qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 */
  26
  27#include "qemu/osdep.h"
  28#include "qemu-common.h"
  29#include "qapi/error.h"
  30#include "qapi/visitor.h"
  31#include "sysemu/sysemu.h"
  32#include "sysemu/hostmem.h"
  33#include "sysemu/numa.h"
  34#include "sysemu/qtest.h"
  35#include "sysemu/reset.h"
  36#include "sysemu/runstate.h"
  37#include "qemu/log.h"
  38#include "hw/fw-path-provider.h"
  39#include "elf.h"
  40#include "net/net.h"
  41#include "sysemu/device_tree.h"
  42#include "sysemu/cpus.h"
  43#include "sysemu/hw_accel.h"
  44#include "kvm_ppc.h"
  45#include "migration/misc.h"
  46#include "migration/qemu-file-types.h"
  47#include "migration/global_state.h"
  48#include "migration/register.h"
  49#include "migration/blocker.h"
  50#include "mmu-hash64.h"
  51#include "mmu-book3s-v3.h"
  52#include "cpu-models.h"
  53#include "hw/core/cpu.h"
  54
  55#include "hw/boards.h"
  56#include "hw/ppc/ppc.h"
  57#include "hw/loader.h"
  58
  59#include "hw/ppc/fdt.h"
  60#include "hw/ppc/spapr.h"
  61#include "hw/ppc/spapr_vio.h"
  62#include "hw/qdev-properties.h"
  63#include "hw/pci-host/spapr.h"
  64#include "hw/pci/msi.h"
  65
  66#include "hw/pci/pci.h"
  67#include "hw/scsi/scsi.h"
  68#include "hw/virtio/virtio-scsi.h"
  69#include "hw/virtio/vhost-scsi-common.h"
  70
  71#include "exec/address-spaces.h"
  72#include "exec/ram_addr.h"
  73#include "hw/usb.h"
  74#include "qemu/config-file.h"
  75#include "qemu/error-report.h"
  76#include "trace.h"
  77#include "hw/nmi.h"
  78#include "hw/intc/intc.h"
  79
  80#include "hw/ppc/spapr_cpu_core.h"
  81#include "hw/mem/memory-device.h"
  82#include "hw/ppc/spapr_tpm_proxy.h"
  83#include "hw/ppc/spapr_nvdimm.h"
  84
  85#include "monitor/monitor.h"
  86
  87#include <libfdt.h>
  88
  89/* SLOF memory layout:
  90 *
  91 * SLOF raw image loaded at 0, copies its romfs right below the flat
  92 * device-tree, then position SLOF itself 31M below that
  93 *
  94 * So we set FW_OVERHEAD to 40MB which should account for all of that
  95 * and more
  96 *
  97 * We load our kernel at 4M, leaving space for SLOF initial image
  98 */
  99#define FDT_MAX_SIZE            0x100000
 100#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
 101#define FW_MAX_SIZE             0x400000
 102#define FW_FILE_NAME            "slof.bin"
 103#define FW_OVERHEAD             0x2800000
 104#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
 105
 106#define MIN_RMA_SLOF            (128 * MiB)
 107
 108#define PHANDLE_INTC            0x00001111
 109
 110/* These two functions implement the VCPU id numbering: one to compute them
 111 * all and one to identify thread 0 of a VCORE. Any change to the first one
 112 * is likely to have an impact on the second one, so let's keep them close.
 113 */
 114static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
 115{
 116    MachineState *ms = MACHINE(spapr);
 117    unsigned int smp_threads = ms->smp.threads;
 118
 119    assert(spapr->vsmt);
 120    return
 121        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 122}
 123static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
 124                                      PowerPCCPU *cpu)
 125{
 126    assert(spapr->vsmt);
 127    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 128}
 129
 130static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 131{
 132    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 133     * and newer QEMUs don't even have them. In both cases, we don't want
 134     * to send anything on the wire.
