qemu/target/riscv/cpu_helper.c
<<
>>
Prefs
   1/*
   2 * RISC-V CPU helpers for qemu.
   3 *
   4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
   5 * Copyright (c) 2017-2018 SiFive, Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2 or later, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/log.h"
  22#include "qemu/main-loop.h"
  23#include "cpu.h"
  24#include "exec/exec-all.h"
  25#include "tcg-op.h"
  26#include "trace.h"
  27
  28int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
  29{
  30#ifdef CONFIG_USER_ONLY
  31    return 0;
  32#else
  33    return env->priv;
  34#endif
  35}
  36
  37#ifndef CONFIG_USER_ONLY
  38static int riscv_cpu_local_irq_pending(CPURISCVState *env)
  39{
  40    target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
  41    target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
  42    target_ulong pending = env->mip & env->mie;
  43    target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
  44    target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
  45    target_ulong irqs = (pending & ~env->mideleg & -mie) |
  46                        (pending &  env->mideleg & -sie);
  47
  48    if (irqs) {
  49        return ctz64(irqs); /* since non-zero */
  50    } else {
  51        return EXCP_NONE; /* indicates no pending interrupt */
  52    }
  53}
  54#endif
  55
  56bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
  57{
  58#if !defined(CONFIG_USER_ONLY)
  59    if (interrupt_request & CPU_INTERRUPT_HARD) {
  60        RISCVCPU *cpu = RISCV_CPU(cs);
  61        CPURISCVState *env = &cpu->env;
  62        int interruptno = riscv_cpu_local_irq_pending(env);
  63        if (interruptno >= 0) {
  64            cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
  65            riscv_cpu_do_interrupt(cs);
  66            return true;
  67        }
  68    }
  69#endif
  70    return false;
  71}
  72
  73#if !defined(CONFIG_USER_ONLY)
  74
  75/* Return true is floating point support is currently enabled */
  76bool riscv_cpu_fp_enabled(CPURISCVState *env)
  77{
  78    if (env->mstatus & MSTATUS_FS) {
  79        return true;
  80    }
  81
  82    return false;
  83}
  84
  85int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
  86{
  87    CPURISCVState *env = &cpu->env;
  88    if (env->miclaim & interrupts) {
  89        return -1;
  90    } else {
  91        env->miclaim |= interrupts;
  92        return 0;
  93    }
  94}
  95
  96uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
  97{
  98    CPURISCVState *env = &cpu->env;
  99    CPUState *cs = CPU(cpu);
 100    uint32_t old = env->mip;
 101    bool locked = false;
 102
 103    if (!qemu_mutex_iothread_locked()) {
 104        locked = true;
 105        qemu_mutex_lock_iothread();
 106    }
 107
 108    env->mip = (env->mip & ~mask) | (value & mask);
 109
 110    if (env->mip) {
 111        cpu_interrupt(cs, CPU_INTERRUPT_HARD);
 112    } else {
 113        cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
 114    }
 115
 116    if (locked) {
 117        qemu_mutex_unlock_iothread();
 118    }
 119
 120    return old;
 121}
 122
 123void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
 124{
 125    if (newpriv > PRV_M) {
 126        g_assert_not_reached();
 127    }
 128    if (newpriv == PRV_H) {
 129        newpriv = PRV_U;
 130    }
 131    /* tlb_flush is unnecessary as mode is contained in mmu_idx */
 132    env->priv = newpriv;
 133
 134    /*
 135     * Clear the load reservation - otherwise a reservation placed in one
 136     * context/process can be used by another, resulting in an SC succeeding
 137     * incorrectly. Version 2.2 of the ISA specification explicitly requires
 138     * this behaviour, while later revisions say that the kernel "should" use
 139     * an SC instruction to force the yielding of a load reservation on a
 140     * preemptive context switch. As a result, do both.
