception.syndrome & ARM_EL_ISV)) ||
8171                syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8172                env->exception.syndrome &= ~ARM_EL_IL;
8173            }
8174        }
8175        env->cp15.esr_el[2] = env->exception.syndrome;
8176    }
8177
8178    if (arm_current_el(env) != 2 && addr < 0x14) {
8179        addr = 0x14;
8180    }
8181
8182    mask = 0;
8183    if (!(env->cp15.scr_el3 & SCR_EA)) {
8184        mask |= CPSR_A;
8185    }
8186    if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8187        mask |= CPSR_I;
8188    }
8189    if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8190        mask |= CPSR_F;
8191    }
8192
8193    addr += env->cp15.hvbar;
8194
8195    take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8196}
8197
8198static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8199{
8200    ARMCPU *cpu = ARM_CPU(cs);
8201    CPUARMState *env = &cpu->env;
8202    uint32_t addr;
8203    uint32_t mask;
8204    int new_mode;
8205    uint32_t offset;
8206    uint32_t moe;
8207
8208    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8209    switch (syn_get_ec(env->exception.syndrome)) {
8210    case EC_BREAKPOINT:
8211    case EC_BREAKPOINT_SAME_EL:
8212        moe = 1;
8213        break;
8214    case EC_WATCHPOINT:
8215    case EC_WATCHPOINT_SAME_EL:
8216        moe = 10;
8217        break;
8218    case EC_AA32_BKPT:
8219        moe = 3;
8220        break;
8221    case EC_VECTORCATCH:
8222        moe = 5;
8223        break;
8224    default:
8225        moe = 0;
8226        break;
8227    }
8228
8229    if (moe) {
8230        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8231    }
8232
8233    if (env->exception.target_el == 2) {
8234        arm_cpu_do_interrupt_aarch32_hyp(cs);
8235        return;
8236    }
8237
8238    switch (cs->exception_index) {
8239    case EXCP_UDEF:
8240        new_mode = ARM_CPU_MODE_UND;
8241        addr = 0x04;
8242        mask = CPSR_I;
8243        if (env->thumb)
8244            offset = 2;
8245        else
8246            offset = 4;
8247        break;
8248    case EXCP_SWI:
8249        new_mode = ARM_CPU_MODE_SVC;
8250        addr = 0x08;
8251        mask = CPSR_I;
8252        /* The PC already points to the next instruction.  */
8253        offset = 0;
8254        break;
8255    case EXCP_BKPT:
8256        /* Fall through to prefetch abort.  */
8257    case EXCP_PREFETCH_ABORT:
8258        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8259        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8260        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8261                      env->exception.fsr, (uint32_t)env->exception.vaddress);
8262        new_mode = ARM_CPU_MODE_ABT;
8263        addr = 0x0c;
8264        mask = CPSR_A | CPSR_I;
8265        offset = 4;
8266        break;
8267    case EXCP_DATA_ABORT:
8268        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8269        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8270        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8271                      env->exception.fsr,
8272                      (uint32_t)env->exception.vaddress);
8273        new_mode = ARM_CPU_MODE_ABT;
8274        addr = 0x10;
8275        mask = CPSR_A | CPSR_I;
8276        offset = 8;
8277        break;
8278    case EXCP_IRQ:
8279        new_mode = ARM_CPU_MODE_IRQ;
8280        addr = 0x18;
8281        /* Disable IRQ and imprecise data aborts.  */
8282        mask = CPSR_A | CPSR_I;
8283        offset = 4;
8284        if (env->cp15.scr_el3 & SCR_IRQ) {
8285            /* IRQ routed to monitor mode */
8286            new_mode = ARM_CPU_MODE_MON;
8287            mask |= CPSR_F;
8288        }
8289        break;
8290    case EXCP_FIQ:
8291        new_mode = ARM_CPU_MODE_FIQ;
8292        addr = 0x1c;
8293        /* Disable FIQ, IRQ and imprecise data aborts.  */
8294        mask = CPSR_A | CPSR_I | CPSR_F;
8295        if (env->cp15.scr_el3 & SCR_FIQ) {
8296            /* FIQ routed to monitor mode */
8297            new_mode = ARM_CPU_MODE_MON;
8298        }
8299        offset = 4;
8300        break;
8301    case EXCP_VIRQ:
8302        new_mode = ARM_CPU_MODE_IRQ;
8303        addr = 0x18;
8304        /* Disable IRQ and imprecise data aborts.  */
8305        mask = CPSR_A | CPSR_I;
8306        offset = 4;
8307        break;
8308    case EXCP_VFIQ:
8309        new_mode = ARM_CPU_MODE_FIQ;
8310        addr = 0x1c;
8311        /* Disable FIQ, IRQ and imprecise data aborts.  */
8312        mask = CPSR_A | CPSR_I | CPSR_F;
8313        offset = 4;
8314        break;
8315    case EXCP_SMC:
8316        new_mode = ARM_CPU_MODE_MON;
8317        addr = 0x08;
8318        mask = CPSR_A | CPSR_I | CPSR_F;
8319        offset = 0;
8320        break;
8321    default:
8322        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8323        return; /* Never happens.  Keep compiler happy.  */
8324    }
8325
8326    if (new_mode == ARM_CPU_MODE_MON) {
8327        addr += env->cp15.mvbar;
8328    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8329        /* High vectors. When enabled, base address cannot be remapped. */
8330        addr += 0xffff0000;
8331    } else {
8332        /* ARM v7 architectures provide a vector base address register to remap
8333         * the interrupt vector table.
8334         * This register is only followed in non-monitor mode, and is banked.
8335         * Note: only bits 31:5 are valid.
8336         */
8337        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8338    }
8339
8340    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8341        env->cp15.scr_el3 &= ~SCR_NS;
8342    }
8343
8344    take_aarch32_exception(env, new_mode, mask, offset, addr);
8345}
8346
8347/* Handle exception entry to a target EL which is using AArch64 */
8348static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8349{
8350    ARMCPU *cpu = ARM_CPU(cs);
8351    CPUARMState *env = &cpu->env;
8352    unsigned int new_el = env->exception.target_el;
8353    target_ulong addr = env->cp15.vbar_el[new_el];
8354    unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8355    unsigned int cur_el = arm_current_el(env);
8356
8357    /*
8358     * Note that new_el can never be 0.  If cur_el is 0, then
8359     * el0_a64 is is_a64(), else el0_a64 is ignored.
8360     */
8361    aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8362
8363    if (cur_el < new_el) {
8364        /* Entry vector offset depends on whether the implemented EL
8365         * immediately lower than the target level is using AArch32 or AArch64
8366         */
8367        bool is_aa64;
8368
8369        switch (new_el) {
8370        case 3:
8371            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8372            break;
8373        case 2:
8374            is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8375            break;
8376        case 1:
8377            is_aa64 = is_a64(env);
8378            break;
8379        default:
8380            g_assert_not_reached();
8381        }
8382
8383        if (is_aa64) {
8384            addr += 0x400;
8385        } else {
8386            addr += 0x600;
8387        }
8388    } else if (pstate_read(env) & PSTATE_SP) {
8389        addr += 0x200;
8390    }
8391
8392    switch (cs->exception_index) {
8393    case EXCP_PREFETCH_ABORT:
8394    case EXCP_DATA_ABORT:
8395        env->cp15.far_el[new_el] = env->exception.vaddress;
8396        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8397                      env->cp15.far_el[new_el]);
8398        /* fall through */
8399    case EXCP_BKPT:
8400    case EXCP_UDEF:
8401    case EXCP_SWI:
8402    case EXCP_HVC:
8403    case EXCP_HYP_TRAP:
8404    case EXCP_SMC:
8405        if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8406            /*
8407             * QEMU internal FP/SIMD syndromes from AArch32 include the
8408             * TA and coproc fields which are only exposed if the exception
8409             * is taken to AArch32 Hyp mode. Mask them out to get a valid
8410             * AArch64 format syndrome.
8411             */
8412            env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8413        }
8414        env->cp15.esr_el[new_el] = env->exception.syndrome;
8415        break;
8416    case EXCP_IRQ:
8417    case EXCP_VIRQ:
8418        addr += 0x80;
8419        break;
8420    case EXCP_FIQ:
8421    case EXCP_VFIQ:
8422        addr += 0x100;
8423        break;
8424    case EXCP_SEMIHOST:
8425        qemu_log_mask(CPU_LOG_INT,
8426                      "...handling as semihosting call 0x%" PRIx64 "\n",
8427                      env->xregs[0]);
8428        env->xregs[0] = do_arm_semihosting(env);
8429        return;
8430    default:
8431        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8432    }
8433
8434    if (is_a64(env)) {
8435        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8436        aarch64_save_sp(env, arm_current_el(env));
8437        env->elr_el[new_el] = env->pc;
8438    } else {
8439        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8440        env->elr_el[new_el] = env->regs[15];
8441
8442        aarch64_sync_32_to_64(env);
8443
8444        env->condexec_bits = 0;
8445    }
8446    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8447                  env->elr_el[new_el]);
8448
8449    pstate_write(env, PSTATE_DAIF | new_mode);
8450    env->aarch64 = 1;
8451    aarch64_restore_sp(env, new_el);
8452    helper_rebuild_hflags_a64(env, new_el);
8453
8454    env->pc = addr;
8455
8456    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8457                  new_el, env->pc, pstate_read(env));
8458}
8459
8460/*
8461 * Do semihosting call and set the appropriate return value. All the
8462 * permission and validity checks have been done at translate time.
8463 *
8464 * We only see semihosting exceptions in TCG only as they are not
8465 * trapped to the hypervisor in KVM.
8466 */
8467#ifdef CONFIG_TCG
8468static void handle_semihosting(CPUState *cs)
8469{
8470    ARMCPU *cpu = ARM_CPU(cs);
8471    CPUARMState *env = &cpu->env;
8472
8473    if (is_a64(env)) {
8474        qemu_log_mask(CPU_LOG_INT,
8475                      "...handling as semihosting call 0x%" PRIx64 "\n",
8476                      env->xregs[0]);
8477        env->xregs[0] = do_arm_semihosting(env);
8478    } else {
8479        qemu_log_mask(CPU_LOG_INT,
8480                      "...handling as semihosting call 0x%x\n",
8481                      env->regs[0]);
8482        env->regs[0] = do_arm_semihosting(env);
8483    }
8484}
8485#endif
8486
8487/* Handle a CPU exception for A and R profile CPUs.
8488 * Do any appropriate logging, handle PSCI calls, and then hand off
8489 * to the AArch64-entry or AArch32-entry function depending on the
8490 * target exception level's register width.
8491 */
8492void arm_cpu_do_interrupt(CPUState *cs)
8493{
8494    ARMCPU *cpu = ARM_CPU(cs);
8495    CPUARMState *env = &cpu->env;
8496    unsigned int new_el = env->exception.target_el;
8497
8498    assert(!arm_feature(env, ARM_FEATURE_M));
8499
8500    arm_log_exception(cs->exception_index);
8501    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8502                  new_el);
8503    if (qemu_loglevel_mask(CPU_LOG_INT)
8504        && !excp_is_internal(cs->exception_index)) {
8505        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8506                      syn_get_ec(env->exception.syndrome),
8507                      env->exception.syndrome);
8508    }
8509
8510    if (arm_is_psci_call(cpu, cs->exception_index)) {
8511        arm_handle_psci_call(cpu);
8512        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8513        return;
8514    }
8515
8516    /*
8517     * Semihosting semantics depend on the register width of the code
8518     * that caused the exception, not the target exception level, so
8519     * must be handled here.
8520     */
8521#ifdef CONFIG_TCG
8522    if (cs->exception_index == EXCP_SEMIHOST) {
8523        handle_semihosting(cs);
8524        return;
8525    }
8526#endif
8527
8528    /* Hooks may change global state so BQL should be held, also the
8529     * BQL needs to be held for any modification of
8530     * cs->interrupt_request.
