qemu/util/hbitmap.c
<<
>>
Prefs
   1/*
   2 * Hierarchical Bitmap Data Type
   3 *
   4 * Copyright Red Hat, Inc., 2012
   5 *
   6 * Author: Paolo Bonzini <pbonzini@redhat.com>
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or
   9 * later.  See the COPYING file in the top-level directory.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/hbitmap.h"
  14#include "qemu/host-utils.h"
  15#include "trace.h"
  16#include "crypto/hash.h"
  17
  18/* HBitmaps provides an array of bits.  The bits are stored as usual in an
  19 * array of unsigned longs, but HBitmap is also optimized to provide fast
  20 * iteration over set bits; going from one bit to the next is O(logB n)
  21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
  22 * that the number of levels is in fact fixed.
  23 *
  24 * In order to do this, it stacks multiple bitmaps with progressively coarser
  25 * granularity; in all levels except the last, bit N is set iff the N-th
  26 * unsigned long is nonzero in the immediately next level.  When iteration
  27 * completes on the last level it can examine the 2nd-last level to quickly
  28 * skip entire words, and even do so recursively to skip blocks of 64 words or
  29 * powers thereof (32 on 32-bit machines).
  30 *
  31 * Given an index in the bitmap, it can be split in group of bits like
  32 * this (for the 64-bit case):
  33 *
  34 *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
  35 *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
  36 *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
  37 *
  38 * So it is easy to move up simply by shifting the index right by
  39 * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
  40 * similarly, and add the word index within the group.  Iteration uses
  41 * ffs (find first set bit) to find the next word to examine; this
  42 * operation can be done in constant time in most current architectures.
  43 *
  44 * Setting or clearing a range of m bits on all levels, the work to perform
  45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
  46 *
  47 * When iterating on a bitmap, each bit (on any level) is only visited
  48 * once.  Hence, The total cost of visiting a bitmap with m bits in it is
  49 * the number of bits that are set in all bitmaps.  Unless the bitmap is
  50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
  51 * cost of advancing from one bit to the next is usually constant (worst case
  52 * O(logB n) as in the non-amortized complexity).
  53 */
  54
  55struct HBitmap {
  56    /*
  57     * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate.
  58     */
  59    uint64_t orig_size;
  60
  61    /* Number of total bits in the bottom level.  */
  62    uint64_t size;
  63
  64    /* Number of set bits in the bottom level.  */
  65    uint64_t count;
  66
  67    /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
  68     * will actually represent a group of 2^G elements.  Each operation on a
  69     * range of bits first rounds the bits to determine which group they land
  70     * in, and then affect the entire page; iteration will only visit the first
  71     * bit of each group.  Here is an example of operations in a size-16,
  72     * granularity-1 HBitmap:
  73     *
  74     *    initial state            00000000
  75     *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
  76     *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
  77     *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
  78     *    reset(start=5, count=5)  00000000
  79     *
  80     * From an implementation point of view, when setting or resetting bits,
  81     * the bitmap will scale bit numbers right by this amount of bits.  When
  82     * iterating, the bitmap will scale bit numbers left by this amount of
  83     * bits.
  84     */
  85    int granularity;
  86
  87    /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
  88    HBitmap *meta;
  89
  90    /* A number of progressively less coarse bitmaps (i.e. level 0 is the
  91     * coarsest).  Each bit in level N represents a word in level N+1 that
  92     * has a set bit, except the last level where each bit represents the
  93     * actual bitmap.
  94     *
  95     * Note that all bitmaps have the same number of levels.  Even a 1-bit
  96     * bitmap will still allocate HBITMAP_LEVELS arrays.
  97     */
  98    unsigned long *levels[HBITMAP_LEVELS];
  99
 100    /* The length of each levels[] array. */
 101    uint64_t sizes[HBITMAP_LEVELS];
 102};
 103
 104/* Advance hbi to the next nonzero word and return it.  hbi->pos
 105 * is updated.  Returns zero if we reach the end of the bitmap.
