qemu/hw/intc/pnv_xive.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC XIVE interrupt controller model
   3 *
   4 * Copyright (c) 2017-2019, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/log.h"
  12#include "qemu/module.h"
  13#include "qapi/error.h"
  14#include "target/ppc/cpu.h"
  15#include "sysemu/cpus.h"
  16#include "sysemu/dma.h"
  17#include "sysemu/reset.h"
  18#include "monitor/monitor.h"
  19#include "hw/ppc/fdt.h"
  20#include "hw/ppc/pnv.h"
  21#include "hw/ppc/pnv_core.h"
  22#include "hw/ppc/pnv_xscom.h"
  23#include "hw/ppc/pnv_xive.h"
  24#include "hw/ppc/xive_regs.h"
  25#include "hw/qdev-properties.h"
  26#include "hw/ppc/ppc.h"
  27
  28#include <libfdt.h>
  29
  30#include "pnv_xive_regs.h"
  31
  32#undef XIVE_DEBUG
  33
  34/*
  35 * Virtual structures table (VST)
  36 */
  37#define SBE_PER_BYTE   4
  38
  39typedef struct XiveVstInfo {
  40    const char *name;
  41    uint32_t    size;
  42    uint32_t    max_blocks;
  43} XiveVstInfo;
  44
  45static const XiveVstInfo vst_infos[] = {
  46    [VST_TSEL_IVT]  = { "EAT",  sizeof(XiveEAS), 16 },
  47    [VST_TSEL_SBE]  = { "SBE",  1,               16 },
  48    [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
  49    [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
  50
  51    /*
  52     *  Interrupt fifo backing store table (not modeled) :
  53     *
  54     * 0 - IPI,
  55     * 1 - HWD,
  56     * 2 - First escalate,
  57     * 3 - Second escalate,
  58     * 4 - Redistribution,
  59     * 5 - IPI cascaded queue ?
  60     */
  61    [VST_TSEL_IRQ]  = { "IRQ",  1,               6  },
  62};
  63
  64#define xive_error(xive, fmt, ...)                                      \
  65    qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n",              \
  66                  (xive)->chip->chip_id, ## __VA_ARGS__);
  67
  68/*
  69 * QEMU version of the GETFIELD/SETFIELD macros
  70 *
  71 * TODO: It might be better to use the existing extract64() and
  72 * deposit64() but this means that all the register definitions will
  73 * change and become incompatible with the ones found in skiboot.
  74 *
  75 * Keep it as it is for now until we find a common ground.
  76 */
  77static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
  78{
  79    return (word & mask) >> ctz64(mask);
  80}
  81
  82static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
  83                                uint64_t value)
  84{
  85    return (word & ~mask) | ((value << ctz64(mask)) & mask);
  86}
  87
  88/*
  89 * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
  90 * field overrides the hardwired chip ID in the Powerbus operations
  91 * and for CAM compares
  92 */
  93static uint8_t pnv_xive_block_id(PnvXive *xive)
  94{
  95    uint8_t blk = xive->chip->chip_id;
  96    uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
  97
  98    if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
  99        blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
 100    }
 101
 102    return blk;
 103}
 104
 105/*
 106 * Remote access to controllers. HW uses MMIOs. For now, a simple scan
 107 * of the chips is good enough.
 108 *
 109 * TODO: Block scope support
 110 */
 111static PnvXive *pnv_xive_get_remote(uint8_t blk)
 112{
 113    PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
 114    int i;
 115
 116    for (i = 0; i < pnv->num_chips; i++) {
 117        Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
 118        PnvXive *xive = &chip9->xive;
 119
 120        if (pnv_xive_block_id(xive) == blk) {
 121            return xive;
 122        }
 123    }
 124    return NULL;
 125}
 126
 127/*
 128 * VST accessors for SBE, EAT, ENDT, NVT
 129 *
 130 * Indirect VST tables are arrays of VSDs pointing to a page (of same
 131 * size). Each page is a direct VST table.
 132 */
 133
 134#define XIVE_VSD_SIZE 8
 135
 136/* Indirect page size can be 4K, 64K, 2M, 16M. */
 137static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
 138{
 139     return page_shift == 12 || page_shift == 16 ||
 140         page_shift == 21 || page_shift == 24;
 141}
 142
 143static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
 144                                         uint64_t vsd, uint32_t idx)
 145{
 146    const XiveVstInfo *info = &vst_infos[type];
 147    uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
 148    uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
 149    uint32_t idx_max;
 150
 151    idx_max = vst_tsize / info->size - 1;
 152    if (idx > idx_max) {
 153#ifdef XIVE_DEBUG
 154        xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
 155                   info->name, idx, idx_max);
 156#endif
 157        return 0;
 158    }
 159
 160    return vst_addr + idx * info->size;
 161}
 162
 163static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
 164                                           uint64_t vsd, uint32_t idx)
 165{
 166    const XiveVstInfo *info = &vst_infos[type];
 167    uint64_t vsd_addr;
 168    uint32_t vsd_idx;
 169    uint32_t page_shift;
 170    uint32_t vst_per_page;
 171
 172    /* Get the page size of the indirect table. */
 173    vsd_addr = vsd & VSD_ADDRESS_MASK;
 174    vsd = ldq_be_dma(&address_space_memory, vsd_addr);
 175
 176    if (!(vsd & VSD_ADDRESS_MASK)) {
 177#ifdef XIVE_DEBUG
 178        xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
 179#endif
 180        return 0;
 181    }
 182
 183    page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
 184
 185    if (!pnv_xive_vst_page_size_allowed(page_shift)) {
 186        xive_error(xive, "VST: invalid %s page shift %d", info->name,
 187                   page_shift);
 188        return 0;
 189    }
 190
 191    vst_per_page = (1ull << page_shift) / info->size;
 192    vsd_idx = idx / vst_per_page;
 193
 194    /* Load the VSD we are looking for, if not already done */
 195    if (vsd_idx) {
 196        vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
 197        vsd = ldq_be_dma(&address_space_memory, vsd_addr);
 198
 199        if (!(vsd & VSD_ADDRESS_MASK)) {
 200#ifdef XIVE_DEBUG
 201            xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
 202#endif
 203            return 0;
 204        }
 205
 206        /*
 207         * Check that the pages have a consistent size across the
 208         * indirect table
 209         */
 210        if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
 211            xive_error(xive, "VST: %s entry %x indirect page size differ !?",
 212                       info->name, idx);
 213            return 0;
 214        }
 215    }
 216
 217    return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
 218}
 219
 220static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
 221                                  uint32_t idx)
 222{
 223    const XiveVstInfo *info = &vst_infos[type];
 224    uint64_t vsd;
 225
 226    if (blk >= info->max_blocks) {
 227        xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
 228                   blk, info->name, idx);
 229        return 0;
 230    }
 231
 232    vsd = xive->vsds[type][blk];
 233
 234    /* Remote VST access */
 235    if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
 236        xive = pnv_xive_get_remote(blk);
 237
 238        return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
 239    }
 240
 241    if (VSD_INDIRECT & vsd) {
 242        return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
 243    }
 244
 245    return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
 246}
 247
 248static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
 249                             uint32_t idx, void *data)
 250{
 251    const XiveVstInfo *info = &vst_infos[type];
 252    uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
 253
 254    if (!addr) {
 255        return -1;
 256    }
 257
 258    cpu_physical_memory_read(addr, data, info->size);
 259    return 0;
 260}
 261
 262#define XIVE_VST_WORD_ALL -1
 263
 264static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
 265                              uint32_t idx, void *data, uint32_t word_number)
 266{
 267    const XiveVstInfo *info = &vst_infos[type];
 268    uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
 269
 270    if (!addr) {
 271        return -1;
 272    }
 273
 274    if (word_number == XIVE_VST_WORD_ALL) {
 275        cpu_physical_memory_write(addr, data, info->size);
 276    } else {
 277        cpu_physical_memory_write(addr + word_number * 4,
 278                                  data + word_number * 4, 4);
 279    }
 280    return 0;
 281}
 282
 283static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 284                            XiveEND *end)
 285{
 286    return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
 287}
 288
 289static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 290                              XiveEND *end, uint8_t word_number)
 291{
 292    return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
 293                              word_number);
 294}
 295
 296static int pnv_xive_end_update(PnvXive *xive)
 297{
 298    uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
 299                           xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
 300    uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
