1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21#include "qemu/osdep.h"
22#include "cpu.h"
23#include "exec/exec-all.h"
24#include "qemu/host-utils.h"
25#include "exec/log.h"
26
27#define D(x)
28
29#if defined(CONFIG_USER_ONLY)
30
31void mb_cpu_do_interrupt(CPUState *cs)
32{
33 MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
34 CPUMBState *env = &cpu->env;
35
36 cs->exception_index = -1;
37 env->res_addr = RES_ADDR_NONE;
38 env->regs[14] = env->sregs[SR_PC];
39}
40
41bool mb_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
42 MMUAccessType access_type, int mmu_idx,
43 bool probe, uintptr_t retaddr)
44{
45 cs->exception_index = 0xaa;
46 cpu_loop_exit_restore(cs, retaddr);
47}
48
49#else
50
51bool mb_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
52 MMUAccessType access_type, int mmu_idx,
53 bool probe, uintptr_t retaddr)
54{
55 MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
56 CPUMBState *env = &cpu->env;
57 struct microblaze_mmu_lookup lu;
58 unsigned int hit;
59 int prot;
60
61 if (mmu_idx == MMU_NOMMU_IDX) {
62
63 address &= TARGET_PAGE_MASK;
64 prot = PAGE_BITS;
65 tlb_set_page(cs, address, address, prot, mmu_idx, TARGET_PAGE_SIZE);
66 return true;
67 }
68
69 hit = mmu_translate(&env->mmu, &lu, address, access_type, mmu_idx);
70 if (likely(hit)) {
71 uint32_t vaddr = address & TARGET_PAGE_MASK;
72 uint32_t paddr = lu.paddr + vaddr - lu.vaddr;
73
74 qemu_log_mask(CPU_LOG_MMU, "MMU map mmu=%d v=%x p=%x prot=%x\n",
75 mmu_idx, vaddr, paddr, lu.prot);
76 tlb_set_page(cs, vaddr, paddr, lu.prot, mmu_idx, TARGET_PAGE_SIZE);
77 return true;
78 }
79
80
81 if (probe) {
82 return false;
83 }
84
85 qemu_log_mask(CPU_LOG_MMU, "mmu=%d miss v=%" VADDR_PRIx "\n",
86 mmu_idx, address);
87
88 env->sregs[SR_EAR] = address;
89 switch (lu.err) {
90 case ERR_PROT:
91 env->sregs[SR_ESR] = access_type == MMU_INST_FETCH ? 17 : 16;
92 env->sregs[SR_ESR] |= (access_type == MMU_DATA_STORE) << 10;
93 break;
94 case ERR_MISS:
95 env->sregs[SR_ESR] = access_type == MMU_INST_FETCH ? 19 : 18;
96 env->sregs[SR_ESR] |= (access_type == MMU_DATA_STORE) << 10;
97 break;
98 default:
99 abort();
100 }
101
102 if (cs->exception_index == EXCP_MMU) {
103 cpu_abort(cs, "recursive faults\n");
104 }
105
106
107 cs->exception_index = EXCP_MMU;
108 cpu_loop_exit_restore(cs, retaddr);
109}
110
111void mb_cpu_do_interrupt(CPUState *cs)
112{
113 MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
114 CPUMBState *env = &cpu->env;
115 uint32_t t;
116
117
118 assert(!((env->iflags & D_FLAG) && (env->iflags & IMM_FLAG)));
119 assert(!(env->iflags & (DRTI_FLAG | DRTE_FLAG | DRTB_FLAG)));
120
121 env->res_addr = RES_ADDR_NONE;
122 switch (cs->exception_index) {
123 case EXCP_HW_EXCP:
124 if (!(env->pvr.regs[0] & PVR0_USE_EXC_MASK)) {
125 qemu_log_mask(LOG_GUEST_ERROR, "Exception raised on system without exceptions!\n");
126 return;
127 }
128
129 env->regs[17] = env->sregs[SR_PC] + 4;
130 env->sregs[SR_ESR] &= ~(1 << 12);
131
132
133 if (env->iflags & D_FLAG) {
134 env->sregs[SR_ESR] |= 1 << 12 ;
135 env->sregs[SR_BTR] = env->btarget;
136 }
137
138
139 t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1;
140 env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM);
141 env->sregs[SR_MSR] |= t;
142
143 env->sregs[SR_MSR] |= MSR_EIP;
144
145 qemu_log_mask(CPU_LOG_INT,
146 "hw exception at pc=%" PRIx64 " ear=%" PRIx64 " "
147 "esr=%" PRIx64 " iflags=%x\n",
148 env->sregs[SR_PC], env->sregs[SR_EAR],
149 env->sregs[SR_ESR], env->iflags);
150 log_cpu_state_mask(CPU_LOG_INT, cs, 0);
151 env->iflags &= ~(IMM_FLAG | D_FLAG);
152 env->sregs[SR_PC] = cpu->cfg.base_vectors + 0x20;
153 break;
154
155 case EXCP_MMU:
156 env->regs[17] = env->sregs[SR_PC];
157
158 env->sregs[SR_ESR] &= ~(1 << 12);
159
160 if (env->iflags & D_FLAG) {
161 D(qemu_log("D_FLAG set at exception bimm=%d\n", env->bimm));
162 env->sregs[SR_ESR] |= 1 << 12 ;
163 env->sregs[SR_BTR] = env->btarget;