 106 */
 107unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
 108{
 109    size_t pos = hbi->pos;
 110    const HBitmap *hb = hbi->hb;
 111    unsigned i = HBITMAP_LEVELS - 1;
 112
 113    unsigned long cur;
 114    do {
 115        i--;
 116        pos >>= BITS_PER_LEVEL;
 117        cur = hbi->cur[i] & hb->levels[i][pos];
 118    } while (cur == 0);
 119
 120    /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
 121     * bits in the level 0 bitmap; thus we can repurpose the most significant
 122     * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
 123     * that the above loop ends even without an explicit check on i.
 124     */
 125
 126    if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
 127        return 0;
 128    }
 129    for (; i < HBITMAP_LEVELS - 1; i++) {
 130        /* Shift back pos to the left, matching the right shifts above.
 131         * The index of this word's least significant set bit provides
 132         * the low-order bits.
 133         */
 134        assert(cur);
 135        pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
 136        hbi->cur[i] = cur & (cur - 1);
 137
 138        /* Set up next level for iteration.  */
 139        cur = hb->levels[i + 1][pos];
 140    }
 141
 142    hbi->pos = pos;
 143    trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
 144
 145    assert(cur);
 146    return cur;
 147}
 148
 149int64_t hbitmap_iter_next(HBitmapIter *hbi)
 150{
 151    unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
 152            hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
 153    int64_t item;
 154
 155    if (cur == 0) {
 156        cur = hbitmap_iter_skip_words(hbi);
 157        if (cur == 0) {
 158            return -1;
 159        }
 160    }
 161
 162    /* The next call will resume work from the next bit.  */
 163    hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
 164    item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
 165
 166    return item << hbi->granularity;
 167}
 168
 169void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
 170{
 171    unsigned i, bit;
 172    uint64_t pos;
 173
 174    hbi->hb = hb;
 175    pos = first >> hb->granularity;
 176    assert(pos < hb->size);
 177    hbi->pos = pos >> BITS_PER_LEVEL;
 178    hbi->granularity = hb->granularity;
 179
 180    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 181        bit = pos & (BITS_PER_LONG - 1);
 182        pos >>= BITS_PER_LEVEL;
 183
 184        /* Drop bits representing items before first.  */
 185        hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
 186
 187        /* We have already added level i+1, so the lowest set bit has
 188         * been processed.  Clear it.
 189         */
 190        if (i != HBITMAP_LEVELS - 1) {
 191            hbi->cur[i] &= ~(1UL << bit);
 192        }
 193    }
 194}
 195
 196int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start, uint64_t count)
 197{
 198    size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
 199    unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
 200    unsigned long cur = last_lev[pos];
 201    unsigned start_bit_offset;
 202    uint64_t end_bit, sz;
 203    int64_t res;
 204
 205    if (start >= hb->orig_size || count == 0) {
 206        return -1;
 207    }
 208
 209    end_bit = count > hb->orig_size - start ?
 210                hb->size :
 211                ((start + count - 1) >> hb->granularity) + 1;
 212    sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL;
 213
 214    /* There may be some zero bits in @cur before @start. We are not interested
 215     * in them, let's set them.
