qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qemu/main-loop.h"
  25#include "qapi/error.h"
  26#include "hw/sysbus.h"
  27#include "exec/address-spaces.h"
  28#include "intel_iommu_internal.h"
  29#include "hw/pci/pci.h"
  30#include "hw/pci/pci_bus.h"
  31#include "hw/qdev-properties.h"
  32#include "hw/i386/pc.h"
  33#include "hw/i386/apic-msidef.h"
  34#include "hw/boards.h"
  35#include "hw/i386/x86-iommu.h"
  36#include "hw/pci-host/q35.h"
  37#include "sysemu/kvm.h"
  38#include "sysemu/sysemu.h"
  39#include "hw/i386/apic_internal.h"
  40#include "kvm_i386.h"
  41#include "migration/vmstate.h"
  42#include "trace.h"
  43
  44/* context entry operations */
  45#define VTD_CE_GET_RID2PASID(ce) \
  46    ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
  47#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
  48    ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
  49
  50/* pe operations */
  51#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
  52#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
  53#define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
  54    if (ret_fr) {                                                             \
  55        ret_fr = -ret_fr;                                                     \
  56        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {                   \
  57            trace_vtd_fault_disabled();                                       \
  58        } else {                                                              \
  59            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);      \
  60        }                                                                     \
  61        goto error;                                                           \
  62    }                                                                         \
  63}
  64
  65static void vtd_address_space_refresh_all(IntelIOMMUState *s);
  66static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
  67
  68static void vtd_panic_require_caching_mode(void)
  69{
  70    error_report("We need to set caching-mode=on for intel-iommu to enable "
  71                 "device assignment with IOMMU protection.");
  72    exit(1);
  73}
  74
  75static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  76                            uint64_t wmask, uint64_t w1cmask)
  77{
  78    stq_le_p(&s->csr[addr], val);
  79    stq_le_p(&s->wmask[addr], wmask);
  80    stq_le_p(&s->w1cmask[addr], w1cmask);
  81}
  82
  83static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  84{
  85    stq_le_p(&s->womask[addr], mask);
  86}
  87
  88static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  89                            uint32_t wmask, uint32_t w1cmask)
  90{
  91    stl_le_p(&s->csr[addr], val);
  92    stl_le_p(&s->wmask[addr], wmask);
  93    stl_le_p(&s->w1cmask[addr], w1cmask);
  94}
  95
  96static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  97{
  98    stl_le_p(&s->womask[addr], mask);
  99}
 100
 101/* "External" get/set operations */
 102static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 103{
 104    uint64_t oldval = ldq_le_p(&s->csr[addr]);
 105    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
 106    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
 107    stq_le_p(&s->csr[addr],
 108             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 109}
 110
 111static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
 112{
 113    uint32_t oldval = ldl_le_p(&s->csr[addr]);
 114    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
 115    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
 116    stl_le_p(&s->csr[addr],
 117             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 118}
 119
 120static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
 121{
 122    uint64_t val = ldq_le_p(&s->csr[addr]);
 123    uint64_t womask = ldq_le_p(&s->womask[addr]);
 124    return val & ~womask;
 125}
 126
 127static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
 128{
 129    uint32_t val = ldl_le_p(&s->csr[addr]);
 130    uint32_t womask = ldl_le_p(&s->womask[addr]);
 131    return val & ~womask;
 132}
 133
 134/* "Internal" get/set operations */
 135static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 136{
 137    return ldq_le_p(&s->csr[addr]);
 138}
 139
 140static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 141{
 142    return ldl_le_p(&s->csr[addr]);
 143}
 144
 145static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 146{
 147    stq_le_p(&s->csr[addr], val);
 148}
 149
 150static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 151                                        uint32_t clear, uint32_t mask)
 152{
 153    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 154    stl_le_p(&s->csr[addr], new_val);
 155    return new_val;
 156}
 157
 158static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 159                                        uint64_t clear, uint64_t mask)
 160{
 161    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 162    stq_le_p(&s->csr[addr], new_val);
 163    return new_val;
 164}
 165
 166static inline void vtd_iommu_lock(IntelIOMMUState *s)
 167{
 168    qemu_mutex_lock(&s->iommu_lock);
 169}
 170
 171static inline void vtd_iommu_unlock(IntelIOMMUState *s)
 172{
 173    qemu_mutex_unlock(&s->iommu_lock);
 174}
 175
 176static void vtd_update_scalable_state(IntelIOMMUState *s)
 177{
 178    uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
 179
 180    if (s->scalable_mode) {
 181        s->root_scalable = val & VTD_RTADDR_SMT;
 182    }
 183}
 184
 185/* Whether the address space needs to notify new mappings */
 186static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
 187{
 188    return as->notifier_flags & IOMMU_NOTIFIER_MAP;
 189}
 190
 191/* GHashTable functions */
 192static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 193{
 194    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 195}
 196
 197static guint vtd_uint64_hash(gconstpointer v)
 198{
 199    return (guint)*(const uint64_t *)v;
 200}
 201
 202static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 203                                          gpointer user_data)
 204{
 205    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 206    uint16_t domain_id = *(uint16_t *)user_data;
 207    return entry->domain_id == domain_id;
 208}
 209
 210/* The shift of an addr for a certain level of paging structure */
 211static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 212{
 213    assert(level != 0);
 214    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 215}
 216
 217static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 218{
 219    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 220}
 221
 222static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 223                                        gpointer user_data)
 224{
 225    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 226    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 227    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 228    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 229    return (entry->domain_id == info->domain_id) &&
 230            (((entry->gfn & info->mask) == gfn) ||
 231             (entry->gfn == gfn_tlb));
 232}
 233
 234/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 235 * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
 236 */
 237static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
 238{
 239    VTDAddressSpace *vtd_as;
 240    VTDBus *vtd_bus;
 241    GHashTableIter bus_it;
 242    uint32_t devfn_it;
 243
 244    trace_vtd_context_cache_reset();
 245
 246    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 247
 248    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 249        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
 250            vtd_as = vtd_bus->dev_as[devfn_it];
 251            if (!vtd_as) {
 252                continue;
 253            }
 254            vtd_as->context_cache_entry.context_cache_gen = 0;
 255        }
 256    }
 257    s->context_cache_gen = 1;
 258}
 259
 260/* Must be called with IOMMU lock held. */
 261static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
 262{
 263    assert(s->iotlb);
 264    g_hash_table_remove_all(s->iotlb);
 265}
 266
 267static void vtd_reset_iotlb(IntelIOMMUState *s)
 268{
 269    vtd_iommu_lock(s);
 270    vtd_reset_iotlb_locked(s);
 271    vtd_iommu_unlock(s);
 272}
 273
 274static void vtd_reset_caches(IntelIOMMUState *s)
 275{
 276    vtd_iommu_lock(s);
 277    vtd_reset_iotlb_locked(s);
 278    vtd_reset_context_cache_locked(s);
 279    vtd_iommu_unlock(s);
 280}
 281
 282static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
 283                                  uint32_t level)
 284{
 285    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 286           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 287}
 288
 289static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 290{
 291    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 292}
 293
 294/* Must be called with IOMMU lock held */
 295static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 296                                       hwaddr addr)
 297{
 298    VTDIOTLBEntry *entry;
 299    uint64_t key;
 300    int level;
 301
 302    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 303        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 304                                source_id, level);
 305        entry = g_hash_table_lookup(s->iotlb, &key);
 306        if (entry) {
 307            goto out;
 308        }
 309    }
 310
 311out:
 312    return entry;
 313}
 314
 315/* Must be with IOMMU lock held */
 316static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 317                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 318                             uint8_t access_flags, uint32_t level)
 319{
 320    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 321    uint64_t *key = g_malloc(sizeof(*key));
 322    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 323
 324    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 325    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 326        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 327        vtd_reset_iotlb_locked(s);
 328    }
 329
 330    entry->gfn = gfn;
 331    entry->domain_id = domain_id;
 332    entry->slpte = slpte;
 333    entry->access_flags = access_flags;
 334    entry->mask = vtd_slpt_level_page_mask(level);
 335    *key = vtd_get_iotlb_key(gfn, source_id, level);
 336    g_hash_table_replace(s->iotlb, key, entry);
 337}
 338
 339/* Given the reg addr of both the message data and address, generate an
 340 * interrupt via MSI.
 341 */
 342static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 343                                   hwaddr mesg_data_reg)
 344{
 345    MSIMessage msi;
 346
 347    assert(mesg_data_reg < DMAR_REG_SIZE);
 348    assert(mesg_addr_reg < DMAR_REG_SIZE);
 349
 350    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 351    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 352
 353    trace_vtd_irq_generate(msi.address, msi.data);
 354
 355    apic_get_class()->send_msi(&msi);
 356}
 357
 358/* Generate a fault event to software via MSI if conditions are met.
 359 * Notice that the value of FSTS_REG being passed to it should be the one
 360 * before any update.
 361 */
 362static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 363{
 364    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 365        pre_fsts & VTD_FSTS_IQE) {
 366        error_report_once("There are previous interrupt conditions "
 367                          "to be serviced by software, fault event "
 368                          "is not generated");
 369        return;
 370    }
 371    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 372    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 373        error_report_once("Interrupt Mask set, irq is not generated");
 374    } else {
 375        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 376        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 377    }
 378}
 379
 380/* Check if the Fault (F) field of the Fault Recording Register referenced by
 381 * @index is Set.
 382 */
 383static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 384{
 385    /* Each reg is 128-bit */
 386    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 387    addr += 8; /* Access the high 64-bit half */
 388
 389    assert(index < DMAR_FRCD_REG_NR);
 390
 391    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 392}
 393
 394/* Update the PPF field of Fault Status Register.
 395 * Should be called whenever change the F field of any fault recording
 396 * registers.
 397 */
 398static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 399{
 400    uint32_t i;
 401    uint32_t ppf_mask = 0;
 402
 403    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 404        if (vtd_is_frcd_set(s, i)) {
 405            ppf_mask = VTD_FSTS_PPF;
 406            break;
 407        }
 408    }
 409    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 410    trace_vtd_fsts_ppf(!!ppf_mask);
 411}
 412
 413static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 414{
 415    /* Each reg is 128-bit */
 416    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 417    addr += 8; /* Access the high 64-bit half */
 418
 419    assert(index < DMAR_FRCD_REG_NR);
 420
 421    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 422    vtd_update_fsts_ppf(s);
 423}
 424
 425/* Must not update F field now, should be done later */
 426static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 427                            uint16_t source_id, hwaddr addr,
 428                            VTDFaultReason fault, bool is_write)
 429{
 430    uint64_t hi = 0, lo;
 431    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 432
 433    assert(index < DMAR_FRCD_REG_NR);
 434
 435    lo = VTD_FRCD_FI(addr);
 436    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 437    if (!is_write) {
 438        hi |= VTD_FRCD_T;
 439    }
 440    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 441    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 442
 443    trace_vtd_frr_new(index, hi, lo);
 444}
 445
 446/* Try to collapse multiple pending faults from the same requester */
 447static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 448{
 449    uint32_t i;
 450    uint64_t frcd_reg;
 451    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 452
 453    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 454        frcd_reg = vtd_get_quad_raw(s, addr);
 455        if ((frcd_reg & VTD_FRCD_F) &&
 456            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 457            return true;
 458        }
 459        addr += 16; /* 128-bit for each */
 460    }
 461    return false;
 462}
 463
 464/* Log and report an DMAR (address translation) fault to software */
 465static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 466                                  hwaddr addr, VTDFaultReason fault,
 467                                  bool is_write)
 468{
 469    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 470
 471    assert(fault < VTD_FR_MAX);
 472
 473    if (fault == VTD_FR_RESERVED_ERR) {
 474        /* This is not a normal fault reason case. Drop it. */
 475        return;
 476    }
 477
 478    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 479
 480    if (fsts_reg & VTD_FSTS_PFO) {
 481        error_report_once("New fault is not recorded due to "
 482                          "Primary Fault Overflow");
 483        return;
 484    }
 485
 486    if (vtd_try_collapse_fault(s, source_id)) {
 487        error_report_once("New fault is not recorded due to "
 488                          "compression of faults");
 489        return;
 490    }
 491
 492    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 493        error_report_once("Next Fault Recording Reg is used, "
 494                          "new fault is not recorded, set PFO field");
 495        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 496        return;
 497    }
 498
 499    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 500
 501    if (fsts_reg & VTD_FSTS_PPF) {
 502        error_report_once("There are pending faults already, "
 503                          "fault event is not generated");
 504        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 505        s->next_frcd_reg++;
 506        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 507            s->next_frcd_reg = 0;
 508        }
 509    } else {
 510        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 511                                VTD_FSTS_FRI(s->next_frcd_reg));
 512        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 513        s->next_frcd_reg++;
 514        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 515            s->next_frcd_reg = 0;
 516        }
 517        /* This case actually cause the PPF to be Set.
 518         * So generate fault event (interrupt).
 519         */
 520         vtd_generate_fault_event(s, fsts_reg);
 521    }
 522}
 523
 524/* Handle Invalidation Queue Errors of queued invalidation interface error
 525 * conditions.