 141     */
 142    env->load_res = -1;
 143}
 144
 145/* get_physical_address - get the physical address for this virtual address
 146 *
 147 * Do a page table walk to obtain the physical address corresponding to a
 148 * virtual address. Returns 0 if the translation was successful
 149 *
 150 * Adapted from Spike's mmu_t::translate and mmu_t::walk
 151 *
 152 */
 153static int get_physical_address(CPURISCVState *env, hwaddr *physical,
 154                                int *prot, target_ulong addr,
 155                                int access_type, int mmu_idx)
 156{
 157    /* NOTE: the env->pc value visible here will not be
 158     * correct, but the value visible to the exception handler
 159     * (riscv_cpu_do_interrupt) is correct */
 160    MemTxResult res;
 161    MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
 162    int mode = mmu_idx;
 163
 164    if (mode == PRV_M && access_type != MMU_INST_FETCH) {
 165        if (get_field(env->mstatus, MSTATUS_MPRV)) {
 166            mode = get_field(env->mstatus, MSTATUS_MPP);
 167        }
 168    }
 169
 170    if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
 171        *physical = addr;
 172        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 173        return TRANSLATE_SUCCESS;
 174    }
 175
 176    *prot = 0;
 177
 178    hwaddr base;
 179    int levels, ptidxbits, ptesize, vm, sum;
 180    int mxr = get_field(env->mstatus, MSTATUS_MXR);
 181
 182    if (env->priv_ver >= PRIV_VERSION_1_10_0) {
 183        base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
 184        sum = get_field(env->mstatus, MSTATUS_SUM);
 185        vm = get_field(env->satp, SATP_MODE);
 186        switch (vm) {
 187        case VM_1_10_SV32:
 188          levels = 2; ptidxbits = 10; ptesize = 4; break;
 189        case VM_1_10_SV39:
 190          levels = 3; ptidxbits = 9; ptesize = 8; break;
 191        case VM_1_10_SV48:
 192          levels = 4; ptidxbits = 9; ptesize = 8; break;
 193        case VM_1_10_SV57:
 194          levels = 5; ptidxbits = 9; ptesize = 8; break;
 195        case VM_1_10_MBARE:
 196            *physical = addr;
 197            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 198            return TRANSLATE_SUCCESS;
 199        default:
 200          g_assert_not_reached();
 201        }
 202    } else {
 203        base = (hwaddr)(env->sptbr) << PGSHIFT;
 204        sum = !get_field(env->mstatus, MSTATUS_PUM);
 205        vm = get_field(env->mstatus, MSTATUS_VM);
 206        switch (vm) {
 207        case VM_1_09_SV32:
 208          levels = 2; ptidxbits = 10; ptesize = 4; break;
 209        case VM_1_09_SV39:
 210          levels = 3; ptidxbits = 9; ptesize = 8; break;
 211        case VM_1_09_SV48:
 212          levels = 4; ptidxbits = 9; ptesize = 8; break;
 213        case VM_1_09_MBARE:
 214            *physical = addr;
 215            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 216            return TRANSLATE_SUCCESS;
 217        default:
 218          g_assert_not_reached();
 219        }
 220    }
 221
 222    CPUState *cs = env_cpu(env);
 223    int va_bits = PGSHIFT + levels * ptidxbits;
 224    target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
 225    target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
 226    if (masked_msbs != 0 && masked_msbs != mask) {
 227        return TRANSLATE_FAIL;
 228    }
 229
 230    int ptshift = (levels - 1) * ptidxbits;
 231    int i;
 232
 233#if !TCG_OVERSIZED_GUEST
 234restart:
 235#endif
 236    for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
 237        target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
 238                           ((1 << ptidxbits) - 1);
 239
 240        /* check that physical address of PTE is legal */
 241        hwaddr pte_addr = base + idx * ptesize;
 242
 243        if (riscv_feature(env, RISCV_FEATURE_PMP) &&
 244            !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
 245            1 << MMU_DATA_LOAD, PRV_S)) {
 246            return TRANSLATE_PMP_FAIL;
 247        }
 248
 249#if defined(TARGET_RISCV32)
 250        target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
 251#elif defined(TARGET_RISCV64)
 252        target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
 253#endif
 254        if (res != MEMTX_OK) {
 255            return TRANSLATE_FAIL;
 256        }
 257
 258        hwaddr ppn = pte >> PTE_PPN_SHIFT;
 259
 260        if (!(pte & PTE_V)) {
 261            /* Invalid PTE */
 262            return TRANSLATE_FAIL;
 263        } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
 264            /* Inner PTE, continue walking */
 265            base = ppn << PGSHIFT;
 266        } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
 267            /* Reserved leaf PTE flags: PTE_W */
 268            return TRANSLATE_FAIL;
