qemu/target/ppc/mem_helper.c
<<
>>
Prefs
   1/*
   2 *  PowerPC memory access emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/exec-all.h"
  23#include "qemu/host-utils.h"
  24#include "qemu/main-loop.h"
  25#include "exec/helper-proto.h"
  26#include "helper_regs.h"
  27#include "exec/cpu_ldst.h"
  28#include "tcg.h"
  29#include "internal.h"
  30#include "qemu/atomic128.h"
  31
  32/* #define DEBUG_OP */
  33
  34static inline bool needs_byteswap(const CPUPPCState *env)
  35{
  36#if defined(TARGET_WORDS_BIGENDIAN)
  37  return msr_le;
  38#else
  39  return !msr_le;
  40#endif
  41}
  42
  43/*****************************************************************************/
  44/* Memory load and stores */
  45
  46static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
  47                                    target_long arg)
  48{
  49#if defined(TARGET_PPC64)
  50    if (!msr_is_64bit(env, env->msr)) {
  51        return (uint32_t)(addr + arg);
  52    } else
  53#endif
  54    {
  55        return addr + arg;
  56    }
  57}
  58
  59void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
  60{
  61    for (; reg < 32; reg++) {
  62        if (needs_byteswap(env)) {
  63            env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
  64        } else {
  65            env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
  66        }
  67        addr = addr_add(env, addr, 4);
  68    }
  69}
  70
  71void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
  72{
  73    for (; reg < 32; reg++) {
  74        if (needs_byteswap(env)) {
  75            cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
  76                                                   GETPC());
  77        } else {
  78            cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
  79        }
  80        addr = addr_add(env, addr, 4);
  81    }
  82}
  83
  84static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
  85                   uint32_t reg, uintptr_t raddr)
  86{
  87    int sh;
  88
  89    for (; nb > 3; nb -= 4) {
  90        env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
  91        reg = (reg + 1) % 32;
  92        addr = addr_add(env, addr, 4);
  93    }
  94    if (unlikely(nb > 0)) {
  95        env->gpr[reg] = 0;
  96        for (sh = 24; nb > 0; nb--, sh -= 8) {
  97            env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
  98            addr = addr_add(env, addr, 1);
  99        }
 100    }
 101}
 102
 103void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
 104{
 105    do_lsw(env, addr, nb, reg, GETPC());
 106}
 107
 108/*
 109 * PPC32 specification says we must generate an exception if rA is in
 110 * the range of registers to be loaded.  In an other hand, IBM says
 111 * this is valid, but rA won't be loaded.  For now, I'll follow the
 112 * spec...
 113 */
 114void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
 115                 uint32_t ra, uint32_t rb)
 116{
 117    if (likely(xer_bc != 0)) {
 118        int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
 119        if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
 120                     lsw_reg_in_range(reg, num_used_regs, rb))) {
 121            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 122                                   POWERPC_EXCP_INVAL |
 123                                   POWERPC_EXCP_INVAL_LSWX, GETPC());
 124        } else {
 125            do_lsw(env, addr, xer_bc, reg, GETPC());
 126        }
 127    }
 128}
 129
 130void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
 131                 uint32_t reg)
 132{
 133    int sh;
 134
 135    for (; nb > 3; nb -= 4) {
 136        cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
 137        reg = (reg + 1) % 32;
 138        addr = addr_add(env, addr, 4);
 139    }
 140    if (unlikely(nb > 0)) {
 141        for (sh = 24; nb > 0; nb--, sh -= 8) {
 142            cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
 143            addr = addr_add(env, addr, 1);
 144        }
 145    }
 146}
 147
 148static void dcbz_common(CPUPPCState *env, target_ulong addr,
 149                        uint32_t opcode, bool epid, uintptr_t retaddr)
 150{
 151    target_ulong mask, dcbz_size = env->dcache_line_size;
 152    uint32_t i;
 153    void *haddr;
 154    int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx;
 155
 156#if defined(TARGET_PPC64)
 157    /* Check for dcbz vs dcbzl on 970 */
 158    if (env->excp_model == POWERPC_EXCP_970 &&
 159        !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
 160        dcbz_size = 32;
 161    }
 162#endif
 163
 164    /* Align address */
 165    mask = ~(dcbz_size - 1);
 166    addr &= mask;
 167
 168    /* Check reservation */