 526 */
 527static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 528{
 529    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 530
 531    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 532    vtd_generate_fault_event(s, fsts_reg);
 533}
 534
 535/* Set the IWC field and try to generate an invalidation completion interrupt */
 536static void vtd_generate_completion_event(IntelIOMMUState *s)
 537{
 538    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 539        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 540        return;
 541    }
 542    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 543    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 544    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 545        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 546                                    "new event not generated");
 547        return;
 548    } else {
 549        /* Generate the interrupt event */
 550        trace_vtd_inv_desc_wait_irq("Generating complete event");
 551        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 552        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 553    }
 554}
 555
 556static inline bool vtd_root_entry_present(IntelIOMMUState *s,
 557                                          VTDRootEntry *re,
 558                                          uint8_t devfn)
 559{
 560    if (s->root_scalable && devfn > UINT8_MAX / 2) {
 561        return re->hi & VTD_ROOT_ENTRY_P;
 562    }
 563
 564    return re->lo & VTD_ROOT_ENTRY_P;
 565}
 566
 567static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 568                              VTDRootEntry *re)
 569{
 570    dma_addr_t addr;
 571
 572    addr = s->root + index * sizeof(*re);
 573    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 574        re->lo = 0;
 575        return -VTD_FR_ROOT_TABLE_INV;
 576    }
 577    re->lo = le64_to_cpu(re->lo);
 578    re->hi = le64_to_cpu(re->hi);
 579    return 0;
 580}
 581
 582static inline bool vtd_ce_present(VTDContextEntry *context)
 583{
 584    return context->lo & VTD_CONTEXT_ENTRY_P;
 585}
 586
 587static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
 588                                           VTDRootEntry *re,
 589                                           uint8_t index,
 590                                           VTDContextEntry *ce)
 591{
 592    dma_addr_t addr, ce_size;
 593
 594    /* we have checked that root entry is present */
 595    ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
 596              VTD_CTX_ENTRY_LEGACY_SIZE;
 597
 598    if (s->root_scalable && index > UINT8_MAX / 2) {
 599        index = index & (~VTD_DEVFN_CHECK_MASK);
 600        addr = re->hi & VTD_ROOT_ENTRY_CTP;
 601    } else {
 602        addr = re->lo & VTD_ROOT_ENTRY_CTP;
 603    }
 604
 605    addr = addr + index * ce_size;
 606    if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
 607        return -VTD_FR_CONTEXT_TABLE_INV;
 608    }
 609
 610    ce->lo = le64_to_cpu(ce->lo);
 611    ce->hi = le64_to_cpu(ce->hi);
 612    if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
 613        ce->val[2] = le64_to_cpu(ce->val[2]);
 614        ce->val[3] = le64_to_cpu(ce->val[3]);
 615    }
 616    return 0;
 617}
 618
 619static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 620{
 621    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 622}
 623
 624static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
 625{
 626    return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
 627}
 628
 629/* Whether the pte indicates the address of the page frame */
 630static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 631{
 632    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 633}
 634
 635/* Get the content of a spte located in @base_addr[@index] */
 636static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 637{
 638    uint64_t slpte;
 639
 640    assert(index < VTD_SL_PT_ENTRY_NR);
 641
 642    if (dma_memory_read(&address_space_memory,
 643                        base_addr + index * sizeof(slpte), &slpte,
 644                        sizeof(slpte))) {
 645        slpte = (uint64_t)-1;
 646        return slpte;
 647    }
 648    slpte = le64_to_cpu(slpte);
 649    return slpte;
 650}
 651
 652/* Given an iova and the level of paging structure, return the offset
 653 * of current level.
 654 */
 655static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 656{
 657    return (iova >> vtd_slpt_level_shift(level)) &
 658            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 659}
 660
 661/* Check Capability Register to see if the @level of page-table is supported */
 662static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 663{
 664    return VTD_CAP_SAGAW_MASK & s->cap &
 665           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 666}
 667
 668/* Return true if check passed, otherwise false */
 669static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
 670                                     VTDPASIDEntry *pe)
 671{
 672    switch (VTD_PE_GET_TYPE(pe)) {
 673    case VTD_SM_PASID_ENTRY_FLT:
 674    case VTD_SM_PASID_ENTRY_SLT:
 675    case VTD_SM_PASID_ENTRY_NESTED:
 676        break;
 677    case VTD_SM_PASID_ENTRY_PT:
 678        if (!x86_iommu->pt_supported) {
 679            return false;
 680        }
 681        break;
 682    default:
 683        /* Unknwon type */
 684        return false;
 685    }
 686    return true;
 687}
 688
 689static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
 690{
 691    return pdire->val & 1;
 692}
 693
 694/**
 695 * Caller of this function should check present bit if wants
 696 * to use pdir entry for futher usage except for fpd bit check.
 697 */
 698static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
 699                                         uint32_t pasid,
 700                                         VTDPASIDDirEntry *pdire)
 701{
 702    uint32_t index;
 703    dma_addr_t addr, entry_size;
 704
 705    index = VTD_PASID_DIR_INDEX(pasid);
 706    entry_size = VTD_PASID_DIR_ENTRY_SIZE;
 707    addr = pasid_dir_base + index * entry_size;
 708    if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
 709        return -VTD_FR_PASID_TABLE_INV;
 710    }
 711
 712    return 0;
 713}
 714
 715static inline bool vtd_pe_present(VTDPASIDEntry *pe)
 716{
 717    return pe->val[0] & VTD_PASID_ENTRY_P;
 718}
 719
 720static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
 721                                          uint32_t pasid,
 722                                          dma_addr_t addr,
 723                                          VTDPASIDEntry *pe)
 724{
 725    uint32_t index;
 726    dma_addr_t entry_size;
 727    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 728
 729    index = VTD_PASID_TABLE_INDEX(pasid);
 730    entry_size = VTD_PASID_ENTRY_SIZE;
 731    addr = addr + index * entry_size;
 732    if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
 733        return -VTD_FR_PASID_TABLE_INV;
 734    }
 735
 736    /* Do translation type check */
 737    if (!vtd_pe_type_check(x86_iommu, pe)) {
 738        return -VTD_FR_PASID_TABLE_INV;
 739    }
 740
 741    if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
 742        return -VTD_FR_PASID_TABLE_INV;
 743    }
 744
 745    return 0;
 746}
 747
 748/**
 749 * Caller of this function should check present bit if wants
 750 * to use pasid entry for futher usage except for fpd bit check.
 751 */
 752static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
 753                                 uint32_t pasid,
 754                                 VTDPASIDDirEntry *pdire,
 755                                 VTDPASIDEntry *pe)
 756{
 757    dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
 758
 759    return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
 760}
 761
 762/**
 763 * This function gets a pasid entry from a specified pasid
 764 * table (includes dir and leaf table) with a specified pasid.
 765 * Sanity check should be done to ensure return a present
 766 * pasid entry to caller.
 767 */
 768static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
 769                                       dma_addr_t pasid_dir_base,
 770                                       uint32_t pasid,
 771                                       VTDPASIDEntry *pe)
 772{
 773    int ret;
 774    VTDPASIDDirEntry pdire;
 775
 776    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
 777                                        pasid, &pdire);
 778    if (ret) {
 779        return ret;
 780    }
 781
 782    if (!vtd_pdire_present(&pdire)) {
 783        return -VTD_FR_PASID_TABLE_INV;
 784    }
 785
 786    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
 787    if (ret) {
 788        return ret;
 789    }
 790
 791    if (!vtd_pe_present(pe)) {
 792        return -VTD_FR_PASID_TABLE_INV;
 793    }
 794
 795    return 0;
 796}
 797
 798static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
 799                                      VTDContextEntry *ce,
 800                                      VTDPASIDEntry *pe)
 801{
 802    uint32_t pasid;
 803    dma_addr_t pasid_dir_base;
 804    int ret = 0;
 805
 806    pasid = VTD_CE_GET_RID2PASID(ce);
 807    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 808    ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
 809
 810    return ret;
 811}
 812
 813static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
 814                                VTDContextEntry *ce,
 815                                bool *pe_fpd_set)
 816{
 817    int ret;
 818    uint32_t pasid;
 819    dma_addr_t pasid_dir_base;
 820    VTDPASIDDirEntry pdire;
 821    VTDPASIDEntry pe;
 822
 823    pasid = VTD_CE_GET_RID2PASID(ce);
 824    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 825
 826    /*
 827     * No present bit check since fpd is meaningful even
 828     * if the present bit is clear.
 829     */
 830    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
 831    if (ret) {
 832        return ret;
 833    }
 834
 835    if (pdire.val & VTD_PASID_DIR_FPD) {
 836        *pe_fpd_set = true;
 837        return 0;
 838    }
 839
 840    if (!vtd_pdire_present(&pdire)) {
 841        return -VTD_FR_PASID_TABLE_INV;
 842    }
 843
 844    /*
 845     * No present bit check since fpd is meaningful even
 846     * if the present bit is clear.
 847     */
 848    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
 849    if (ret) {
 850        return ret;
 851    }
 852
 853    if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
 854        *pe_fpd_set = true;
 855    }
 856
 857    return 0;
 858}
 859
 860/* Get the page-table level that hardware should use for the second-level
 861 * page-table walk from the Address Width field of context-entry.
 862 */
 863static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 864{
 865    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 866}
 867
 868static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
 869                                   VTDContextEntry *ce)
 870{
 871    VTDPASIDEntry pe;
 872
 873    if (s->root_scalable) {
 874        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 875        return VTD_PE_GET_LEVEL(&pe);
 876    }
 877
 878    return vtd_ce_get_level(ce);
 879}
 880
 881static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 882{
 883    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 884}
 885
 886static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
 887                                  VTDContextEntry *ce)
 888{
 889    VTDPASIDEntry pe;
 890
 891    if (s->root_scalable) {
 892        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 893        return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
 894    }
 895
 896    return vtd_ce_get_agaw(ce);
 897}
 898
 899static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 900{
 901    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 902}
 903
 904/* Only for Legacy Mode. Return true if check passed, otherwise false */
 905static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 906                                     VTDContextEntry *ce)
 907{
 908    switch (vtd_ce_get_type(ce)) {
 909    case VTD_CONTEXT_TT_MULTI_LEVEL:
 910        /* Always supported */
 911        break;
 912    case VTD_CONTEXT_TT_DEV_IOTLB:
 913        if (!x86_iommu->dt_supported) {
 914            error_report_once("%s: DT specified but not supported", __func__);
 915            return false;
 916        }
 917        break;
 918    case VTD_CONTEXT_TT_PASS_THROUGH:
 919        if (!x86_iommu->pt_supported) {
 920            error_report_once("%s: PT specified but not supported", __func__);
 921            return false;
 922        }
 923        break;
 924    default:
 925        /* Unknown type */
 926        error_report_once("%s: unknown ce type: %"PRIu32, __func__,
 927                          vtd_ce_get_type(ce));
 928        return false;
 929    }
 930    return true;
 931}
 932
 933static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
 934                                      VTDContextEntry *ce, uint8_t aw)
 935{
 936    uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
 937    return 1ULL << MIN(ce_agaw, aw);
 938}
 939
 940/* Return true if IOVA passes range check, otherwise false. */
 941static inline bool vtd_iova_range_check(IntelIOMMUState *s,
 942                                        uint64_t iova, VTDContextEntry *ce,
 943                                        uint8_t aw)
 944{
 945    /*
 946     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
 947     * in CAP_REG and AW in context-entry.
 948     */
 949    return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
 950}
 951
 952static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
 953                                          VTDContextEntry *ce)
 954{
 955    VTDPASIDEntry pe;
 956
 957    if (s->root_scalable) {
 958        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 959        return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
 960    }
 961
 962    return vtd_ce_get_slpt_base(ce);
 963}
 964
 965/*
 966 * Rsvd field masks for spte:
 967 *     vtd_spte_rsvd 4k pages
 968 *     vtd_spte_rsvd_large large pages
 969 */
 970static uint64_t vtd_spte_rsvd[5];
 971static uint64_t vtd_spte_rsvd_large[5];
 972
 973static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 974{
 975    uint64_t rsvd_mask = vtd_spte_rsvd[level];
 976
 977    if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
 978        (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
 979        /* large page */
 980        rsvd_mask = vtd_spte_rsvd_large[level];
 981    }
 982
 983    return slpte & rsvd_mask;
 984}
 985
 986/* Find the VTD address space associated with a given bus number */
 987static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 988{
 989    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 990    GHashTableIter iter;
 991
 992    if (vtd_bus) {
 993        return vtd_bus;
 994    }
 995
 996    /*
 997     * Iterate over the registered buses to find the one which
 998     * currently holds this bus number and update the bus_num
 999     * lookup table.
1000     */
1001    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1002    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1003        if (pci_bus_num(vtd_bus->bus) == bus_num) {
1004            s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1005            return vtd_bus;
1006        }
1007    }
1008
1009    return NULL;
1010}
1011
1012/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1013 * of the translation, can be used for deciding the size of large page.