8531     */
8532    g_assert(qemu_mutex_iothread_locked());
8533
8534    arm_call_pre_el_change_hook(cpu);
8535
8536    assert(!excp_is_internal(cs->exception_index));
8537    if (arm_el_is_aa64(env, new_el)) {
8538        arm_cpu_do_interrupt_aarch64(cs);
8539    } else {
8540        arm_cpu_do_interrupt_aarch32(cs);
8541    }
8542
8543    arm_call_el_change_hook(cpu);
8544
8545    if (!kvm_enabled()) {
8546        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8547    }
8548}
8549#endif /* !CONFIG_USER_ONLY */
8550
8551/* Return the exception level which controls this address translation regime */
8552static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8553{
8554    switch (mmu_idx) {
8555    case ARMMMUIdx_S2NS:
8556    case ARMMMUIdx_S1E2:
8557        return 2;
8558    case ARMMMUIdx_S1E3:
8559        return 3;
8560    case ARMMMUIdx_S1SE0:
8561        return arm_el_is_aa64(env, 3) ? 1 : 3;
8562    case ARMMMUIdx_S1SE1:
8563    case ARMMMUIdx_S1NSE0:
8564    case ARMMMUIdx_S1NSE1:
8565    case ARMMMUIdx_MPrivNegPri:
8566    case ARMMMUIdx_MUserNegPri:
8567    case ARMMMUIdx_MPriv:
8568    case ARMMMUIdx_MUser:
8569    case ARMMMUIdx_MSPrivNegPri:
8570    case ARMMMUIdx_MSUserNegPri:
8571    case ARMMMUIdx_MSPriv:
8572    case ARMMMUIdx_MSUser:
8573        return 1;
8574    default:
8575        g_assert_not_reached();
8576    }
8577}
8578
8579#ifndef CONFIG_USER_ONLY
8580
8581/* Return the SCTLR value which controls this address translation regime */
8582static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8583{
8584    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8585}
8586
8587/* Return true if the specified stage of address translation is disabled */
8588static inline bool regime_translation_disabled(CPUARMState *env,
8589                                               ARMMMUIdx mmu_idx)
8590{
8591    if (arm_feature(env, ARM_FEATURE_M)) {
8592        switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8593                (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8594        case R_V7M_MPU_CTRL_ENABLE_MASK:
8595            /* Enabled, but not for HardFault and NMI */
8596            return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8597        case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8598            /* Enabled for all cases */
8599            return false;
8600        case 0:
8601        default:
8602            /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8603             * we warned about that in armv7m_nvic.c when the guest set it.
8604             */
8605            return true;
8606        }
8607    }
8608
8609    if (mmu_idx == ARMMMUIdx_S2NS) {
8610        /* HCR.DC means HCR.VM behaves as 1 */
8611        return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8612    }
8613
8614    if (env->cp15.hcr_el2 & HCR_TGE) {
8615        /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8616        if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8617            return true;
8618        }
8619    }
8620
8621    if ((env->cp15.hcr_el2 & HCR_DC) &&
8622        (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8623        /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8624        return true;
8625    }
8626
8627    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8628}
8629
8630static inline bool regime_translation_big_endian(CPUARMState *env,
8631                                                 ARMMMUIdx mmu_idx)
8632{
8633    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8634}
8635
8636/* Return the TTBR associated with this translation regime */
8637static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8638                                   int ttbrn)
8639{
8640    if (mmu_idx == ARMMMUIdx_S2NS) {
8641        return env->cp15.vttbr_el2;
8642    }
8643    if (ttbrn == 0) {
8644        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8645    } else {
8646        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8647    }
8648}
8649
8650#endif /* !CONFIG_USER_ONLY */
8651
8652/* Return the TCR controlling this translation regime */
8653static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8654{
8655    if (mmu_idx == ARMMMUIdx_S2NS) {
8656        return &env->cp15.vtcr_el2;
8657    }
8658    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8659}
8660
8661/* Convert a possible stage1+2 MMU index into the appropriate
8662 * stage 1 MMU index
8663 */
8664static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8665{
8666    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8667        mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8668    }
8669    return mmu_idx;
8670}
8671
8672/* Return true if the translation regime is using LPAE format page tables */
8673static inline bool regime_using_lpae_format(CPUARMState *env,
8674                                            ARMMMUIdx mmu_idx)
8675{
8676    int el = regime_el(env, mmu_idx);
8677    if (el == 2 || arm_el_is_aa64(env, el)) {
8678        return true;
8679    }
8680    if (arm_feature(env, ARM_FEATURE_LPAE)
8681        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8682        return true;
8683    }
8684    return false;
8685}
8686
8687/* Returns true if the stage 1 translation regime is using LPAE format page
8688 * tables. Used when raising alignment exceptions, whose FSR changes depending
8689 * on whether the long or short descriptor format is in use. */
8690bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8691{
8692    mmu_idx = stage_1_mmu_idx(mmu_idx);
8693
8694    return regime_using_lpae_format(env, mmu_idx);
8695}
8696
8697#ifndef CONFIG_USER_ONLY
8698static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8699{
8700    switch (mmu_idx) {
8701    case ARMMMUIdx_S1SE0:
8702    case ARMMMUIdx_S1NSE0:
8703    case ARMMMUIdx_MUser:
8704    case ARMMMUIdx_MSUser:
8705    case ARMMMUIdx_MUserNegPri:
8706    case ARMMMUIdx_MSUserNegPri:
8707        return true;
8708    default:
8709        return false;
8710    case ARMMMUIdx_S12NSE0:
8711    case ARMMMUIdx_S12NSE1:
8712        g_assert_not_reached();
8713    }
8714}
8715
8716/* Translate section/page access permissions to page
8717 * R/W protection flags
8718 *
8719 * @env:         CPUARMState
8720 * @mmu_idx:     MMU index indicating required translation regime
8721 * @ap:          The 3-bit access permissions (AP[2:0])
8722 * @domain_prot: The 2-bit domain access permissions
8723 */
8724static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8725                                int ap, int domain_prot)
8726{
8727    bool is_user = regime_is_user(env, mmu_idx);
8728
8729    if (domain_prot == 3) {
8730        return PAGE_READ | PAGE_WRITE;
8731    }
8732
8733    switch (ap) {
8734    case 0:
8735        if (arm_feature(env, ARM_FEATURE_V7)) {
8736            return 0;
8737        }
8738        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8739        case SCTLR_S:
8740            return is_user ? 0 : PAGE_READ;
8741        case SCTLR_R:
8742            return PAGE_READ;
8743        default:
8744            return 0;
8745        }
8746    case 1:
8747        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8748    case 2:
8749        if (is_user) {
8750            return PAGE_READ;
8751        } else {
8752            return PAGE_READ | PAGE_WRITE;
8753        }
8754    case 3:
8755        return PAGE_READ | PAGE_WRITE;
8756    case 4: /* Reserved.  */
8757        return 0;
8758    case 5:
8759        return is_user ? 0 : PAGE_READ;
8760    case 6:
8761        return PAGE_READ;
8762    case 7:
8763        if (!arm_feature(env, ARM_FEATURE_V6K)) {
8764            return 0;
8765        }
8766        return PAGE_READ;
8767    default:
8768        g_assert_not_reached();
8769    }
8770}
8771
8772/* Translate section/page access permissions to page
8773 * R/W protection flags.
8774 *
8775 * @ap:      The 2-bit simple AP (AP[2:1])
8776 * @is_user: TRUE if accessing from PL0
8777 */
8778static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8779{
8780    switch (ap) {
8781    case 0:
8782        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8783    case 1:
8784        return PAGE_READ | PAGE_WRITE;
8785    case 2:
8786        return is_user ? 0 : PAGE_READ;
8787    case 3:
8788        return PAGE_READ;
8789    default:
8790        g_assert_not_reached();
8791    }
8792}
8793
8794static inline int
8795simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8796{
8797    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8798}
8799
8800/* Translate S2 section/page access permissions to protection flags
8801 *
8802 * @env:     CPUARMState
8803 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8804 * @xn:      XN (execute-never) bit
8805 */
8806static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8807{
8808    int prot = 0;
8809
8810    if (s2ap & 1) {
8811        prot |= PAGE_READ;
8812    }
8813    if (s2ap & 2) {
8814        prot |= PAGE_WRITE;
8815    }
8816    if (!xn) {
8817        if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8818            prot |= PAGE_EXEC;
8819        }
8820    }
8821    return prot;
8822}
8823
8824/* Translate section/page access permissions to protection flags
8825 *
8826 * @env:     CPUARMState
8827 * @mmu_idx: MMU index indicating required translation regime
8828 * @is_aa64: TRUE if AArch64
8829 * @ap:      The 2-bit simple AP (AP[2:1])
8830 * @ns:      NS (non-secure) bit
8831 * @xn:      XN (execute-never) bit
8832 * @pxn:     PXN (privileged execute-never) bit
8833 */
8834static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8835                      int ap, int ns, int xn, int pxn)
8836{
8837    bool is_user = regime_is_user(env, mmu_idx);
8838    int prot_rw, user_rw;
8839    bool have_wxn;
8840    int wxn = 0;
8841
8842    assert(mmu_idx != ARMMMUIdx_S2NS);
8843
8844    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8845    if (is_user) {
8846        prot_rw = user_rw;
8847    } else {
8848        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8849    }
8850
8851    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8852        return prot_rw;
8853    }
8854
8855    /* TODO have_wxn should be replaced with
8856     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8857     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8858     * compatible processors have EL2, which is required for [U]WXN.
8859     */
8860    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8861
8862    if (have_wxn) {
8863        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8864    }
8865
8866    if (is_aa64) {
8867        switch (regime_el(env, mmu_idx)) {
8868        case 1:
8869            if (!is_user) {
8870                xn = pxn || (user_rw & PAGE_WRITE);
8871            }
8872            break;
8873        case 2:
8874        case 3:
8875            break;
8876        }
8877    } else if (arm_feature(env, ARM_FEATURE_V7)) {
8878        switch (regime_el(env, mmu_idx)) {
8879        case 1:
8880        case 3:
8881            if (is_user) {
8882                xn = xn || !(user_rw & PAGE_READ);
8883            } else {
8884                int uwxn = 0;
8885                if (have_wxn) {
8886                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8887                }
8888                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8889                     (uwxn && (user_rw & PAGE_WRITE));
8890            }
8891            break;
8892        case 2:
8893            break;
8894        }
8895    } else {
8896        xn = wxn = 0;
8897    }
8898
8899    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8900        return prot_rw;
8901    }
8902    return prot_rw | PAGE_EXEC;
8903}
8904
8905static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8906                                     uint32_t *table, uint32_t address)
8907{
8908    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8909    TCR *tcr = regime_tcr(env, mmu_idx);
8910
8911    if (address & tcr->mask) {
8912        if (tcr->raw_tcr & TTBCR_PD1) {
8913            /* Translation table walk disabled for TTBR1 */
8914            return false;
8915        }
8916        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8917    } else {
8918        if (tcr->raw_tcr & TTBCR_PD0) {
8919            /* Translation table walk disabled for TTBR0 */
8920            return false;
8921        }
8922        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8923    }
8924    *table |= (address >> 18) & 0x3ffc;
8925    return true;
8926}
8927
8928/* Translate a S1 pagetable walk through S2 if needed.  */
8929static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8930                               hwaddr addr, MemTxAttrs txattrs,
8931                               ARMMMUFaultInfo *fi)
8932{
8933    if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8934        !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8935        target_ulong s2size;
8936        hwaddr s2pa;
8937        int s2prot;
8938        int ret;
8939        ARMCacheAttrs cacheattrs = {};
8940        ARMCacheAttrs *pcacheattrs = NULL;
8941
8942        if (env->cp15.hcr_el2 & HCR_PTW) {
8943            /*
8944             * PTW means we must fault if this S1 walk touches S2 Device
8945             * memory; otherwise we don't care about the attributes and can
8946             * save the S2 translation the effort of computing them.