 301                           xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
 302    int i;
 303    uint64_t eqc_watch[4];
 304
 305    for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
 306        eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
 307    }
 308
 309    return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
 310                              XIVE_VST_WORD_ALL);
 311}
 312
 313static void pnv_xive_end_cache_load(PnvXive *xive)
 314{
 315    uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
 316                           xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
 317    uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
 318                           xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
 319    uint64_t eqc_watch[4] = { 0 };
 320    int i;
 321
 322    if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
 323        xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
 324    }
 325
 326    for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
 327        xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
 328    }
 329}
 330
 331static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 332                            XiveNVT *nvt)
 333{
 334    return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
 335}
 336
 337static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 338                              XiveNVT *nvt, uint8_t word_number)
 339{
 340    return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
 341                              word_number);
 342}
 343
 344static int pnv_xive_nvt_update(PnvXive *xive)
 345{
 346    uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
 347                           xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
 348    uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
 349                           xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
 350    int i;
 351    uint64_t vpc_watch[8];
 352
 353    for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
 354        vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
 355    }
 356
 357    return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
 358                              XIVE_VST_WORD_ALL);
 359}
 360
 361static void pnv_xive_nvt_cache_load(PnvXive *xive)
 362{
 363    uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
 364                           xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
 365    uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
 366                           xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
 367    uint64_t vpc_watch[8] = { 0 };
 368    int i;
 369
 370    if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
 371        xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
 372    }
 373
 374    for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
 375        xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
 376    }
 377}
 378
 379static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 380                            XiveEAS *eas)
 381{
 382    PnvXive *xive = PNV_XIVE(xrtr);
 383
 384    /*
 385     * EAT lookups should be local to the IC
 386     */
 387    if (pnv_xive_block_id(xive) != blk) {
 388        xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
 389        return -1;
 390    }
 391
 392    return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
 393}
 394
 395/*
 396 * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
 397 * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
 398 * second register covers cores 16-23 (normal) or 8-11 (fused).
 399 */
 400static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
 401{
 402    int pir = ppc_cpu_pir(cpu);
 403    uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
 404    uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
 405    uint32_t bit = pir & 0x3f;
 406
 407    return xive->regs[reg >> 3] & PPC_BIT(bit);
 408}
 409
 410static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
 411                              uint8_t nvt_blk, uint32_t nvt_idx,
 412                              bool cam_ignore, uint8_t priority,
 413                              uint32_t logic_serv, XiveTCTXMatch *match)
 414{
 415    PnvXive *xive = PNV_XIVE(xptr);
 416    PnvChip *chip = xive->chip;
 417    int count = 0;
 418    int i, j;
 419
 420    for (i = 0; i < chip->nr_cores; i++) {
 421        PnvCore *pc = chip->cores[i];
 422        CPUCore *cc = CPU_CORE(pc);
 423
 424        for (j = 0; j < cc->nr_threads; j++) {
 425            PowerPCCPU *cpu = pc->threads[j];
 426            XiveTCTX *tctx;
 427            int ring;
 428
 429            if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
 430                continue;
 431            }
 432
 433            tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
 434
 435            /*
 436             * Check the thread context CAM lines and record matches.
 437             */
 438            ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
 439                                             nvt_idx, cam_ignore, logic_serv);
 440            /*
 441             * Save the context and follow on to catch duplicates, that we
 442             * don't support yet.
 443             */
 444            if (ring != -1) {
 445                if (match->tctx) {
 446                    qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
 447                                  "thread context NVT %x/%x\n",
 448                                  nvt_blk, nvt_idx);
 449                    return -1;
 450                }
 451
 452                match->ring = ring;
 453                match->tctx = tctx;
 454                count++;
 455            }
 456        }
 457    }
 458
 459    return count;
 460}
 461
 462static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
 463{
 464    return pnv_xive_block_id(PNV_XIVE(xrtr));
 465}
 466
 467/*
 468 * The TIMA MMIO space is shared among the chips and to identify the
 469 * chip from which the access is being done, we extract the chip id
 470 * from the PIR.
 471 */
 472static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
 473{
 474    int pir = ppc_cpu_pir(cpu);
 475    XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
 476    PnvXive *xive = PNV_XIVE(xptr);
 477
 478    if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
 479        xive_error(xive, "IC: CPU %x is not enabled", pir);
 480    }
 481    return xive;
 482}
 483
 484/*
 485 * The internal sources (IPIs) of the interrupt controller have no
 486 * knowledge of the XIVE chip on which they reside. Encode the block
 487 * id in the source interrupt number before forwarding the source
 488 * event notification to the Router. This is required on a multichip
 489 * system.
 490 */
 491static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
 492{
 493    PnvXive *xive = PNV_XIVE(xn);
 494    uint8_t blk = pnv_xive_block_id(xive);
 495
 496    xive_router_notify(xn, XIVE_EAS(blk, srcno));
 497}
 498
 499/*
 500 * XIVE helpers
 501 */
 502
 503static uint64_t pnv_xive_vc_size(PnvXive *xive)
 504{
 505    return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
 506}
 507
 508static uint64_t pnv_xive_edt_shift(PnvXive *xive)
 509{
 510    return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
 511}
 512
 513static uint64_t pnv_xive_pc_size(PnvXive *xive)
 514{
 515    return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
 516}
 517
 518static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
 519{
 520    uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
 521    uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
 522
 523    return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
 524}
 525
 526/*
 527 * Compute the number of entries per indirect subpage.
 528 */
 529static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type)
 530{
 531    uint8_t blk = pnv_xive_block_id(xive);
 532    uint64_t vsd = xive->vsds[type][blk];
 533    const XiveVstInfo *info = &vst_infos[type];
 534    uint64_t vsd_addr;
 535    uint32_t page_shift;
 536
 537    /* For direct tables, fake a valid value */
 538    if (!(VSD_INDIRECT & vsd)) {
 539        return 1;
 540    }
 541
 542    /* Get the page size of the indirect table. */
 543    vsd_addr = vsd & VSD_ADDRESS_MASK;
 544    vsd = ldq_be_dma(&address_space_memory, vsd_addr);
 545
 546    if (!(vsd & VSD_ADDRESS_MASK)) {
 547#ifdef XIVE_DEBUG
 548        xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
 549#endif
 550        return 0;
 551    }
 552
 553    page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
 554
 555    if (!pnv_xive_vst_page_size_allowed(page_shift)) {
 556        xive_error(xive, "VST: invalid %s page shift %d", info->name,
 557                   page_shift);
 558        return 0;
 559    }
 560
 561    return (1ull << page_shift) / info->size;
 562}
 563
 564/*
 565 * EDT Table
 566 *
 567 * The Virtualization Controller MMIO region containing the IPI ESB
 568 * pages and END ESB pages is sub-divided into "sets" which map
 569 * portions of the VC region to the different ESB pages. It is
 570 * configured at runtime through the EDT "Domain Table" to let the
 571 * firmware decide how to split the VC address space between IPI ESB
 572 * pages and END ESB pages.