 169    if ((env->reserve_addr & mask) == (addr & mask))  {
 170        env->reserve_addr = (target_ulong)-1ULL;
 171    }
 172
 173    /* Try fast path translate */
 174    haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx);
 175    if (haddr) {
 176        memset(haddr, 0, dcbz_size);
 177    } else {
 178        /* Slow path */
 179        for (i = 0; i < dcbz_size; i += 8) {
 180            if (epid) {
 181#if !defined(CONFIG_USER_ONLY)
 182                /* Does not make sense on USER_ONLY config */
 183                cpu_stq_eps_ra(env, addr + i, 0, retaddr);
 184#endif
 185            } else {
 186                cpu_stq_data_ra(env, addr + i, 0, retaddr);
 187            }
 188        }
 189    }
 190}
 191
 192void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
 193{
 194    dcbz_common(env, addr, opcode, false, GETPC());
 195}
 196
 197void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
 198{
 199    dcbz_common(env, addr, opcode, true, GETPC());
 200}
 201
 202void helper_icbi(CPUPPCState *env, target_ulong addr)
 203{
 204    addr &= ~(env->dcache_line_size - 1);
 205    /*
 206     * Invalidate one cache line :
 207     * PowerPC specification says this is to be treated like a load
 208     * (not a fetch) by the MMU. To be sure it will be so,
 209     * do the load "by hand".
 210     */
 211    cpu_ldl_data_ra(env, addr, GETPC());
 212}
 213
 214void helper_icbiep(CPUPPCState *env, target_ulong addr)
 215{
 216#if !defined(CONFIG_USER_ONLY)
 217    /* See comments above */
 218    addr &= ~(env->dcache_line_size - 1);
 219    cpu_ldl_epl_ra(env, addr, GETPC());
 220#endif
 221}
 222
 223/* XXX: to be tested */
 224target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
 225                          uint32_t ra, uint32_t rb)
 226{
 227    int i, c, d;
 228
 229    d = 24;
 230    for (i = 0; i < xer_bc; i++) {
 231        c = cpu_ldub_data_ra(env, addr, GETPC());
 232        addr = addr_add(env, addr, 1);
 233        /* ra (if not 0) and rb are never modified */
 234        if (likely(reg != rb && (ra == 0 || reg != ra))) {
 235            env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
 236        }
 237        if (unlikely(c == xer_cmp)) {
 238            break;
 239        }
 240        if (likely(d != 0)) {
 241            d -= 8;
 242        } else {
 243            d = 24;
 244            reg++;
 245            reg = reg & 0x1F;
 246        }
 247    }
 248    return i;
 249}
 250
 251#ifdef TARGET_PPC64
 252uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
 253                               uint32_t opidx)
 254{
 255    Int128 ret;
 256
 257    /* We will have raised EXCP_ATOMIC from the translator.  */
 258    assert(HAVE_ATOMIC128);
 259    ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
 260    env->retxh = int128_gethi(ret);
 261    return int128_getlo(ret);
 262}
 263
 264uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
 265                               uint32_t opidx)
 266{
 267    Int128 ret;
 268
 269    /* We will have raised EXCP_ATOMIC from the translator.  */
 270    assert(HAVE_ATOMIC128);
 271    ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
 272    env->retxh = int128_gethi(ret);
 273    return int128_getlo(ret);
 274}
 275
 276void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
 277                            uint64_t lo, uint64_t hi, uint32_t opidx)
 278{
 279    Int128 val;
 280
 281    /* We will have raised EXCP_ATOMIC from the translator.  */
 282    assert(HAVE_ATOMIC128);
 283    val = int128_make128(lo, hi);
 284    helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
 285}
 286
 287void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
 288                            uint64_t lo, uint64_t hi, uint32_t opidx)
 289{
 290    Int128 val;
 291
 292    /* We will have raised EXCP_ATOMIC from the translator.  */
 293    assert(HAVE_ATOMIC128);
 294    val = int128_make128(lo, hi);
 295    helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
 296}
 297
 298uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
 299                                  uint64_t new_lo, uint64_t new_hi,
 300                                  uint32_t opidx)
 301{
 302    bool success = false;
 303
 304    /* We will have raised EXCP_ATOMIC from the translator.  */
 305    assert(HAVE_CMPXCHG128);
 306
 307    if (likely(addr == env->reserve_addr)) {
 308        Int128 oldv, cmpv, newv;
 309
 310        cmpv = int128_make128(env->reserve_val2, env->reserve_val);
 311        newv = int128_make128(new_lo, new_hi);
 312        oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
 313                                             opidx, GETPC());
 314        success = int128_eq(oldv, cmpv);
 315    }
 316    env->reserve_addr = -1;
 317    return env->so + success * CRF_EQ_BIT;