8947             */
8948            pcacheattrs = &cacheattrs;
8949        }
8950
8951        ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8952                                 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
8953        if (ret) {
8954            assert(fi->type != ARMFault_None);
8955            fi->s2addr = addr;
8956            fi->stage2 = true;
8957            fi->s1ptw = true;
8958            return ~0;
8959        }
8960        if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
8961            /* Access was to Device memory: generate Permission fault */
8962            fi->type = ARMFault_Permission;
8963            fi->s2addr = addr;
8964            fi->stage2 = true;
8965            fi->s1ptw = true;
8966            return ~0;
8967        }
8968        addr = s2pa;
8969    }
8970    return addr;
8971}
8972
8973/* All loads done in the course of a page table walk go through here. */
8974static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8975                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8976{
8977    ARMCPU *cpu = ARM_CPU(cs);
8978    CPUARMState *env = &cpu->env;
8979    MemTxAttrs attrs = {};
8980    MemTxResult result = MEMTX_OK;
8981    AddressSpace *as;
8982    uint32_t data;
8983
8984    attrs.secure = is_secure;
8985    as = arm_addressspace(cs, attrs);
8986    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8987    if (fi->s1ptw) {
8988        return 0;
8989    }
8990    if (regime_translation_big_endian(env, mmu_idx)) {
8991        data = address_space_ldl_be(as, addr, attrs, &result);
8992    } else {
8993        data = address_space_ldl_le(as, addr, attrs, &result);
8994    }
8995    if (result == MEMTX_OK) {
8996        return data;
8997    }
8998    fi->type = ARMFault_SyncExternalOnWalk;
8999    fi->ea = arm_extabort_type(result);
9000    return 0;
9001}
9002
9003static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9004                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9005{
9006    ARMCPU *cpu = ARM_CPU(cs);
9007    CPUARMState *env = &cpu->env;
9008    MemTxAttrs attrs = {};
9009    MemTxResult result = MEMTX_OK;
9010    AddressSpace *as;
9011    uint64_t data;
9012
9013    attrs.secure = is_secure;
9014    as = arm_addressspace(cs, attrs);
9015    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9016    if (fi->s1ptw) {
9017        return 0;
9018    }
9019    if (regime_translation_big_endian(env, mmu_idx)) {
9020        data = address_space_ldq_be(as, addr, attrs, &result);
9021    } else {
9022        data = address_space_ldq_le(as, addr, attrs, &result);
9023    }
9024    if (result == MEMTX_OK) {
9025        return data;
9026    }
9027    fi->type = ARMFault_SyncExternalOnWalk;
9028    fi->ea = arm_extabort_type(result);
9029    return 0;
9030}
9031
9032static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9033                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
9034                             hwaddr *phys_ptr, int *prot,
9035                             target_ulong *page_size,
9036                             ARMMMUFaultInfo *fi)
9037{
9038    CPUState *cs = env_cpu(env);
9039    int level = 1;
9040    uint32_t table;
9041    uint32_t desc;
9042    int type;
9043    int ap;
9044    int domain = 0;
9045    int domain_prot;
9046    hwaddr phys_addr;
9047    uint32_t dacr;
9048
9049    /* Pagetable walk.  */
9050    /* Lookup l1 descriptor.  */
9051    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9052        /* Section translation fault if page walk is disabled by PD0 or PD1 */
9053        fi->type = ARMFault_Translation;
9054        goto do_fault;
9055    }
9056    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9057                       mmu_idx, fi);
9058    if (fi->type != ARMFault_None) {
9059        goto do_fault;
9060    }
9061    type = (desc & 3);
9062    domain = (desc >> 5) & 0x0f;
9063    if (regime_el(env, mmu_idx) == 1) {
9064        dacr = env->cp15.dacr_ns;
9065    } else {
9066        dacr = env->cp15.dacr_s;
9067    }
9068    domain_prot = (dacr >> (domain * 2)) & 3;
9069    if (type == 0) {
9070        /* Section translation fault.  */
9071        fi->type = ARMFault_Translation;
9072        goto do_fault;
9073    }
9074    if (type != 2) {
9075        level = 2;
9076    }
9077    if (domain_prot == 0 || domain_prot == 2) {
9078        fi->type = ARMFault_Domain;
9079        goto do_fault;
9080    }
9081    if (type == 2) {
9082        /* 1Mb section.  */
9083        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9084        ap = (desc >> 10) & 3;
9085        *page_size = 1024 * 1024;
9086    } else {
9087        /* Lookup l2 entry.  */
9088        if (type == 1) {
9089            /* Coarse pagetable.  */
9090            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9091        } else {
9092            /* Fine pagetable.  */
9093            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9094        }
9095        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9096                           mmu_idx, fi);
9097        if (fi->type != ARMFault_None) {
9098            goto do_fault;
9099        }
9100        switch (desc & 3) {
9101        case 0: /* Page translation fault.  */
9102            fi->type = ARMFault_Translation;
9103            goto do_fault;
9104        case 1: /* 64k page.  */
9105            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9106            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9107            *page_size = 0x10000;
9108            break;
9109        case 2: /* 4k page.  */
9110            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9111            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9112            *page_size = 0x1000;
9113            break;
9114        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9115            if (type == 1) {
9116                /* ARMv6/XScale extended small page format */
9117                if (arm_feature(env, ARM_FEATURE_XSCALE)
9118                    || arm_feature(env, ARM_FEATURE_V6)) {
9119                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9120                    *page_size = 0x1000;
9121                } else {
9122                    /* UNPREDICTABLE in ARMv5; we choose to take a
9123                     * page translation fault.
9124                     */
9125                    fi->type = ARMFault_Translation;
9126                    goto do_fault;
9127                }
9128            } else {
9129                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9130                *page_size = 0x400;
9131            }
9132            ap = (desc >> 4) & 3;
9133            break;
9134        default:
9135            /* Never happens, but compiler isn't smart enough to tell.  */
9136            abort();
9137        }
9138    }
9139    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9140    *prot |= *prot ? PAGE_EXEC : 0;
9141    if (!(*prot & (1 << access_type))) {
9142        /* Access permission fault.  */
9143        fi->type = ARMFault_Permission;
9144        goto do_fault;
9145    }
9146    *phys_ptr = phys_addr;
9147    return false;
9148do_fault:
9149    fi->domain = domain;
9150    fi->level = level;
9151    return true;
9152}
9153
9154static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9155                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
9156                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9157                             target_ulong *page_size, ARMMMUFaultInfo *fi)
9158{
9159    CPUState *cs = env_cpu(env);
9160    int level = 1;
9161    uint32_t table;
9162    uint32_t desc;
9163    uint32_t xn;
9164    uint32_t pxn = 0;
9165    int type;
9166    int ap;
9167    int domain = 0;
9168    int domain_prot;
9169    hwaddr phys_addr;
9170    uint32_t dacr;
9171    bool ns;
9172
9173    /* Pagetable walk.  */
9174    /* Lookup l1 descriptor.  */
9175    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9176        /* Section translation fault if page walk is disabled by PD0 or PD1 */
9177        fi->type = ARMFault_Translation;
9178        goto do_fault;
9179    }
9180    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9181                       mmu_idx, fi);
9182    if (fi->type != ARMFault_None) {
9183        goto do_fault;
9184    }
9185    type = (desc & 3);
9186    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9187        /* Section translation fault, or attempt to use the encoding
9188         * which is Reserved on implementations without PXN.
9189         */
9190        fi->type = ARMFault_Translation;
9191        goto do_fault;
9192    }
9193    if ((type == 1) || !(desc & (1 << 18))) {
9194        /* Page or Section.  */
9195        domain = (desc >> 5) & 0x0f;
9196    }
9197    if (regime_el(env, mmu_idx) == 1) {
9198        dacr = env->cp15.dacr_ns;
9199    } else {
9200        dacr = env->cp15.dacr_s;
9201    }
9202    if (type == 1) {
9203        level = 2;
9204    }
9205    domain_prot = (dacr >> (domain * 2)) & 3;
9206    if (domain_prot == 0 || domain_prot == 2) {
9207        /* Section or Page domain fault */
9208        fi->type = ARMFault_Domain;
9209        goto do_fault;
9210    }
9211    if (type != 1) {
9212        if (desc & (1 << 18)) {
9213            /* Supersection.  */
9214            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9215            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9216            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9217            *page_size = 0x1000000;
9218        } else {
9219            /* Section.  */
9220            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9221            *page_size = 0x100000;
9222        }
9223        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9224        xn = desc & (1 << 4);
9225        pxn = desc & 1;
9226        ns = extract32(desc, 19, 1);
9227    } else {
9228        if (arm_feature(env, ARM_FEATURE_PXN)) {
9229            pxn = (desc >> 2) & 1;
9230        }
9231        ns = extract32(desc, 3, 1);
9232        /* Lookup l2 entry.  */
9233        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9234        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9235                           mmu_idx, fi);
9236        if (fi->type != ARMFault_None) {
9237            goto do_fault;
9238        }
9239        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9240        switch (desc & 3) {
9241        case 0: /* Page translation fault.  */
9242            fi->type = ARMFault_Translation;
9243            goto do_fault;
9244        case 1: /* 64k page.  */
9245            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9246            xn = desc & (1 << 15);
9247            *page_size = 0x10000;
9248            break;
9249        case 2: case 3: /* 4k page.  */
9250            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9251            xn = desc & 1;
9252            *page_size = 0x1000;
9253            break;
9254        default:
9255            /* Never happens, but compiler isn't smart enough to tell.  */
9256            abort();
9257        }
9258    }
9259    if (domain_prot == 3) {
9260        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9261    } else {
9262        if (pxn && !regime_is_user(env, mmu_idx)) {
9263            xn = 1;
9264        }
9265        if (xn && access_type == MMU_INST_FETCH) {
9266            fi->type = ARMFault_Permission;
9267            goto do_fault;
9268        }
9269
9270        if (arm_feature(env, ARM_FEATURE_V6K) &&
9271                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9272            /* The simplified model uses AP[0] as an access control bit.  */
9273            if ((ap & 1) == 0) {
9274                /* Access flag fault.  */
9275                fi->type = ARMFault_AccessFlag;
9276                goto do_fault;
9277            }
9278            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9279        } else {
9280            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9281        }
9282        if (*prot && !xn) {
9283            *prot |= PAGE_EXEC;
9284        }
9285        if (!(*prot & (1 << access_type))) {
9286            /* Access permission fault.  */
9287            fi->type = ARMFault_Permission;
9288            goto do_fault;
9289        }
9290    }
9291    if (ns) {
9292        /* The NS bit will (as required by the architecture) have no effect if
9293         * the CPU doesn't support TZ or this is a non-secure translation
9294         * regime, because the attribute will already be non-secure.
9295         */
9296        attrs->secure = false;
9297    }
9298    *phys_ptr = phys_addr;
9299    return false;
9300do_fault:
9301    fi->domain = domain;
9302    fi->level = level;
9303    return true;
9304}
9305
9306/*
9307 * check_s2_mmu_setup
9308 * @cpu:        ARMCPU
9309 * @is_aa64:    True if the translation regime is in AArch64 state
9310 * @startlevel: Suggested starting level
9311 * @inputsize:  Bitsize of IPAs
9312 * @stride:     Page-table stride (See the ARM ARM)
9313 *
9314 * Returns true if the suggested S2 translation parameters are OK and
9315 * false otherwise.
9316 */
9317static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9318                               int inputsize, int stride)
9319{
9320    const int grainsize = stride + 3;
9321    int startsizecheck;
9322
9323    /* Negative levels are never allowed.  */
9324    if (level < 0) {
9325        return false;
9326    }
9327
9328    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9329    if (startsizecheck < 1 || startsizecheck > stride + 4) {
9330        return false;
9331    }
9332
9333    if (is_aa64) {
9334        CPUARMState *env = &cpu->env;
9335        unsigned int pamax = arm_pamax(cpu);
9336
9337        switch (stride) {
9338        case 13: /* 64KB Pages.  */
9339            if (level == 0 || (level == 1 && pamax <= 42)) {
9340                return false;
9341            }
9342            break;
9343        case 11: /* 16KB Pages.  */
9344            if (level == 0 || (level == 1 && pamax <= 40)) {
9345                return false;
9346            }
9347            break;
9348        case 9: /* 4KB Pages.  */
9349            if (level == 0 && pamax <= 42) {
9350                return false;
9351            }
9352            break;
9353        default:
9354            g_assert_not_reached();
9355        }
9356
9357        /* Inputsize checks.  */
9358        if (inputsize > pamax &&
9359            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9360            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
9361            return false;
9362        }
9363    } else {
9364        /* AArch32 only supports 4KB pages. Assert on that.  */
9365        assert(stride == 9);
9366
9367        if (level == 0) {
9368            return false;
9369        }
9370    }
9371    return true;
9372}
9373
9374/* Translate from the 4-bit stage 2 representation of
9375 * memory attributes (without cache-allocation hints) to
9376 * the 8-bit representation of the stage 1 MAIR registers
9377 * (which includes allocation hints).
9378 *
9379 * ref: shared/translation/attrs/S2AttrDecode()
9380 *      .../S2ConvertAttrsHints()
9381 */
9382static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9383{
9384    uint8_t hiattr = extract32(s2attrs, 2, 2);
9385    uint8_t loattr = extract32(s2attrs, 0, 2);
9386    uint8_t hihint = 0, lohint = 0;
9387
9388    if (hiattr != 0) { /* normal memory */
9389        if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9390            hiattr = loattr = 1; /* non-cacheable */
9391        } else {
9392            if (hiattr != 1) { /* Write-through or write-back */
9393                hihint = 3; /* RW allocate */
9394            }
9395            if (loattr != 1) { /* Write-through or write-back */
9396                lohint = 3; /* RW allocate */
9397            }
9398        }
9399    }
9400
9401    return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9402}
9403#endif /* !CONFIG_USER_ONLY */
9404
9405ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
9406                                        ARMMMUIdx mmu_idx)
9407{
9408    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9409    uint32_t el = regime_el(env, mmu_idx);
9410    bool tbi, tbid, epd, hpd, using16k, using64k;
9411    int select, tsz;
9412
9413    /*
9414     * Bit 55 is always between the two regions, and is canonical for
9415     * determining if address tagging is enabled.