 573 */
 574
 575/*
 576 * Computes the overall size of the IPI or the END ESB pages
 577 */
 578static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
 579{
 580    uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
 581    uint64_t size = 0;
 582    int i;
 583
 584    for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
 585        uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
 586
 587        if (edt_type == type) {
 588            size += edt_size;
 589        }
 590    }
 591
 592    return size;
 593}
 594
 595/*
 596 * Maps an offset of the VC region in the IPI or END region using the
 597 * layout defined by the EDT "Domaine Table"
 598 */
 599static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
 600                                              uint64_t type)
 601{
 602    int i;
 603    uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
 604    uint64_t edt_offset = vc_offset;
 605
 606    for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
 607        uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
 608
 609        if (edt_type != type) {
 610            edt_offset -= edt_size;
 611        }
 612    }
 613
 614    return edt_offset;
 615}
 616
 617static void pnv_xive_edt_resize(PnvXive *xive)
 618{
 619    uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
 620    uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
 621
 622    memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
 623    memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
 624
 625    memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
 626    memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
 627}
 628
 629/*
 630 * XIVE Table configuration. Only EDT is supported.
 631 */
 632static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
 633{
 634    uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
 635    uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
 636    uint64_t *xive_table;
 637    uint8_t max_index;
 638
 639    switch (tsel) {
 640    case CQ_TAR_TSEL_BLK:
 641        max_index = ARRAY_SIZE(xive->blk);
 642        xive_table = xive->blk;
 643        break;
 644    case CQ_TAR_TSEL_MIG:
 645        max_index = ARRAY_SIZE(xive->mig);
 646        xive_table = xive->mig;
 647        break;
 648    case CQ_TAR_TSEL_EDT:
 649        max_index = ARRAY_SIZE(xive->edt);
 650        xive_table = xive->edt;
 651        break;
 652    case CQ_TAR_TSEL_VDT:
 653        max_index = ARRAY_SIZE(xive->vdt);
 654        xive_table = xive->vdt;
 655        break;
 656    default:
 657        xive_error(xive, "IC: invalid table %d", (int) tsel);
 658        return -1;
 659    }
 660
 661    if (tsel_index >= max_index) {
 662        xive_error(xive, "IC: invalid index %d", (int) tsel_index);
 663        return -1;
 664    }
 665
 666    xive_table[tsel_index] = val;
 667
 668    if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
 669        xive->regs[CQ_TAR >> 3] =
 670            SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
 671    }
 672
 673    /*
 674     * EDT configuration is complete. Resize the MMIO windows exposing
 675     * the IPI and the END ESBs in the VC region.
 676     */
 677    if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
 678        pnv_xive_edt_resize(xive);
 679    }
 680
 681    return 0;
 682}
 683
 684/*
 685 * Virtual Structure Tables (VST) configuration
 686 */
 687static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
 688                                       uint8_t blk, uint64_t vsd)
 689{
 690    XiveENDSource *end_xsrc = &xive->end_source;
 691    XiveSource *xsrc = &xive->ipi_source;
 692    const XiveVstInfo *info = &vst_infos[type];
 693    uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
 694    uint64_t vst_tsize = 1ull << page_shift;
 695    uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
 696
 697    /* Basic checks */
 698
 699    if (VSD_INDIRECT & vsd) {
 700        if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
 701            xive_error(xive, "VST: %s indirect tables are not enabled",
 702                       info->name);
 703            return;
 704        }
 705
 706        if (!pnv_xive_vst_page_size_allowed(page_shift)) {
 707            xive_error(xive, "VST: invalid %s page shift %d", info->name,
 708                       page_shift);
 709            return;
 710        }
 711    }
 712
 713    if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
 714        xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
 715                   " page shift %d", info->name, vst_addr, page_shift);
 716        return;
 717    }
 718
 719    /* Record the table configuration (in SRAM on HW) */
 720    xive->vsds[type][blk] = vsd;
 721
 722    /* Now tune the models with the configuration provided by the FW */
 723
 724    switch (type) {
 725    case VST_TSEL_IVT:  /* Nothing to be done */
 726        break;
 727
 728    case VST_TSEL_EQDT:
 729        /*
 730         * Backing store pages for the END.
 731         *
 732         * If the table is direct, we can compute the number of PQ
 733         * entries provisioned by FW (such as skiboot) and resize the
 734         * END ESB window accordingly.
 735         */
 736        if (!(VSD_INDIRECT & vsd)) {
 737            memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
 738                                   * (1ull << xsrc->esb_shift));
 739        }
 740        memory_region_add_subregion(&xive->end_edt_mmio, 0,
 741                                    &end_xsrc->esb_mmio);
 742        break;
 743
 744    case VST_TSEL_SBE:
 745        /*
 746         * Backing store pages for the source PQ bits. The model does
 747         * not use these PQ bits backed in RAM because the XiveSource
 748         * model has its own.
 749         *
 750         * If the table is direct, we can compute the number of PQ
 751         * entries provisioned by FW (such as skiboot) and resize the
 752         * ESB window accordingly.
 753         */
 754        if (!(VSD_INDIRECT & vsd)) {
 755            memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
 756                                   * (1ull << xsrc->esb_shift));
 757        }
 758        memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
 759        break;
 760
 761    case VST_TSEL_VPDT: /* Not modeled */
 762    case VST_TSEL_IRQ:  /* Not modeled */
 763        /*
 764         * These tables contains the backing store pages for the
 765         * interrupt fifos of the VC sub-engine in case of overflow.
 766         */
 767        break;
 768
 769    default:
 770        g_assert_not_reached();
 771    }
 772}
 773
 774/*
 775 * Both PC and VC sub-engines are configured as each use the Virtual
 776 * Structure Tables : SBE, EAS, END and NVT.