 216     */
 217    start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1);
 218    cur |= (1UL << start_bit_offset) - 1;
 219    assert((start >> hb->granularity) < hb->size);
 220
 221    if (cur == (unsigned long)-1) {
 222        do {
 223            pos++;
 224        } while (pos < sz && last_lev[pos] == (unsigned long)-1);
 225
 226        if (pos >= sz) {
 227            return -1;
 228        }
 229
 230        cur = last_lev[pos];
 231    }
 232
 233    res = (pos << BITS_PER_LEVEL) + ctol(cur);
 234    if (res >= end_bit) {
 235        return -1;
 236    }
 237
 238    res = res << hb->granularity;
 239    if (res < start) {
 240        assert(((start - res) >> hb->granularity) == 0);
 241        return start;
 242    }
 243
 244    return res;
 245}
 246
 247bool hbitmap_next_dirty_area(const HBitmap *hb, uint64_t *start,
 248                             uint64_t *count)
 249{
 250    HBitmapIter hbi;
 251    int64_t firt_dirty_off, area_end;
 252    uint32_t granularity = 1UL << hb->granularity;
 253    uint64_t end;
 254
 255    if (*start >= hb->orig_size || *count == 0) {
 256        return false;
 257    }
 258
 259    end = *count > hb->orig_size - *start ? hb->orig_size : *start + *count;
 260
 261    hbitmap_iter_init(&hbi, hb, *start);
 262    firt_dirty_off = hbitmap_iter_next(&hbi);
 263
 264    if (firt_dirty_off < 0 || firt_dirty_off >= end) {
 265        return false;
 266    }
 267
 268    if (firt_dirty_off + granularity >= end) {
 269        area_end = end;
 270    } else {
 271        area_end = hbitmap_next_zero(hb, firt_dirty_off + granularity,
 272                                     end - firt_dirty_off - granularity);
 273        if (area_end < 0) {
 274            area_end = end;
 275        }
 276    }
 277
 278    if (firt_dirty_off > *start) {
 279        *start = firt_dirty_off;
 280    }
 281    *count = area_end - *start;
 282
 283    return true;
 284}
 285
 286bool hbitmap_empty(const HBitmap *hb)
 287{
 288    return hb->count == 0;
 289}
 290
 291int hbitmap_granularity(const HBitmap *hb)
 292{
 293    return hb->granularity;
 294}
 295
 296uint64_t hbitmap_count(const HBitmap *hb)
 297{
 298    return hb->count << hb->granularity;
 299}
 300
 301/* Count the number of set bits between start and end, not accounting for
 302 * the granularity.  Also an example of how to use hbitmap_iter_next_word.
 303 */
 304static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
 305{
 306    HBitmapIter hbi;
 307    uint64_t count = 0;
 308    uint64_t end = last + 1;
 309    unsigned long cur;
 310    size_t pos;
 311
 312    hbitmap_iter_init(&hbi, hb, start << hb->granularity);
 313    for (;;) {
 314        pos = hbitmap_iter_next_word(&hbi, &cur);
 315        if (pos >= (end >> BITS_PER_LEVEL)) {
 316            break;
 317        }
 318        count += ctpopl(cur);
 319    }
 320
 321    if (pos == (end >> BITS_PER_LEVEL)) {
 322        /* Drop bits representing the END-th and subsequent items.  */
 323        int bit = end & (BITS_PER_LONG - 1);
 324        cur &= (1UL << bit) - 1;
 325        count += ctpopl(cur);
 326    }
 327
 328    return count;
 329}
 330
 331/* Setting starts at the last layer and propagates up if an element
 332 * changes.
 333 */
 334static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
 335{
 336    unsigned long mask;
 337    unsigned long old;
 338
 339    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 340    assert(start <= last);
 341
 342    mask = 2UL << (last & (BITS_PER_LONG - 1));
 343    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 344    old = *elem;
 345    *elem |= mask;
 346    return old != *elem;
 347}
 348
 349/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 350 * Returns true if at least one bit is changed. */
 351static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
 352                           uint64_t last)
 353{
 354    size_t pos = start >> BITS_PER_LEVEL;
 355    size_t lastpos = last >> BITS_PER_LEVEL;
 356    bool changed = false;
 357    size_t i;
 358
 359    i = pos;
 360    if (i < lastpos) {
 361        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 362        changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
 363        for (;;) {
 364            start = next;
 365            next += BITS_PER_LONG;
 366            if (++i == lastpos) {
 367                break;
 368            }
 369            changed |= (hb->levels[level][i] == 0);
 370            hb->levels[level][i] = ~0UL;
 371        }
 372    }
 373    changed |= hb_set_elem(&hb->levels[level][i], start, last);
 374
 375    /* If there was any change in this layer, we may have to update
 376     * the one above.