 135     */
 136    return false;
 137}
 138
 139static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 140    .name = "icp/server",
 141    .version_id = 1,
 142    .minimum_version_id = 1,
 143    .needed = pre_2_10_vmstate_dummy_icp_needed,
 144    .fields = (VMStateField[]) {
 145        VMSTATE_UNUSED(4), /* uint32_t xirr */
 146        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 147        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 148        VMSTATE_END_OF_LIST()
 149    },
 150};
 151
 152static void pre_2_10_vmstate_register_dummy_icp(int i)
 153{
 154    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 155                     (void *)(uintptr_t) i);
 156}
 157
 158static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 159{
 160    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 161                       (void *)(uintptr_t) i);
 162}
 163
 164int spapr_max_server_number(SpaprMachineState *spapr)
 165{
 166    MachineState *ms = MACHINE(spapr);
 167
 168    assert(spapr->vsmt);
 169    return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
 170}
 171
 172static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 173                                  int smt_threads)
 174{
 175    int i, ret = 0;
 176    uint32_t servers_prop[smt_threads];
 177    uint32_t gservers_prop[smt_threads * 2];
 178    int index = spapr_get_vcpu_id(cpu);
 179
 180    if (cpu->compat_pvr) {
 181        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 182        if (ret < 0) {
 183            return ret;
 184        }
 185    }
 186
 187    /* Build interrupt servers and gservers properties */
 188    for (i = 0; i < smt_threads; i++) {
 189        servers_prop[i] = cpu_to_be32(index + i);
 190        /* Hack, direct the group queues back to cpu 0 */
 191        gservers_prop[i*2] = cpu_to_be32(index + i);
 192        gservers_prop[i*2 + 1] = 0;
 193    }
 194    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 195                      servers_prop, sizeof(servers_prop));
 196    if (ret < 0) {
 197        return ret;
 198    }
 199    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 200                      gservers_prop, sizeof(gservers_prop));
 201
 202    return ret;
 203}
 204
 205static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 206{
 207    int index = spapr_get_vcpu_id(cpu);
 208    uint32_t associativity[] = {cpu_to_be32(0x5),
 209                                cpu_to_be32(0x0),
 210                                cpu_to_be32(0x0),
 211                                cpu_to_be32(0x0),
 212                                cpu_to_be32(cpu->node_id),
 213                                cpu_to_be32(index)};
 214
 215    /* Advertise NUMA via ibm,associativity */
 216    return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 217                          sizeof(associativity));
 218}
 219
 220static void spapr_dt_pa_features(SpaprMachineState *spapr,
 221                                 PowerPCCPU *cpu,
 222                                 void *fdt, int offset)
 223{
 224    uint8_t pa_features_206[] = { 6, 0,
 225        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 226    uint8_t pa_features_207[] = { 24, 0,
 227        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 228        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 229        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 230        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 231    uint8_t pa_features_300[] = { 66, 0,
 232        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 233        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 234        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 235        /* 6: DS207 */
 236        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 237        /* 16: Vector */
 238        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 239        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 240        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 241        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 242        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 243        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 244        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 245        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 246        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 247        /* 42: PM, 44: PC RA, 46: SC vec'd */
 248        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 249        /* 48: SIMD, 50: QP BFP, 52: String */
 250        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 251        /* 54: DecFP, 56: DecI, 58: SHA */
 252        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 253        /* 60: NM atomic, 62: RNG */
 254        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 255    };
 256    uint8_t *pa_features = NULL;
 257    size_t pa_size;
 258
 259    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 260        pa_features = pa_features_206;
 261        pa_size = sizeof(pa_features_206);
 262    }
 263    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 264        pa_features = pa_features_207;
 265        pa_size = sizeof(pa_features_207);
 266    }
 267    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 268        pa_features = pa_features_300;
 269        pa_size = sizeof(pa_features_300);
 270    }
 271    if (!pa_features) {
 272        return;
 273    }
 274
 275    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 276        /*
 277         * Note: we keep CI large pages off by default because a 64K capable
 278         * guest provisioned with large pages might otherwise try to map a qemu
 279         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 280         * even if that qemu runs on a 4k host.