1014 */
1015static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1016                             uint64_t iova, bool is_write,
1017                             uint64_t *slptep, uint32_t *slpte_level,
1018                             bool *reads, bool *writes, uint8_t aw_bits)
1019{
1020    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1021    uint32_t level = vtd_get_iova_level(s, ce);
1022    uint32_t offset;
1023    uint64_t slpte;
1024    uint64_t access_right_check;
1025
1026    if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1027        error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1028                          __func__, iova);
1029        return -VTD_FR_ADDR_BEYOND_MGAW;
1030    }
1031
1032    /* FIXME: what is the Atomics request here? */
1033    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1034
1035    while (true) {
1036        offset = vtd_iova_level_offset(iova, level);
1037        slpte = vtd_get_slpte(addr, offset);
1038
1039        if (slpte == (uint64_t)-1) {
1040            error_report_once("%s: detected read error on DMAR slpte "
1041                              "(iova=0x%" PRIx64 ")", __func__, iova);
1042            if (level == vtd_get_iova_level(s, ce)) {
1043                /* Invalid programming of context-entry */
1044                return -VTD_FR_CONTEXT_ENTRY_INV;
1045            } else {
1046                return -VTD_FR_PAGING_ENTRY_INV;
1047            }
1048        }
1049        *reads = (*reads) && (slpte & VTD_SL_R);
1050        *writes = (*writes) && (slpte & VTD_SL_W);
1051        if (!(slpte & access_right_check)) {
1052            error_report_once("%s: detected slpte permission error "
1053                              "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1054                              "slpte=0x%" PRIx64 ", write=%d)", __func__,
1055                              iova, level, slpte, is_write);
1056            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1057        }
1058        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1059            error_report_once("%s: detected splte reserve non-zero "
1060                              "iova=0x%" PRIx64 ", level=0x%" PRIx32
1061                              "slpte=0x%" PRIx64 ")", __func__, iova,
1062                              level, slpte);
1063            return -VTD_FR_PAGING_ENTRY_RSVD;
1064        }
1065
1066        if (vtd_is_last_slpte(slpte, level)) {
1067            *slptep = slpte;
1068            *slpte_level = level;
1069            return 0;
1070        }
1071        addr = vtd_get_slpte_addr(slpte, aw_bits);
1072        level--;
1073    }
1074}
1075
1076typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1077
1078/**
1079 * Constant information used during page walking
1080 *
1081 * @hook_fn: hook func to be called when detected page
1082 * @private: private data to be passed into hook func
1083 * @notify_unmap: whether we should notify invalid entries
1084 * @as: VT-d address space of the device
1085 * @aw: maximum address width
1086 * @domain: domain ID of the page walk
1087 */
1088typedef struct {
1089    VTDAddressSpace *as;
1090    vtd_page_walk_hook hook_fn;
1091    void *private;
1092    bool notify_unmap;
1093    uint8_t aw;
1094    uint16_t domain_id;
1095} vtd_page_walk_info;
1096
1097static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1098{
1099    VTDAddressSpace *as = info->as;
1100    vtd_page_walk_hook hook_fn = info->hook_fn;
1101    void *private = info->private;
1102    DMAMap target = {
1103        .iova = entry->iova,
1104        .size = entry->addr_mask,
1105        .translated_addr = entry->translated_addr,
1106        .perm = entry->perm,
1107    };
1108    DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1109
1110    if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1111        trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1112        return 0;
1113    }
1114
1115    assert(hook_fn);
1116
1117    /* Update local IOVA mapped ranges */
1118    if (entry->perm) {
1119        if (mapped) {
1120            /* If it's exactly the same translation, skip */
1121            if (!memcmp(mapped, &target, sizeof(target))) {
1122                trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1123                                                 entry->translated_addr);
1124                return 0;
1125            } else {
1126                /*
1127                 * Translation changed.  Normally this should not
1128                 * happen, but it can happen when with buggy guest
1129                 * OSes.  Note that there will be a small window that
1130                 * we don't have map at all.  But that's the best
1131                 * effort we can do.  The ideal way to emulate this is
1132                 * atomically modify the PTE to follow what has
1133                 * changed, but we can't.  One example is that vfio
1134                 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1135                 * interface to modify a mapping (meanwhile it seems
1136                 * meaningless to even provide one).  Anyway, let's
1137                 * mark this as a TODO in case one day we'll have
1138                 * a better solution.
1139                 */
1140                IOMMUAccessFlags cache_perm = entry->perm;
1141                int ret;
1142
1143                /* Emulate an UNMAP */
1144                entry->perm = IOMMU_NONE;
1145                trace_vtd_page_walk_one(info->domain_id,
1146                                        entry->iova,
1147                                        entry->translated_addr,
1148                                        entry->addr_mask,
1149                                        entry->perm);
1150                ret = hook_fn(entry, private);
1151                if (ret) {
1152                    return ret;
1153                }
1154                /* Drop any existing mapping */
1155                iova_tree_remove(as->iova_tree, &target);
1156                /* Recover the correct permission */
1157                entry->perm = cache_perm;
1158            }
1159        }
1160        iova_tree_insert(as->iova_tree, &target);
1161    } else {
1162        if (!mapped) {
1163            /* Skip since we didn't map this range at all */
1164            trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1165            return 0;
1166        }
1167        iova_tree_remove(as->iova_tree, &target);
1168    }
1169
1170    trace_vtd_page_walk_one(info->domain_id, entry->iova,
1171                            entry->translated_addr, entry->addr_mask,
1172                            entry->perm);
1173    return hook_fn(entry, private);
1174}
1175
1176/**
1177 * vtd_page_walk_level - walk over specific level for IOVA range
1178 *
1179 * @addr: base GPA addr to start the walk
1180 * @start: IOVA range start address
1181 * @end: IOVA range end address (start <= addr < end)
1182 * @read: whether parent level has read permission
1183 * @write: whether parent level has write permission
1184 * @info: constant information for the page walk
1185 */
1186static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1187                               uint64_t end, uint32_t level, bool read,
1188                               bool write, vtd_page_walk_info *info)
1189{
1190    bool read_cur, write_cur, entry_valid;
1191    uint32_t offset;
1192    uint64_t slpte;
1193    uint64_t subpage_size, subpage_mask;
1194    IOMMUTLBEntry entry;
1195    uint64_t iova = start;
1196    uint64_t iova_next;
1197    int ret = 0;
1198
1199    trace_vtd_page_walk_level(addr, level, start, end);
1200
1201    subpage_size = 1ULL << vtd_slpt_level_shift(level);
1202    subpage_mask = vtd_slpt_level_page_mask(level);
1203
1204    while (iova < end) {
1205        iova_next = (iova & subpage_mask) + subpage_size;
1206
1207        offset = vtd_iova_level_offset(iova, level);
1208        slpte = vtd_get_slpte(addr, offset);
1209
1210        if (slpte == (uint64_t)-1) {
1211            trace_vtd_page_walk_skip_read(iova, iova_next);
1212            goto next;
1213        }
1214
1215        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1216            trace_vtd_page_walk_skip_reserve(iova, iova_next);
1217            goto next;
1218        }
1219
1220        /* Permissions are stacked with parents' */
1221        read_cur = read && (slpte & VTD_SL_R);
1222        write_cur = write && (slpte & VTD_SL_W);
1223
1224        /*
1225         * As long as we have either read/write permission, this is a
1226         * valid entry. The rule works for both page entries and page
1227         * table entries.
1228         */
1229        entry_valid = read_cur | write_cur;
1230
1231        if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1232            /*
1233             * This is a valid PDE (or even bigger than PDE).  We need
1234             * to walk one further level.
1235             */
1236            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1237                                      iova, MIN(iova_next, end), level - 1,
1238                                      read_cur, write_cur, info);
1239        } else {
1240            /*
1241             * This means we are either:
1242             *
1243             * (1) the real page entry (either 4K page, or huge page)
1244             * (2) the whole range is invalid
1245             *
1246             * In either case, we send an IOTLB notification down.
1247             */
1248            entry.target_as = &address_space_memory;
1249            entry.iova = iova & subpage_mask;
1250            entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1251            entry.addr_mask = ~subpage_mask;
1252            /* NOTE: this is only meaningful if entry_valid == true */
1253            entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1254            ret = vtd_page_walk_one(&entry, info);
1255        }
1256
1257        if (ret < 0) {
1258            return ret;
1259        }
1260
1261next:
1262        iova = iova_next;
1263    }
1264
1265    return 0;
1266}
1267
1268/**
1269 * vtd_page_walk - walk specific IOVA range, and call the hook
1270 *
1271 * @s: intel iommu state
1272 * @ce: context entry to walk upon
1273 * @start: IOVA address to start the walk
1274 * @end: IOVA range end address (start <= addr < end)
1275 * @info: page walking information struct
1276 */
1277static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1278                         uint64_t start, uint64_t end,
1279                         vtd_page_walk_info *info)
1280{
1281    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1282    uint32_t level = vtd_get_iova_level(s, ce);
1283
1284    if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1285        return -VTD_FR_ADDR_BEYOND_MGAW;
1286    }
1287
1288    if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1289        /* Fix end so that it reaches the maximum */
1290        end = vtd_iova_limit(s, ce, info->aw);
1291    }
1292
1293    return vtd_page_walk_level(addr, start, end, level, true, true, info);
1294}
1295
1296static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1297                                          VTDRootEntry *re)
1298{
1299    /* Legacy Mode reserved bits check */
1300    if (!s->root_scalable &&
1301        (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1302        goto rsvd_err;
1303
1304    /* Scalable Mode reserved bits check */
1305    if (s->root_scalable &&
1306        ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1307         (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1308        goto rsvd_err;
1309
1310    return 0;
1311
1312rsvd_err:
1313    error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1314                      ", lo=0x%"PRIx64,
1315                      __func__, re->hi, re->lo);
1316    return -VTD_FR_ROOT_ENTRY_RSVD;
1317}
1318
1319static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1320                                                    VTDContextEntry *ce)
1321{
1322    if (!s->root_scalable &&
1323        (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1324         ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1325        error_report_once("%s: invalid context entry: hi=%"PRIx64
1326                          ", lo=%"PRIx64" (reserved nonzero)",
1327                          __func__, ce->hi, ce->lo);
1328        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1329    }
1330
1331    if (s->root_scalable &&
1332        (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1333         ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1334         ce->val[2] ||
1335         ce->val[3])) {
1336        error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1337                          ", val[2]=%"PRIx64
1338                          ", val[1]=%"PRIx64
1339                          ", val[0]=%"PRIx64" (reserved nonzero)",
1340                          __func__, ce->val[3], ce->val[2],
1341                          ce->val[1], ce->val[0]);
1342        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1343    }
1344
1345    return 0;
1346}
1347
1348static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1349                                  VTDContextEntry *ce)
1350{
1351    VTDPASIDEntry pe;
1352
1353    /*
1354     * Make sure in Scalable Mode, a present context entry
1355     * has valid rid2pasid setting, which includes valid
1356     * rid2pasid field and corresponding pasid entry setting
1357     */
1358    return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1359}
1360
1361/* Map a device to its corresponding domain (context-entry) */
1362static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1363                                    uint8_t devfn, VTDContextEntry *ce)
1364{
1365    VTDRootEntry re;
1366    int ret_fr;
1367    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1368
1369    ret_fr = vtd_get_root_entry(s, bus_num, &re);
1370    if (ret_fr) {
1371        return ret_fr;
1372    }
1373
1374    if (!vtd_root_entry_present(s, &re, devfn)) {
1375        /* Not error - it's okay we don't have root entry. */
1376        trace_vtd_re_not_present(bus_num);
1377        return -VTD_FR_ROOT_ENTRY_P;
1378    }
1379
1380    ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1381    if (ret_fr) {
1382        return ret_fr;
1383    }
1384
1385    ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1386    if (ret_fr) {
1387        return ret_fr;
1388    }
1389
1390    if (!vtd_ce_present(ce)) {
1391        /* Not error - it's okay we don't have context entry. */
1392        trace_vtd_ce_not_present(bus_num, devfn);
1393        return -VTD_FR_CONTEXT_ENTRY_P;
1394    }
1395
1396    ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1397    if (ret_fr) {
1398        return ret_fr;
1399    }
1400
1401    /* Check if the programming of context-entry is valid */
1402    if (!s->root_scalable &&
1403        !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1404        error_report_once("%s: invalid context entry: hi=%"PRIx64
1405                          ", lo=%"PRIx64" (level %d not supported)",
1406                          __func__, ce->hi, ce->lo,
1407                          vtd_ce_get_level(ce));
1408        return -VTD_FR_CONTEXT_ENTRY_INV;
1409    }
1410
1411    if (!s->root_scalable) {
1412        /* Do translation type check */
1413        if (!vtd_ce_type_check(x86_iommu, ce)) {
1414            /* Errors dumped in vtd_ce_type_check() */
1415            return -VTD_FR_CONTEXT_ENTRY_INV;
1416        }
1417    } else {
1418        /*
1419         * Check if the programming of context-entry.rid2pasid
1420         * and corresponding pasid setting is valid, and thus
1421         * avoids to check pasid entry fetching result in future
1422         * helper function calling.
1423         */
1424        ret_fr = vtd_ce_rid2pasid_check(s, ce);
1425        if (ret_fr) {
1426            return ret_fr;
1427        }
1428    }
1429
1430    return 0;
1431}
1432
1433static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1434                                     void *private)
1435{
1436    memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1437    return 0;
1438}
1439
1440static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1441                                  VTDContextEntry *ce)
1442{
1443    VTDPASIDEntry pe;
1444
1445    if (s->root_scalable) {
1446        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1447        return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1448    }
1449
1450    return VTD_CONTEXT_ENTRY_DID(ce->hi);
1451}
1452
1453static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1454                                            VTDContextEntry *ce,
1455                                            hwaddr addr, hwaddr size)
1456{
1457    IntelIOMMUState *s = vtd_as->iommu_state;
1458    vtd_page_walk_info info = {
1459        .hook_fn = vtd_sync_shadow_page_hook,
1460        .private = (void *)&vtd_as->iommu,
1461        .notify_unmap = true,
1462        .aw = s->aw_bits,
1463        .as = vtd_as,
1464        .domain_id = vtd_get_domain_id(s, ce),
1465    };
1466
1467    return vtd_page_walk(s, ce, addr, addr + size, &info);
1468}
1469
1470static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1471{
1472    int ret;
1473    VTDContextEntry ce;
1474    IOMMUNotifier *n;
1475
1476    ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1477                                   pci_bus_num(vtd_as->bus),
1478                                   vtd_as->devfn, &ce);
1479    if (ret) {
1480        if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1481            /*
1482             * It's a valid scenario to have a context entry that is
1483             * not present.  For example, when a device is removed
1484             * from an existing domain then the context entry will be
1485             * zeroed by the guest before it was put into another
1486             * domain.  When this happens, instead of synchronizing
1487             * the shadow pages we should invalidate all existing
1488             * mappings and notify the backends.
1489             */
1490            IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1491                vtd_address_space_unmap(vtd_as, n);
1492            }
1493            ret = 0;
1494        }
1495        return ret;
1496    }
1497
1498    return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1499}
1500
1501/*
1502 * Check if specific device is configed to bypass address
1503 * translation for DMA requests. In Scalable Mode, bypass
1504 * 1st-level translation or 2nd-level translation, it depends
1505 * on PGTT setting.