 377     */
 378    if (level > 0 && changed) {
 379        hb_set_between(hb, level - 1, pos, lastpos);
 380    }
 381    return changed;
 382}
 383
 384void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
 385{
 386    /* Compute range in the last layer.  */
 387    uint64_t first, n;
 388    uint64_t last = start + count - 1;
 389
 390    if (count == 0) {
 391        return;
 392    }
 393
 394    trace_hbitmap_set(hb, start, count,
 395                      start >> hb->granularity, last >> hb->granularity);
 396
 397    first = start >> hb->granularity;
 398    last >>= hb->granularity;
 399    assert(last < hb->size);
 400    n = last - first + 1;
 401
 402    hb->count += n - hb_count_between(hb, first, last);
 403    if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 404        hb->meta) {
 405        hbitmap_set(hb->meta, start, count);
 406    }
 407}
 408
 409/* Resetting works the other way round: propagate up if the new
 410 * value is zero.
 411 */
 412static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
 413{
 414    unsigned long mask;
 415    bool blanked;
 416
 417    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 418    assert(start <= last);
 419
 420    mask = 2UL << (last & (BITS_PER_LONG - 1));
 421    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 422    blanked = *elem != 0 && ((*elem & ~mask) == 0);
 423    *elem &= ~mask;
 424    return blanked;
 425}
 426
 427/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 428 * Returns true if at least one bit is changed. */
 429static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
 430                             uint64_t last)
 431{
 432    size_t pos = start >> BITS_PER_LEVEL;
 433    size_t lastpos = last >> BITS_PER_LEVEL;
 434    bool changed = false;
 435    size_t i;
 436
 437    i = pos;
 438    if (i < lastpos) {
 439        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 440
 441        /* Here we need a more complex test than when setting bits.  Even if
 442         * something was changed, we must not blank bits in the upper level
 443         * unless the lower-level word became entirely zero.  So, remove pos
 444         * from the upper-level range if bits remain set.
 445         */
 446        if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
 447            changed = true;
 448        } else {
 449            pos++;
 450        }
 451
 452        for (;;) {
 453            start = next;
 454            next += BITS_PER_LONG;
 455            if (++i == lastpos) {
 456                break;
 457            }
 458            changed |= (hb->levels[level][i] != 0);
 459            hb->levels[level][i] = 0UL;
 460        }
 461    }
 462
 463    /* Same as above, this time for lastpos.  */
 464    if (hb_reset_elem(&hb->levels[level][i], start, last)) {
 465        changed = true;
 466    } else {
 467        lastpos--;
 468    }
 469
 470    if (level > 0 && changed) {
 471        hb_reset_between(hb, level - 1, pos, lastpos);
 472    }
 473
 474    return changed;
 475
 476}
 477
 478void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
 479{
 480    /* Compute range in the last layer.  */
 481    uint64_t first;
 482    uint64_t last = start + count - 1;
 483    uint64_t gran = 1ULL << hb->granularity;
 484
 485    if (count == 0) {
 486        return;
 487    }
 488
 489    assert(QEMU_IS_ALIGNED(start, gran));
 490    assert(QEMU_IS_ALIGNED(count, gran) || (start + count == hb->orig_size));
 491
 492    trace_hbitmap_reset(hb, start, count,
 493                        start >> hb->granularity, last >> hb->granularity);
 494
 495    first = start >> hb->granularity;
 496    last >>= hb->granularity;
 497    assert(last < hb->size);
 498
 499    hb->count -= hb_count_between(hb, first, last);
 500    if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 501        hb->meta) {
 502        hbitmap_set(hb->meta, start, count);
 503    }
 504}
 505
 506void hbitmap_reset_all(HBitmap *hb)
 507{
 508    unsigned int i;
 509
 510    /* Same as hbitmap_alloc() except for memset() instead of malloc() */
 511    for (i = HBITMAP_LEVELS; --i >= 1; ) {
 512        memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
 513    }
 514
 515    hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
 516    hb->count = 0;
 517}
 518
 519bool hbitmap_is_serializable(const HBitmap *hb)
 520{
 521    /* Every serialized chunk must be aligned to 64 bits so that endianness
 522     * requirements can be fulfilled on both 64 bit and 32 bit hosts.