 777 */
 778static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
 779{
 780    uint8_t mode = GETFIELD(VSD_MODE, vsd);
 781    uint8_t type = GETFIELD(VST_TABLE_SELECT,
 782                            xive->regs[VC_VSD_TABLE_ADDR >> 3]);
 783    uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
 784                           xive->regs[VC_VSD_TABLE_ADDR >> 3]);
 785    uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
 786
 787    if (type > VST_TSEL_IRQ) {
 788        xive_error(xive, "VST: invalid table type %d", type);
 789        return;
 790    }
 791
 792    if (blk >= vst_infos[type].max_blocks) {
 793        xive_error(xive, "VST: invalid block id %d for"
 794                      " %s table", blk, vst_infos[type].name);
 795        return;
 796    }
 797
 798    /*
 799     * Only take the VC sub-engine configuration into account because
 800     * the XiveRouter model combines both VC and PC sub-engines
 801     */
 802    if (pc_engine) {
 803        return;
 804    }
 805
 806    if (!vst_addr) {
 807        xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
 808        return;
 809    }
 810
 811    switch (mode) {
 812    case VSD_MODE_FORWARD:
 813        xive->vsds[type][blk] = vsd;
 814        break;
 815
 816    case VSD_MODE_EXCLUSIVE:
 817        pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
 818        break;
 819
 820    default:
 821        xive_error(xive, "VST: unsupported table mode %d", mode);
 822        return;
 823    }
 824}
 825
 826/*
 827 * Interrupt controller MMIO region. The layout is compatible between
 828 * 4K and 64K pages :
 829 *
 830 * Page 0           sub-engine BARs
 831 *  0x000 - 0x3FF   IC registers
 832 *  0x400 - 0x7FF   PC registers
 833 *  0x800 - 0xFFF   VC registers
 834 *
 835 * Page 1           Notify page (writes only)
 836 *  0x000 - 0x7FF   HW interrupt triggers (PSI, PHB)
 837 *  0x800 - 0xFFF   forwards and syncs
 838 *
 839 * Page 2           LSI Trigger page (writes only) (not modeled)
 840 * Page 3           LSI SB EOI page (reads only) (not modeled)
 841 *
 842 * Page 4-7         indirect TIMA
 843 */
 844
 845/*
 846 * IC - registers MMIO
 847 */
 848static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
 849                                  uint64_t val, unsigned size)
 850{
 851    PnvXive *xive = PNV_XIVE(opaque);
 852    MemoryRegion *sysmem = get_system_memory();
 853    uint32_t reg = offset >> 3;
 854    bool is_chip0 = xive->chip->chip_id == 0;
 855
 856    switch (offset) {
 857
 858    /*
 859     * XIVE CQ (PowerBus bridge) settings
 860     */
 861    case CQ_MSGSND:     /* msgsnd for doorbells */
 862    case CQ_FIRMASK_OR: /* FIR error reporting */
 863        break;
 864    case CQ_PBI_CTL:
 865        if (val & CQ_PBI_PC_64K) {
 866            xive->pc_shift = 16;
 867        }
 868        if (val & CQ_PBI_VC_64K) {
 869            xive->vc_shift = 16;
 870        }
 871        break;
 872    case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
 873        /*
 874         * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
 875         */
 876        break;
 877
 878    /*
 879     * XIVE Virtualization Controller settings
 880     */
 881    case VC_GLOBAL_CONFIG:
 882        break;
 883
 884    /*
 885     * XIVE Presenter Controller settings
 886     */
 887    case PC_GLOBAL_CONFIG:
 888        /*
 889         * PC_GCONF_CHIPID_OVR
 890         *   Overrides Int command Chip ID with the Chip ID field (DEBUG)
 891         */
 892        break;
 893    case PC_TCTXT_CFG:
 894        /*
 895         * TODO: block group support
 896         */
 897        break;
 898    case PC_TCTXT_TRACK:
 899        /*
 900         * PC_TCTXT_TRACK_EN:
 901         *   enable block tracking and exchange of block ownership
 902         *   information between Interrupt controllers
 903         */
 904        break;
 905
 906    /*
 907     * Misc settings
 908     */
 909    case VC_SBC_CONFIG: /* Store EOI configuration */
 910        /*
 911         * Configure store EOI if required by firwmare (skiboot has removed
 912         * support recently though)
 913         */
 914        if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
 915            xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
 916        }
 917        break;
 918
 919    case VC_EQC_CONFIG: /* TODO: silent escalation */
 920    case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
 921        break;
 922
 923    /*
 924     * XIVE BAR settings (XSCOM only)
 925     */
 926    case CQ_RST_CTL:
 927        /* bit4: resets all BAR registers */
 928        break;
 929
 930    case CQ_IC_BAR: /* IC BAR. 8 pages */
 931        xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
 932        if (!(val & CQ_IC_BAR_VALID)) {
 933            xive->ic_base = 0;
 934            if (xive->regs[reg] & CQ_IC_BAR_VALID) {
 935                memory_region_del_subregion(&xive->ic_mmio,
 936                                            &xive->ic_reg_mmio);
 937                memory_region_del_subregion(&xive->ic_mmio,
 938                                            &xive->ic_notify_mmio);
 939                memory_region_del_subregion(&xive->ic_mmio,
 940                                            &xive->ic_lsi_mmio);
 941                memory_region_del_subregion(&xive->ic_mmio,
 942                                            &xive->tm_indirect_mmio);
 943
 944                memory_region_del_subregion(sysmem, &xive->ic_mmio);
 945            }
 946        } else {
 947            xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
 948            if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
 949                memory_region_add_subregion(sysmem, xive->ic_base,
 950                                            &xive->ic_mmio);
 951
 952                memory_region_add_subregion(&xive->ic_mmio,  0,
 953                                            &xive->ic_reg_mmio);
 954                memory_region_add_subregion(&xive->ic_mmio,
 955                                            1ul << xive->ic_shift,
 956                                            &xive->ic_notify_mmio);
 957                memory_region_add_subregion(&xive->ic_mmio,
 958                                            2ul << xive->ic_shift,
 959                                            &xive->ic_lsi_mmio);
 960                memory_region_add_subregion(&xive->ic_mmio,
 961                                            4ull << xive->ic_shift,
 962                                            &xive->tm_indirect_mmio);
 963            }
 964        }
 965        break;
 966
 967    case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
 968    case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
 969        xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
 970        if (!(val & CQ_TM_BAR_VALID)) {
 971            xive->tm_base = 0;
 972            if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
 973                memory_region_del_subregion(sysmem, &xive->tm_mmio);
 974            }
 975        } else {
 976            xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
 977            if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
 978                memory_region_add_subregion(sysmem, xive->tm_base,
 979                                            &xive->tm_mmio);
 980            }
 981        }
 982        break;
 983
 984    case CQ_PC_BARM:
 985        xive->regs[reg] = val;
 986        memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
 987        break;
 988    case CQ_PC_BAR: /* From 32M to 512G */
 989        if (!(val & CQ_PC_BAR_VALID)) {
 990            xive->pc_base = 0;
 991            if (xive->regs[reg] & CQ_PC_BAR_VALID) {
 992                memory_region_del_subregion(sysmem, &xive->pc_mmio);
 993            }
 994        } else {
 995            xive->pc_base = val & ~(CQ_PC_BAR_VALID);
 996            if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
 997                memory_region_add_subregion(sysmem, xive->pc_base,
 998                                            &xive->pc_mmio);
 999            }
1000        }
1001        break;
1002
1003    case CQ_VC_BARM:
1004        xive->regs[reg] = val;
1005        memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
1006        break;
1007    case CQ_VC_BAR: /* From 64M to 4TB */
1008        if (!(val & CQ_VC_BAR_VALID)) {
1009            xive->vc_base = 0;
1010            if (xive->regs[reg] & CQ_VC_BAR_VALID) {
1011                memory_region_del_subregion(sysmem, &xive->vc_mmio);
1012            }
1013        } else {
1014            xive->vc_base = val & ~(CQ_VC_BAR_VALID);
1015            if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
1016                memory_region_add_subregion(sysmem, xive->vc_base,
1017                                            &xive->vc_mmio);
1018            }
1019        }
1020        break;
1021
1022    /*
1023     * XIVE Table settings.