1506 */
1507static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1508{
1509    IntelIOMMUState *s;
1510    VTDContextEntry ce;
1511    VTDPASIDEntry pe;
1512    int ret;
1513
1514    assert(as);
1515
1516    s = as->iommu_state;
1517    ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1518                                   as->devfn, &ce);
1519    if (ret) {
1520        /*
1521         * Possibly failed to parse the context entry for some reason
1522         * (e.g., during init, or any guest configuration errors on
1523         * context entries). We should assume PT not enabled for
1524         * safety.
1525         */
1526        return false;
1527    }
1528
1529    if (s->root_scalable) {
1530        ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1531        if (ret) {
1532            error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1533                              __func__, ret);
1534            return false;
1535        }
1536        return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1537    }
1538
1539    return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1540}
1541
1542/* Return whether the device is using IOMMU translation. */
1543static bool vtd_switch_address_space(VTDAddressSpace *as)
1544{
1545    bool use_iommu;
1546    /* Whether we need to take the BQL on our own */
1547    bool take_bql = !qemu_mutex_iothread_locked();
1548
1549    assert(as);
1550
1551    use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1552
1553    trace_vtd_switch_address_space(pci_bus_num(as->bus),
1554                                   VTD_PCI_SLOT(as->devfn),
1555                                   VTD_PCI_FUNC(as->devfn),
1556                                   use_iommu);
1557
1558    /*
1559     * It's possible that we reach here without BQL, e.g., when called
1560     * from vtd_pt_enable_fast_path(). However the memory APIs need
1561     * it. We'd better make sure we have had it already, or, take it.
1562     */
1563    if (take_bql) {
1564        qemu_mutex_lock_iothread();
1565    }
1566
1567    /* Turn off first then on the other */
1568    if (use_iommu) {
1569        memory_region_set_enabled(&as->nodmar, false);
1570        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1571    } else {
1572        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1573        memory_region_set_enabled(&as->nodmar, true);
1574    }
1575
1576    if (take_bql) {
1577        qemu_mutex_unlock_iothread();
1578    }
1579
1580    return use_iommu;
1581}
1582
1583static void vtd_switch_address_space_all(IntelIOMMUState *s)
1584{
1585    GHashTableIter iter;
1586    VTDBus *vtd_bus;
1587    int i;
1588
1589    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1590    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1591        for (i = 0; i < PCI_DEVFN_MAX; i++) {
1592            if (!vtd_bus->dev_as[i]) {
1593                continue;
1594            }
1595            vtd_switch_address_space(vtd_bus->dev_as[i]);
1596        }
1597    }
1598}
1599
1600static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1601{
1602    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1603}
1604
1605static const bool vtd_qualified_faults[] = {
1606    [VTD_FR_RESERVED] = false,
1607    [VTD_FR_ROOT_ENTRY_P] = false,
1608    [VTD_FR_CONTEXT_ENTRY_P] = true,
1609    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1610    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1611    [VTD_FR_WRITE] = true,
1612    [VTD_FR_READ] = true,
1613    [VTD_FR_PAGING_ENTRY_INV] = true,
1614    [VTD_FR_ROOT_TABLE_INV] = false,
1615    [VTD_FR_CONTEXT_TABLE_INV] = false,
1616    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1617    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1618    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1619    [VTD_FR_PASID_TABLE_INV] = false,
1620    [VTD_FR_RESERVED_ERR] = false,
1621    [VTD_FR_MAX] = false,
1622};
1623
1624/* To see if a fault condition is "qualified", which is reported to software
1625 * only if the FPD field in the context-entry used to process the faulting
1626 * request is 0.
1627 */
1628static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1629{
1630    return vtd_qualified_faults[fault];
1631}
1632
1633static inline bool vtd_is_interrupt_addr(hwaddr addr)
1634{
1635    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1636}
1637
1638static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1639{
1640    VTDBus *vtd_bus;
1641    VTDAddressSpace *vtd_as;
1642    bool success = false;
1643
1644    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1645    if (!vtd_bus) {
1646        goto out;
1647    }
1648
1649    vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1650    if (!vtd_as) {
1651        goto out;
1652    }
1653
1654    if (vtd_switch_address_space(vtd_as) == false) {
1655        /* We switched off IOMMU region successfully. */
1656        success = true;
1657    }
1658
1659out:
1660    trace_vtd_pt_enable_fast_path(source_id, success);
1661}
1662
1663/* Map dev to context-entry then do a paging-structures walk to do a iommu
1664 * translation.
1665 *
1666 * Called from RCU critical section.
1667 *
1668 * @bus_num: The bus number
1669 * @devfn: The devfn, which is the  combined of device and function number
1670 * @is_write: The access is a write operation
1671 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1672 *
1673 * Returns true if translation is successful, otherwise false.
1674 */
1675static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1676                                   uint8_t devfn, hwaddr addr, bool is_write,
1677                                   IOMMUTLBEntry *entry)
1678{
1679    IntelIOMMUState *s = vtd_as->iommu_state;
1680    VTDContextEntry ce;
1681    uint8_t bus_num = pci_bus_num(bus);
1682    VTDContextCacheEntry *cc_entry;
1683    uint64_t slpte, page_mask;
1684    uint32_t level;
1685    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1686    int ret_fr;
1687    bool is_fpd_set = false;
1688    bool reads = true;
1689    bool writes = true;
1690    uint8_t access_flags;
1691    VTDIOTLBEntry *iotlb_entry;
1692
1693    /*
1694     * We have standalone memory region for interrupt addresses, we
1695     * should never receive translation requests in this region.
1696     */
1697    assert(!vtd_is_interrupt_addr(addr));
1698
1699    vtd_iommu_lock(s);
1700
1701    cc_entry = &vtd_as->context_cache_entry;
1702
1703    /* Try to fetch slpte form IOTLB */
1704    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1705    if (iotlb_entry) {
1706        trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1707                                 iotlb_entry->domain_id);
1708        slpte = iotlb_entry->slpte;
1709        access_flags = iotlb_entry->access_flags;
1710        page_mask = iotlb_entry->mask;
1711        goto out;
1712    }
1713
1714    /* Try to fetch context-entry from cache first */
1715    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1716        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1717                               cc_entry->context_entry.lo,
1718                               cc_entry->context_cache_gen);
1719        ce = cc_entry->context_entry;
1720        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1721        if (!is_fpd_set && s->root_scalable) {
1722            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1723            VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1724        }
1725    } else {
1726        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1727        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1728        if (!ret_fr && !is_fpd_set && s->root_scalable) {
1729            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1730        }
1731        VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1732        /* Update context-cache */
1733        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1734                                  cc_entry->context_cache_gen,
1735                                  s->context_cache_gen);
1736        cc_entry->context_entry = ce;
1737        cc_entry->context_cache_gen = s->context_cache_gen;
1738    }
1739
1740    /*
1741     * We don't need to translate for pass-through context entries.
1742     * Also, let's ignore IOTLB caching as well for PT devices.
1743     */
1744    if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1745        entry->iova = addr & VTD_PAGE_MASK_4K;
1746        entry->translated_addr = entry->iova;
1747        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1748        entry->perm = IOMMU_RW;
1749        trace_vtd_translate_pt(source_id, entry->iova);
1750
1751        /*
1752         * When this happens, it means firstly caching-mode is not
1753         * enabled, and this is the first passthrough translation for
1754         * the device. Let's enable the fast path for passthrough.
1755         *
1756         * When passthrough is disabled again for the device, we can
1757         * capture it via the context entry invalidation, then the
1758         * IOMMU region can be swapped back.
1759         */
1760        vtd_pt_enable_fast_path(s, source_id);
1761        vtd_iommu_unlock(s);
1762        return true;
1763    }
1764
1765    ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1766                               &reads, &writes, s->aw_bits);
1767    VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1768
1769    page_mask = vtd_slpt_level_page_mask(level);
1770    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1771    vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1772                     access_flags, level);
1773out:
1774    vtd_iommu_unlock(s);
1775    entry->iova = addr & page_mask;
1776    entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1777    entry->addr_mask = ~page_mask;
1778    entry->perm = access_flags;
1779    return true;
1780
1781error:
1782    vtd_iommu_unlock(s);
1783    entry->iova = 0;
1784    entry->translated_addr = 0;
1785    entry->addr_mask = 0;
1786    entry->perm = IOMMU_NONE;
1787    return false;
1788}
1789
1790static void vtd_root_table_setup(IntelIOMMUState *s)
1791{
1792    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1793    s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1794
1795    vtd_update_scalable_state(s);
1796
1797    trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1798}
1799
1800static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1801                               uint32_t index, uint32_t mask)
1802{
1803    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1804}
1805
1806static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1807{
1808    uint64_t value = 0;
1809    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1810    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1811    s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1812    s->intr_eime = value & VTD_IRTA_EIME;
1813
1814    /* Notify global invalidation */
1815    vtd_iec_notify_all(s, true, 0, 0);
1816
1817    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1818}
1819
1820static void vtd_iommu_replay_all(IntelIOMMUState *s)
1821{
1822    VTDAddressSpace *vtd_as;
1823
1824    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1825        vtd_sync_shadow_page_table(vtd_as);
1826    }
1827}
1828
1829static void vtd_context_global_invalidate(IntelIOMMUState *s)
1830{
1831    trace_vtd_inv_desc_cc_global();
1832    /* Protects context cache */
1833    vtd_iommu_lock(s);
1834    s->context_cache_gen++;
1835    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1836        vtd_reset_context_cache_locked(s);
1837    }
1838    vtd_iommu_unlock(s);
1839    vtd_address_space_refresh_all(s);
1840    /*
1841     * From VT-d spec 6.5.2.1, a global context entry invalidation
1842     * should be followed by a IOTLB global invalidation, so we should
1843     * be safe even without this. Hoewever, let's replay the region as
1844     * well to be safer, and go back here when we need finer tunes for
1845     * VT-d emulation codes.
1846     */
1847    vtd_iommu_replay_all(s);
1848}
1849
1850/* Do a context-cache device-selective invalidation.
1851 * @func_mask: FM field after shifting
1852 */
1853static void vtd_context_device_invalidate(IntelIOMMUState *s,
1854                                          uint16_t source_id,
1855                                          uint16_t func_mask)
1856{
1857    uint16_t mask;
1858    VTDBus *vtd_bus;
1859    VTDAddressSpace *vtd_as;
1860    uint8_t bus_n, devfn;
1861    uint16_t devfn_it;
1862
1863    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1864
1865    switch (func_mask & 3) {
1866    case 0:
1867        mask = 0;   /* No bits in the SID field masked */
1868        break;
1869    case 1:
1870        mask = 4;   /* Mask bit 2 in the SID field */
1871        break;
1872    case 2:
1873        mask = 6;   /* Mask bit 2:1 in the SID field */
1874        break;
1875    case 3:
1876        mask = 7;   /* Mask bit 2:0 in the SID field */
1877        break;
1878    }
1879    mask = ~mask;
1880
1881    bus_n = VTD_SID_TO_BUS(source_id);
1882    vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1883    if (vtd_bus) {
1884        devfn = VTD_SID_TO_DEVFN(source_id);
1885        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1886            vtd_as = vtd_bus->dev_as[devfn_it];
1887            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1888                trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1889                                             VTD_PCI_FUNC(devfn_it));
1890                vtd_iommu_lock(s);
1891                vtd_as->context_cache_entry.context_cache_gen = 0;
1892                vtd_iommu_unlock(s);
1893                /*
1894                 * Do switch address space when needed, in case if the
1895                 * device passthrough bit is switched.
1896                 */
1897                vtd_switch_address_space(vtd_as);
1898                /*
1899                 * So a device is moving out of (or moving into) a
1900                 * domain, resync the shadow page table.
1901                 * This won't bring bad even if we have no such
1902                 * notifier registered - the IOMMU notification
1903                 * framework will skip MAP notifications if that
1904                 * happened.
1905                 */
1906                vtd_sync_shadow_page_table(vtd_as);
1907            }
1908        }
1909    }
1910}
1911
1912/* Context-cache invalidation
1913 * Returns the Context Actual Invalidation Granularity.
1914 * @val: the content of the CCMD_REG
1915 */
1916static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1917{
1918    uint64_t caig;
1919    uint64_t type = val & VTD_CCMD_CIRG_MASK;
1920
1921    switch (type) {
1922    case VTD_CCMD_DOMAIN_INVL:
1923        /* Fall through */
1924    case VTD_CCMD_GLOBAL_INVL:
1925        caig = VTD_CCMD_GLOBAL_INVL_A;
1926        vtd_context_global_invalidate(s);
1927        break;
1928
1929    case VTD_CCMD_DEVICE_INVL:
1930        caig = VTD_CCMD_DEVICE_INVL_A;
1931        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1932        break;
1933
1934    default:
1935        error_report_once("%s: invalid context: 0x%" PRIx64,
1936                          __func__, val);
1937        caig = 0;
1938    }
1939    return caig;
1940}
1941
1942static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1943{
1944    trace_vtd_inv_desc_iotlb_global();
1945    vtd_reset_iotlb(s);
1946    vtd_iommu_replay_all(s);
1947}
1948
1949static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1950{
1951    VTDContextEntry ce;
1952    VTDAddressSpace *vtd_as;
1953
1954    trace_vtd_inv_desc_iotlb_domain(domain_id);
1955
1956    vtd_iommu_lock(s);
1957    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1958                                &domain_id);
1959    vtd_iommu_unlock(s);
1960
1961    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1962        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1963                                      vtd_as->devfn, &ce) &&
1964            domain_id == vtd_get_domain_id(s, &ce)) {
1965            vtd_sync_shadow_page_table(vtd_as);
1966        }
1967    }
1968}
1969
1970static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1971                                           uint16_t domain_id, hwaddr addr,
1972                                           uint8_t am)
1973{
1974    VTDAddressSpace *vtd_as;
1975    VTDContextEntry ce;
1976    int ret;
1977    hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1978
1979    QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1980        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1981                                       vtd_as->devfn, &ce);
1982        if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1983            if (vtd_as_has_map_notifier(vtd_as)) {
1984                /*
1985                 * As long as we have MAP notifications registered in
1986                 * any of our IOMMU notifiers, we need to sync the
1987                 * shadow page table.