9416     */
9417    select = extract64(va, 55, 1);
9418
9419    if (el > 1) {
9420        tsz = extract32(tcr, 0, 6);
9421        using64k = extract32(tcr, 14, 1);
9422        using16k = extract32(tcr, 15, 1);
9423        if (mmu_idx == ARMMMUIdx_S2NS) {
9424            /* VTCR_EL2 */
9425            tbi = tbid = hpd = false;
9426        } else {
9427            tbi = extract32(tcr, 20, 1);
9428            hpd = extract32(tcr, 24, 1);
9429            tbid = extract32(tcr, 29, 1);
9430        }
9431        epd = false;
9432    } else if (!select) {
9433        tsz = extract32(tcr, 0, 6);
9434        epd = extract32(tcr, 7, 1);
9435        using64k = extract32(tcr, 14, 1);
9436        using16k = extract32(tcr, 15, 1);
9437        tbi = extract64(tcr, 37, 1);
9438        hpd = extract64(tcr, 41, 1);
9439        tbid = extract64(tcr, 51, 1);
9440    } else {
9441        int tg = extract32(tcr, 30, 2);
9442        using16k = tg == 1;
9443        using64k = tg == 3;
9444        tsz = extract32(tcr, 16, 6);
9445        epd = extract32(tcr, 23, 1);
9446        tbi = extract64(tcr, 38, 1);
9447        hpd = extract64(tcr, 42, 1);
9448        tbid = extract64(tcr, 52, 1);
9449    }
9450    tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
9451    tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
9452
9453    return (ARMVAParameters) {
9454        .tsz = tsz,
9455        .select = select,
9456        .tbi = tbi,
9457        .tbid = tbid,
9458        .epd = epd,
9459        .hpd = hpd,
9460        .using16k = using16k,
9461        .using64k = using64k,
9462    };
9463}
9464
9465ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
9466                                   ARMMMUIdx mmu_idx, bool data)
9467{
9468    ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
9469
9470    /* Present TBI as a composite with TBID.  */
9471    ret.tbi &= (data || !ret.tbid);
9472    return ret;
9473}
9474
9475#ifndef CONFIG_USER_ONLY
9476static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
9477                                          ARMMMUIdx mmu_idx)
9478{
9479    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9480    uint32_t el = regime_el(env, mmu_idx);
9481    int select, tsz;
9482    bool epd, hpd;
9483
9484    if (mmu_idx == ARMMMUIdx_S2NS) {
9485        /* VTCR */
9486        bool sext = extract32(tcr, 4, 1);
9487        bool sign = extract32(tcr, 3, 1);
9488
9489        /*
9490         * If the sign-extend bit is not the same as t0sz[3], the result
9491         * is unpredictable. Flag this as a guest error.
9492         */
9493        if (sign != sext) {
9494            qemu_log_mask(LOG_GUEST_ERROR,
9495                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9496        }
9497        tsz = sextract32(tcr, 0, 4) + 8;
9498        select = 0;
9499        hpd = false;
9500        epd = false;
9501    } else if (el == 2) {
9502        /* HTCR */
9503        tsz = extract32(tcr, 0, 3);
9504        select = 0;
9505        hpd = extract64(tcr, 24, 1);
9506        epd = false;
9507    } else {
9508        int t0sz = extract32(tcr, 0, 3);
9509        int t1sz = extract32(tcr, 16, 3);
9510
9511        if (t1sz == 0) {
9512            select = va > (0xffffffffu >> t0sz);
9513        } else {
9514            /* Note that we will detect errors later.  */
9515            select = va >= ~(0xffffffffu >> t1sz);
9516        }
9517        if (!select) {
9518            tsz = t0sz;
9519            epd = extract32(tcr, 7, 1);
9520            hpd = extract64(tcr, 41, 1);
9521        } else {
9522            tsz = t1sz;
9523            epd = extract32(tcr, 23, 1);
9524            hpd = extract64(tcr, 42, 1);
9525        }
9526        /* For aarch32, hpd0 is not enabled without t2e as well.  */
9527        hpd &= extract32(tcr, 6, 1);
9528    }
9529
9530    return (ARMVAParameters) {
9531        .tsz = tsz,
9532        .select = select,
9533        .epd = epd,
9534        .hpd = hpd,
9535    };
9536}
9537
9538static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9539                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
9540                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9541                               target_ulong *page_size_ptr,
9542                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9543{
9544    ARMCPU *cpu = env_archcpu(env);
9545    CPUState *cs = CPU(cpu);
9546    /* Read an LPAE long-descriptor translation table. */
9547    ARMFaultType fault_type = ARMFault_Translation;
9548    uint32_t level;
9549    ARMVAParameters param;
9550    uint64_t ttbr;
9551    hwaddr descaddr, indexmask, indexmask_grainsize;
9552    uint32_t tableattrs;
9553    target_ulong page_size;
9554    uint32_t attrs;
9555    int32_t stride;
9556    int addrsize, inputsize;
9557    TCR *tcr = regime_tcr(env, mmu_idx);
9558    int ap, ns, xn, pxn;
9559    uint32_t el = regime_el(env, mmu_idx);
9560    bool ttbr1_valid;
9561    uint64_t descaddrmask;
9562    bool aarch64 = arm_el_is_aa64(env, el);
9563    bool guarded = false;
9564
9565    /* TODO:
9566     * This code does not handle the different format TCR for VTCR_EL2.
9567     * This code also does not support shareability levels.
9568     * Attribute and permission bit handling should also be checked when adding
9569     * support for those page table walks.
9570     */
9571    if (aarch64) {
9572        param = aa64_va_parameters(env, address, mmu_idx,
9573                                   access_type != MMU_INST_FETCH);
9574        level = 0;
9575        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9576         * invalid.
9577         */
9578        ttbr1_valid = (el < 2);
9579        addrsize = 64 - 8 * param.tbi;
9580        inputsize = 64 - param.tsz;
9581    } else {
9582        param = aa32_va_parameters(env, address, mmu_idx);
9583        level = 1;
9584        /* There is no TTBR1 for EL2 */
9585        ttbr1_valid = (el != 2);
9586        addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
9587        inputsize = addrsize - param.tsz;
9588    }
9589
9590    /*
9591     * We determined the region when collecting the parameters, but we
9592     * have not yet validated that the address is valid for the region.
9593     * Extract the top bits and verify that they all match select.
9594     *
9595     * For aa32, if inputsize == addrsize, then we have selected the
9596     * region by exclusion in aa32_va_parameters and there is no more
9597     * validation to do here.
9598     */
9599    if (inputsize < addrsize) {
9600        target_ulong top_bits = sextract64(address, inputsize,
9601                                           addrsize - inputsize);
9602        if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
9603            /* The gap between the two regions is a Translation fault */
9604            fault_type = ARMFault_Translation;
9605            goto do_fault;
9606        }
9607    }
9608
9609    if (param.using64k) {
9610        stride = 13;
9611    } else if (param.using16k) {
9612        stride = 11;
9613    } else {
9614        stride = 9;
9615    }
9616
9617    /* Note that QEMU ignores shareability and cacheability attributes,
9618     * so we don't need to do anything with the SH, ORGN, IRGN fields
9619     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
9620     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9621     * implement any ASID-like capability so we can ignore it (instead
9622     * we will always flush the TLB any time the ASID is changed).
9623     */
9624    ttbr = regime_ttbr(env, mmu_idx, param.select);
9625
9626    /* Here we should have set up all the parameters for the translation:
9627     * inputsize, ttbr, epd, stride, tbi
9628     */
9629
9630    if (param.epd) {
9631        /* Translation table walk disabled => Translation fault on TLB miss
9632         * Note: This is always 0 on 64-bit EL2 and EL3.
9633         */
9634        goto do_fault;
9635    }
9636
9637    if (mmu_idx != ARMMMUIdx_S2NS) {
9638        /* The starting level depends on the virtual address size (which can
9639         * be up to 48 bits) and the translation granule size. It indicates
9640         * the number of strides (stride bits at a time) needed to
9641         * consume the bits of the input address. In the pseudocode this is:
9642         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
9643         * where their 'inputsize' is our 'inputsize', 'grainsize' is
9644         * our 'stride + 3' and 'stride' is our 'stride'.
9645         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9646         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9647         * = 4 - (inputsize - 4) / stride;
9648         */
9649        level = 4 - (inputsize - 4) / stride;
9650    } else {
9651        /* For stage 2 translations the starting level is specified by the
9652         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9653         */
9654        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9655        uint32_t startlevel;
9656        bool ok;
9657
9658        if (!aarch64 || stride == 9) {
9659            /* AArch32 or 4KB pages */
9660            startlevel = 2 - sl0;
9661        } else {
9662            /* 16KB or 64KB pages */
9663            startlevel = 3 - sl0;
9664        }
9665
9666        /* Check that the starting level is valid. */
9667        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9668                                inputsize, stride);
9669        if (!ok) {
9670            fault_type = ARMFault_Translation;
9671            goto do_fault;
9672        }
9673        level = startlevel;
9674    }
9675
9676    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9677    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9678
9679    /* Now we can extract the actual base address from the TTBR */
9680    descaddr = extract64(ttbr, 0, 48);
9681    descaddr &= ~indexmask;
9682
9683    /* The address field in the descriptor goes up to bit 39 for ARMv7
9684     * but up to bit 47 for ARMv8, but we use the descaddrmask
9685     * up to bit 39 for AArch32, because we don't need other bits in that case
9686     * to construct next descriptor address (anyway they should be all zeroes).
9687     */
9688    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9689                   ~indexmask_grainsize;
9690
9691    /* Secure accesses start with the page table in secure memory and
9692     * can be downgraded to non-secure at any step. Non-secure accesses
9693     * remain non-secure. We implement this by just ORing in the NSTable/NS
9694     * bits at each step.
9695     */
9696    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9697    for (;;) {
9698        uint64_t descriptor;
9699        bool nstable;
9700
9701        descaddr |= (address >> (stride * (4 - level))) & indexmask;
9702        descaddr &= ~7ULL;
9703        nstable = extract32(tableattrs, 4, 1);
9704        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9705        if (fi->type != ARMFault_None) {
9706            goto do_fault;
9707        }
9708
9709        if (!(descriptor & 1) ||
9710            (!(descriptor & 2) && (level == 3))) {
9711            /* Invalid, or the Reserved level 3 encoding */
9712            goto do_fault;
9713        }
9714        descaddr = descriptor & descaddrmask;
9715
9716        if ((descriptor & 2) && (level < 3)) {
9717            /* Table entry. The top five bits are attributes which may
9718             * propagate down through lower levels of the table (and
9719             * which are all arranged so that 0 means "no effect", so
9720             * we can gather them up by ORing in the bits at each level).
9721             */
9722            tableattrs |= extract64(descriptor, 59, 5);
9723            level++;
9724            indexmask = indexmask_grainsize;
9725            continue;
9726        }
9727        /* Block entry at level 1 or 2, or page entry at level 3.
9728         * These are basically the same thing, although the number
9729         * of bits we pull in from the vaddr varies.
9730         */
9731        page_size = (1ULL << ((stride * (4 - level)) + 3));
9732        descaddr |= (address & (page_size - 1));
9733        /* Extract attributes from the descriptor */
9734        attrs = extract64(descriptor, 2, 10)
9735            | (extract64(descriptor, 52, 12) << 10);
9736
9737        if (mmu_idx == ARMMMUIdx_S2NS) {
9738            /* Stage 2 table descriptors do not include any attribute fields */
9739            break;
9740        }
9741        /* Merge in attributes from table descriptors */
9742        attrs |= nstable << 3; /* NS */
9743        guarded = extract64(descriptor, 50, 1);  /* GP */
9744        if (param.hpd) {
9745            /* HPD disables all the table attributes except NSTable.  */
9746            break;
9747        }
9748        attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
9749        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9750         * means "force PL1 access only", which means forcing AP[1] to 0.
9751         */
9752        attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
9753        attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
9754        break;
9755    }
9756    /* Here descaddr is the final physical address, and attributes
9757     * are all in attrs.
9758     */
9759    fault_type = ARMFault_AccessFlag;
9760    if ((attrs & (1 << 8)) == 0) {
9761        /* Access flag */
9762        goto do_fault;
9763    }
9764
9765    ap = extract32(attrs, 4, 2);
9766    xn = extract32(attrs, 12, 1);
9767
9768    if (mmu_idx == ARMMMUIdx_S2NS) {
9769        ns = true;
9770        *prot = get_S2prot(env, ap, xn);
9771    } else {
9772        ns = extract32(attrs, 3, 1);
9773        pxn = extract32(attrs, 11, 1);
9774        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9775    }
9776
9777    fault_type = ARMFault_Permission;
9778    if (!(*prot & (1 << access_type))) {
9779        goto do_fault;
9780    }
9781
9782    if (ns) {
9783        /* The NS bit will (as required by the architecture) have no effect if
9784         * the CPU doesn't support TZ or this is a non-secure translation
9785         * regime, because the attribute will already be non-secure.