 281         * We dd this bit back here if we are confident this is not an issue
 282         */
 283        pa_features[3] |= 0x20;
 284    }
 285    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 286        pa_features[24] |= 0x80;    /* Transactional memory support */
 287    }
 288    if (spapr->cas_pre_isa3_guest && pa_size > 40) {
 289        /* Workaround for broken kernels that attempt (guest) radix
 290         * mode when they can't handle it, if they see the radix bit set
 291         * in pa-features. So hide it from them. */
 292        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 293    }
 294
 295    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 296}
 297
 298static hwaddr spapr_node0_size(MachineState *machine)
 299{
 300    if (machine->numa_state->num_nodes) {
 301        int i;
 302        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
 303            if (machine->numa_state->nodes[i].node_mem) {
 304                return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
 305                           machine->ram_size);
 306            }
 307        }
 308    }
 309    return machine->ram_size;
 310}
 311
 312static void add_str(GString *s, const gchar *s1)
 313{
 314    g_string_append_len(s, s1, strlen(s1) + 1);
 315}
 316
 317static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
 318                                hwaddr size)
 319{
 320    uint32_t associativity[] = {
 321        cpu_to_be32(0x4), /* length */
 322        cpu_to_be32(0x0), cpu_to_be32(0x0),
 323        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 324    };
 325    char mem_name[32];
 326    uint64_t mem_reg_property[2];
 327    int off;
 328
 329    mem_reg_property[0] = cpu_to_be64(start);
 330    mem_reg_property[1] = cpu_to_be64(size);
 331
 332    sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
 333    off = fdt_add_subnode(fdt, 0, mem_name);
 334    _FDT(off);
 335    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 336    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 337                      sizeof(mem_reg_property))));
 338    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 339                      sizeof(associativity))));
 340    return off;
 341}
 342
 343static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 344{
 345    MemoryDeviceInfoList *info;
 346
 347    for (info = list; info; info = info->next) {
 348        MemoryDeviceInfo *value = info->value;
 349
 350        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 351            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 352
 353            if (addr >= pcdimm_info->addr &&
 354                addr < (pcdimm_info->addr + pcdimm_info->size)) {
 355                return pcdimm_info->node;
 356            }
 357        }
 358    }
 359
 360    return -1;
 361}
 362
 363struct sPAPRDrconfCellV2 {
 364     uint32_t seq_lmbs;
 365     uint64_t base_addr;
 366     uint32_t drc_index;
 367     uint32_t aa_index;
 368     uint32_t flags;
 369} QEMU_PACKED;
 370
 371typedef struct DrconfCellQueue {
 372    struct sPAPRDrconfCellV2 cell;
 373    QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
 374} DrconfCellQueue;
 375
 376static DrconfCellQueue *
 377spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
 378                      uint32_t drc_index, uint32_t aa_index,
 379                      uint32_t flags)
 380{
 381    DrconfCellQueue *elem;
 382
 383    elem = g_malloc0(sizeof(*elem));
 384    elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
 385    elem->cell.base_addr = cpu_to_be64(base_addr);
 386    elem->cell.drc_index = cpu_to_be32(drc_index);
 387    elem->cell.aa_index = cpu_to_be32(aa_index);
 388    elem->cell.flags = cpu_to_be32(flags);
 389
 390    return elem;
 391}
 392
 393static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
 394                                      int offset, MemoryDeviceInfoList *dimms)
 395{
 396    MachineState *machine = MACHINE(spapr);
 397    uint8_t *int_buf, *cur_index;
 398    int ret;
 399    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 400    uint64_t addr, cur_addr, size;
 401    uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
 402    uint64_t mem_end = machine->device_memory->base +
 403                       memory_region_size(&machine->device_memory->mr);
 404    uint32_t node, buf_len, nr_entries = 0;
 405    SpaprDrc *drc;
 406    DrconfCellQueue *elem, *next;
 407    MemoryDeviceInfoList *info;
 408    QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
 409        = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
 410
 411    /* Entry to cover RAM and the gap area */
 412    elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
 413                                 SPAPR_LMB_FLAGS_RESERVED |
 414                                 SPAPR_LMB_FLAGS_DRC_INVALID);
 415    QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 416    nr_entries++;
 417
 418    cur_addr = machine->device_memory->base;
 419    for (info = dimms; info; info = info->next) {
 420        PCDIMMDeviceInfo *di = info->value->u.dimm.data;
 421
 422        addr = di->addr;
 423        size = di->size;
 424        node = di->node;
 425
 426        /*
 427         * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
 428         * area is marked hotpluggable in the next iteration for the bigger
 429         * chunk including the NVDIMM occupied area.