 269        } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
 270            /* Reserved leaf PTE flags: PTE_W + PTE_X */
 271            return TRANSLATE_FAIL;
 272        } else if ((pte & PTE_U) && ((mode != PRV_U) &&
 273                   (!sum || access_type == MMU_INST_FETCH))) {
 274            /* User PTE flags when not U mode and mstatus.SUM is not set,
 275               or the access type is an instruction fetch */
 276            return TRANSLATE_FAIL;
 277        } else if (!(pte & PTE_U) && (mode != PRV_S)) {
 278            /* Supervisor PTE flags when not S mode */
 279            return TRANSLATE_FAIL;
 280        } else if (ppn & ((1ULL << ptshift) - 1)) {
 281            /* Misaligned PPN */
 282            return TRANSLATE_FAIL;
 283        } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
 284                   ((pte & PTE_X) && mxr))) {
 285            /* Read access check failed */
 286            return TRANSLATE_FAIL;
 287        } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
 288            /* Write access check failed */
 289            return TRANSLATE_FAIL;
 290        } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
 291            /* Fetch access check failed */
 292            return TRANSLATE_FAIL;
 293        } else {
 294            /* if necessary, set accessed and dirty bits. */
 295            target_ulong updated_pte = pte | PTE_A |
 296                (access_type == MMU_DATA_STORE ? PTE_D : 0);
 297
 298            /* Page table updates need to be atomic with MTTCG enabled */
 299            if (updated_pte != pte) {
 300                /*
 301                 * - if accessed or dirty bits need updating, and the PTE is
 302                 *   in RAM, then we do so atomically with a compare and swap.
 303                 * - if the PTE is in IO space or ROM, then it can't be updated
 304                 *   and we return TRANSLATE_FAIL.
 305                 * - if the PTE changed by the time we went to update it, then
 306                 *   it is no longer valid and we must re-walk the page table.
 307                 */
 308                MemoryRegion *mr;
 309                hwaddr l = sizeof(target_ulong), addr1;
 310                mr = address_space_translate(cs->as, pte_addr,
 311                    &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
 312                if (memory_region_is_ram(mr)) {
 313                    target_ulong *pte_pa =
 314                        qemu_map_ram_ptr(mr->ram_block, addr1);
 315#if TCG_OVERSIZED_GUEST
 316                    /* MTTCG is not enabled on oversized TCG guests so
 317                     * page table updates do not need to be atomic */
 318                    *pte_pa = pte = updated_pte;
 319#else
 320                    target_ulong old_pte =
 321                        atomic_cmpxchg(pte_pa, pte, updated_pte);
 322                    if (old_pte != pte) {
 323                        goto restart;
 324                    } else {
 325                        pte = updated_pte;
 326                    }
 327#endif
 328                } else {
 329                    /* misconfigured PTE in ROM (AD bits are not preset) or
 330                     * PTE is in IO space and can't be updated atomically */
 331                    return TRANSLATE_FAIL;
 332                }
 333            }
 334
 335            /* for superpage mappings, make a fake leaf PTE for the TLB's
 336               benefit. */
 337            target_ulong vpn = addr >> PGSHIFT;
 338            *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
 339
 340            /* set permissions on the TLB entry */
 341            if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
 342                *prot |= PAGE_READ;
 343            }
 344            if ((pte & PTE_X)) {
 345                *prot |= PAGE_EXEC;
 346            }
 347            /* add write permission on stores or if the page is already dirty,
 348               so that we TLB miss on later writes to update the dirty bit */
 349            if ((pte & PTE_W) &&
 350                    (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
 351                *prot |= PAGE_WRITE;
 352            }
 353            return TRANSLATE_SUCCESS;
 354        }
 355    }
 356    return TRANSLATE_FAIL;
 357}
 358
 359static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
 360                                MMUAccessType access_type, bool pmp_violation)
 361{
 362    CPUState *cs = env_cpu(env);
 363    int page_fault_exceptions =
 364        (env->priv_ver >= PRIV_VERSION_1_10_0) &&
 365        get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
 366        !pmp_violation;
 367    switch (access_type) {
 368    case MMU_INST_FETCH:
 369        cs->exception_index = page_fault_exceptions ?