9786         */
9787        txattrs->secure = false;
9788    }
9789    /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
9790    if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
9791        txattrs->target_tlb_bit0 = true;
9792    }
9793
9794    if (cacheattrs != NULL) {
9795        if (mmu_idx == ARMMMUIdx_S2NS) {
9796            cacheattrs->attrs = convert_stage2_attrs(env,
9797                                                     extract32(attrs, 0, 4));
9798        } else {
9799            /* Index into MAIR registers for cache attributes */
9800            uint8_t attrindx = extract32(attrs, 0, 3);
9801            uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9802            assert(attrindx <= 7);
9803            cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9804        }
9805        cacheattrs->shareability = extract32(attrs, 6, 2);
9806    }
9807
9808    *phys_ptr = descaddr;
9809    *page_size_ptr = page_size;
9810    return false;
9811
9812do_fault:
9813    fi->type = fault_type;
9814    fi->level = level;
9815    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9816    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9817    return true;
9818}
9819
9820static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9821                                                ARMMMUIdx mmu_idx,
9822                                                int32_t address, int *prot)
9823{
9824    if (!arm_feature(env, ARM_FEATURE_M)) {
9825        *prot = PAGE_READ | PAGE_WRITE;
9826        switch (address) {
9827        case 0xF0000000 ... 0xFFFFFFFF:
9828            if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9829                /* hivecs execing is ok */
9830                *prot |= PAGE_EXEC;
9831            }
9832            break;
9833        case 0x00000000 ... 0x7FFFFFFF:
9834            *prot |= PAGE_EXEC;
9835            break;
9836        }
9837    } else {
9838        /* Default system address map for M profile cores.
9839         * The architecture specifies which regions are execute-never;
9840         * at the MPU level no other checks are defined.
9841         */
9842        switch (address) {
9843        case 0x00000000 ... 0x1fffffff: /* ROM */
9844        case 0x20000000 ... 0x3fffffff: /* SRAM */
9845        case 0x60000000 ... 0x7fffffff: /* RAM */
9846        case 0x80000000 ... 0x9fffffff: /* RAM */
9847            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9848            break;
9849        case 0x40000000 ... 0x5fffffff: /* Peripheral */
9850        case 0xa0000000 ... 0xbfffffff: /* Device */
9851        case 0xc0000000 ... 0xdfffffff: /* Device */
9852        case 0xe0000000 ... 0xffffffff: /* System */
9853            *prot = PAGE_READ | PAGE_WRITE;
9854            break;
9855        default:
9856            g_assert_not_reached();
9857        }
9858    }
9859}
9860
9861static bool pmsav7_use_background_region(ARMCPU *cpu,
9862                                         ARMMMUIdx mmu_idx, bool is_user)
9863{
9864    /* Return true if we should use the default memory map as a
9865     * "background" region if there are no hits against any MPU regions.
9866     */
9867    CPUARMState *env = &cpu->env;
9868
9869    if (is_user) {
9870        return false;
9871    }
9872
9873    if (arm_feature(env, ARM_FEATURE_M)) {
9874        return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9875            & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9876    } else {
9877        return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9878    }
9879}
9880
9881static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9882{
9883    /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9884    return arm_feature(env, ARM_FEATURE_M) &&
9885        extract32(address, 20, 12) == 0xe00;
9886}
9887
9888static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9889{
9890    /* True if address is in the M profile system region
9891     * 0xe0000000 - 0xffffffff
9892     */
9893    return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9894}
9895
9896static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9897                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9898                                 hwaddr *phys_ptr, int *prot,
9899                                 target_ulong *page_size,
9900                                 ARMMMUFaultInfo *fi)
9901{
9902    ARMCPU *cpu = env_archcpu(env);
9903    int n;
9904    bool is_user = regime_is_user(env, mmu_idx);
9905
9906    *phys_ptr = address;
9907    *page_size = TARGET_PAGE_SIZE;
9908    *prot = 0;
9909
9910    if (regime_translation_disabled(env, mmu_idx) ||
9911        m_is_ppb_region(env, address)) {
9912        /* MPU disabled or M profile PPB access: use default memory map.
9913         * The other case which uses the default memory map in the
9914         * v7M ARM ARM pseudocode is exception vector reads from the vector
9915         * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9916         * which always does a direct read using address_space_ldl(), rather
9917         * than going via this function, so we don't need to check that here.
9918         */
9919        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9920    } else { /* MPU enabled */
9921        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9922            /* region search */
9923            uint32_t base = env->pmsav7.drbar[n];
9924            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9925            uint32_t rmask;
9926            bool srdis = false;
9927
9928            if (!(env->pmsav7.drsr[n] & 0x1)) {
9929                continue;
9930            }
9931
9932            if (!rsize) {
9933                qemu_log_mask(LOG_GUEST_ERROR,
9934                              "DRSR[%d]: Rsize field cannot be 0\n", n);
9935                continue;
9936            }
9937            rsize++;
9938            rmask = (1ull << rsize) - 1;
9939
9940            if (base & rmask) {
9941                qemu_log_mask(LOG_GUEST_ERROR,
9942                              "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9943                              "to DRSR region size, mask = 0x%" PRIx32 "\n",
9944                              n, base, rmask);
9945                continue;
9946            }
9947
9948            if (address < base || address > base + rmask) {
9949                /*
9950                 * Address not in this region. We must check whether the
9951                 * region covers addresses in the same page as our address.
9952                 * In that case we must not report a size that covers the
9953                 * whole page for a subsequent hit against a different MPU
9954                 * region or the background region, because it would result in
9955                 * incorrect TLB hits for subsequent accesses to addresses that
9956                 * are in this MPU region.
9957                 */
9958                if (ranges_overlap(base, rmask,
9959                                   address & TARGET_PAGE_MASK,
9960                                   TARGET_PAGE_SIZE)) {
9961                    *page_size = 1;
9962                }
9963                continue;
9964            }
9965
9966            /* Region matched */
9967
9968            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9969                int i, snd;
9970                uint32_t srdis_mask;
9971
9972                rsize -= 3; /* sub region size (power of 2) */
9973                snd = ((address - base) >> rsize) & 0x7;
9974                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9975
9976                srdis_mask = srdis ? 0x3 : 0x0;
9977                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9978                    /* This will check in groups of 2, 4 and then 8, whether
9979                     * the subregion bits are consistent. rsize is incremented
9980                     * back up to give the region size, considering consistent
9981                     * adjacent subregions as one region. Stop testing if rsize
9982                     * is already big enough for an entire QEMU page.
9983                     */
9984                    int snd_rounded = snd & ~(i - 1);
9985                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9986                                                     snd_rounded + 8, i);
9987                    if (srdis_mask ^ srdis_multi) {
9988                        break;
9989                    }
9990                    srdis_mask = (srdis_mask << i) | srdis_mask;
9991                    rsize++;
9992                }
9993            }
9994            if (srdis) {
9995                continue;
9996            }
9997            if (rsize < TARGET_PAGE_BITS) {
9998                *page_size = 1 << rsize;
9999            }
10000            break;
10001        }
10002
10003        if (n == -1) { /* no hits */
10004            if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10005                /* background fault */
10006                fi->type = ARMFault_Background;
10007                return true;
10008            }
10009            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10010        } else { /* a MPU hit! */
10011            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10012            uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10013
10014            if (m_is_system_region(env, address)) {
10015                /* System space is always execute never */
10016                xn = 1;
10017            }
10018
10019            if (is_user) { /* User mode AP bit decoding */
10020                switch (ap) {
10021                case 0:
10022                case 1:
10023                case 5:
10024                    break; /* no access */
10025                case 3:
10026                    *prot |= PAGE_WRITE;
10027                    /* fall through */
10028                case 2:
10029                case 6:
10030                    *prot |= PAGE_READ | PAGE_EXEC;
10031                    break;
10032                case 7:
10033                    /* for v7M, same as 6; for R profile a reserved value */
10034                    if (arm_feature(env, ARM_FEATURE_M)) {
10035                        *prot |= PAGE_READ | PAGE_EXEC;
10036                        break;
10037                    }
10038                    /* fall through */
10039                default:
10040                    qemu_log_mask(LOG_GUEST_ERROR,
10041                                  "DRACR[%d]: Bad value for AP bits: 0x%"
10042                                  PRIx32 "\n", n, ap);
10043                }
10044            } else { /* Priv. mode AP bits decoding */
10045                switch (ap) {
10046                case 0:
10047                    break; /* no access */
10048                case 1:
10049                case 2:
10050                case 3:
10051                    *prot |= PAGE_WRITE;
10052                    /* fall through */
10053                case 5:
10054                case 6:
10055                    *prot |= PAGE_READ | PAGE_EXEC;
10056                    break;
10057                case 7:
10058                    /* for v7M, same as 6; for R profile a reserved value */
10059                    if (arm_feature(env, ARM_FEATURE_M)) {
10060                        *prot |= PAGE_READ | PAGE_EXEC;
10061                        break;
10062                    }
10063                    /* fall through */
10064                default:
10065                    qemu_log_mask(LOG_GUEST_ERROR,
10066                                  "DRACR[%d]: Bad value for AP bits: 0x%"
10067                                  PRIx32 "\n", n, ap);
10068                }
10069            }
10070
10071            /* execute never */
10072            if (xn) {
10073                *prot &= ~PAGE_EXEC;
10074            }
10075        }
10076    }
10077
10078    fi->type = ARMFault_Permission;
10079    fi->level = 1;
10080    return !(*prot & (1 << access_type));
10081}
10082
10083static bool v8m_is_sau_exempt(CPUARMState *env,
10084                              uint32_t address, MMUAccessType access_type)
10085{
10086    /* The architecture specifies that certain address ranges are
10087     * exempt from v8M SAU/IDAU checks.
10088     */
10089    return
10090        (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10091        (address >= 0xe0000000 && address <= 0xe0002fff) ||
10092        (address >= 0xe000e000 && address <= 0xe000efff) ||
10093        (address >= 0xe002e000 && address <= 0xe002efff) ||
10094        (address >= 0xe0040000 && address <= 0xe0041fff) ||
10095        (address >= 0xe00ff000 && address <= 0xe00fffff);
10096}
10097
10098void v8m_security_lookup(CPUARMState *env, uint32_t address,
10099                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
10100                                V8M_SAttributes *sattrs)
10101{
10102    /* Look up the security attributes for this address. Compare the
10103     * pseudocode SecurityCheck() function.
10104     * We assume the caller has zero-initialized *sattrs.
10105     */
10106    ARMCPU *cpu = env_archcpu(env);
10107    int r;
10108    bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10109    int idau_region = IREGION_NOTVALID;
10110    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10111    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10112
10113    if (cpu->idau) {
10114        IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10115        IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10116
10117        iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10118                   &idau_nsc);
10119    }
10120
10121    if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10122        /* 0xf0000000..0xffffffff is always S for insn fetches */
10123        return;
10124    }
10125
10126    if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10127        sattrs->ns = !regime_is_secure(env, mmu_idx);
10128        return;
10129    }
10130
10131    if (idau_region != IREGION_NOTVALID) {
10132        sattrs->irvalid = true;
10133        sattrs->iregion = idau_region;
10134    }
10135
10136    switch (env->sau.ctrl & 3) {
10137    case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10138        break;
10139    case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10140        sattrs->ns = true;
10141        break;
10142    default: /* SAU.ENABLE == 1 */
10143        for (r = 0; r < cpu->sau_sregion; r++) {
10144            if (env->sau.rlar[r] & 1) {
10145                uint32_t base = env->sau.rbar[r] & ~0x1f;
10146                uint32_t limit = env->sau.rlar[r] | 0x1f;
10147
10148                if (base <= address && limit >= address) {
10149                    if (base > addr_page_base || limit < addr_page_limit) {
10150                        sattrs->subpage = true;
10151                    }
10152                    if (sattrs->srvalid) {
10153                        /* If we hit in more than one region then we must report
10154                         * as Secure, not NS-Callable, with no valid region
10155                         * number info.
10156                         */
10157                        sattrs->ns = false;
10158                        sattrs->nsc = false;
10159                        sattrs->sregion = 0;
10160                        sattrs->srvalid = false;
10161                        break;
10162                    } else {
10163                        if (env->sau.rlar[r] & 2) {
10164                            sattrs->nsc = true;
10165                        } else {
10166                            sattrs->ns = true;
10167                        }
10168                        sattrs->srvalid = true;
10169                        sattrs->sregion = r;
10170                    }
10171                } else {
10172                    /*
10173                     * Address not in this region. We must check whether the
10174                     * region covers addresses in the same page as our address.
10175                     * In that case we must not report a size that covers the
10176                     * whole page for a subsequent hit against a different MPU
10177                     * region or the background region, because it would result
10178                     * in incorrect TLB hits for subsequent accesses to
10179                     * addresses that are in this MPU region.
10180                     */
10181                    if (limit >= base &&
10182                        ranges_overlap(base, limit - base + 1,
10183                                       addr_page_base,
10184                                       TARGET_PAGE_SIZE)) {
10185                        sattrs->subpage = true;
10186                    }
10187                }
10188            }
10189        }
10190        break;
10191    }
10192
10193    /*
10194     * The IDAU will override the SAU lookup results if it specifies
10195     * higher security than the SAU does.