 523     * We have hbitmap_serialization_align() which converts this
 524     * alignment requirement from bitmap bits to items covered (e.g. sectors).
 525     * That value is:
 526     *    64 << hb->granularity
 527     * Since this value must not exceed UINT64_MAX, hb->granularity must be
 528     * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
 529     *
 530     * In order for hbitmap_serialization_align() to always return a
 531     * meaningful value, bitmaps that are to be serialized must have a
 532     * granularity of less than 58. */
 533
 534    return hb->granularity < 58;
 535}
 536
 537bool hbitmap_get(const HBitmap *hb, uint64_t item)
 538{
 539    /* Compute position and bit in the last layer.  */
 540    uint64_t pos = item >> hb->granularity;
 541    unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
 542    assert(pos < hb->size);
 543
 544    return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
 545}
 546
 547uint64_t hbitmap_serialization_align(const HBitmap *hb)
 548{
 549    assert(hbitmap_is_serializable(hb));
 550
 551    /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
 552     * hosts. */
 553    return UINT64_C(64) << hb->granularity;
 554}
 555
 556/* Start should be aligned to serialization granularity, chunk size should be
 557 * aligned to serialization granularity too, except for last chunk.
 558 */
 559static void serialization_chunk(const HBitmap *hb,
 560                                uint64_t start, uint64_t count,
 561                                unsigned long **first_el, uint64_t *el_count)
 562{
 563    uint64_t last = start + count - 1;
 564    uint64_t gran = hbitmap_serialization_align(hb);
 565
 566    assert((start & (gran - 1)) == 0);
 567    assert((last >> hb->granularity) < hb->size);
 568    if ((last >> hb->granularity) != hb->size - 1) {
 569        assert((count & (gran - 1)) == 0);
 570    }
 571
 572    start = (start >> hb->granularity) >> BITS_PER_LEVEL;
 573    last = (last >> hb->granularity) >> BITS_PER_LEVEL;
 574
 575    *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
 576    *el_count = last - start + 1;
 577}
 578
 579uint64_t hbitmap_serialization_size(const HBitmap *hb,
 580                                    uint64_t start, uint64_t count)
 581{
 582    uint64_t el_count;
 583    unsigned long *cur;
 584
 585    if (!count) {
 586        return 0;
 587    }
 588    serialization_chunk(hb, start, count, &cur, &el_count);
 589
 590    return el_count * sizeof(unsigned long);
 591}
 592
 593void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
 594                            uint64_t start, uint64_t count)
 595{
 596    uint64_t el_count;
 597    unsigned long *cur, *end;
 598
 599    if (!count) {
 600        return;
 601    }
 602    serialization_chunk(hb, start, count, &cur, &el_count);
 603    end = cur + el_count;
 604
 605    while (cur != end) {
 606        unsigned long el =
 607            (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
 608
 609        memcpy(buf, &el, sizeof(el));
 610        buf += sizeof(el);
 611        cur++;
 612    }
 613}
 614
 615void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
 616                              uint64_t start, uint64_t count,
 617                              bool finish)
 618{
 619    uint64_t el_count;
 620    unsigned long *cur, *end;
 621
 622    if (!count) {
 623        return;
 624    }
 625    serialization_chunk(hb, start, count, &cur, &el_count);
 626    end = cur + el_count;
 627
 628    while (cur != end) {
 629        memcpy(cur, buf, sizeof(*cur));
 630
 631        if (BITS_PER_LONG == 32) {
 632            le32_to_cpus((uint32_t *)cur);
 633        } else {
 634            le64_to_cpus((uint64_t *)cur);
 635        }
 636
 637        buf += sizeof(unsigned long);
 638        cur++;
 639    }
 640    if (finish) {