 370            RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
 371        break;
 372    case MMU_DATA_LOAD:
 373        cs->exception_index = page_fault_exceptions ?
 374            RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
 375        break;
 376    case MMU_DATA_STORE:
 377        cs->exception_index = page_fault_exceptions ?
 378            RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
 379        break;
 380    default:
 381        g_assert_not_reached();
 382    }
 383    env->badaddr = address;
 384}
 385
 386hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 387{
 388    RISCVCPU *cpu = RISCV_CPU(cs);
 389    hwaddr phys_addr;
 390    int prot;
 391    int mmu_idx = cpu_mmu_index(&cpu->env, false);
 392
 393    if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
 394        return -1;
 395    }
 396    return phys_addr;
 397}
 398
 399void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 400                                     vaddr addr, unsigned size,
 401                                     MMUAccessType access_type,
 402                                     int mmu_idx, MemTxAttrs attrs,
 403                                     MemTxResult response, uintptr_t retaddr)
 404{
 405    RISCVCPU *cpu = RISCV_CPU(cs);
 406    CPURISCVState *env = &cpu->env;
 407
 408    if (access_type == MMU_DATA_STORE) {
 409        cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
 410    } else {
 411        cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
 412    }
 413
 414    env->badaddr = addr;
 415    riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
 416}
 417
 418void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
 419                                   MMUAccessType access_type, int mmu_idx,
 420                                   uintptr_t retaddr)
 421{
 422    RISCVCPU *cpu = RISCV_CPU(cs);
 423    CPURISCVState *env = &cpu->env;
 424    switch (access_type) {
 425    case MMU_INST_FETCH:
 426        cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
 427        break;
 428    case MMU_DATA_LOAD:
 429        cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
 430        break;
 431    case MMU_DATA_STORE:
 432        cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
 433        break;
 434    default:
 435        g_assert_not_reached();
 436    }
 437    env->badaddr = addr;
 438    riscv_raise_exception(env, cs->exception_index, retaddr);
 439}
 440#endif
 441
 442bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 443                        MMUAccessType access_type, int mmu_idx,
 444                        bool probe, uintptr_t retaddr)
 445{
 446    RISCVCPU *cpu = RISCV_CPU(cs);
 447    CPURISCVState *env = &cpu->env;
 448#ifndef CONFIG_USER_ONLY
 449    hwaddr pa = 0;
 450    int prot;
 451    bool pmp_violation = false;
 452    int ret = TRANSLATE_FAIL;
 453    int mode = mmu_idx;
 454
 455    qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
 456                  __func__, address, access_type, mmu_idx);
 457
 458    ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
 459
 460    if (mode == PRV_M && access_type != MMU_INST_FETCH) {
 461        if (get_field(env->mstatus, MSTATUS_MPRV)) {
 462            mode = get_field(env->mstatus, MSTATUS_MPP);
 463        }
 464    }
 465
 466    qemu_log_mask(CPU_LOG_MMU,
 467                  "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
 468                  " prot %d\n", __func__, address, ret, pa, prot);
 469
 470    if (riscv_feature(env, RISCV_FEATURE_PMP) &&
 471        (ret == TRANSLATE_SUCCESS) &&
 472        !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
 473        ret = TRANSLATE_PMP_FAIL;
 474    }
 475    if (ret == TRANSLATE_PMP_FAIL) {
 476        pmp_violation = true;
 477    }
 478    if (ret == TRANSLATE_SUCCESS) {
 479        tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
 480                     prot, mmu_idx, TARGET_PAGE_SIZE);
 481        return true;
 482    } else if (probe) {
 483        return false;
 484    } else {
 485        raise_mmu_exception(env, address, access_type, pmp_violation);
 486        riscv_raise_exception(env, cs->exception_index, retaddr);
 487    }
 488#else
 489    switch (access_type) {
 490    case MMU_INST_FETCH:
 491        cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
 492        break;
 493    case MMU_DATA_LOAD:
 494        cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
 495        break;
 496    case MMU_DATA_STORE:
 497        cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
 498        break;
 499    default:
 500        g_assert_not_reached();
 501    }
 502    env->badaddr = address;
 503    cpu_loop_exit_restore(cs, retaddr);
 504#endif
 505}
 506
 507/*
 508 * Handle Traps
 509 *
 510 * Adapted from Spike's processor_t::take_trap.