10196     */
10197    if (!idau_ns) {
10198        if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10199            sattrs->ns = false;
10200            sattrs->nsc = idau_nsc;
10201        }
10202    }
10203}
10204
10205bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10206                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10207                              hwaddr *phys_ptr, MemTxAttrs *txattrs,
10208                              int *prot, bool *is_subpage,
10209                              ARMMMUFaultInfo *fi, uint32_t *mregion)
10210{
10211    /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10212     * that a full phys-to-virt translation does).
10213     * mregion is (if not NULL) set to the region number which matched,
10214     * or -1 if no region number is returned (MPU off, address did not
10215     * hit a region, address hit in multiple regions).
10216     * We set is_subpage to true if the region hit doesn't cover the
10217     * entire TARGET_PAGE the address is within.
10218     */
10219    ARMCPU *cpu = env_archcpu(env);
10220    bool is_user = regime_is_user(env, mmu_idx);
10221    uint32_t secure = regime_is_secure(env, mmu_idx);
10222    int n;
10223    int matchregion = -1;
10224    bool hit = false;
10225    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10226    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10227
10228    *is_subpage = false;
10229    *phys_ptr = address;
10230    *prot = 0;
10231    if (mregion) {
10232        *mregion = -1;
10233    }
10234
10235    /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10236     * was an exception vector read from the vector table (which is always
10237     * done using the default system address map), because those accesses
10238     * are done in arm_v7m_load_vector(), which always does a direct
10239     * read using address_space_ldl(), rather than going via this function.
10240     */
10241    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10242        hit = true;
10243    } else if (m_is_ppb_region(env, address)) {
10244        hit = true;
10245    } else {
10246        if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10247            hit = true;
10248        }
10249
10250        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10251            /* region search */
10252            /* Note that the base address is bits [31:5] from the register
10253             * with bits [4:0] all zeroes, but the limit address is bits
10254             * [31:5] from the register with bits [4:0] all ones.
10255             */
10256            uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10257            uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10258
10259            if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10260                /* Region disabled */
10261                continue;
10262            }
10263
10264            if (address < base || address > limit) {
10265                /*
10266                 * Address not in this region. We must check whether the
10267                 * region covers addresses in the same page as our address.
10268                 * In that case we must not report a size that covers the
10269                 * whole page for a subsequent hit against a different MPU
10270                 * region or the background region, because it would result in
10271                 * incorrect TLB hits for subsequent accesses to addresses that
10272                 * are in this MPU region.
10273                 */
10274                if (limit >= base &&
10275                    ranges_overlap(base, limit - base + 1,
10276                                   addr_page_base,
10277                                   TARGET_PAGE_SIZE)) {
10278                    *is_subpage = true;
10279                }
10280                continue;
10281            }
10282
10283            if (base > addr_page_base || limit < addr_page_limit) {
10284                *is_subpage = true;
10285            }
10286
10287            if (matchregion != -1) {
10288                /* Multiple regions match -- always a failure (unlike
10289                 * PMSAv7 where highest-numbered-region wins)
10290                 */
10291                fi->type = ARMFault_Permission;
10292                fi->level = 1;
10293                return true;
10294            }
10295
10296            matchregion = n;
10297            hit = true;
10298        }
10299    }
10300
10301    if (!hit) {
10302        /* background fault */
10303        fi->type = ARMFault_Background;
10304        return true;
10305    }
10306
10307    if (matchregion == -1) {
10308        /* hit using the background region */
10309        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10310    } else {
10311        uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10312        uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10313
10314        if (m_is_system_region(env, address)) {
10315            /* System space is always execute never */
10316            xn = 1;
10317        }
10318
10319        *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10320        if (*prot && !xn) {
10321            *prot |= PAGE_EXEC;
10322        }
10323        /* We don't need to look the attribute up in the MAIR0/MAIR1
10324         * registers because that only tells us about cacheability.
10325         */
10326        if (mregion) {
10327            *mregion = matchregion;
10328        }
10329    }
10330
10331    fi->type = ARMFault_Permission;
10332    fi->level = 1;
10333    return !(*prot & (1 << access_type));
10334}
10335
10336
10337static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10338                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10339                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10340                                 int *prot, target_ulong *page_size,
10341                                 ARMMMUFaultInfo *fi)
10342{
10343    uint32_t secure = regime_is_secure(env, mmu_idx);
10344    V8M_SAttributes sattrs = {};
10345    bool ret;
10346    bool mpu_is_subpage;
10347
10348    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10349        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10350        if (access_type == MMU_INST_FETCH) {
10351            /* Instruction fetches always use the MMU bank and the
10352             * transaction attribute determined by the fetch address,
10353             * regardless of CPU state. This is painful for QEMU
10354             * to handle, because it would mean we need to encode
10355             * into the mmu_idx not just the (user, negpri) information
10356             * for the current security state but also that for the
10357             * other security state, which would balloon the number
10358             * of mmu_idx values needed alarmingly.
10359             * Fortunately we can avoid this because it's not actually
10360             * possible to arbitrarily execute code from memory with
10361             * the wrong security attribute: it will always generate
10362             * an exception of some kind or another, apart from the
10363             * special case of an NS CPU executing an SG instruction
10364             * in S&NSC memory. So we always just fail the translation
10365             * here and sort things out in the exception handler
10366             * (including possibly emulating an SG instruction).
10367             */
10368            if (sattrs.ns != !secure) {
10369                if (sattrs.nsc) {
10370                    fi->type = ARMFault_QEMU_NSCExec;
10371                } else {
10372                    fi->type = ARMFault_QEMU_SFault;
10373                }
10374                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10375                *phys_ptr = address;
10376                *prot = 0;
10377                return true;
10378            }
10379        } else {
10380            /* For data accesses we always use the MMU bank indicated
10381             * by the current CPU state, but the security attributes
10382             * might downgrade a secure access to nonsecure.
10383             */
10384            if (sattrs.ns) {
10385                txattrs->secure = false;
10386            } else if (!secure) {
10387                /* NS access to S memory must fault.
10388                 * Architecturally we should first check whether the
10389                 * MPU information for this address indicates that we
10390                 * are doing an unaligned access to Device memory, which
10391                 * should generate a UsageFault instead. QEMU does not
10392                 * currently check for that kind of unaligned access though.
10393                 * If we added it we would need to do so as a special case
10394                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10395                 */
10396                fi->type = ARMFault_QEMU_SFault;
10397                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10398                *phys_ptr = address;
10399                *prot = 0;
10400                return true;
10401            }
10402        }
10403    }
10404
10405    ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10406                            txattrs, prot, &mpu_is_subpage, fi, NULL);
10407    *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10408    return ret;
10409}
10410
10411static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10412                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10413                                 hwaddr *phys_ptr, int *prot,
10414                                 ARMMMUFaultInfo *fi)
10415{
10416    int n;
10417    uint32_t mask;
10418    uint32_t base;
10419    bool is_user = regime_is_user(env, mmu_idx);
10420
10421    if (regime_translation_disabled(env, mmu_idx)) {
10422        /* MPU disabled.  */
10423        *phys_ptr = address;
10424        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10425        return false;
10426    }
10427
10428    *phys_ptr = address;
10429    for (n = 7; n >= 0; n--) {
10430        base = env->cp15.c6_region[n];
10431        if ((base & 1) == 0) {
10432            continue;
10433        }
10434        mask = 1 << ((base >> 1) & 0x1f);
10435        /* Keep this shift separate from the above to avoid an
10436           (undefined) << 32.  */
10437        mask = (mask << 1) - 1;
10438        if (((base ^ address) & ~mask) == 0) {
10439            break;
10440        }
10441    }
10442    if (n < 0) {
10443        fi->type = ARMFault_Background;
10444        return true;
10445    }
10446
10447    if (access_type == MMU_INST_FETCH) {
10448        mask = env->cp15.pmsav5_insn_ap;
10449    } else {
10450        mask = env->cp15.pmsav5_data_ap;
10451    }
10452    mask = (mask >> (n * 4)) & 0xf;
10453    switch (mask) {
10454    case 0:
10455        fi->type = ARMFault_Permission;
10456        fi->level = 1;
10457        return true;
10458    case 1:
10459        if (is_user) {
10460            fi->type = ARMFault_Permission;
10461            fi->level = 1;
10462            return true;
10463        }
10464        *prot = PAGE_READ | PAGE_WRITE;
10465        break;
10466    case 2:
10467        *prot = PAGE_READ;
10468        if (!is_user) {
10469            *prot |= PAGE_WRITE;
10470        }
10471        break;
10472    case 3:
10473        *prot = PAGE_READ | PAGE_WRITE;
10474        break;
10475    case 5:
10476        if (is_user) {
10477            fi->type = ARMFault_Permission;
10478            fi->level = 1;
10479            return true;
10480        }
10481        *prot = PAGE_READ;
10482        break;
10483    case 6:
10484        *prot = PAGE_READ;
10485        break;
10486    default:
10487        /* Bad permission.  */
10488        fi->type = ARMFault_Permission;
10489        fi->level = 1;
10490        return true;
10491    }
10492    *prot |= PAGE_EXEC;
10493    return false;
10494}
10495
10496/* Combine either inner or outer cacheability attributes for normal
10497 * memory, according to table D4-42 and pseudocode procedure
10498 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10499 *
10500 * NB: only stage 1 includes allocation hints (RW bits), leading to
10501 * some asymmetry.
10502 */
10503static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10504{
10505    if (s1 == 4 || s2 == 4) {
10506        /* non-cacheable has precedence */
10507        return 4;
10508    } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10509        /* stage 1 write-through takes precedence */
10510        return s1;
10511    } else if (extract32(s2, 2, 2) == 2) {
10512        /* stage 2 write-through takes precedence, but the allocation hint
10513         * is still taken from stage 1
10514         */
10515        return (2 << 2) | extract32(s1, 0, 2);
10516    } else { /* write-back */
10517        return s1;
10518    }
10519}
10520
10521/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10522 * and CombineS1S2Desc()
10523 *
10524 * @s1:      Attributes from stage 1 walk
10525 * @s2:      Attributes from stage 2 walk
10526 */
10527static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10528{
10529    uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10530    uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10531    ARMCacheAttrs ret;
10532
10533    /* Combine shareability attributes (table D4-43) */
10534    if (s1.shareability == 2 || s2.shareability == 2) {
10535        /* if either are outer-shareable, the result is outer-shareable */
10536        ret.shareability = 2;
10537    } else if (s1.shareability == 3 || s2.shareability == 3) {
10538        /* if either are inner-shareable, the result is inner-shareable */
10539        ret.shareability = 3;
10540    } else {
10541        /* both non-shareable */
10542        ret.shareability = 0;
10543    }
10544
10545    /* Combine memory type and cacheability attributes */
10546    if (s1hi == 0 || s2hi == 0) {
10547        /* Device has precedence over normal */
10548        if (s1lo == 0 || s2lo == 0) {
10549            /* nGnRnE has precedence over anything */
10550            ret.attrs = 0;
10551        } else if (s1lo == 4 || s2lo == 4) {
10552            /* non-Reordering has precedence over Reordering */
10553            ret.attrs = 4;  /* nGnRE */
10554        } else if (s1lo == 8 || s2lo == 8) {
10555            /* non-Gathering has precedence over Gathering */
10556            ret.attrs = 8;  /* nGRE */
10557        } else {
10558            ret.attrs = 0xc; /* GRE */
10559        }
10560
10561        /* Any location for which the resultant memory type is any
10562         * type of Device memory is always treated as Outer Shareable.
10563         */
10564        ret.shareability = 2;
10565    } else { /* Normal memory */
10566        /* Outer/inner cacheability combine independently */
10567        ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10568                  | combine_cacheattr_nibble(s1lo, s2lo);
10569
10570        if (ret.attrs == 0x44) {
10571            /* Any location for which the resultant memory type is Normal
10572             * Inner Non-cacheable, Outer Non-cacheable is always treated
10573             * as Outer Shareable.
10574             */
10575            ret.shareability = 2;
10576        }
10577    }
10578
10579    return ret;
10580}
10581
10582
10583/* get_phys_addr - get the physical address for this virtual address
10584 *
10585 * Find the physical address corresponding to the given virtual address,
10586 * by doing a translation table walk on MMU based systems or using the
10587 * MPU state on MPU based systems.
10588 *
10589 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10590 * prot and page_size may not be filled in, and the populated fsr value provides
10591 * information on why the translation aborted, in the format of a
10592 * DFSR/IFSR fault register, with the following caveats:
10593 *  * we honour the short vs long DFSR format differences.
10594 *  * the WnR bit is never set (the caller must do this).
10595 *  * for PSMAv5 based systems we don't bother to return a full FSR format
10596 *    value.