 318}
 319
 320uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
 321                                  uint64_t new_lo, uint64_t new_hi,
 322                                  uint32_t opidx)
 323{
 324    bool success = false;
 325
 326    /* We will have raised EXCP_ATOMIC from the translator.  */
 327    assert(HAVE_CMPXCHG128);
 328
 329    if (likely(addr == env->reserve_addr)) {
 330        Int128 oldv, cmpv, newv;
 331
 332        cmpv = int128_make128(env->reserve_val2, env->reserve_val);
 333        newv = int128_make128(new_lo, new_hi);
 334        oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
 335                                             opidx, GETPC());
 336        success = int128_eq(oldv, cmpv);
 337    }
 338    env->reserve_addr = -1;
 339    return env->so + success * CRF_EQ_BIT;
 340}
 341#endif
 342
 343/*****************************************************************************/
 344/* Altivec extension helpers */
 345#if defined(HOST_WORDS_BIGENDIAN)
 346#define HI_IDX 0
 347#define LO_IDX 1
 348#else
 349#define HI_IDX 1
 350#define LO_IDX 0
 351#endif
 352
 353/*
 354 * We use msr_le to determine index ordering in a vector.  However,
 355 * byteswapping is not simply controlled by msr_le.  We also need to
 356 * take into account endianness of the target.  This is done for the
 357 * little-endian PPC64 user-mode target.
 358 */
 359
 360#define LVE(name, access, swap, element)                        \
 361    void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
 362                       target_ulong addr)                       \
 363    {                                                           \
 364        size_t n_elems = ARRAY_SIZE(r->element);                \
 365        int adjust = HI_IDX * (n_elems - 1);                    \
 366        int sh = sizeof(r->element[0]) >> 1;                    \
 367        int index = (addr & 0xf) >> sh;                         \
 368        if (msr_le) {                                           \
 369            index = n_elems - index - 1;                        \
 370        }                                                       \
 371                                                                \
 372        if (needs_byteswap(env)) {                              \
 373            r->element[LO_IDX ? index : (adjust - index)] =     \
 374                swap(access(env, addr, GETPC()));               \
 375        } else {                                                \
 376            r->element[LO_IDX ? index : (adjust - index)] =     \
 377                access(env, addr, GETPC());                     \
 378        }                                                       \
 379    }
 380#define I(x) (x)
 381LVE(lvebx, cpu_ldub_data_ra, I, u8)
 382LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
 383LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
 384#undef I
 385#undef LVE
 386
 387#define STVE(name, access, swap, element)                               \
 388    void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
 389                       target_ulong addr)                               \
 390    {                                                                   \
 391        size_t n_elems = ARRAY_SIZE(r->element);                        \
 392        int adjust = HI_IDX * (n_elems - 1);                            \
 393        int sh = sizeof(r->element[0]) >> 1;                            \
 394        int index = (addr & 0xf) >> sh;                                 \
 395        if (msr_le) {                                                   \
 396            index = n_elems - index - 1;                                \
 397        }                                                               \
 398                                                                        \
 399        if (needs_byteswap(env)) {                                      \
 400            access(env, addr, swap(r->element[LO_IDX ? index :          \
 401                                              (adjust - index)]),       \
 402                        GETPC());                                       \
 403        } else {                                                        \
 404            access(env, addr, r->element[LO_IDX ? index :               \
 405                                         (adjust - index)], GETPC());   \
 406        }                                                               \
 407    }
 408#define I(x) (x)
 409STVE(stvebx, cpu_stb_data_ra, I, u8)
 410STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
 411STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
 412#undef I
 413#undef LVE
 414
 415#ifdef TARGET_PPC64
 416#define GET_NB(rb) ((rb >> 56) & 0xFF)