1024     */
1025    case CQ_TAR: /* Table Address */
1026        break;
1027    case CQ_TDR: /* Table Data */
1028        pnv_xive_table_set_data(xive, val);
1029        break;
1030
1031    /*
1032     * XIVE VC & PC Virtual Structure Table settings
1033     */
1034    case VC_VSD_TABLE_ADDR:
1035    case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1036        break;
1037    case VC_VSD_TABLE_DATA: /* Virtual table setting */
1038    case PC_VSD_TABLE_DATA:
1039        pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1040        break;
1041
1042    /*
1043     * Interrupt fifo overflow in memory backing store (Not modeled)
1044     */
1045    case VC_IRQ_CONFIG_IPI:
1046    case VC_IRQ_CONFIG_HW:
1047    case VC_IRQ_CONFIG_CASCADE1:
1048    case VC_IRQ_CONFIG_CASCADE2:
1049    case VC_IRQ_CONFIG_REDIST:
1050    case VC_IRQ_CONFIG_IPI_CASC:
1051        break;
1052
1053    /*
1054     * XIVE hardware thread enablement
1055     */
1056    case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1057    case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1058        break;
1059
1060    case PC_THREAD_EN_REG0_SET:
1061        xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1062        break;
1063    case PC_THREAD_EN_REG1_SET:
1064        xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1065        break;
1066    case PC_THREAD_EN_REG0_CLR:
1067        xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1068        break;
1069    case PC_THREAD_EN_REG1_CLR:
1070        xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1071        break;
1072
1073    /*
1074     * Indirect TIMA access set up. Defines the PIR of the HW thread
1075     * to use.
1076     */
1077    case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1078        break;
1079
1080    /*
1081     * XIVE PC & VC cache updates for EAS, NVT and END
1082     */
1083    case VC_IVC_SCRUB_MASK:
1084    case VC_IVC_SCRUB_TRIG:
1085        break;
1086
1087    case VC_EQC_CWATCH_SPEC:
1088        val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1089        break;
1090    case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1091        break;
1092    case VC_EQC_CWATCH_DAT0:
1093        /* writing to DATA0 triggers the cache write */
1094        xive->regs[reg] = val;
1095        pnv_xive_end_update(xive);
1096        break;
1097    case VC_EQC_SCRUB_MASK:
1098    case VC_EQC_SCRUB_TRIG:
1099        /*
1100         * The scrubbing registers flush the cache in RAM and can also
1101         * invalidate.
1102         */
1103        break;
1104
1105    case PC_VPC_CWATCH_SPEC:
1106        val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1107        break;
1108    case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1109        break;
1110    case PC_VPC_CWATCH_DAT0:
1111        /* writing to DATA0 triggers the cache write */
1112        xive->regs[reg] = val;
1113        pnv_xive_nvt_update(xive);
1114        break;
1115    case PC_VPC_SCRUB_MASK:
1116    case PC_VPC_SCRUB_TRIG:
1117        /*
1118         * The scrubbing registers flush the cache in RAM and can also
1119         * invalidate.
1120         */
1121        break;
1122
1123
1124    /*
1125     * XIVE PC & VC cache invalidation
1126     */
1127    case PC_AT_KILL:
1128        break;
1129    case VC_AT_MACRO_KILL:
1130        break;
1131    case PC_AT_KILL_MASK:
1132    case VC_AT_MACRO_KILL_MASK:
1133        break;
1134
1135    default:
1136        xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1137        return;
1138    }
1139
1140    xive->regs[reg] = val;
1141}
1142
1143static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1144{
1145    PnvXive *xive = PNV_XIVE(opaque);
1146    uint64_t val = 0;
1147    uint32_t reg = offset >> 3;
1148
1149    switch (offset) {
1150    case CQ_CFG_PB_GEN:
1151    case CQ_IC_BAR:
1152    case CQ_TM1_BAR:
1153    case CQ_TM2_BAR:
1154    case CQ_PC_BAR:
1155    case CQ_PC_BARM:
1156    case CQ_VC_BAR:
1157    case CQ_VC_BARM:
1158    case CQ_TAR:
1159    case CQ_TDR:
1160    case CQ_PBI_CTL:
1161
1162    case PC_TCTXT_CFG:
1163    case PC_TCTXT_TRACK:
1164    case PC_TCTXT_INDIR0:
1165    case PC_TCTXT_INDIR1:
1166    case PC_TCTXT_INDIR2:
1167    case PC_TCTXT_INDIR3:
1168    case PC_GLOBAL_CONFIG:
1169
1170    case PC_VPC_SCRUB_MASK:
1171
1172    case VC_GLOBAL_CONFIG:
1173    case VC_AIB_TX_ORDER_TAG2:
1174
1175    case VC_IRQ_CONFIG_IPI:
1176    case VC_IRQ_CONFIG_HW:
1177    case VC_IRQ_CONFIG_CASCADE1:
1178    case VC_IRQ_CONFIG_CASCADE2:
1179    case VC_IRQ_CONFIG_REDIST:
1180    case VC_IRQ_CONFIG_IPI_CASC:
1181
1182    case VC_EQC_SCRUB_MASK:
1183    case VC_IVC_SCRUB_MASK:
1184    case VC_SBC_CONFIG:
1185    case VC_AT_MACRO_KILL_MASK:
1186    case VC_VSD_TABLE_ADDR:
1187    case PC_VSD_TABLE_ADDR:
1188    case VC_VSD_TABLE_DATA:
1189    case PC_VSD_TABLE_DATA:
1190    case PC_THREAD_EN_REG0:
1191    case PC_THREAD_EN_REG1:
1192        val = xive->regs[reg];
1193        break;
1194
1195    /*
1196     * XIVE hardware thread enablement
1197     */
1198    case PC_THREAD_EN_REG0_SET:
1199    case PC_THREAD_EN_REG0_CLR:
1200        val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1201        break;
1202    case PC_THREAD_EN_REG1_SET:
1203    case PC_THREAD_EN_REG1_CLR:
1204        val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1205        break;
1206
1207    case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1208        val = 0xffffff0000000000;
1209        break;
1210
1211    /*
1212     * XIVE PC & VC cache updates for EAS, NVT and END
1213     */
1214    case VC_EQC_CWATCH_SPEC:
1215        xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1216        val = xive->regs[reg];
1217        break;
1218    case VC_EQC_CWATCH_DAT0:
1219        /*
1220         * Load DATA registers from cache with data requested by the
1221         * SPEC register
1222         */
1223        pnv_xive_end_cache_load(xive);
1224        val = xive->regs[reg];
1225        break;
1226    case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1227        val = xive->regs[reg];
1228        break;
1229
1230    case PC_VPC_CWATCH_SPEC:
1231        xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1232        val = xive->regs[reg];
1233        break;
1234    case PC_VPC_CWATCH_DAT0:
1235        /*
1236         * Load DATA registers from cache with data requested by the
1237         * SPEC register
1238         */