1988                 */
1989                vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1990            } else {
1991                /*
1992                 * For UNMAP-only notifiers, we don't need to walk the
1993                 * page tables.  We just deliver the PSI down to
1994                 * invalidate caches.
1995                 */
1996                IOMMUTLBEntry entry = {
1997                    .target_as = &address_space_memory,
1998                    .iova = addr,
1999                    .translated_addr = 0,
2000                    .addr_mask = size - 1,
2001                    .perm = IOMMU_NONE,
2002                };
2003                memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
2004            }
2005        }
2006    }
2007}
2008
2009static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2010                                      hwaddr addr, uint8_t am)
2011{
2012    VTDIOTLBPageInvInfo info;
2013
2014    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2015
2016    assert(am <= VTD_MAMV);
2017    info.domain_id = domain_id;
2018    info.addr = addr;
2019    info.mask = ~((1 << am) - 1);
2020    vtd_iommu_lock(s);
2021    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2022    vtd_iommu_unlock(s);
2023    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2024}
2025
2026/* Flush IOTLB
2027 * Returns the IOTLB Actual Invalidation Granularity.
2028 * @val: the content of the IOTLB_REG
2029 */
2030static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2031{
2032    uint64_t iaig;
2033    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2034    uint16_t domain_id;
2035    hwaddr addr;
2036    uint8_t am;
2037
2038    switch (type) {
2039    case VTD_TLB_GLOBAL_FLUSH:
2040        iaig = VTD_TLB_GLOBAL_FLUSH_A;
2041        vtd_iotlb_global_invalidate(s);
2042        break;
2043
2044    case VTD_TLB_DSI_FLUSH:
2045        domain_id = VTD_TLB_DID(val);
2046        iaig = VTD_TLB_DSI_FLUSH_A;
2047        vtd_iotlb_domain_invalidate(s, domain_id);
2048        break;
2049
2050    case VTD_TLB_PSI_FLUSH:
2051        domain_id = VTD_TLB_DID(val);
2052        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2053        am = VTD_IVA_AM(addr);
2054        addr = VTD_IVA_ADDR(addr);
2055        if (am > VTD_MAMV) {
2056            error_report_once("%s: address mask overflow: 0x%" PRIx64,
2057                              __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2058            iaig = 0;
2059            break;
2060        }
2061        iaig = VTD_TLB_PSI_FLUSH_A;
2062        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2063        break;
2064
2065    default:
2066        error_report_once("%s: invalid granularity: 0x%" PRIx64,
2067                          __func__, val);
2068        iaig = 0;
2069    }
2070    return iaig;
2071}
2072
2073static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2074
2075static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2076{
2077    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2078           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2079}
2080
2081static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2082{
2083    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2084
2085    trace_vtd_inv_qi_enable(en);
2086
2087    if (en) {
2088        s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2089        /* 2^(x+8) entries */
2090        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2091        s->qi_enabled = true;
2092        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2093        /* Ok - report back to driver */
2094        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2095
2096        if (s->iq_tail != 0) {
2097            /*
2098             * This is a spec violation but Windows guests are known to set up
2099             * Queued Invalidation this way so we allow the write and process
2100             * Invalidation Descriptors right away.
2101             */
2102            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2103            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2104                vtd_fetch_inv_desc(s);
2105            }
2106        }
2107    } else {
2108        if (vtd_queued_inv_disable_check(s)) {
2109            /* disable Queued Invalidation */
2110            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2111            s->iq_head = 0;
2112            s->qi_enabled = false;
2113            /* Ok - report back to driver */
2114            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2115        } else {
2116            error_report_once("%s: detected improper state when disable QI "
2117                              "(head=0x%x, tail=0x%x, last_type=%d)",
2118                              __func__,
2119                              s->iq_head, s->iq_tail, s->iq_last_desc_type);
2120        }
2121    }
2122}
2123
2124/* Set Root Table Pointer */
2125static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2126{
2127    vtd_root_table_setup(s);
2128    /* Ok - report back to driver */
2129    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2130    vtd_reset_caches(s);
2131    vtd_address_space_refresh_all(s);
2132}
2133
2134/* Set Interrupt Remap Table Pointer */
2135static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2136{
2137    vtd_interrupt_remap_table_setup(s);
2138    /* Ok - report back to driver */
2139    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2140}
2141
2142/* Handle Translation Enable/Disable */
2143static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2144{
2145    if (s->dmar_enabled == en) {
2146        return;
2147    }
2148
2149    trace_vtd_dmar_enable(en);
2150
2151    if (en) {
2152        s->dmar_enabled = true;
2153        /* Ok - report back to driver */
2154        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2155    } else {
2156        s->dmar_enabled = false;
2157
2158        /* Clear the index of Fault Recording Register */
2159        s->next_frcd_reg = 0;
2160        /* Ok - report back to driver */
2161        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2162    }
2163
2164    vtd_reset_caches(s);
2165    vtd_address_space_refresh_all(s);
2166}
2167
2168/* Handle Interrupt Remap Enable/Disable */
2169static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2170{
2171    trace_vtd_ir_enable(en);
2172
2173    if (en) {
2174        s->intr_enabled = true;
2175        /* Ok - report back to driver */
2176        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2177    } else {
2178        s->intr_enabled = false;
2179        /* Ok - report back to driver */
2180        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2181    }
2182}
2183
2184/* Handle write to Global Command Register */
2185static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2186{
2187    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2188    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2189    uint32_t changed = status ^ val;
2190
2191    trace_vtd_reg_write_gcmd(status, val);
2192    if (changed & VTD_GCMD_TE) {
2193        /* Translation enable/disable */
2194        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2195    }
2196    if (val & VTD_GCMD_SRTP) {
2197        /* Set/update the root-table pointer */
2198        vtd_handle_gcmd_srtp(s);
2199    }
2200    if (changed & VTD_GCMD_QIE) {
2201        /* Queued Invalidation Enable */
2202        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2203    }
2204    if (val & VTD_GCMD_SIRTP) {
2205        /* Set/update the interrupt remapping root-table pointer */
2206        vtd_handle_gcmd_sirtp(s);
2207    }
2208    if (changed & VTD_GCMD_IRE) {
2209        /* Interrupt remap enable/disable */
2210        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2211    }
2212}
2213
2214/* Handle write to Context Command Register */
2215static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2216{
2217    uint64_t ret;
2218    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2219
2220    /* Context-cache invalidation request */
2221    if (val & VTD_CCMD_ICC) {
2222        if (s->qi_enabled) {
2223            error_report_once("Queued Invalidation enabled, "
2224                              "should not use register-based invalidation");
2225            return;
2226        }
2227        ret = vtd_context_cache_invalidate(s, val);
2228        /* Invalidation completed. Change something to show */
2229        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2230        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2231                                      ret);
2232    }
2233}
2234
2235/* Handle write to IOTLB Invalidation Register */
2236static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2237{
2238    uint64_t ret;
2239    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2240
2241    /* IOTLB invalidation request */
2242    if (val & VTD_TLB_IVT) {
2243        if (s->qi_enabled) {
2244            error_report_once("Queued Invalidation enabled, "
2245                              "should not use register-based invalidation");
2246            return;
2247        }
2248        ret = vtd_iotlb_flush(s, val);
2249        /* Invalidation completed. Change something to show */
2250        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2251        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2252                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2253    }
2254}
2255
2256/* Fetch an Invalidation Descriptor from the Invalidation Queue */
2257static bool vtd_get_inv_desc(IntelIOMMUState *s,
2258                             VTDInvDesc *inv_desc)
2259{
2260    dma_addr_t base_addr = s->iq;
2261    uint32_t offset = s->iq_head;
2262    uint32_t dw = s->iq_dw ? 32 : 16;
2263    dma_addr_t addr = base_addr + offset * dw;
2264
2265    if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2266        error_report_once("Read INV DESC failed.");
2267        return false;
2268    }
2269    inv_desc->lo = le64_to_cpu(inv_desc->lo);
2270    inv_desc->hi = le64_to_cpu(inv_desc->hi);
2271    if (dw == 32) {
2272        inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2273        inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2274    }
2275    return true;
2276}
2277
2278static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2279{
2280    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2281        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2282        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2283                          " (reserved nonzero)", __func__, inv_desc->hi,
2284                          inv_desc->lo);
2285        return false;
2286    }
2287    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2288        /* Status Write */
2289        uint32_t status_data = (uint32_t)(inv_desc->lo >>
2290                               VTD_INV_DESC_WAIT_DATA_SHIFT);
2291
2292        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2293
2294        /* FIXME: need to be masked with HAW? */
2295        dma_addr_t status_addr = inv_desc->hi;
2296        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2297        status_data = cpu_to_le32(status_data);
2298        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2299                             sizeof(status_data))) {
2300            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2301            return false;
2302        }
2303    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2304        /* Interrupt flag */
2305        vtd_generate_completion_event(s);
2306    } else {
2307        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2308                          " (unknown type)", __func__, inv_desc->hi,
2309                          inv_desc->lo);
2310        return false;
2311    }
2312    return true;
2313}
2314
2315static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2316                                           VTDInvDesc *inv_desc)
2317{
2318    uint16_t sid, fmask;
2319
2320    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2321        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2322                          " (reserved nonzero)", __func__, inv_desc->hi,
2323                          inv_desc->lo);
2324        return false;
2325    }
2326    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2327    case VTD_INV_DESC_CC_DOMAIN:
2328        trace_vtd_inv_desc_cc_domain(
2329            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2330        /* Fall through */
2331    case VTD_INV_DESC_CC_GLOBAL:
2332        vtd_context_global_invalidate(s);
2333        break;
2334
2335    case VTD_INV_DESC_CC_DEVICE:
2336        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2337        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2338        vtd_context_device_invalidate(s, sid, fmask);
2339        break;
2340
2341    default:
2342        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2343                          " (invalid type)", __func__, inv_desc->hi,
2344                          inv_desc->lo);
2345        return false;
2346    }
2347    return true;
2348}
2349
2350static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2351{
2352    uint16_t domain_id;
2353    uint8_t am;
2354    hwaddr addr;
2355
2356    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2357        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2358        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2359                          ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2360                          __func__, inv_desc->hi, inv_desc->lo);
2361        return false;
2362    }
2363
2364    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2365    case VTD_INV_DESC_IOTLB_GLOBAL:
2366        vtd_iotlb_global_invalidate(s);
2367        break;
2368
2369    case VTD_INV_DESC_IOTLB_DOMAIN:
2370        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2371        vtd_iotlb_domain_invalidate(s, domain_id);
2372        break;
2373
2374    case VTD_INV_DESC_IOTLB_PAGE:
2375        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2376        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2377        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2378        if (am > VTD_MAMV) {
2379            error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2380                              ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2381                              __func__, inv_desc->hi, inv_desc->lo,
2382                              am, (unsigned)VTD_MAMV);
2383            return false;
2384        }
2385        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2386        break;
2387
2388    default:
2389        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2390                          ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2391                          __func__, inv_desc->hi, inv_desc->lo,
2392                          inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2393        return false;
2394    }
2395    return true;
2396}
2397
2398static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2399                                     VTDInvDesc *inv_desc)
2400{
2401    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2402                           inv_desc->iec.index,
2403                           inv_desc->iec.index_mask);
2404
2405    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2406                       inv_desc->iec.index,
2407                       inv_desc->iec.index_mask);
2408    return true;
2409}
2410
2411static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2412                                          VTDInvDesc *inv_desc)
2413{
2414    VTDAddressSpace *vtd_dev_as;
2415    IOMMUTLBEntry entry;
2416    struct VTDBus *vtd_bus;
2417    hwaddr addr;
2418    uint64_t sz;
2419    uint16_t sid;
2420    uint8_t devfn;
2421    bool size;
2422    uint8_t bus_num;
2423
2424    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2425    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2426    devfn = sid & 0xff;
2427    bus_num = sid >> 8;
2428    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2429
2430    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2431        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2432        error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2433                          ", lo=%"PRIx64" (reserved nonzero)", __func__,
2434                          inv_desc->hi, inv_desc->lo);
2435        return false;
2436    }
2437
2438    vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2439    if (!vtd_bus) {
2440        goto done;
2441    }
2442
2443    vtd_dev_as = vtd_bus->dev_as[devfn];
2444    if (!vtd_dev_as) {
2445        goto done;
2446    }
2447
2448    /* According to ATS spec table 2.4:
2449     * S = 0, bits 15:12 = xxxx     range size: 4K
2450     * S = 1, bits 15:12 = xxx0     range size: 8K
2451     * S = 1, bits 15:12 = xx01     range size: 16K
2452     * S = 1, bits 15:12 = x011     range size: 32K
2453     * S = 1, bits 15:12 = 0111     range size: 64K
2454     * ...
2455     */
2456    if (size) {
2457        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2458        addr &= ~(sz - 1);
2459    } else {
2460        sz = VTD_PAGE_SIZE;
2461    }
2462
2463    entry.target_as = &vtd_dev_as->as;
2464    entry.addr_mask = sz - 1;
2465    entry.iova = addr;
2466    entry.perm = IOMMU_NONE;
2467    entry.translated_addr = 0;
2468    memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2469
2470done:
2471    return true;
2472}
2473
2474static bool vtd_process_inv_desc(IntelIOMMUState *s)
2475{
2476    VTDInvDesc inv_desc;
2477    uint8_t desc_type;
2478
2479    trace_vtd_inv_qi_head(s->iq_head);
2480    if (!vtd_get_inv_desc(s, &inv_desc)) {
2481        s->iq_last_desc_type = VTD_INV_DESC_NONE;
2482        return false;
2483    }
2484
2485    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2486    /* FIXME: should update at first or at last? */
2487    s->iq_last_desc_type = desc_type;
2488
2489    switch (desc_type) {
2490    case VTD_INV_DESC_CC:
2491        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2492        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2493            return false;
2494        }
2495        break;
2496
2497    case VTD_INV_DESC_IOTLB:
2498        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2499        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2500            return false;
2501        }
2502        break;
2503
2504    /*
2505     * TODO: the entity of below two cases will be implemented in future series.