 430         */
 431        if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
 432            continue;
 433
 434        /* Entry for hot-pluggable area */
 435        if (cur_addr < addr) {
 436            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 437            g_assert(drc);
 438            elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
 439                                         cur_addr, spapr_drc_index(drc), -1, 0);
 440            QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 441            nr_entries++;
 442        }
 443
 444        /* Entry for DIMM */
 445        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
 446        g_assert(drc);
 447        elem = spapr_get_drconf_cell(size / lmb_size, addr,
 448                                     spapr_drc_index(drc), node,
 449                                     SPAPR_LMB_FLAGS_ASSIGNED);
 450        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 451        nr_entries++;
 452        cur_addr = addr + size;
 453    }
 454
 455    /* Entry for remaining hotpluggable area */
 456    if (cur_addr < mem_end) {
 457        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 458        g_assert(drc);
 459        elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
 460                                     cur_addr, spapr_drc_index(drc), -1, 0);
 461        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 462        nr_entries++;
 463    }
 464
 465    buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
 466    int_buf = cur_index = g_malloc0(buf_len);
 467    *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
 468    cur_index += sizeof(nr_entries);
 469
 470    QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
 471        memcpy(cur_index, &elem->cell, sizeof(elem->cell));
 472        cur_index += sizeof(elem->cell);
 473        QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
 474        g_free(elem);
 475    }
 476
 477    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
 478    g_free(int_buf);
 479    if (ret < 0) {
 480        return -1;
 481    }
 482    return 0;
 483}
 484
 485static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
 486                                   int offset, MemoryDeviceInfoList *dimms)
 487{
 488    MachineState *machine = MACHINE(spapr);
 489    int i, ret;
 490    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 491    uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
 492    uint32_t nr_lmbs = (machine->device_memory->base +
 493                       memory_region_size(&machine->device_memory->mr)) /
 494                       lmb_size;
 495    uint32_t *int_buf, *cur_index, buf_len;
 496
 497    /*
 498     * Allocate enough buffer size to fit in ibm,dynamic-memory
 499     */
 500    buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
 501    cur_index = int_buf = g_malloc0(buf_len);
 502    int_buf[0] = cpu_to_be32(nr_lmbs);
 503    cur_index++;
 504    for (i = 0; i < nr_lmbs; i++) {
 505        uint64_t addr = i * lmb_size;
 506        uint32_t *dynamic_memory = cur_index;
 507
 508        if (i >= device_lmb_start) {
 509            SpaprDrc *drc;
 510
 511            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 512            g_assert(drc);
 513
 514            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 515            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 516            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 517            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 518            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 519            if (memory_region_present(get_system_memory(), addr)) {
 520                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 521            } else {
 522                dynamic_memory[5] = cpu_to_be32(0);
 523            }
 524        } else {
 525            /*
 526             * LMB information for RMA, boot time RAM and gap b/n RAM and
 527             * device memory region -- all these are marked as reserved
 528             * and as having no valid DRC.
 529             */
 530            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 531            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 532            dynamic_memory[2] = cpu_to_be32(0);
 533            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 534            dynamic_memory[4] = cpu_to_be32(-1);
 535            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 536                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 537        }
 538
 539        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 540    }
 541    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 542    g_free(int_buf);
 543    if (ret < 0) {
 544        return -1;
 545    }
 546    return 0;
 547}
 548
 549/*
 550 * Adds ibm,dynamic-reconfiguration-memory node.
 551 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 552 * of this device tree node.