1239        pnv_xive_nvt_cache_load(xive);
1240        val = xive->regs[reg];
1241        break;
1242    case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1243        val = xive->regs[reg];
1244        break;
1245
1246    case PC_VPC_SCRUB_TRIG:
1247    case VC_IVC_SCRUB_TRIG:
1248    case VC_EQC_SCRUB_TRIG:
1249        xive->regs[reg] &= ~VC_SCRUB_VALID;
1250        val = xive->regs[reg];
1251        break;
1252
1253    /*
1254     * XIVE PC & VC cache invalidation
1255     */
1256    case PC_AT_KILL:
1257        xive->regs[reg] &= ~PC_AT_KILL_VALID;
1258        val = xive->regs[reg];
1259        break;
1260    case VC_AT_MACRO_KILL:
1261        xive->regs[reg] &= ~VC_KILL_VALID;
1262        val = xive->regs[reg];
1263        break;
1264
1265    /*
1266     * XIVE synchronisation
1267     */
1268    case VC_EQC_CONFIG:
1269        val = VC_EQC_SYNC_MASK;
1270        break;
1271
1272    default:
1273        xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1274    }
1275
1276    return val;
1277}
1278
1279static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1280    .read = pnv_xive_ic_reg_read,
1281    .write = pnv_xive_ic_reg_write,
1282    .endianness = DEVICE_BIG_ENDIAN,
1283    .valid = {
1284        .min_access_size = 8,
1285        .max_access_size = 8,
1286    },
1287    .impl = {
1288        .min_access_size = 8,
1289        .max_access_size = 8,
1290    },
1291};
1292
1293/*
1294 * IC - Notify MMIO port page (write only)
1295 */
1296#define PNV_XIVE_FORWARD_IPI        0x800 /* Forward IPI */
1297#define PNV_XIVE_FORWARD_HW         0x880 /* Forward HW */
1298#define PNV_XIVE_FORWARD_OS_ESC     0x900 /* Forward OS escalation */
1299#define PNV_XIVE_FORWARD_HW_ESC     0x980 /* Forward Hyp escalation */
1300#define PNV_XIVE_FORWARD_REDIS      0xa00 /* Forward Redistribution */
1301#define PNV_XIVE_RESERVED5          0xa80 /* Cache line 5 PowerBUS operation */
1302#define PNV_XIVE_RESERVED6          0xb00 /* Cache line 6 PowerBUS operation */
1303#define PNV_XIVE_RESERVED7          0xb80 /* Cache line 7 PowerBUS operation */
1304
1305/* VC synchronisation */
1306#define PNV_XIVE_SYNC_IPI           0xc00 /* Sync IPI */
1307#define PNV_XIVE_SYNC_HW            0xc80 /* Sync HW */
1308#define PNV_XIVE_SYNC_OS_ESC        0xd00 /* Sync OS escalation */
1309#define PNV_XIVE_SYNC_HW_ESC        0xd80 /* Sync Hyp escalation */
1310#define PNV_XIVE_SYNC_REDIS         0xe00 /* Sync Redistribution */
1311
1312/* PC synchronisation */
1313#define PNV_XIVE_SYNC_PULL          0xe80 /* Sync pull context */
1314#define PNV_XIVE_SYNC_PUSH          0xf00 /* Sync push context */
1315#define PNV_XIVE_SYNC_VPC           0xf80 /* Sync remove VPC store */
1316
1317static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1318{
1319    uint8_t blk;
1320    uint32_t idx;
1321
1322    if (val & XIVE_TRIGGER_END) {
1323        xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1324                   addr, val);
1325        return;
1326    }
1327
1328    /*
1329     * Forward the source event notification directly to the Router.
1330     * The source interrupt number should already be correctly encoded
1331     * with the chip block id by the sending device (PHB, PSI).
1332     */
1333    blk = XIVE_EAS_BLOCK(val);
1334    idx = XIVE_EAS_INDEX(val);
1335
1336    xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1337}
1338
1339static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1340                                     unsigned size)
1341{
1342    PnvXive *xive = PNV_XIVE(opaque);
1343
1344    /* VC: HW triggers */
1345    switch (addr) {
1346    case 0x000 ... 0x7FF:
1347        pnv_xive_ic_hw_trigger(opaque, addr, val);
1348        break;
1349
1350    /* VC: Forwarded IRQs */
1351    case PNV_XIVE_FORWARD_IPI:
1352    case PNV_XIVE_FORWARD_HW:
1353    case PNV_XIVE_FORWARD_OS_ESC:
1354    case PNV_XIVE_FORWARD_HW_ESC:
1355    case PNV_XIVE_FORWARD_REDIS:
1356        /* TODO: forwarded IRQs. Should be like HW triggers */
1357        xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1358                   addr, val);
1359        break;
1360
1361    /* VC syncs */
1362    case PNV_XIVE_SYNC_IPI:
1363    case PNV_XIVE_SYNC_HW:
1364    case PNV_XIVE_SYNC_OS_ESC:
1365    case PNV_XIVE_SYNC_HW_ESC:
1366    case PNV_XIVE_SYNC_REDIS:
1367        break;
1368
1369    /* PC syncs */
1370    case PNV_XIVE_SYNC_PULL:
1371    case PNV_XIVE_SYNC_PUSH:
1372    case PNV_XIVE_SYNC_VPC:
1373        break;
1374
1375    default:
1376        xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1377    }
1378}
1379
1380static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1381                                        unsigned size)
1382{
1383    PnvXive *xive = PNV_XIVE(opaque);
1384
1385    /* loads are invalid */
1386    xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1387    return -1;
1388}
1389
1390static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1391    .read = pnv_xive_ic_notify_read,
1392    .write = pnv_xive_ic_notify_write,
1393    .endianness = DEVICE_BIG_ENDIAN,
1394    .valid = {
1395        .min_access_size = 8,
1396        .max_access_size = 8,
1397    },
1398    .impl = {
1399        .min_access_size = 8,
1400        .max_access_size = 8,
1401    },
1402};
1403
1404/*
1405 * IC - LSI MMIO handlers (not modeled)
1406 */
1407
1408static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1409                              uint64_t val, unsigned size)
1410{
1411    PnvXive *xive = PNV_XIVE(opaque);
1412
1413    xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1414}
1415
1416static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1417{
1418    PnvXive *xive = PNV_XIVE(opaque);
1419
1420    xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1421    return -1;
1422}
1423
1424static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1425    .read = pnv_xive_ic_lsi_read,
1426    .write = pnv_xive_ic_lsi_write,
1427    .endianness = DEVICE_BIG_ENDIAN,
1428    .valid = {
1429        .min_access_size = 8,
1430        .max_access_size = 8,
1431    },
1432    .impl = {
1433        .min_access_size = 8,
1434        .max_access_size = 8,
1435    },
1436};
1437
1438/*
1439 * IC - Indirect TIMA MMIO handlers
1440 */
1441
1442/*
1443 * When the TIMA is accessed from the indirect page, the thread id of
1444 * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1445 * use. This is used for resets and for debug purpose also.