164
165
166 env->regs[17] -= 4;
167
168 if (env->bimm) {
169 qemu_log_mask(CPU_LOG_INT,
170 "bimm exception at pc=%" PRIx64 " "
171 "iflags=%x\n",
172 env->sregs[SR_PC], env->iflags);
173 env->regs[17] -= 4;
174 log_cpu_state_mask(CPU_LOG_INT, cs, 0);
175 }
176 } else if (env->iflags & IMM_FLAG) {
177 D(qemu_log("IMM_FLAG set at exception\n"));
178 env->regs[17] -= 4;
179 }
180
181
182 t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1;
183 env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM);
184 env->sregs[SR_MSR] |= t;
185
186 env->sregs[SR_MSR] |= MSR_EIP;
187
188 qemu_log_mask(CPU_LOG_INT,
189 "exception at pc=%" PRIx64 " ear=%" PRIx64 " "
190 "iflags=%x\n",
191 env->sregs[SR_PC], env->sregs[SR_EAR], env->iflags);
192 log_cpu_state_mask(CPU_LOG_INT, cs, 0);
193 env->iflags &= ~(IMM_FLAG | D_FLAG);
194 env->sregs[SR_PC] = cpu->cfg.base_vectors + 0x20;
195 break;
196
197 case EXCP_IRQ:
198 assert(!(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)));
199 assert(env->sregs[SR_MSR] & MSR_IE);
200 assert(!(env->iflags & D_FLAG));
201
202 t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1;
203
204#if 0
205#include "disas/disas.h"
206
207
208
209 {
210 const char *sym;
211
212 sym = lookup_symbol(env->sregs[SR_PC]);
213 if (sym
214 && (!strcmp("netif_rx", sym)
215 || !strcmp("process_backlog", sym))) {
216
217 qemu_log(
218 "interrupt at pc=%x msr=%x %x iflags=%x sym=%s\n",
219 env->sregs[SR_PC], env->sregs[SR_MSR], t, env->iflags,
220 sym);
221
222 log_cpu_state(cs, 0);
223 }
224 }
225#endif
226 qemu_log_mask(CPU_LOG_INT,
227 "interrupt at pc=%" PRIx64 " msr=%" PRIx64 " %x "
228 "iflags=%x\n",
229 env->sregs[SR_PC], env->sregs[SR_MSR], t, env->iflags);
230
231 env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM \
232 | MSR_UM | MSR_IE);
233 env->sregs[SR_MSR] |= t;
234
235 env->regs[14] = env->sregs[SR_PC];
236 env->sregs[SR_PC] = cpu->cfg.base_vectors + 0x10;
237
238 break;
239
240 case EXCP_BREAK:
241 case EXCP_HW_BREAK:
242 assert(!(env->iflags & IMM_FLAG));
243 assert(!(env->iflags & D_FLAG));
244 t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1;
245 qemu_log_mask(CPU_LOG_INT,
246 "break at pc=%" PRIx64 " msr=%" PRIx64 " %x "
247 "iflags=%x\n",
248 env->sregs[SR_PC], env->sregs[SR_MSR], t, env->iflags);
249 log_cpu_state_mask(CPU_LOG_INT, cs, 0);
250 env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM);
251 env->sregs[SR_MSR] |= t;
252 env->sregs[SR_MSR] |= MSR_BIP;
253 if (cs->exception_index == EXCP_HW_BREAK) {
254 env->regs[16] = env->sregs[SR_PC];
255 env->sregs[SR_MSR] |= MSR_BIP;
256 env->sregs[SR_PC] = cpu->cfg.base_vectors + 0x18;
257 } else
258 env->sregs[SR_PC] = env->btarget;
259 break;
260 default:
261 cpu_abort(cs, "unhandled exception type=%d\n",
262 cs->exception_index);
263 break;
264 }
265}
266
267hwaddr mb_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
268{
269 MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
270 CPUMBState *env = &cpu->env;
271 target_ulong vaddr, paddr = 0;
272 struct microblaze_mmu_lookup lu;
273 int mmu_idx = cpu_mmu_index(env, false);
274 unsigned int hit;
275
276 if (mmu_idx != MMU_NOMMU_IDX) {
277 hit = mmu_translate(&env->mmu, &lu, addr, 0, 0);
278 if (hit) {
279 vaddr = addr & TARGET_PAGE_MASK;
280 paddr = lu.paddr + vaddr - lu.vaddr;
281 } else
282 paddr = 0;
283 } else
284 paddr = addr & TARGET_PAGE_MASK;
285
286 return paddr;
287}
288#endif
289
290bool mb_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
291{
292 MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
293 CPUMBState *env = &cpu->env;
294
295 if ((interrupt_request & CPU_INTERRUPT_HARD)
296 && (env->sregs[SR_MSR] & MSR_IE)
297 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
298 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
299 cs->exception_index = EXCP_IRQ;
300 mb_cpu_do_interrupt(cs);
301 return true;
302 }
303 return false;
304}
305