 553 */
 554static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
 555                                                   void *fdt)
 556{
 557    MachineState *machine = MACHINE(spapr);
 558    int nb_numa_nodes = machine->numa_state->num_nodes;
 559    int ret, i, offset;
 560    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 561    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 562    uint32_t *int_buf, *cur_index, buf_len;
 563    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 564    MemoryDeviceInfoList *dimms = NULL;
 565
 566    /*
 567     * Don't create the node if there is no device memory
 568     */
 569    if (machine->ram_size == machine->maxram_size) {
 570        return 0;
 571    }
 572
 573    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 574
 575    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 576                    sizeof(prop_lmb_size));
 577    if (ret < 0) {
 578        return ret;
 579    }
 580
 581    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 582    if (ret < 0) {
 583        return ret;
 584    }
 585
 586    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 587    if (ret < 0) {
 588        return ret;
 589    }
 590
 591    /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
 592    dimms = qmp_memory_device_list();
 593    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
 594        ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
 595    } else {
 596        ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
 597    }
 598    qapi_free_MemoryDeviceInfoList(dimms);
 599
 600    if (ret < 0) {
 601        return ret;
 602    }
 603
 604    /* ibm,associativity-lookup-arrays */
 605    buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
 606    cur_index = int_buf = g_malloc0(buf_len);
 607    int_buf[0] = cpu_to_be32(nr_nodes);
 608    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 609    cur_index += 2;
 610    for (i = 0; i < nr_nodes; i++) {
 611        uint32_t associativity[] = {
 612            cpu_to_be32(0x0),
 613            cpu_to_be32(0x0),
 614            cpu_to_be32(0x0),
 615            cpu_to_be32(i)
 616        };
 617        memcpy(cur_index, associativity, sizeof(associativity));
 618        cur_index += 4;
 619    }
 620    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 621            (cur_index - int_buf) * sizeof(uint32_t));
 622    g_free(int_buf);
 623
 624    return ret;
 625}
 626
 627static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
 628{
 629    MachineState *machine = MACHINE(spapr);
 630    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 631    hwaddr mem_start, node_size;
 632    int i, nb_nodes = machine->numa_state->num_nodes;
 633    NodeInfo *nodes = machine->numa_state->nodes;
 634
 635    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 636        if (!nodes[i].node_mem) {
 637            continue;
 638        }
 639        if (mem_start >= machine->ram_size) {
 640            node_size = 0;
 641        } else {
 642            node_size = nodes[i].node_mem;
 643            if (node_size > machine->ram_size - mem_start) {
 644                node_size = machine->ram_size - mem_start;
 645            }
 646        }
 647        if (!mem_start) {
 648            /* spapr_machine_init() checks for rma_size <= node0_size
 649             * already */
 650            spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
 651            mem_start += spapr->rma_size;
 652            node_size -= spapr->rma_size;
 653        }
 654        for ( ; node_size; ) {
 655            hwaddr sizetmp = pow2floor(node_size);
 656
 657            /* mem_start != 0 here */
 658            if (ctzl(mem_start) < ctzl(sizetmp)) {
 659                sizetmp = 1ULL << ctzl(mem_start);
 660            }
 661
 662            spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
 663            node_size -= sizetmp;
 664            mem_start += sizetmp;
 665        }
 666    }
 667
 668    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 669    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
 670        int ret;
 671
 672        g_assert(smc->dr_lmb_enabled);
 673        ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
 674        if (ret) {
 675            return ret;
 676        }
 677    }
 678
 679    return 0;
 680}
 681
 682static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
 683                         SpaprMachineState *spapr)
 684{
 685    MachineState *ms = MACHINE(spapr);
 686    PowerPCCPU *cpu = POWERPC_CPU(cs);
 687    CPUPPCState *env = &cpu->env;
 688    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 689    int index = spapr_get_vcpu_id(cpu);
 690    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 691                       0xffffffff, 0xffffffff};
 692    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 693        : SPAPR_TIMEBASE_FREQ;
 694    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 695    uint32_t page_sizes_prop[64];
 696    size_t page_sizes_prop_size;
 697    unsigned int smp_threads = ms->smp.threads;
 698    uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
 699    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 700    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 701    SpaprDrc *drc;
 702    int drc_index;
 703    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 704    int i;
 705
 706    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 707    if (drc) {
 708        drc_index = spapr_drc_index(drc);
 709        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 710    }
 711
 712    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 713    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 714
 715    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 716    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 717                           env->dcache_line_size)));
 718    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 719                           env->dcache_line_size)));