2506     * To make guest (which integrates scalable mode support patch set in
2507     * iommu driver) work, just return true is enough so far.
2508     */
2509    case VTD_INV_DESC_PC:
2510        break;
2511
2512    case VTD_INV_DESC_PIOTLB:
2513        break;
2514
2515    case VTD_INV_DESC_WAIT:
2516        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2517        if (!vtd_process_wait_desc(s, &inv_desc)) {
2518            return false;
2519        }
2520        break;
2521
2522    case VTD_INV_DESC_IEC:
2523        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2524        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2525            return false;
2526        }
2527        break;
2528
2529    case VTD_INV_DESC_DEVICE:
2530        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2531        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2532            return false;
2533        }
2534        break;
2535
2536    default:
2537        error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2538                          " (unknown type)", __func__, inv_desc.hi,
2539                          inv_desc.lo);
2540        return false;
2541    }
2542    s->iq_head++;
2543    if (s->iq_head == s->iq_size) {
2544        s->iq_head = 0;
2545    }
2546    return true;
2547}
2548
2549/* Try to fetch and process more Invalidation Descriptors */
2550static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2551{
2552    trace_vtd_inv_qi_fetch();
2553
2554    if (s->iq_tail >= s->iq_size) {
2555        /* Detects an invalid Tail pointer */
2556        error_report_once("%s: detected invalid QI tail "
2557                          "(tail=0x%x, size=0x%x)",
2558                          __func__, s->iq_tail, s->iq_size);
2559        vtd_handle_inv_queue_error(s);
2560        return;
2561    }
2562    while (s->iq_head != s->iq_tail) {
2563        if (!vtd_process_inv_desc(s)) {
2564            /* Invalidation Queue Errors */
2565            vtd_handle_inv_queue_error(s);
2566            break;
2567        }
2568        /* Must update the IQH_REG in time */
2569        vtd_set_quad_raw(s, DMAR_IQH_REG,
2570                         (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2571                         VTD_IQH_QH_MASK);
2572    }
2573}
2574
2575/* Handle write to Invalidation Queue Tail Register */
2576static void vtd_handle_iqt_write(IntelIOMMUState *s)
2577{
2578    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2579
2580    if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2581        error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2582                          __func__, val);
2583        return;
2584    }
2585    s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2586    trace_vtd_inv_qi_tail(s->iq_tail);
2587
2588    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2589        /* Process Invalidation Queue here */
2590        vtd_fetch_inv_desc(s);
2591    }
2592}
2593
2594static void vtd_handle_fsts_write(IntelIOMMUState *s)
2595{
2596    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2597    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2598    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2599
2600    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2601        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2602        trace_vtd_fsts_clear_ip();
2603    }
2604    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2605     * Descriptors if there are any when Queued Invalidation is enabled?
2606     */
2607}
2608
2609static void vtd_handle_fectl_write(IntelIOMMUState *s)
2610{
2611    uint32_t fectl_reg;
2612    /* FIXME: when software clears the IM field, check the IP field. But do we
2613     * need to compare the old value and the new value to conclude that
2614     * software clears the IM field? Or just check if the IM field is zero?
2615     */
2616    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2617
2618    trace_vtd_reg_write_fectl(fectl_reg);
2619
2620    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2621        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2622        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2623    }
2624}
2625
2626static void vtd_handle_ics_write(IntelIOMMUState *s)
2627{
2628    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2629    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2630
2631    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2632        trace_vtd_reg_ics_clear_ip();
2633        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2634    }
2635}
2636
2637static void vtd_handle_iectl_write(IntelIOMMUState *s)
2638{
2639    uint32_t iectl_reg;
2640    /* FIXME: when software clears the IM field, check the IP field. But do we
2641     * need to compare the old value and the new value to conclude that
2642     * software clears the IM field? Or just check if the IM field is zero?
2643     */
2644    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2645
2646    trace_vtd_reg_write_iectl(iectl_reg);
2647
2648    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2649        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2650        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2651    }
2652}
2653
2654static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2655{
2656    IntelIOMMUState *s = opaque;
2657    uint64_t val;
2658
2659    trace_vtd_reg_read(addr, size);
2660
2661    if (addr + size > DMAR_REG_SIZE) {
2662        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2663                          " size=0x%u", __func__, addr, size);
2664        return (uint64_t)-1;
2665    }
2666
2667    switch (addr) {
2668    /* Root Table Address Register, 64-bit */
2669    case DMAR_RTADDR_REG:
2670        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2671        if (size == 4) {
2672            val = val & ((1ULL << 32) - 1);
2673        }
2674        break;
2675
2676    case DMAR_RTADDR_REG_HI:
2677        assert(size == 4);
2678        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2679        break;
2680
2681    /* Invalidation Queue Address Register, 64-bit */
2682    case DMAR_IQA_REG:
2683        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2684        if (size == 4) {
2685            val = val & ((1ULL << 32) - 1);
2686        }
2687        break;
2688
2689    case DMAR_IQA_REG_HI:
2690        assert(size == 4);
2691        val = s->iq >> 32;
2692        break;
2693
2694    default:
2695        if (size == 4) {
2696            val = vtd_get_long(s, addr);
2697        } else {
2698            val = vtd_get_quad(s, addr);
2699        }
2700    }
2701
2702    return val;
2703}
2704
2705static void vtd_mem_write(void *opaque, hwaddr addr,
2706                          uint64_t val, unsigned size)
2707{
2708    IntelIOMMUState *s = opaque;
2709
2710    trace_vtd_reg_write(addr, size, val);
2711
2712    if (addr + size > DMAR_REG_SIZE) {
2713        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2714                          " size=0x%u", __func__, addr, size);
2715        return;
2716    }
2717
2718    switch (addr) {
2719    /* Global Command Register, 32-bit */
2720    case DMAR_GCMD_REG:
2721        vtd_set_long(s, addr, val);
2722        vtd_handle_gcmd_write(s);
2723        break;
2724
2725    /* Context Command Register, 64-bit */
2726    case DMAR_CCMD_REG:
2727        if (size == 4) {
2728            vtd_set_long(s, addr, val);
2729        } else {
2730            vtd_set_quad(s, addr, val);
2731            vtd_handle_ccmd_write(s);
2732        }
2733        break;
2734
2735    case DMAR_CCMD_REG_HI:
2736        assert(size == 4);
2737        vtd_set_long(s, addr, val);
2738        vtd_handle_ccmd_write(s);
2739        break;
2740
2741    /* IOTLB Invalidation Register, 64-bit */
2742    case DMAR_IOTLB_REG:
2743        if (size == 4) {
2744            vtd_set_long(s, addr, val);
2745        } else {
2746            vtd_set_quad(s, addr, val);
2747            vtd_handle_iotlb_write(s);
2748        }
2749        break;
2750
2751    case DMAR_IOTLB_REG_HI:
2752        assert(size == 4);
2753        vtd_set_long(s, addr, val);
2754        vtd_handle_iotlb_write(s);
2755        break;
2756
2757    /* Invalidate Address Register, 64-bit */
2758    case DMAR_IVA_REG:
2759        if (size == 4) {
2760            vtd_set_long(s, addr, val);
2761        } else {
2762            vtd_set_quad(s, addr, val);
2763        }
2764        break;
2765
2766    case DMAR_IVA_REG_HI:
2767        assert(size == 4);
2768        vtd_set_long(s, addr, val);
2769        break;
2770
2771    /* Fault Status Register, 32-bit */
2772    case DMAR_FSTS_REG:
2773        assert(size == 4);
2774        vtd_set_long(s, addr, val);
2775        vtd_handle_fsts_write(s);
2776        break;
2777
2778    /* Fault Event Control Register, 32-bit */
2779    case DMAR_FECTL_REG:
2780        assert(size == 4);
2781        vtd_set_long(s, addr, val);
2782        vtd_handle_fectl_write(s);
2783        break;
2784
2785    /* Fault Event Data Register, 32-bit */
2786    case DMAR_FEDATA_REG:
2787        assert(size == 4);
2788        vtd_set_long(s, addr, val);
2789        break;
2790
2791    /* Fault Event Address Register, 32-bit */
2792    case DMAR_FEADDR_REG:
2793        if (size == 4) {
2794            vtd_set_long(s, addr, val);
2795        } else {
2796            /*
2797             * While the register is 32-bit only, some guests (Xen...) write to
2798             * it with 64-bit.
2799             */
2800            vtd_set_quad(s, addr, val);
2801        }
2802        break;
2803
2804    /* Fault Event Upper Address Register, 32-bit */
2805    case DMAR_FEUADDR_REG:
2806        assert(size == 4);
2807        vtd_set_long(s, addr, val);
2808        break;
2809
2810    /* Protected Memory Enable Register, 32-bit */
2811    case DMAR_PMEN_REG:
2812        assert(size == 4);
2813        vtd_set_long(s, addr, val);
2814        break;
2815
2816    /* Root Table Address Register, 64-bit */
2817    case DMAR_RTADDR_REG:
2818        if (size == 4) {
2819            vtd_set_long(s, addr, val);
2820        } else {
2821            vtd_set_quad(s, addr, val);
2822        }
2823        break;
2824
2825    case DMAR_RTADDR_REG_HI:
2826        assert(size == 4);
2827        vtd_set_long(s, addr, val);
2828        break;
2829
2830    /* Invalidation Queue Tail Register, 64-bit */
2831    case DMAR_IQT_REG:
2832        if (size == 4) {
2833            vtd_set_long(s, addr, val);
2834        } else {
2835            vtd_set_quad(s, addr, val);
2836        }
2837        vtd_handle_iqt_write(s);
2838        break;
2839
2840    case DMAR_IQT_REG_HI:
2841        assert(size == 4);
2842        vtd_set_long(s, addr, val);
2843        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2844        break;
2845
2846    /* Invalidation Queue Address Register, 64-bit */
2847    case DMAR_IQA_REG:
2848        if (size == 4) {
2849            vtd_set_long(s, addr, val);
2850        } else {
2851            vtd_set_quad(s, addr, val);
2852        }
2853        if (s->ecap & VTD_ECAP_SMTS &&
2854            val & VTD_IQA_DW_MASK) {
2855            s->iq_dw = true;
2856        } else {
2857            s->iq_dw = false;
2858        }
2859        break;
2860
2861    case DMAR_IQA_REG_HI:
2862        assert(size == 4);
2863        vtd_set_long(s, addr, val);
2864        break;
2865
2866    /* Invalidation Completion Status Register, 32-bit */
2867    case DMAR_ICS_REG:
2868        assert(size == 4);
2869        vtd_set_long(s, addr, val);
2870        vtd_handle_ics_write(s);
2871        break;
2872
2873    /* Invalidation Event Control Register, 32-bit */
2874    case DMAR_IECTL_REG:
2875        assert(size == 4);
2876        vtd_set_long(s, addr, val);
2877        vtd_handle_iectl_write(s);
2878        break;
2879
2880    /* Invalidation Event Data Register, 32-bit */
2881    case DMAR_IEDATA_REG:
2882        assert(size == 4);
2883        vtd_set_long(s, addr, val);
2884        break;
2885
2886    /* Invalidation Event Address Register, 32-bit */
2887    case DMAR_IEADDR_REG:
2888        assert(size == 4);
2889        vtd_set_long(s, addr, val);
2890        break;
2891
2892    /* Invalidation Event Upper Address Register, 32-bit */
2893    case DMAR_IEUADDR_REG:
2894        assert(size == 4);
2895        vtd_set_long(s, addr, val);
2896        break;
2897
2898    /* Fault Recording Registers, 128-bit */
2899    case DMAR_FRCD_REG_0_0:
2900        if (size == 4) {
2901            vtd_set_long(s, addr, val);
2902        } else {
2903            vtd_set_quad(s, addr, val);
2904        }
2905        break;
2906
2907    case DMAR_FRCD_REG_0_1:
2908        assert(size == 4);
2909        vtd_set_long(s, addr, val);
2910        break;
2911
2912    case DMAR_FRCD_REG_0_2:
2913        if (size == 4) {
2914            vtd_set_long(s, addr, val);
2915        } else {
2916            vtd_set_quad(s, addr, val);
2917            /* May clear bit 127 (Fault), update PPF */
2918            vtd_update_fsts_ppf(s);
2919        }
2920        break;
2921
2922    case DMAR_FRCD_REG_0_3:
2923        assert(size == 4);
2924        vtd_set_long(s, addr, val);
2925        /* May clear bit 127 (Fault), update PPF */
2926        vtd_update_fsts_ppf(s);
2927        break;
2928
2929    case DMAR_IRTA_REG:
2930        if (size == 4) {
2931            vtd_set_long(s, addr, val);
2932        } else {
2933            vtd_set_quad(s, addr, val);
2934        }
2935        break;
2936
2937    case DMAR_IRTA_REG_HI:
2938        assert(size == 4);
2939        vtd_set_long(s, addr, val);
2940        break;
2941
2942    default:
2943        if (size == 4) {
2944            vtd_set_long(s, addr, val);
2945        } else {
2946            vtd_set_quad(s, addr, val);
2947        }
2948    }
2949}
2950
2951static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2952                                         IOMMUAccessFlags flag, int iommu_idx)
2953{
2954    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2955    IntelIOMMUState *s = vtd_as->iommu_state;
2956    IOMMUTLBEntry iotlb = {
2957        /* We'll fill in the rest later. */
2958        .target_as = &address_space_memory,
2959    };
2960    bool success;
2961
2962    if (likely(s->dmar_enabled)) {
2963        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2964                                         addr, flag & IOMMU_WO, &iotlb);
2965    } else {
2966        /* DMAR disabled, passthrough, use 4k-page*/
2967        iotlb.iova = addr & VTD_PAGE_MASK_4K;
2968        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2969        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2970        iotlb.perm = IOMMU_RW;
2971        success = true;
2972    }
2973
2974    if (likely(success)) {
2975        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2976                                 VTD_PCI_SLOT(vtd_as->devfn),
2977                                 VTD_PCI_FUNC(vtd_as->devfn),
2978                                 iotlb.iova, iotlb.translated_addr,
2979                                 iotlb.addr_mask);
2980    } else {
2981        error_report_once("%s: detected translation failure "
2982                          "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2983                          __func__, pci_bus_num(vtd_as->bus),
2984                          VTD_PCI_SLOT(vtd_as->devfn),
2985                          VTD_PCI_FUNC(vtd_as->devfn),
2986                          addr);
2987    }
2988
2989    return iotlb;
2990}
2991
2992static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2993                                         IOMMUNotifierFlag old,
2994                                         IOMMUNotifierFlag new,
2995                                         Error **errp)
2996{
2997    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2998    IntelIOMMUState *s = vtd_as->iommu_state;
2999
3000    /* Update per-address-space notifier flags */
3001    vtd_as->notifier_flags = new;
3002
3003    if (old == IOMMU_NOTIFIER_NONE) {
3004        QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3005    } else if (new == IOMMU_NOTIFIER_NONE) {
3006        QLIST_REMOVE(vtd_as, next);
3007    }
3008    return 0;
3009}
3010
3011static int vtd_post_load(void *opaque, int version_id)
3012{
3013    IntelIOMMUState *iommu = opaque;
3014
3015    /*
3016     * Memory regions are dynamically turned on/off depending on
3017     * context entry configurations from the guest. After migration,
3018     * we need to make sure the memory regions are still correct.