 641        hbitmap_deserialize_finish(hb);
 642    }
 643}
 644
 645void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
 646                                bool finish)
 647{
 648    uint64_t el_count;
 649    unsigned long *first;
 650
 651    if (!count) {
 652        return;
 653    }
 654    serialization_chunk(hb, start, count, &first, &el_count);
 655
 656    memset(first, 0, el_count * sizeof(unsigned long));
 657    if (finish) {
 658        hbitmap_deserialize_finish(hb);
 659    }
 660}
 661
 662void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
 663                              bool finish)
 664{
 665    uint64_t el_count;
 666    unsigned long *first;
 667
 668    if (!count) {
 669        return;
 670    }
 671    serialization_chunk(hb, start, count, &first, &el_count);
 672
 673    memset(first, 0xff, el_count * sizeof(unsigned long));
 674    if (finish) {
 675        hbitmap_deserialize_finish(hb);
 676    }
 677}
 678
 679void hbitmap_deserialize_finish(HBitmap *bitmap)
 680{
 681    int64_t i, size, prev_size;
 682    int lev;
 683
 684    /* restore levels starting from penultimate to zero level, assuming
 685     * that the last level is ok */
 686    size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 687    for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
 688        prev_size = size;
 689        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 690        memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
 691
 692        for (i = 0; i < prev_size; ++i) {
 693            if (bitmap->levels[lev + 1][i]) {
 694                bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
 695                    1UL << (i & (BITS_PER_LONG - 1));
 696            }
 697        }
 698    }
 699
 700    bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 701    bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
 702}
 703
 704void hbitmap_free(HBitmap *hb)
 705{
 706    unsigned i;
 707    assert(!hb->meta);
 708    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 709        g_free(hb->levels[i]);
 710    }
 711    g_free(hb);
 712}
 713
 714HBitmap *hbitmap_alloc(uint64_t size, int granularity)
 715{
 716    HBitmap *hb = g_new0(struct HBitmap, 1);
 717    unsigned i;
 718
 719    hb->orig_size = size;
 720
 721    assert(granularity >= 0 && granularity < 64);
 722    size = (size + (1ULL << granularity) - 1) >> granularity;
 723    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 724
 725    hb->size = size;
 726    hb->granularity = granularity;
 727    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 728        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 729        hb->sizes[i] = size;
 730        hb->levels[i] = g_new0(unsigned long, size);
 731    }
 732
 733    /* We necessarily have free bits in level 0 due to the definition
 734     * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
 735     * hbitmap_iter_skip_words.
 736     */
 737    assert(size == 1);
 738    hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 739    return hb;
 740}
 741
 742void hbitmap_truncate(HBitmap *hb, uint64_t size)
 743{
 744    bool shrink;
 745    unsigned i;
 746    uint64_t num_elements = size;
 747    uint64_t old;
 748
 749    hb->orig_size = size;
 750
 751    /* Size comes in as logical elements, adjust for granularity. */
 752    size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
 753    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 754    shrink = size < hb->size;
 755
 756    /* bit sizes are identical; nothing to do. */
 757    if (size == hb->size) {
 758        return;
 759    }
 760
 761    /* If we're losing bits, let's clear those bits before we invalidate all of
 762     * our invariants. This helps keep the bitcount consistent, and will prevent
 763     * us from carrying around garbage bits beyond the end of the map.