10597 *
10598 * @env: CPUARMState
10599 * @address: virtual address to get physical address for
10600 * @access_type: 0 for read, 1 for write, 2 for execute
10601 * @mmu_idx: MMU index indicating required translation regime
10602 * @phys_ptr: set to the physical address corresponding to the virtual address
10603 * @attrs: set to the memory transaction attributes to use
10604 * @prot: set to the permissions for the page containing phys_ptr
10605 * @page_size: set to the size of the page containing phys_ptr
10606 * @fi: set to fault info if the translation fails
10607 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10608 */
10609bool get_phys_addr(CPUARMState *env, target_ulong address,
10610                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
10611                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10612                   target_ulong *page_size,
10613                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10614{
10615    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10616        /* Call ourselves recursively to do the stage 1 and then stage 2
10617         * translations.
10618         */
10619        if (arm_feature(env, ARM_FEATURE_EL2)) {
10620            hwaddr ipa;
10621            int s2_prot;
10622            int ret;
10623            ARMCacheAttrs cacheattrs2 = {};
10624
10625            ret = get_phys_addr(env, address, access_type,
10626                                stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10627                                prot, page_size, fi, cacheattrs);
10628
10629            /* If S1 fails or S2 is disabled, return early.  */
10630            if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10631                *phys_ptr = ipa;
10632                return ret;
10633            }
10634
10635            /* S1 is done. Now do S2 translation.  */
10636            ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10637                                     phys_ptr, attrs, &s2_prot,
10638                                     page_size, fi,
10639                                     cacheattrs != NULL ? &cacheattrs2 : NULL);
10640            fi->s2addr = ipa;
10641            /* Combine the S1 and S2 perms.  */
10642            *prot &= s2_prot;
10643
10644            /* Combine the S1 and S2 cache attributes, if needed */
10645            if (!ret && cacheattrs != NULL) {
10646                if (env->cp15.hcr_el2 & HCR_DC) {
10647                    /*
10648                     * HCR.DC forces the first stage attributes to
10649                     *  Normal Non-Shareable,
10650                     *  Inner Write-Back Read-Allocate Write-Allocate,
10651                     *  Outer Write-Back Read-Allocate Write-Allocate.
10652                     */
10653                    cacheattrs->attrs = 0xff;
10654                    cacheattrs->shareability = 0;
10655                }
10656                *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10657            }
10658
10659            return ret;
10660        } else {
10661            /*
10662             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10663             */
10664            mmu_idx = stage_1_mmu_idx(mmu_idx);
10665        }
10666    }
10667
10668    /* The page table entries may downgrade secure to non-secure, but
10669     * cannot upgrade an non-secure translation regime's attributes
10670     * to secure.
10671     */
10672    attrs->secure = regime_is_secure(env, mmu_idx);
10673    attrs->user = regime_is_user(env, mmu_idx);
10674
10675    /* Fast Context Switch Extension. This doesn't exist at all in v8.
10676     * In v7 and earlier it affects all stage 1 translations.
10677     */
10678    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10679        && !arm_feature(env, ARM_FEATURE_V8)) {
10680        if (regime_el(env, mmu_idx) == 3) {
10681            address += env->cp15.fcseidr_s;
10682        } else {
10683            address += env->cp15.fcseidr_ns;
10684        }
10685    }
10686
10687    if (arm_feature(env, ARM_FEATURE_PMSA)) {
10688        bool ret;
10689        *page_size = TARGET_PAGE_SIZE;
10690
10691        if (arm_feature(env, ARM_FEATURE_V8)) {
10692            /* PMSAv8 */
10693            ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10694                                       phys_ptr, attrs, prot, page_size, fi);
10695        } else if (arm_feature(env, ARM_FEATURE_V7)) {
10696            /* PMSAv7 */
10697            ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10698                                       phys_ptr, prot, page_size, fi);
10699        } else {
10700            /* Pre-v7 MPU */
10701            ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10702                                       phys_ptr, prot, fi);
10703        }
10704        qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10705                      " mmu_idx %u -> %s (prot %c%c%c)\n",
10706                      access_type == MMU_DATA_LOAD ? "reading" :
10707                      (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10708                      (uint32_t)address, mmu_idx,
10709                      ret ? "Miss" : "Hit",
10710                      *prot & PAGE_READ ? 'r' : '-',
10711                      *prot & PAGE_WRITE ? 'w' : '-',
10712                      *prot & PAGE_EXEC ? 'x' : '-');
10713
10714        return ret;
10715    }
10716
10717    /* Definitely a real MMU, not an MPU */
10718
10719    if (regime_translation_disabled(env, mmu_idx)) {
10720        /* MMU disabled. */
10721        *phys_ptr = address;
10722        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10723        *page_size = TARGET_PAGE_SIZE;
10724        return 0;
10725    }
10726
10727    if (regime_using_lpae_format(env, mmu_idx)) {
10728        return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10729                                  phys_ptr, attrs, prot, page_size,
10730                                  fi, cacheattrs);
10731    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10732        return get_phys_addr_v6(env, address, access_type, mmu_idx,
10733                                phys_ptr, attrs, prot, page_size, fi);
10734    } else {
10735        return get_phys_addr_v5(env, address, access_type, mmu_idx,
10736                                    phys_ptr, prot, page_size, fi);
10737    }
10738}
10739
10740hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10741                                         MemTxAttrs *attrs)
10742{
10743    ARMCPU *cpu = ARM_CPU(cs);
10744    CPUARMState *env = &cpu->env;
10745    hwaddr phys_addr;
10746    target_ulong page_size;
10747    int prot;
10748    bool ret;
10749    ARMMMUFaultInfo fi = {};
10750    ARMMMUIdx mmu_idx = arm_mmu_idx(env);
10751
10752    *attrs = (MemTxAttrs) {};
10753
10754    ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10755                        attrs, &prot, &page_size, &fi, NULL);
10756
10757    if (ret) {
10758        return -1;
10759    }
10760    return phys_addr;
10761}
10762
10763#endif
10764
10765/* Note that signed overflow is undefined in C.  The following routines are
10766   careful to use unsigned types where modulo arithmetic is required.
10767   Failure to do so _will_ break on newer gcc.  */
10768
10769/* Signed saturating arithmetic.  */
10770
10771/* Perform 16-bit signed saturating addition.  */
10772static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10773{
10774    uint16_t res;
10775
10776    res = a + b;
10777    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10778        if (a & 0x8000)
10779            res = 0x8000;
10780        else
10781            res = 0x7fff;
10782    }
10783    return res;
10784}
10785
10786/* Perform 8-bit signed saturating addition.  */
10787static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10788{
10789    uint8_t res;
10790
10791    res = a + b;
10792    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10793        if (a & 0x80)
10794            res = 0x80;
10795        else
10796            res = 0x7f;
10797    }
10798    return res;
10799}
10800
10801/* Perform 16-bit signed saturating subtraction.  */
10802static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10803{
10804    uint16_t res;
10805
10806    res = a - b;
10807    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10808        if (a & 0x8000)
10809            res = 0x8000;
10810        else
10811            res = 0x7fff;
10812    }
10813    return res;
10814}
10815
10816/* Perform 8-bit signed saturating subtraction.  */
10817static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10818{
10819    uint8_t res;
10820
10821    res = a - b;
10822    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10823        if (a & 0x80)
10824            res = 0x80;
10825        else
10826            res = 0x7f;
10827    }
10828    return res;
10829}
10830
10831#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10832#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10833#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10834#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10835#define PFX q
10836
10837#include "op_addsub.h"
10838
10839/* Unsigned saturating arithmetic.  */
10840static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10841{
10842    uint16_t res;
10843    res = a + b;
10844    if (res < a)
10845        res = 0xffff;
10846    return res;
10847}
10848
10849static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10850{
10851    if (a > b)
10852        return a - b;
10853    else
10854        return 0;
10855}
10856
10857static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10858{
10859    uint8_t res;
10860    res = a + b;
10861    if (res < a)
10862        res = 0xff;
10863    return res;
10864}
10865
10866static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10867{
10868    if (a > b)
10869        return a - b;
10870    else
10871        return 0;
10872}
10873
10874#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10875#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10876#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10877#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10878#define PFX uq
10879
10880#include "op_addsub.h"
10881
10882/* Signed modulo arithmetic.  */
10883#define SARITH16(a, b, n, op) do { \
10884    int32_t sum; \
10885    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10886    RESULT(sum, n, 16); \
10887    if (sum >= 0) \
10888        ge |= 3 << (n * 2); \
10889    } while(0)
10890
10891#define SARITH8(a, b, n, op) do { \
10892    int32_t sum; \
10893    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10894    RESULT(sum, n, 8); \
10895    if (sum >= 0) \
10896        ge |= 1 << n; \
10897    } while(0)
10898
10899
10900#define ADD16(a, b, n) SARITH16(a, b, n, +)
10901#define SUB16(a, b, n) SARITH16(a, b, n, -)
10902#define ADD8(a, b, n)  SARITH8(a, b, n, +)
10903#define SUB8(a, b, n)  SARITH8(a, b, n, -)
10904#define PFX s
10905#define ARITH_GE
10906
10907#include "op_addsub.h"
10908
10909/* Unsigned modulo arithmetic.  */
10910#define ADD16(a, b, n) do { \
10911    uint32_t sum; \
10912    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10913    RESULT(sum, n, 16); \
10914    if ((sum >> 16) == 1) \
10915        ge |= 3 << (n * 2); \
10916    } while(0)
10917
10918#define ADD8(a, b, n) do { \
10919    uint32_t sum; \
10920    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10921    RESULT(sum, n, 8); \
10922    if ((sum >> 8) == 1) \
10923        ge |= 1 << n; \
10924    } while(0)
10925
10926#define SUB16(a, b, n) do { \
10927    uint32_t sum; \
10928    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10929    RESULT(sum, n, 16); \
10930    if ((sum >> 16) == 0) \
10931        ge |= 3 << (n * 2); \
10932    } while(0)
10933
10934#define SUB8(a, b, n) do { \
10935    uint32_t sum; \
10936    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10937    RESULT(sum, n, 8); \
10938    if ((sum >> 8) == 0) \
10939        ge |= 1 << n; \
10940    } while(0)
10941
10942#define PFX u
10943#define ARITH_GE
10944
10945#include "op_addsub.h"
10946
10947/* Halved signed arithmetic.  */
10948#define ADD16(a, b, n) \
10949  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10950#define SUB16(a, b, n) \
10951  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10952#define ADD8(a, b, n) \
10953  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10954#define SUB8(a, b, n) \
10955  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10956#define PFX sh
10957
10958#include "op_addsub.h"
10959
10960/* Halved unsigned arithmetic.  */
10961#define ADD16(a, b, n) \
10962  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10963#define SUB16(a, b, n) \
10964  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10965#define ADD8(a, b, n) \
10966  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10967#define SUB8(a, b, n) \
10968  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10969#define PFX uh
10970
10971#include "op_addsub.h"
10972
10973static inline uint8_t do_usad(uint8_t a, uint8_t b)
10974{
10975    if (a > b)
10976        return a - b;
10977    else
10978        return b - a;
10979}
10980
10981/* Unsigned sum of absolute byte differences.  */
10982uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10983{
10984    uint32_t sum;
10985    sum = do_usad(a, b);
10986    sum += do_usad(a >> 8, b >> 8);
10987    sum += do_usad(a >> 16, b >>16);
10988    sum += do_usad(a >> 24, b >> 24);
10989    return sum;
10990}
10991
10992/* For ARMv6 SEL instruction.  */
10993uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10994{
10995    uint32_t mask;
10996
10997    mask = 0;
10998    if (flags & 1)
10999        mask |= 0xff;
11000    if (flags & 2)
11001        mask |= 0xff00;
11002    if (flags & 4)
11003        mask |= 0xff0000;
11004    if (flags & 8)
11005        mask |= 0xff000000;
11006    return (a & mask) | (b & ~mask);
11007}
11008
11009/* CRC helpers.
11010 * The upper bytes of val (above the number specified by 'bytes') must have
11011 * been zeroed out by the caller.
11012 */
11013uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11014{
11015    uint8_t buf[4];
11016
11017    stl_le_p(buf, val);
11018
11019    /* zlib crc32 converts the accumulator and output to one's complement.  */
11020    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11021}
11022
11023uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11024{
11025    uint8_t buf[4];
11026
11027    stl_le_p(buf, val);
11028
11029    /* Linux crc32c converts the output to one's complement.  */
11030    return crc32c(acc, buf, bytes) ^ 0xffffffff;
11031}
11032
11033/* Return the exception level to which FP-disabled exceptions should
11034 * be taken, or 0 if FP is enabled.