3019     */
3020    vtd_switch_address_space_all(iommu);
3021
3022    /*
3023     * We don't need to migrate the root_scalable because we can
3024     * simply do the calculation after the loading is complete.  We
3025     * can actually do similar things with root, dmar_enabled, etc.
3026     * however since we've had them already so we'd better keep them
3027     * for compatibility of migration.
3028     */
3029    vtd_update_scalable_state(iommu);
3030
3031    return 0;
3032}
3033
3034static const VMStateDescription vtd_vmstate = {
3035    .name = "iommu-intel",
3036    .version_id = 1,
3037    .minimum_version_id = 1,
3038    .priority = MIG_PRI_IOMMU,
3039    .post_load = vtd_post_load,
3040    .fields = (VMStateField[]) {
3041        VMSTATE_UINT64(root, IntelIOMMUState),
3042        VMSTATE_UINT64(intr_root, IntelIOMMUState),
3043        VMSTATE_UINT64(iq, IntelIOMMUState),
3044        VMSTATE_UINT32(intr_size, IntelIOMMUState),
3045        VMSTATE_UINT16(iq_head, IntelIOMMUState),
3046        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3047        VMSTATE_UINT16(iq_size, IntelIOMMUState),
3048        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3049        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3050        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3051        VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3052        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3053        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3054        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3055        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3056        VMSTATE_END_OF_LIST()
3057    }
3058};
3059
3060static const MemoryRegionOps vtd_mem_ops = {
3061    .read = vtd_mem_read,
3062    .write = vtd_mem_write,
3063    .endianness = DEVICE_LITTLE_ENDIAN,
3064    .impl = {
3065        .min_access_size = 4,
3066        .max_access_size = 8,
3067    },
3068    .valid = {
3069        .min_access_size = 4,
3070        .max_access_size = 8,
3071    },
3072};
3073
3074static Property vtd_properties[] = {
3075    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3076    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3077                            ON_OFF_AUTO_AUTO),
3078    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3079    DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3080                      VTD_HOST_ADDRESS_WIDTH),
3081    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3082    DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3083    DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3084    DEFINE_PROP_END_OF_LIST(),
3085};
3086
3087/* Read IRTE entry with specific index */
3088static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3089                        VTD_IR_TableEntry *entry, uint16_t sid)
3090{
3091    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3092        {0xffff, 0xfffb, 0xfff9, 0xfff8};
3093    dma_addr_t addr = 0x00;
3094    uint16_t mask, source_id;
3095    uint8_t bus, bus_max, bus_min;
3096
3097    if (index >= iommu->intr_size) {
3098        error_report_once("%s: index too large: ind=0x%x",
3099                          __func__, index);
3100        return -VTD_FR_IR_INDEX_OVER;
3101    }
3102
3103    addr = iommu->intr_root + index * sizeof(*entry);
3104    if (dma_memory_read(&address_space_memory, addr, entry,
3105                        sizeof(*entry))) {
3106        error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3107                          __func__, index, addr);
3108        return -VTD_FR_IR_ROOT_INVAL;
3109    }
3110
3111    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3112                          le64_to_cpu(entry->data[0]));
3113
3114    if (!entry->irte.present) {
3115        error_report_once("%s: detected non-present IRTE "
3116                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3117                          __func__, index, le64_to_cpu(entry->data[1]),
3118                          le64_to_cpu(entry->data[0]));
3119        return -VTD_FR_IR_ENTRY_P;
3120    }
3121
3122    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3123        entry->irte.__reserved_2) {
3124        error_report_once("%s: detected non-zero reserved IRTE "
3125                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3126                          __func__, index, le64_to_cpu(entry->data[1]),
3127                          le64_to_cpu(entry->data[0]));
3128        return -VTD_FR_IR_IRTE_RSVD;
3129    }
3130
3131    if (sid != X86_IOMMU_SID_INVALID) {
3132        /* Validate IRTE SID */
3133        source_id = le32_to_cpu(entry->irte.source_id);
3134        switch (entry->irte.sid_vtype) {
3135        case VTD_SVT_NONE:
3136            break;
3137
3138        case VTD_SVT_ALL:
3139            mask = vtd_svt_mask[entry->irte.sid_q];
3140            if ((source_id & mask) != (sid & mask)) {
3141                error_report_once("%s: invalid IRTE SID "
3142                                  "(index=%u, sid=%u, source_id=%u)",
3143                                  __func__, index, sid, source_id);
3144                return -VTD_FR_IR_SID_ERR;
3145            }
3146            break;
3147
3148        case VTD_SVT_BUS:
3149            bus_max = source_id >> 8;
3150            bus_min = source_id & 0xff;
3151            bus = sid >> 8;
3152            if (bus > bus_max || bus < bus_min) {
3153                error_report_once("%s: invalid SVT_BUS "
3154                                  "(index=%u, bus=%u, min=%u, max=%u)",
3155                                  __func__, index, bus, bus_min, bus_max);
3156                return -VTD_FR_IR_SID_ERR;
3157            }
3158            break;
3159
3160        default:
3161            error_report_once("%s: detected invalid IRTE SVT "
3162                              "(index=%u, type=%d)", __func__,
3163                              index, entry->irte.sid_vtype);
3164            /* Take this as verification failure. */
3165            return -VTD_FR_IR_SID_ERR;
3166            break;
3167        }
3168    }
3169
3170    return 0;
3171}
3172
3173/* Fetch IRQ information of specific IR index */
3174static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3175                             X86IOMMUIrq *irq, uint16_t sid)
3176{
3177    VTD_IR_TableEntry irte = {};
3178    int ret = 0;
3179
3180    ret = vtd_irte_get(iommu, index, &irte, sid);
3181    if (ret) {
3182        return ret;
3183    }
3184
3185    irq->trigger_mode = irte.irte.trigger_mode;
3186    irq->vector = irte.irte.vector;
3187    irq->delivery_mode = irte.irte.delivery_mode;
3188    irq->dest = le32_to_cpu(irte.irte.dest_id);
3189    if (!iommu->intr_eime) {
3190#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3191#define  VTD_IR_APIC_DEST_SHIFT        (8)
3192        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3193            VTD_IR_APIC_DEST_SHIFT;
3194    }
3195    irq->dest_mode = irte.irte.dest_mode;
3196    irq->redir_hint = irte.irte.redir_hint;
3197
3198    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3199                       irq->delivery_mode, irq->dest, irq->dest_mode);
3200
3201    return 0;
3202}
3203
3204/* Interrupt remapping for MSI/MSI-X entry */
3205static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3206                                   MSIMessage *origin,
3207                                   MSIMessage *translated,
3208                                   uint16_t sid)
3209{
3210    int ret = 0;
3211    VTD_IR_MSIAddress addr;
3212    uint16_t index;
3213    X86IOMMUIrq irq = {};
3214
3215    assert(origin && translated);
3216
3217    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3218
3219    if (!iommu || !iommu->intr_enabled) {
3220        memcpy(translated, origin, sizeof(*origin));
3221        goto out;
3222    }
3223
3224    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3225        error_report_once("%s: MSI address high 32 bits non-zero detected: "
3226                          "address=0x%" PRIx64, __func__, origin->address);
3227        return -VTD_FR_IR_REQ_RSVD;
3228    }
3229
3230    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3231    if (addr.addr.__head != 0xfee) {
3232        error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3233                          __func__, addr.data);
3234        return -VTD_FR_IR_REQ_RSVD;
3235    }
3236
3237    /* This is compatible mode. */
3238    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3239        memcpy(translated, origin, sizeof(*origin));
3240        goto out;
3241    }
3242
3243    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3244
3245#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3246#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3247
3248    if (addr.addr.sub_valid) {
3249        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3250        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3251    }
3252
3253    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3254    if (ret) {
3255        return ret;
3256    }
3257
3258    if (addr.addr.sub_valid) {
3259        trace_vtd_ir_remap_type("MSI");
3260        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3261            error_report_once("%s: invalid IR MSI "
3262                              "(sid=%u, address=0x%" PRIx64
3263                              ", data=0x%" PRIx32 ")",
3264                              __func__, sid, origin->address, origin->data);
3265            return -VTD_FR_IR_REQ_RSVD;
3266        }
3267    } else {
3268        uint8_t vector = origin->data & 0xff;
3269        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3270
3271        trace_vtd_ir_remap_type("IOAPIC");
3272        /* IOAPIC entry vector should be aligned with IRTE vector
3273         * (see vt-d spec 5.1.5.1). */
3274        if (vector != irq.vector) {
3275            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3276        }
3277
3278        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3279         * (see vt-d spec 5.1.5.1). */
3280        if (trigger_mode != irq.trigger_mode) {
3281            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3282                                      irq.trigger_mode);
3283        }
3284    }
3285
3286    /*
3287     * We'd better keep the last two bits, assuming that guest OS
3288     * might modify it. Keep it does not hurt after all.
3289     */
3290    irq.msi_addr_last_bits = addr.addr.__not_care;
3291
3292    /* Translate X86IOMMUIrq to MSI message */
3293    x86_iommu_irq_to_msi_message(&irq, translated);
3294
3295out:
3296    trace_vtd_ir_remap_msi(origin->address, origin->data,
3297                           translated->address, translated->data);
3298    return 0;
3299}
3300
3301static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3302                         MSIMessage *dst, uint16_t sid)
3303{
3304    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3305                                   src, dst, sid);
3306}
3307
3308static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3309                                   uint64_t *data, unsigned size,
3310                                   MemTxAttrs attrs)
3311{
3312    return MEMTX_OK;
3313}
3314
3315static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3316                                    uint64_t value, unsigned size,
3317                                    MemTxAttrs attrs)
3318{
3319    int ret = 0;
3320    MSIMessage from = {}, to = {};
3321    uint16_t sid = X86_IOMMU_SID_INVALID;
3322
3323    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3324    from.data = (uint32_t) value;
3325
3326    if (!attrs.unspecified) {
3327        /* We have explicit Source ID */
3328        sid = attrs.requester_id;
3329    }
3330
3331    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3332    if (ret) {
3333        /* TODO: report error */
3334        /* Drop this interrupt */
3335        return MEMTX_ERROR;
3336    }
3337
3338    apic_get_class()->send_msi(&to);
3339
3340    return MEMTX_OK;
3341}
3342
3343static const MemoryRegionOps vtd_mem_ir_ops = {
3344    .read_with_attrs = vtd_mem_ir_read,
3345    .write_with_attrs = vtd_mem_ir_write,
3346    .endianness = DEVICE_LITTLE_ENDIAN,
3347    .impl = {
3348        .min_access_size = 4,
3349        .max_access_size = 4,
3350    },
3351    .valid = {
3352        .min_access_size = 4,
3353        .max_access_size = 4,
3354    },
3355};
3356
3357VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3358{
3359    uintptr_t key = (uintptr_t)bus;
3360    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3361    VTDAddressSpace *vtd_dev_as;
3362    char name[128];
3363
3364    if (!vtd_bus) {
3365        uintptr_t *new_key = g_malloc(sizeof(*new_key));
3366        *new_key = (uintptr_t)bus;
3367        /* No corresponding free() */
3368        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3369                            PCI_DEVFN_MAX);
3370        vtd_bus->bus = bus;
3371        g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3372    }
3373
3374    vtd_dev_as = vtd_bus->dev_as[devfn];
3375
3376    if (!vtd_dev_as) {
3377        snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3378                 PCI_FUNC(devfn));
3379        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3380
3381        vtd_dev_as->bus = bus;
3382        vtd_dev_as->devfn = (uint8_t)devfn;
3383        vtd_dev_as->iommu_state = s;
3384        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3385        vtd_dev_as->iova_tree = iova_tree_new();
3386
3387        memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3388        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3389
3390        /*
3391         * Build the DMAR-disabled container with aliases to the
3392         * shared MRs.  Note that aliasing to a shared memory region
3393         * could help the memory API to detect same FlatViews so we
3394         * can have devices to share the same FlatView when DMAR is
3395         * disabled (either by not providing "intel_iommu=on" or with
3396         * "iommu=pt").  It will greatly reduce the total number of
3397         * FlatViews of the system hence VM runs faster.