 764     */
 765    if (shrink) {
 766        /* Don't clear partial granularity groups;
 767         * start at the first full one. */
 768        uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
 769        uint64_t fix_count = (hb->size << hb->granularity) - start;
 770
 771        assert(fix_count);
 772        hbitmap_reset(hb, start, fix_count);
 773    }
 774
 775    hb->size = size;
 776    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 777        size = MAX(BITS_TO_LONGS(size), 1);
 778        if (hb->sizes[i] == size) {
 779            break;
 780        }
 781        old = hb->sizes[i];
 782        hb->sizes[i] = size;
 783        hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
 784        if (!shrink) {
 785            memset(&hb->levels[i][old], 0x00,
 786                   (size - old) * sizeof(*hb->levels[i]));
 787        }
 788    }
 789    if (hb->meta) {
 790        hbitmap_truncate(hb->meta, hb->size << hb->granularity);
 791    }
 792}
 793
 794bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b)
 795{
 796    return (a->orig_size == b->orig_size);
 797}
 798
 799/**
 800 * hbitmap_sparse_merge: performs dst = dst | src
 801 * works with differing granularities.
 802 * best used when src is sparsely populated.
 803 */
 804static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src)
 805{
 806    uint64_t offset = 0;
 807    uint64_t count = src->orig_size;
 808
 809    while (hbitmap_next_dirty_area(src, &offset, &count)) {
 810        hbitmap_set(dst, offset, count);
 811        offset += count;
 812        if (offset >= src->orig_size) {
 813            break;
 814        }
 815        count = src->orig_size - offset;
 816    }
 817}
 818
 819/**
 820 * Given HBitmaps A and B, let R := A (BITOR) B.
 821 * Bitmaps A and B will not be modified,
 822 *     except when bitmap R is an alias of A or B.
 823 *
 824 * @return true if the merge was successful,
 825 *         false if it was not attempted.
 826 */
 827bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
 828{
 829    int i;
 830    uint64_t j;
 831
 832    if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) {
 833        return false;
 834    }
 835    assert(hbitmap_can_merge(b, result));
 836
 837    if ((!hbitmap_count(a) && result == b) ||
 838        (!hbitmap_count(b) && result == a)) {
 839        return true;
 840    }
 841
 842    if (!hbitmap_count(a) && !hbitmap_count(b)) {
 843        hbitmap_reset_all(result);
 844        return true;
 845    }
 846
 847    if (a->granularity != b->granularity) {
 848        if ((a != result) && (b != result)) {
 849            hbitmap_reset_all(result);
 850        }
 851        if (a != result) {
 852            hbitmap_sparse_merge(result, a);
 853        }
 854        if (b != result) {
 855            hbitmap_sparse_merge(result, b);
 856        }
 857        return true;
 858    }
 859
 860    /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
 861     * It may be possible to improve running times for sparsely populated maps
 862     * by using hbitmap_iter_next, but this is suboptimal for dense maps.
 863     */
 864    assert(a->size == b->size);
 865    for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
 866        for (j = 0; j < a->sizes[i]; j++) {
 867            result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
 868        }
 869    }
 870
 871    /* Recompute the dirty count */
 872    result->count = hb_count_between(result, 0, result->size - 1);
 873
 874    return true;
 875}
 876
 877HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
 878{
 879    assert(!(chunk_size & (chunk_size - 1)));
 880    assert(!hb->meta);
 881    hb->meta = hbitmap_alloc(hb->size << hb->granularity,
 882                             hb->granularity + ctz32(chunk_size));
 883    return hb->meta;
 884}
 885
 886void hbitmap_free_meta(HBitmap *hb)
 887{
 888    assert(hb->meta);
 889    hbitmap_free(hb->meta);
 890    hb->meta = NULL;
 891}
 892
 893char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
 894{
 895    size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
 896    char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
 897    char *hash = NULL;
 898    qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
 899
 900    return hash;
 901}
 902