 417
 418#define VSX_LXVL(name, lj)                                              \
 419void helper_##name(CPUPPCState *env, target_ulong addr,                 \
 420                   ppc_vsr_t *xt, target_ulong rb)                      \
 421{                                                                       \
 422    ppc_vsr_t t;                                                        \
 423    uint64_t nb = GET_NB(rb);                                           \
 424    int i;                                                              \
 425                                                                        \
 426    t.s128 = int128_zero();                                             \
 427    if (nb) {                                                           \
 428        nb = (nb >= 16) ? 16 : nb;                                      \
 429        if (msr_le && !lj) {                                            \
 430            for (i = 16; i > 16 - nb; i--) {                            \
 431                t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());   \
 432                addr = addr_add(env, addr, 1);                          \
 433            }                                                           \
 434        } else {                                                        \
 435            for (i = 0; i < nb; i++) {                                  \
 436                t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());       \
 437                addr = addr_add(env, addr, 1);                          \
 438            }                                                           \
 439        }                                                               \
 440    }                                                                   \
 441    *xt = t;                                                            \
 442}
 443
 444VSX_LXVL(lxvl, 0)
 445VSX_LXVL(lxvll, 1)
 446#undef VSX_LXVL
 447
 448#define VSX_STXVL(name, lj)                                       \
 449void helper_##name(CPUPPCState *env, target_ulong addr,           \
 450                   ppc_vsr_t *xt, target_ulong rb)                \
 451{                                                                 \
 452    target_ulong nb = GET_NB(rb);                                 \
 453    int i;                                                        \
 454                                                                  \
 455    if (!nb) {                                                    \
 456        return;                                                   \
 457    }                                                             \
 458                                                                  \
 459    nb = (nb >= 16) ? 16 : nb;                                    \
 460    if (msr_le && !lj) {                                          \
 461        for (i = 16; i > 16 - nb; i--) {                          \
 462            cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
 463            addr = addr_add(env, addr, 1);                        \
 464        }                                                         \
 465    } else {                                                      \
 466        for (i = 0; i < nb; i++) {                                \
 467            cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC());     \
 468            addr = addr_add(env, addr, 1);                        \
 469        }                                                         \
 470    }                                                             \
 471}
 472
 473VSX_STXVL(stxvl, 0)
 474VSX_STXVL(stxvll, 1)
 475#undef VSX_STXVL
 476#undef GET_NB
 477#endif /* TARGET_PPC64 */
 478
 479#undef HI_IDX
 480#undef LO_IDX
 481
 482void helper_tbegin(CPUPPCState *env)
 483{
 484    /*
 485     * As a degenerate implementation, always fail tbegin.  The reason
 486     * given is "Nesting overflow".  The "persistent" bit is set,
 487     * providing a hint to the error handler to not retry.  The TFIAR
 488     * captures the address of the failure, which is this tbegin
 489     * instruction.  Instruction execution will continue with the next
 490     * instruction in memory, which is precisely what we want.
 491     */
 492
 493    env->spr[SPR_TEXASR] =
 494        (1ULL << TEXASR_FAILURE_PERSISTENT) |
 495        (1ULL << TEXASR_NESTING_OVERFLOW) |
 496        (msr_hv << TEXASR_PRIVILEGE_HV) |
 497        (msr_pr << TEXASR_PRIVILEGE_PR) |
 498        (1ULL << TEXASR_FAILURE_SUMMARY) |
 499        (1ULL << TEXASR_TFIAR_EXACT);
 500    env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
 501    env->spr[SPR_TFHAR] = env->nip + 4;
 502    env->crf[0] = 0xB; /* 0b1010 = transaction failure */
 503}
 504