3398         */
3399        memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3400                                 "vtd-nodmar", &s->mr_nodmar, 0,
3401                                 memory_region_size(&s->mr_nodmar));
3402
3403        /*
3404         * Build the per-device DMAR-enabled container.
3405         *
3406         * TODO: currently we have per-device IOMMU memory region only
3407         * because we have per-device IOMMU notifiers for devices.  If
3408         * one day we can abstract the IOMMU notifiers out of the
3409         * memory regions then we can also share the same memory
3410         * region here just like what we've done above with the nodmar
3411         * region.
3412         */
3413        strcat(name, "-dmar");
3414        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3415                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3416                                 name, UINT64_MAX);
3417        memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3418                                 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3419        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3420                                            VTD_INTERRUPT_ADDR_FIRST,
3421                                            &vtd_dev_as->iommu_ir, 1);
3422
3423        /*
3424         * Hook both the containers under the root container, we
3425         * switch between DMAR & noDMAR by enable/disable
3426         * corresponding sub-containers
3427         */
3428        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3429                                            MEMORY_REGION(&vtd_dev_as->iommu),
3430                                            0);
3431        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3432                                            &vtd_dev_as->nodmar, 0);
3433
3434        vtd_switch_address_space(vtd_dev_as);
3435    }
3436    return vtd_dev_as;
3437}
3438
3439static uint64_t get_naturally_aligned_size(uint64_t start,
3440                                           uint64_t size, int gaw)
3441{
3442    uint64_t max_mask = 1ULL << gaw;
3443    uint64_t alignment = start ? start & -start : max_mask;
3444
3445    alignment = MIN(alignment, max_mask);
3446    size = MIN(size, max_mask);
3447
3448    if (alignment <= size) {
3449        /* Increase the alignment of start */
3450        return alignment;
3451    } else {
3452        /* Find the largest page mask from size */
3453        return 1ULL << (63 - clz64(size));
3454    }
3455}
3456
3457/* Unmap the whole range in the notifier's scope. */
3458static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3459{
3460    hwaddr size, remain;
3461    hwaddr start = n->start;
3462    hwaddr end = n->end;
3463    IntelIOMMUState *s = as->iommu_state;
3464    DMAMap map;
3465
3466    /*
3467     * Note: all the codes in this function has a assumption that IOVA
3468     * bits are no more than VTD_MGAW bits (which is restricted by
3469     * VT-d spec), otherwise we need to consider overflow of 64 bits.
3470     */
3471
3472    if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3473        /*
3474         * Don't need to unmap regions that is bigger than the whole
3475         * VT-d supported address space size
3476         */
3477        end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3478    }
3479
3480    assert(start <= end);
3481    size = remain = end - start + 1;
3482
3483    while (remain >= VTD_PAGE_SIZE) {
3484        IOMMUTLBEntry entry;
3485        uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
3486
3487        assert(mask);
3488
3489        entry.iova = start;
3490        entry.addr_mask = mask - 1;
3491        entry.target_as = &address_space_memory;
3492        entry.perm = IOMMU_NONE;
3493        /* This field is meaningless for unmap */
3494        entry.translated_addr = 0;
3495
3496        memory_region_notify_one(n, &entry);
3497
3498        start += mask;
3499        remain -= mask;
3500    }
3501
3502    assert(!remain);
3503
3504    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3505                             VTD_PCI_SLOT(as->devfn),
3506                             VTD_PCI_FUNC(as->devfn),
3507                             n->start, size);
3508
3509    map.iova = n->start;
3510    map.size = size;
3511    iova_tree_remove(as->iova_tree, &map);
3512}
3513
3514static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3515{
3516    VTDAddressSpace *vtd_as;
3517    IOMMUNotifier *n;
3518
3519    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3520        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3521            vtd_address_space_unmap(vtd_as, n);
3522        }
3523    }
3524}
3525
3526static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3527{
3528    vtd_address_space_unmap_all(s);
3529    vtd_switch_address_space_all(s);
3530}
3531
3532static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3533{
3534    memory_region_notify_one((IOMMUNotifier *)private, entry);
3535    return 0;
3536}
3537
3538static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3539{
3540    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3541    IntelIOMMUState *s = vtd_as->iommu_state;
3542    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3543    VTDContextEntry ce;
3544
3545    /*
3546     * The replay can be triggered by either a invalidation or a newly
3547     * created entry. No matter what, we release existing mappings
3548     * (it means flushing caches for UNMAP-only registers).
3549     */
3550    vtd_address_space_unmap(vtd_as, n);
3551
3552    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3553        trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3554                                  "legacy mode",
3555                                  bus_n, PCI_SLOT(vtd_as->devfn),
3556                                  PCI_FUNC(vtd_as->devfn),
3557                                  vtd_get_domain_id(s, &ce),
3558                                  ce.hi, ce.lo);
3559        if (vtd_as_has_map_notifier(vtd_as)) {
3560            /* This is required only for MAP typed notifiers */
3561            vtd_page_walk_info info = {
3562                .hook_fn = vtd_replay_hook,
3563                .private = (void *)n,
3564                .notify_unmap = false,
3565                .aw = s->aw_bits,
3566                .as = vtd_as,
3567                .domain_id = vtd_get_domain_id(s, &ce),
3568            };
3569
3570            vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3571        }
3572    } else {
3573        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3574                                    PCI_FUNC(vtd_as->devfn));
3575    }
3576
3577    return;
3578}
3579
3580/* Do the initialization. It will also be called when reset, so pay
3581 * attention when adding new initialization stuff.
3582 */
3583static void vtd_init(IntelIOMMUState *s)
3584{
3585    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3586
3587    memset(s->csr, 0, DMAR_REG_SIZE);
3588    memset(s->wmask, 0, DMAR_REG_SIZE);
3589    memset(s->w1cmask, 0, DMAR_REG_SIZE);
3590    memset(s->womask, 0, DMAR_REG_SIZE);
3591
3592    s->root = 0;
3593    s->root_scalable = false;
3594    s->dmar_enabled = false;
3595    s->intr_enabled = false;
3596    s->iq_head = 0;
3597    s->iq_tail = 0;
3598    s->iq = 0;
3599    s->iq_size = 0;
3600    s->qi_enabled = false;
3601    s->iq_last_desc_type = VTD_INV_DESC_NONE;
3602    s->iq_dw = false;
3603    s->next_frcd_reg = 0;
3604    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3605             VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3606             VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3607    if (s->dma_drain) {
3608        s->cap |= VTD_CAP_DRAIN;
3609    }
3610    if (s->aw_bits == VTD_HOST_AW_48BIT) {
3611        s->cap |= VTD_CAP_SAGAW_48bit;
3612    }
3613    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3614
3615    /*
3616     * Rsvd field masks for spte
3617     */
3618    vtd_spte_rsvd[0] = ~0ULL;
3619    vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3620                                                  x86_iommu->dt_supported);
3621    vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3622    vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3623    vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3624
3625    vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3626                                                         x86_iommu->dt_supported);
3627    vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3628                                                         x86_iommu->dt_supported);
3629
3630    if (x86_iommu_ir_supported(x86_iommu)) {
3631        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3632        if (s->intr_eim == ON_OFF_AUTO_ON) {
3633            s->ecap |= VTD_ECAP_EIM;
3634        }
3635        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3636    }
3637
3638    if (x86_iommu->dt_supported) {
3639        s->ecap |= VTD_ECAP_DT;
3640    }
3641
3642    if (x86_iommu->pt_supported) {
3643        s->ecap |= VTD_ECAP_PT;
3644    }
3645
3646    if (s->caching_mode) {
3647        s->cap |= VTD_CAP_CM;
3648    }
3649
3650    /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3651    if (s->scalable_mode) {
3652        s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3653    }
3654
3655    vtd_reset_caches(s);
3656
3657    /* Define registers with default values and bit semantics */
3658    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3659    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3660    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3661    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3662    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3663    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3664    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3665    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3666    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3667
3668    /* Advanced Fault Logging not supported */
3669    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3670    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3671    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3672    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3673
3674    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3675     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3676     */
3677    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3678
3679    /* Treated as RO for implementations that PLMR and PHMR fields reported
3680     * as Clear in the CAP_REG.
3681     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3682     */
3683    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3684
3685    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3686    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3687    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3688    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3689    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3690    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3691    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3692    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3693    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3694
3695    /* IOTLB registers */
3696    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3697    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3698    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3699
3700    /* Fault Recording Registers, 128-bit */
3701    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3702    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3703
3704    /*
3705     * Interrupt remapping registers.
3706     */
3707    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3708}
3709
3710/* Should not reset address_spaces when reset because devices will still use
3711 * the address space they got at first (won't ask the bus again).
3712 */
3713static void vtd_reset(DeviceState *dev)
3714{
3715    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3716
3717    vtd_init(s);
3718    vtd_address_space_refresh_all(s);
3719}
3720
3721static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3722{
3723    IntelIOMMUState *s = opaque;
3724    VTDAddressSpace *vtd_as;
3725
3726    assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3727
3728    vtd_as = vtd_find_add_as(s, bus, devfn);
3729    return &vtd_as->as;
3730}
3731
3732static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3733{
3734    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3735
3736    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3737        error_setg(errp, "eim=on cannot be selected without intremap=on");
3738        return false;
3739    }
3740
3741    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3742        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3743                      && x86_iommu_ir_supported(x86_iommu) ?
3744                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3745    }
3746    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3747        if (!kvm_irqchip_in_kernel()) {
3748            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3749            return false;
3750        }
3751        if (!kvm_enable_x2apic()) {
3752            error_setg(errp, "eim=on requires support on the KVM side"
3753                             "(X2APIC_API, first shipped in v4.7)");
3754            return false;
3755        }
3756    }
3757
3758    /* Currently only address widths supported are 39 and 48 bits */
3759    if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3760        (s->aw_bits != VTD_HOST_AW_48BIT)) {
3761        error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3762                   VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3763        return false;
3764    }
3765
3766    if (s->scalable_mode && !s->dma_drain) {
3767        error_setg(errp, "Need to set dma_drain for scalable mode");
3768        return false;
3769    }
3770
3771    return true;
3772}
3773
3774static int vtd_machine_done_notify_one(Object *child, void *unused)
3775{
3776    IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3777
3778    /*
3779     * We hard-coded here because vfio-pci is the only special case
3780     * here.  Let's be more elegant in the future when we can, but so
3781     * far there seems to be no better way.
3782     */
3783    if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3784        vtd_panic_require_caching_mode();
3785    }
3786
3787    return 0;
3788}
3789
3790static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3791{
3792    object_child_foreach_recursive(object_get_root(),
3793                                   vtd_machine_done_notify_one, NULL);
3794}
3795
3796static Notifier vtd_machine_done_notify = {
3797    .notify = vtd_machine_done_hook,
3798};
3799
3800static void vtd_realize(DeviceState *dev, Error **errp)
3801{
3802    MachineState *ms = MACHINE(qdev_get_machine());
3803    PCMachineState *pcms = PC_MACHINE(ms);
3804    X86MachineState *x86ms = X86_MACHINE(ms);
3805    PCIBus *bus = pcms->bus;
3806    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3807    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3808
3809    x86_iommu->type = TYPE_INTEL;
3810
3811    if (!vtd_decide_config(s, errp)) {
3812        return;
3813    }
3814
3815    QLIST_INIT(&s->vtd_as_with_notifiers);
3816    qemu_mutex_init(&s->iommu_lock);
3817    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3818    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3819                          "intel_iommu", DMAR_REG_SIZE);
3820
3821    /* Create the shared memory regions by all devices */
3822    memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3823                       UINT64_MAX);
3824    memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3825                          s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3826    memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3827                             "vtd-sys-alias", get_system_memory(), 0,
3828                             memory_region_size(get_system_memory()));
3829    memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3830                                        &s->mr_sys_alias, 0);
3831    memory_region_add_subregion_overlap(&s->mr_nodmar,
3832                                        VTD_INTERRUPT_ADDR_FIRST,
3833                                        &s->mr_ir, 1);
3834
3835    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3836    /* No corresponding destroy */
3837    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3838                                     g_free, g_free);
3839    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3840                                              g_free, g_free);
3841    vtd_init(s);
3842    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3843    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3844    /* Pseudo address space under root PCI bus. */
3845    x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3846    qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3847}
3848
3849static void vtd_class_init(ObjectClass *klass, void *data)
3850{
3851    DeviceClass *dc = DEVICE_CLASS(klass);
3852    X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3853
3854    dc->reset = vtd_reset;
3855    dc->vmsd = &vtd_vmstate;
3856    device_class_set_props(dc, vtd_properties);
3857    dc->hotpluggable = false;
3858    x86_class->realize = vtd_realize;
3859    x86_class->int_remap = vtd_int_remap;
3860    /* Supported by the pc-q35-* machine types */
3861    dc->user_creatable = true;
3862    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3863    dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3864}
3865
3866static const TypeInfo vtd_info = {
3867    .name          = TYPE_INTEL_IOMMU_DEVICE,
3868    .parent        = TYPE_X86_IOMMU_DEVICE,
3869    .instance_size = sizeof(IntelIOMMUState),
3870    .class_init    = vtd_class_init,
3871};
3872
3873static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3874                                                     void *data)
3875{
3876    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3877
3878    imrc->translate = vtd_iommu_translate;
3879    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3880    imrc->replay = vtd_iommu_replay;
3881}
3882
3883static const TypeInfo vtd_iommu_memory_region_info = {
3884    .parent = TYPE_IOMMU_MEMORY_REGION,
3885    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3886    .class_init = vtd_iommu_memory_region_class_init,
3887};
3888
3889static void vtd_register_types(void)
3890{
3891    type_register_static(&vtd_info);
3892    type_register_static(&vtd_iommu_memory_region_info);
3893}
3894
3895type_init(vtd_register_types)
3896