11035 */
11036int fp_exception_el(CPUARMState *env, int cur_el)
11037{
11038#ifndef CONFIG_USER_ONLY
11039    int fpen;
11040
11041    /* CPACR and the CPTR registers don't exist before v6, so FP is
11042     * always accessible
11043     */
11044    if (!arm_feature(env, ARM_FEATURE_V6)) {
11045        return 0;
11046    }
11047
11048    if (arm_feature(env, ARM_FEATURE_M)) {
11049        /* CPACR can cause a NOCP UsageFault taken to current security state */
11050        if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11051            return 1;
11052        }
11053
11054        if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11055            if (!extract32(env->v7m.nsacr, 10, 1)) {
11056                /* FP insns cause a NOCP UsageFault taken to Secure */
11057                return 3;
11058            }
11059        }
11060
11061        return 0;
11062    }
11063
11064    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11065     * 0, 2 : trap EL0 and EL1/PL1 accesses
11066     * 1    : trap only EL0 accesses
11067     * 3    : trap no accesses
11068     */
11069    fpen = extract32(env->cp15.cpacr_el1, 20, 2);
11070    switch (fpen) {
11071    case 0:
11072    case 2:
11073        if (cur_el == 0 || cur_el == 1) {
11074            /* Trap to PL1, which might be EL1 or EL3 */
11075            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
11076                return 3;
11077            }
11078            return 1;
11079        }
11080        if (cur_el == 3 && !is_a64(env)) {
11081            /* Secure PL1 running at EL3 */
11082            return 3;
11083        }
11084        break;
11085    case 1:
11086        if (cur_el == 0) {
11087            return 1;
11088        }
11089        break;
11090    case 3:
11091        break;
11092    }
11093
11094    /*
11095     * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11096     * to control non-secure access to the FPU. It doesn't have any
11097     * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11098     */
11099    if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11100         cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11101        if (!extract32(env->cp15.nsacr, 10, 1)) {
11102            /* FP insns act as UNDEF */
11103            return cur_el == 2 ? 2 : 1;
11104        }
11105    }
11106
11107    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
11108     * check because zero bits in the registers mean "don't trap".
11109     */
11110
11111    /* CPTR_EL2 : present in v7VE or v8 */
11112    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
11113        && !arm_is_secure_below_el3(env)) {
11114        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
11115        return 2;
11116    }
11117
11118    /* CPTR_EL3 : present in v8 */
11119    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
11120        /* Trap all FP ops to EL3 */
11121        return 3;
11122    }
11123#endif
11124    return 0;
11125}
11126
11127#ifndef CONFIG_TCG
11128ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11129{
11130    g_assert_not_reached();
11131}
11132#endif
11133
11134ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11135{
11136    if (arm_feature(env, ARM_FEATURE_M)) {
11137        return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11138    }
11139
11140    if (el < 2 && arm_is_secure_below_el3(env)) {
11141        return ARMMMUIdx_S1SE0 + el;
11142    } else {
11143        return ARMMMUIdx_S12NSE0 + el;
11144    }
11145}
11146
11147ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11148{
11149    return arm_mmu_idx_el(env, arm_current_el(env));
11150}
11151
11152int cpu_mmu_index(CPUARMState *env, bool ifetch)
11153{
11154    return arm_to_core_mmu_idx(arm_mmu_idx(env));
11155}
11156
11157#ifndef CONFIG_USER_ONLY
11158ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
11159{
11160    return stage_1_mmu_idx(arm_mmu_idx(env));
11161}
11162#endif
11163
11164static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
11165                                      ARMMMUIdx mmu_idx, uint32_t flags)
11166{
11167    flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
11168    flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
11169                       arm_to_core_mmu_idx(mmu_idx));
11170
11171    if (arm_singlestep_active(env)) {
11172        flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
11173    }
11174    return flags;
11175}
11176
11177static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11178                                         ARMMMUIdx mmu_idx, uint32_t flags)
11179{
11180    bool sctlr_b = arm_sctlr_b(env);
11181
11182    if (sctlr_b) {
11183        flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
11184    }
11185    if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11186        flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11187    }
11188    flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
11189
11190    return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11191}
11192
11193static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
11194                                   ARMMMUIdx mmu_idx)
11195{
11196    uint32_t flags = 0;
11197
11198    /* v8M always enables the fpu.  */
11199    flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11200
11201    if (arm_v7m_is_handler_mode(env)) {
11202        flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
11203    }
11204
11205    /*
11206     * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11207     * is suppressing them because the requested execution priority
11208     * is less than 0.
11209     */
11210    if (arm_feature(env, ARM_FEATURE_V8) &&
11211        !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11212          (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11213        flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
11214    }
11215
11216    return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11217}
11218
11219static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
11220{
11221    int flags = 0;
11222
11223    flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
11224                       arm_debug_target_el(env));
11225    return flags;
11226}
11227
11228static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
11229                                   ARMMMUIdx mmu_idx)
11230{
11231    uint32_t flags = rebuild_hflags_aprofile(env);
11232
11233    if (arm_el_is_aa64(env, 1)) {
11234        flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11235    }
11236    return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11237}
11238
11239static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11240                                   ARMMMUIdx mmu_idx)
11241{
11242    uint32_t flags = rebuild_hflags_aprofile(env);
11243    ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11244    ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
11245    uint64_t sctlr;
11246    int tbii, tbid;
11247
11248    flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
11249
11250    /* FIXME: ARMv8.1-VHE S2 translation regime.  */
11251    if (regime_el(env, stage1) < 2) {
11252        ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
11253        tbid = (p1.tbi << 1) | p0.tbi;
11254        tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
11255    } else {
11256        tbid = p0.tbi;
11257        tbii = tbid & !p0.tbid;
11258    }
11259
11260    flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
11261    flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
11262
11263    if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11264        int sve_el = sve_exception_el(env, el);
11265        uint32_t zcr_len;
11266
11267        /*
11268         * If SVE is disabled, but FP is enabled,
11269         * then the effective len is 0.
11270         */
11271        if (sve_el != 0 && fp_el == 0) {
11272            zcr_len = 0;
11273        } else {
11274            zcr_len = sve_zcr_len_for_el(env, el);
11275        }
11276        flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
11277        flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
11278    }
11279
11280    sctlr = arm_sctlr(env, el);
11281
11282    if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11283        flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11284    }
11285
11286    if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11287        /*
11288         * In order to save space in flags, we record only whether
11289         * pauth is "inactive", meaning all insns are implemented as
11290         * a nop, or "active" when some action must be performed.
11291         * The decision of which action to take is left to a helper.
11292         */
11293        if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11294            flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
11295        }
11296    }
11297
11298    if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11299        /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
11300        if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11301            flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
11302        }
11303    }
11304
11305    return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11306}
11307
11308static uint32_t rebuild_hflags_internal(CPUARMState *env)
11309{
11310    int el = arm_current_el(env);
11311    int fp_el = fp_exception_el(env, el);
11312    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11313
11314    if (is_a64(env)) {
11315        return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11316    } else if (arm_feature(env, ARM_FEATURE_M)) {
11317        return rebuild_hflags_m32(env, fp_el, mmu_idx);
11318    } else {
11319        return rebuild_hflags_a32(env, fp_el, mmu_idx);
11320    }
11321}
11322
11323void arm_rebuild_hflags(CPUARMState *env)
11324{
11325    env->hflags = rebuild_hflags_internal(env);
11326}
11327
11328void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11329{
11330    int fp_el = fp_exception_el(env, el);
11331    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11332
11333    env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11334}
11335
11336/*
11337 * If we have triggered a EL state change we can't rely on the
11338 * translator having passed it too us, we need to recompute.
11339 */
11340void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
11341{
11342    int el = arm_current_el(env);
11343    int fp_el = fp_exception_el(env, el);
11344    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11345    env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11346}
11347
11348void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11349{
11350    int fp_el = fp_exception_el(env, el);
11351    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11352
11353    env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11354}
11355
11356void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11357{
11358    int fp_el = fp_exception_el(env, el);
11359    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11360
11361    env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11362}
11363
11364void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11365                          target_ulong *cs_base, uint32_t *pflags)
11366{
11367    uint32_t flags = env->hflags;
11368    uint32_t pstate_for_ss;
11369
11370    *cs_base = 0;
11371#ifdef CONFIG_DEBUG_TCG
11372    assert(flags == rebuild_hflags_internal(env));
11373#endif
11374
11375    if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
11376        *pc = env->pc;
11377        if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11378            flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
11379        }
11380        pstate_for_ss = env->pstate;
11381    } else {
11382        *pc = env->regs[15];
11383
11384        if (arm_feature(env, ARM_FEATURE_M)) {
11385            if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11386                FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11387                != env->v7m.secure) {
11388                flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
11389            }
11390
11391            if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11392                (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11393                 (env->v7m.secure &&
11394                  !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11395                /*
11396                 * ASPEN is set, but FPCA/SFPA indicate that there is no
11397                 * active FP context; we must create a new FP context before
11398                 * executing any FP insn.
11399                 */
11400                flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
11401            }
11402
11403            bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11404            if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11405                flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
11406            }
11407        } else {
11408            /*
11409             * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11410             * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11411             */
11412            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11413                flags = FIELD_DP32(flags, TBFLAG_A32,
11414                                   XSCALE_CPAR, env->cp15.c15_cpar);
11415            } else {
11416                flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
11417                                   env->vfp.vec_len);
11418                flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
11419                                   env->vfp.vec_stride);
11420            }
11421            if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11422                flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11423            }
11424        }
11425
11426        flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
11427        flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
11428        pstate_for_ss = env->uncached_cpsr;
11429    }
11430
11431    /*
11432     * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11433     * states defined in the ARM ARM for software singlestep:
11434     *  SS_ACTIVE   PSTATE.SS   State
11435     *     0            x       Inactive (the TB flag for SS is always 0)
11436     *     1            0       Active-pending
11437     *     1            1       Active-not-pending
11438     * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
11439     */
11440    if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
11441        (pstate_for_ss & PSTATE_SS)) {
11442        flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11443    }
11444
11445    *pflags = flags;
11446}
11447
11448#ifdef TARGET_AARCH64
11449/*
11450 * The manual says that when SVE is enabled and VQ is widened the
11451 * implementation is allowed to zero the previously inaccessible
11452 * portion of the registers.  The corollary to that is that when
11453 * SVE is enabled and VQ is narrowed we are also allowed to zero
11454 * the now inaccessible portion of the registers.
11455 *
11456 * The intent of this is that no predicate bit beyond VQ is ever set.
11457 * Which means that some operations on predicate registers themselves
11458 * may operate on full uint64_t or even unrolled across the maximum
11459 * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
11460 * may well be cheaper than conditionals to restrict the operation
11461 * to the relevant portion of a uint16_t[16].
11462 */
11463void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11464{
11465    int i, j;
11466    uint64_t pmask;
11467
11468    assert(vq >= 1 && vq <= ARM_MAX_VQ);
11469    assert(vq <= env_archcpu(env)->sve_max_vq);
11470
11471    /* Zap the high bits of the zregs.  */
11472    for (i = 0; i < 32; i++) {
11473        memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11474    }
11475
11476    /* Zap the high bits of the pregs and ffr.  */
11477    pmask = 0;
11478    if (vq & 3) {
11479        pmask = ~(-1ULL << (16 * (vq & 3)));
11480    }
11481    for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11482        for (i = 0; i < 17; ++i) {
11483            env->vfp.pregs[i].p[j] &= pmask;
11484        }
11485        pmask = 0;
11486    }
11487}
11488
11489/*
11490 * Notice a change in SVE vector size when changing EL.
11491 */
11492void aarch64_sve_change_el(CPUARMState *env, int old_el,
11493                           int new_el, bool el0_a64)
11494{
11495    ARMCPU *cpu = env_archcpu(env);
11496    int old_len, new_len;
11497    bool old_a64, new_a64;
11498
11499    /* Nothing to do if no SVE.  */
11500    if (!cpu_isar_feature(aa64_sve, cpu)) {
11501        return;
11502    }
11503
11504    /* Nothing to do if FP is disabled in either EL.  */
11505    if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11506        return;
11507    }
11508
11509    /*
11510     * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11511     * at ELx, or not available because the EL is in AArch32 state, then
11512     * for all purposes other than a direct read, the ZCR_ELx.LEN field
11513     * has an effective value of 0".
11514     *
11515     * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11516     * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11517     * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
11518     * we already have the correct register contents when encountering the
11519     * vq0->vq0 transition between EL0->EL1.
11520     */
11521    old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11522    old_len = (old_a64 && !sve_exception_el(env, old_el)
11523               ? sve_zcr_len_for_el(env, old_el) : 0);
11524    new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11525    new_len = (new_a64 && !sve_exception_el(env, new_el)
11526               ? sve_zcr_len_for_el(env, new_el) : 0);
11527
11528    /* When changing vector length, clear inaccessible state.  */
11529    if (new_len < old_len) {
11530        aarch64_sve_narrow_vq(env, new_len + 1);
11531    }
11532}
11533#endif
11534