 511 *
 512 */
 513void riscv_cpu_do_interrupt(CPUState *cs)
 514{
 515#if !defined(CONFIG_USER_ONLY)
 516
 517    RISCVCPU *cpu = RISCV_CPU(cs);
 518    CPURISCVState *env = &cpu->env;
 519
 520    /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
 521     * so we mask off the MSB and separate into trap type and cause.
 522     */
 523    bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
 524    target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
 525    target_ulong deleg = async ? env->mideleg : env->medeleg;
 526    target_ulong tval = 0;
 527
 528    static const int ecall_cause_map[] = {
 529        [PRV_U] = RISCV_EXCP_U_ECALL,
 530        [PRV_S] = RISCV_EXCP_S_ECALL,
 531        [PRV_H] = RISCV_EXCP_H_ECALL,
 532        [PRV_M] = RISCV_EXCP_M_ECALL
 533    };
 534
 535    if (!async) {
 536        /* set tval to badaddr for traps with address information */
 537        switch (cause) {
 538        case RISCV_EXCP_INST_ADDR_MIS:
 539        case RISCV_EXCP_INST_ACCESS_FAULT:
 540        case RISCV_EXCP_LOAD_ADDR_MIS:
 541        case RISCV_EXCP_STORE_AMO_ADDR_MIS:
 542        case RISCV_EXCP_LOAD_ACCESS_FAULT:
 543        case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
 544        case RISCV_EXCP_INST_PAGE_FAULT:
 545        case RISCV_EXCP_LOAD_PAGE_FAULT:
 546        case RISCV_EXCP_STORE_PAGE_FAULT:
 547            tval = env->badaddr;
 548            break;
 549        default:
 550            break;
 551        }
 552        /* ecall is dispatched as one cause so translate based on mode */
 553        if (cause == RISCV_EXCP_U_ECALL) {
 554            assert(env->priv <= 3);
 555            cause = ecall_cause_map[env->priv];
 556        }
 557    }
 558
 559    trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
 560        (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
 561
 562    if (env->priv <= PRV_S &&
 563            cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
 564        /* handle the trap in S-mode */
 565        target_ulong s = env->mstatus;
 566        s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
 567            get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
 568        s = set_field(s, MSTATUS_SPP, env->priv);
 569        s = set_field(s, MSTATUS_SIE, 0);
 570        env->mstatus = s;
 571        env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
 572        env->sepc = env->pc;
 573        env->sbadaddr = tval;
 574        env->pc = (env->stvec >> 2 << 2) +
 575            ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
 576        riscv_cpu_set_mode(env, PRV_S);
 577    } else {
 578        /* handle the trap in M-mode */
 579        target_ulong s = env->mstatus;
 580        s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
 581            get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
 582        s = set_field(s, MSTATUS_MPP, env->priv);
 583        s = set_field(s, MSTATUS_MIE, 0);
 584        env->mstatus = s;
 585        env->mcause = cause | ~(((target_ulong)-1) >> async);
 586        env->mepc = env->pc;
 587        env->mbadaddr = tval;
 588        env->pc = (env->mtvec >> 2 << 2) +
 589            ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
 590        riscv_cpu_set_mode(env, PRV_M);
 591    }
 592
 593    /* NOTE: it is not necessary to yield load reservations here. It is only
 594     * necessary for an SC from "another hart" to cause a load reservation
 595     * to be yielded. Refer to the memory consistency model section of the
 596     * RISC-V ISA Specification.
 597     */
 598
 599#endif
 600    cs->exception_index = EXCP_NONE; /* mark handled to qemu */
 601}
 602