1446 */
1447static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1448{
1449    PnvChip *chip = xive->chip;
1450    uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1451    PowerPCCPU *cpu = NULL;
1452    int pir;
1453
1454    if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1455        xive_error(xive, "IC: no indirect TIMA access in progress");
1456        return NULL;
1457    }
1458
1459    pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1460    cpu = pnv_chip_find_cpu(chip, pir);
1461    if (!cpu) {
1462        xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1463        return NULL;
1464    }
1465
1466    /* Check that HW thread is XIVE enabled */
1467    if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1468        xive_error(xive, "IC: CPU %x is not enabled", pir);
1469    }
1470
1471    return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1472}
1473
1474static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1475                                   uint64_t value, unsigned size)
1476{
1477    XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1478
1479    xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1480}
1481
1482static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1483                                      unsigned size)
1484{
1485    XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1486
1487    return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1488}
1489
1490static const MemoryRegionOps xive_tm_indirect_ops = {
1491    .read = xive_tm_indirect_read,
1492    .write = xive_tm_indirect_write,
1493    .endianness = DEVICE_BIG_ENDIAN,
1494    .valid = {
1495        .min_access_size = 1,
1496        .max_access_size = 8,
1497    },
1498    .impl = {
1499        .min_access_size = 1,
1500        .max_access_size = 8,
1501    },
1502};
1503
1504static void pnv_xive_tm_write(void *opaque, hwaddr offset,
1505                              uint64_t value, unsigned size)
1506{
1507    PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1508    PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1509    XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1510
1511    xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1512}
1513
1514static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
1515{
1516    PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1517    PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1518    XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1519
1520    return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1521}
1522
1523const MemoryRegionOps pnv_xive_tm_ops = {
1524    .read = pnv_xive_tm_read,
1525    .write = pnv_xive_tm_write,
1526    .endianness = DEVICE_BIG_ENDIAN,
1527    .valid = {
1528        .min_access_size = 1,
1529        .max_access_size = 8,
1530    },
1531    .impl = {
1532        .min_access_size = 1,
1533        .max_access_size = 8,
1534    },
1535};
1536
1537/*
1538 * Interrupt controller XSCOM region.
1539 */
1540static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1541{
1542    switch (addr >> 3) {
1543    case X_VC_EQC_CONFIG:
1544        /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1545        return VC_EQC_SYNC_MASK;
1546    default:
1547        return pnv_xive_ic_reg_read(opaque, addr, size);
1548    }
1549}
1550
1551static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1552                                uint64_t val, unsigned size)
1553{
1554    pnv_xive_ic_reg_write(opaque, addr, val, size);
1555}
1556
1557static const MemoryRegionOps pnv_xive_xscom_ops = {
1558    .read = pnv_xive_xscom_read,
1559    .write = pnv_xive_xscom_write,
1560    .endianness = DEVICE_BIG_ENDIAN,
1561    .valid = {
1562        .min_access_size = 8,
1563        .max_access_size = 8,
1564    },
1565    .impl = {
1566        .min_access_size = 8,
1567        .max_access_size = 8,
1568    }
1569};
1570
1571/*
1572 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1573 */
1574static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1575                                 unsigned size)
1576{
1577    PnvXive *xive = PNV_XIVE(opaque);
1578    uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1579    uint64_t edt_type = 0;
1580    uint64_t edt_offset;
1581    MemTxResult result;
1582    AddressSpace *edt_as = NULL;
1583    uint64_t ret = -1;
1584
1585    if (edt_index < XIVE_TABLE_EDT_MAX) {
1586        edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1587    }
1588
1589    switch (edt_type) {
1590    case CQ_TDR_EDT_IPI:
1591        edt_as = &xive->ipi_as;
1592        break;
1593    case CQ_TDR_EDT_EQ:
1594        edt_as = &xive->end_as;
1595        break;
1596    default:
1597        xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1598        return -1;
1599    }
1600
1601    /* Remap the offset for the targeted address space */
1602    edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1603
1604    ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1605                            &result);
1606
1607    if (result != MEMTX_OK) {
1608        xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1609                   HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1610                   offset, edt_offset);
1611        return -1;
1612    }
1613
1614    return ret;
1615}
1616
1617static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1618                              uint64_t val, unsigned size)
1619{
1620    PnvXive *xive = PNV_XIVE(opaque);
1621    uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1622    uint64_t edt_type = 0;
1623    uint64_t edt_offset;
1624    MemTxResult result;
1625    AddressSpace *edt_as = NULL;
1626
1627    if (edt_index < XIVE_TABLE_EDT_MAX) {
1628        edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1629    }
1630
1631    switch (edt_type) {
1632    case CQ_TDR_EDT_IPI:
1633        edt_as = &xive->ipi_as;
1634        break;
1635    case CQ_TDR_EDT_EQ:
1636        edt_as = &xive->end_as;
1637        break;
1638    default:
1639        xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1640                   offset);
1641        return;
1642    }
1643
1644    /* Remap the offset for the targeted address space */
1645    edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1646
1647    address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1648    if (result != MEMTX_OK) {
1649        xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1650    }
1651}
1652
1653static const MemoryRegionOps pnv_xive_vc_ops = {
1654    .read = pnv_xive_vc_read,
1655    .write = pnv_xive_vc_write,
1656    .endianness = DEVICE_BIG_ENDIAN,
1657    .valid = {
1658        .min_access_size = 8,
1659        .max_access_size = 8,
1660    },
1661    .impl = {
1662        .min_access_size = 8,
1663        .max_access_size = 8,
1664    },
1665};
1666
1667/*
1668 * Presenter Controller MMIO region. The Virtualization Controller
1669 * updates the IPB in the NVT table when required. Not modeled.
1670 */
1671static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1672                                 unsigned size)
1673{
1674    PnvXive *xive = PNV_XIVE(opaque);
1675
1676    xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1677    return -1;
1678}
1679
1680static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1681                              uint64_t value, unsigned size)
1682{
1683    PnvXive *xive = PNV_XIVE(opaque);
1684
1685    xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1686}
1687
1688static const MemoryRegionOps pnv_xive_pc_ops = {
1689    .read = pnv_xive_pc_read,
1690    .write = pnv_xive_pc_write,
1691    .endianness = DEVICE_BIG_ENDIAN,
1692    .valid = {
1693        .min_access_size = 8,
1694        .max_access_size = 8,
1695    },
1696    .impl = {
1697        .min_access_size = 8,
1698        .max_access_size = 8,
1699    },
1700};
1701
1702static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx,
1703                                    Monitor *mon)
1704{
1705    uint8_t  eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1);
1706    uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1);
1707
1708    if (!xive_nvt_is_valid(nvt)) {
1709        return;
1710    }
1711
1712    monitor_printf(mon, "  %08x end:%02x/%04x IPB:%02x\n", nvt_idx,
1713                   eq_blk, eq_idx,
1714                   xive_get_field32(NVT_W4_IPB, nvt->w4));
1715}
1716
1717void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1718{
1719    XiveRouter *xrtr = XIVE_ROUTER(xive);
1720    uint8_t blk = pnv_xive_block_id(xive);
1721    uint8_t chip_id = xive->chip->chip_id;
1722    uint32_t srcno0 = XIVE_EAS(blk, 0);
1723    uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1724    XiveEAS eas;
1725    XiveEND end;
1726    XiveNVT nvt;
1727    int i;
1728    uint64_t xive_nvt_per_subpage;
1729
1730    monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk,
1731                   srcno0, srcno0 + nr_ipis - 1);
1732    xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1733
1734    monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk,
1735                   srcno0, srcno0 + nr_ipis - 1);
1736    for (i = 0; i < nr_ipis; i++) {
1737        if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1738            break;
1739        }
1740        if (!xive_eas_is_masked(&eas)) {
1741            xive_eas_pic_print_info(&eas, i, mon);
1742        }
1743    }
1744
1745    monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
1746    i = 0;
1747    while (!xive_router_get_end(xrtr, blk, i, &end)) {
1748        xive_end_pic_print_info(&end, i++, mon);
1749    }
1750
1751    monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
1752    i = 0;
1753    while (!xive_router_get_end(xrtr, blk, i, &end)) {
1754        xive_end_eas_pic_print_info(&end, i++, mon);
1755    }
1756
1757    monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk,
1758                   0, XIVE_NVT_COUNT - 1);
1759    xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT);
1760    for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) {
1761        while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) {
1762            xive_nvt_pic_print_info(&nvt, i++, mon);
1763        }
1764    }
1765}
1766
1767static void pnv_xive_reset(void *dev)
1768{
1769    PnvXive *xive = PNV_XIVE(dev);
1770    XiveSource *xsrc = &xive->ipi_source;
1771    XiveENDSource *end_xsrc = &xive->end_source;
1772
1773    /* Default page size (Should be changed at runtime to 64k) */
1774    xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1775
1776    /* Clear subregions */
1777    if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1778        memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1779    }
1780
1781    if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1782        memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1783    }
1784
1785    if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1786        memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1787    }
1788
1789    if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1790        memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1791    }
1792}
1793
1794static void pnv_xive_init(Object *obj)
1795{
1796    PnvXive *xive = PNV_XIVE(obj);
1797
1798    object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1799                            sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1800                            &error_abort, NULL);
1801    object_initialize_child(obj, "end_source", &xive->end_source,
1802                            sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1803                            &error_abort, NULL);
1804}
1805
1806/*
1807 *  Maximum number of IRQs and ENDs supported by HW
1808 */
1809#define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1810#define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1811
1812static void pnv_xive_realize(DeviceState *dev, Error **errp)
1813{
1814    PnvXive *xive = PNV_XIVE(dev);
1815    PnvXiveClass *pxc = PNV_XIVE_GET_CLASS(dev);
1816    XiveSource *xsrc = &xive->ipi_source;
1817    XiveENDSource *end_xsrc = &xive->end_source;
1818    Error *local_err = NULL;
1819
1820    pxc->parent_realize(dev, &local_err);
1821    if (local_err) {
1822        error_propagate(errp, local_err);
1823        return;
1824    }
1825
1826    assert(xive->chip);
1827
1828    /*
1829     * The XiveSource and XiveENDSource objects are realized with the
1830     * maximum allowed HW configuration. The ESB MMIO regions will be
1831     * resized dynamically when the controller is configured by the FW
1832     * to limit accesses to resources not provisioned.
1833     */
1834    object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1835                            &error_fatal);
1836    object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
1837                             &error_abort);
1838    object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1839    if (local_err) {
1840        error_propagate(errp, local_err);
1841        return;
1842    }
1843
1844    object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1845                            &error_fatal);
1846    object_property_set_link(OBJECT(end_xsrc), OBJECT(xive), "xive",
1847                             &error_abort);
1848    object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1849    if (local_err) {
1850        error_propagate(errp, local_err);
1851        return;
1852    }
1853
1854    /* Default page size. Generally changed at runtime to 64k */
1855    xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1856
1857    /* XSCOM region, used for initial configuration of the BARs */
1858    memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1859                          xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1860
1861    /* Interrupt controller MMIO regions */
1862    memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1863                       PNV9_XIVE_IC_SIZE);
1864
1865    memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1866                          xive, "xive-ic-reg", 1 << xive->ic_shift);
1867    memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1868                          &pnv_xive_ic_notify_ops,
1869                          xive, "xive-ic-notify", 1 << xive->ic_shift);
1870
1871    /* The Pervasive LSI trigger and EOI pages (not modeled) */
1872    memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1873                          xive, "xive-ic-lsi", 2 << xive->ic_shift);
1874
1875    /* Thread Interrupt Management Area (Indirect) */
1876    memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1877                          &xive_tm_indirect_ops,
1878                          xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1879    /*
1880     * Overall Virtualization Controller MMIO region containing the
1881     * IPI ESB pages and END ESB pages. The layout is defined by the
1882     * EDT "Domain table" and the accesses are dispatched using
1883     * address spaces for each.
1884     */
1885    memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1886                          "xive-vc", PNV9_XIVE_VC_SIZE);
1887
1888    memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1889                       PNV9_XIVE_VC_SIZE);
1890    address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1891    memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1892                       PNV9_XIVE_VC_SIZE);
1893    address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1894
1895    /*
1896     * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1897     * VC region. Their size is configured by the FW in the EDT table.
1898     */
1899    memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1900    memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1901
1902    /* Presenter Controller MMIO region (not modeled) */
1903    memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1904                          "xive-pc", PNV9_XIVE_PC_SIZE);
1905
1906    /* Thread Interrupt Management Area (Direct) */
1907    memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
1908                          xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1909
1910    qemu_register_reset(pnv_xive_reset, dev);
1911}
1912
1913static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1914                             int xscom_offset)
1915{
1916    const char compat[] = "ibm,power9-xive-x";
1917    char *name;
1918    int offset;
1919    uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1920    uint32_t reg[] = {
1921        cpu_to_be32(lpc_pcba),
1922        cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1923    };
1924
1925    name = g_strdup_printf("xive@%x", lpc_pcba);
1926    offset = fdt_add_subnode(fdt, xscom_offset, name);
1927    _FDT(offset);
1928    g_free(name);
1929
1930    _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1931    _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1932                      sizeof(compat))));
1933    return 0;
1934}
1935
1936static Property pnv_xive_properties[] = {
1937    DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1938    DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1939    DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1940    DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1941    /* The PnvChip id identifies the XIVE interrupt controller. */
1942    DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
1943    DEFINE_PROP_END_OF_LIST(),
1944};
1945
1946static void pnv_xive_class_init(ObjectClass *klass, void *data)
1947{
1948    DeviceClass *dc = DEVICE_CLASS(klass);
1949    PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1950    XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1951    XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1952    XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1953    PnvXiveClass *pxc = PNV_XIVE_CLASS(klass);
1954
1955    xdc->dt_xscom = pnv_xive_dt_xscom;
1956
1957    dc->desc = "PowerNV XIVE Interrupt Controller";
1958    device_class_set_parent_realize(dc, pnv_xive_realize, &pxc->parent_realize);
1959    dc->realize = pnv_xive_realize;
1960    device_class_set_props(dc, pnv_xive_properties);
1961
1962    xrc->get_eas = pnv_xive_get_eas;
1963    xrc->get_end = pnv_xive_get_end;
1964    xrc->write_end = pnv_xive_write_end;
1965    xrc->get_nvt = pnv_xive_get_nvt;
1966    xrc->write_nvt = pnv_xive_write_nvt;
1967    xrc->get_block_id = pnv_xive_get_block_id;
1968
1969    xnc->notify = pnv_xive_notify;
1970    xpc->match_nvt  = pnv_xive_match_nvt;
1971};
1972
1973static const TypeInfo pnv_xive_info = {
1974    .name          = TYPE_PNV_XIVE,
1975    .parent        = TYPE_XIVE_ROUTER,
1976    .instance_init = pnv_xive_init,
1977    .instance_size = sizeof(PnvXive),
1978    .class_init    = pnv_xive_class_init,
1979    .class_size    = sizeof(PnvXiveClass),
1980    .interfaces    = (InterfaceInfo[]) {
1981        { TYPE_PNV_XSCOM_INTERFACE },
1982        { }
1983    }
1984};
1985
1986static void pnv_xive_register_types(void)
1987{
1988    type_register_static(&pnv_xive_info);
1989}
1990
1991type_init(pnv_xive_register_types)
1992