 720    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 721                           env->icache_line_size)));
 722    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 723                           env->icache_line_size)));
 724
 725    if (pcc->l1_dcache_size) {
 726        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 727                               pcc->l1_dcache_size)));
 728    } else {
 729        warn_report("Unknown L1 dcache size for cpu");
 730    }
 731    if (pcc->l1_icache_size) {
 732        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 733                               pcc->l1_icache_size)));
 734    } else {
 735        warn_report("Unknown L1 icache size for cpu");
 736    }
 737
 738    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 739    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 740    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
 741    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 742    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 743    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 744
 745    if (env->spr_cb[SPR_PURR].oea_read) {
 746        _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
 747    }
 748    if (env->spr_cb[SPR_SPURR].oea_read) {
 749        _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
 750    }
 751
 752    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 753        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 754                          segs, sizeof(segs))));
 755    }
 756
 757    /* Advertise VSX (vector extensions) if available
 758     *   1               == VMX / Altivec available
 759     *   2               == VSX available
 760     *
 761     * Only CPUs for which we create core types in spapr_cpu_core.c
 762     * are possible, and all of those have VMX */
 763    if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 764        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 765    } else {
 766        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 767    }
 768
 769    /* Advertise DFP (Decimal Floating Point) if available
 770     *   0 / no property == no DFP
 771     *   1               == DFP available */
 772    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 773        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 774    }
 775
 776    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 777                                                      sizeof(page_sizes_prop));
 778    if (page_sizes_prop_size) {
 779        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 780                          page_sizes_prop, page_sizes_prop_size)));
 781    }
 782
 783    spapr_dt_pa_features(spapr, cpu, fdt, offset);
 784
 785    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 786                           cs->cpu_index / vcpus_per_socket)));
 787
 788    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 789                      pft_size_prop, sizeof(pft_size_prop))));
 790
 791    if (ms->numa_state->num_nodes > 1) {
 792        _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 793    }
 794
 795    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 796
 797    if (pcc->radix_page_info) {
 798        for (i = 0; i < pcc->radix_page_info->count; i++) {
 799            radix_AP_encodings[i] =
 800                cpu_to_be32(pcc->radix_page_info->entries[i]);
 801        }
 802        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 803                          radix_AP_encodings,
 804                          pcc->radix_page_info->count *
 805                          sizeof(radix_AP_encodings[0]))));
 806    }
 807
 808    /*
 809     * We set this property to let the guest know that it can use the large
 810     * decrementer and its width in bits.
 811     */
 812    if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
 813        _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
 814                              pcc->lrg_decr_bits)));
 815}
 816
 817static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
 818{
 819    CPUState **rev;
 820    CPUState *cs;
 821    int n_cpus;
 822    int cpus_offset;
 823    char *nodename;
 824    int i;
 825
 826    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 827    _FDT(cpus_offset);
 828    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 829    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 830
 831    /*
 832     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 833     * created by fdt_add_subnode() end up in the right order in FDT
 834     * for the guest kernel the enumerate the CPUs correctly.
 835     *
 836     * The CPU list cannot be traversed in reverse order, so we need
 837     * to do extra work.
 838     */
 839    n_cpus = 0;
 840    rev = NULL;
 841    CPU_FOREACH(cs) {
 842        rev = g_renew(CPUState *, rev, n_cpus + 1);
 843        rev[n_cpus++] = cs;
 844    }
 845
 846    for (i = n_cpus - 1; i >= 0; i--) {
 847        CPUState *cs = rev[i];
 848        PowerPCCPU *cpu = POWERPC_CPU(cs);
 849        int index = spapr_get_vcpu_id(cpu);
 850        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 851        int offset;
 852
 853        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 854            continue;
 855        }
 856
 857        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 858        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 859        g_free(nodename);
 860        _FDT(offset);
 861        spapr_dt_cpu(cs, fdt, offset, spapr);
 862    }
 863
 864    g_free(rev);
 865}
 866
 867static int spapr_dt_rng(void *fdt)
 868{
 869    int node;
 870    int ret;
 871
 872    node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
 873    if (node <= 0) {
 874        return -1;
 875    }
 876    ret = fdt_setprop_string(fdt, node, "device_type",
 877                             "ibm,platform-facilities");
 878    ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
 879    ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
 880
 881    node = fdt_add_subnode(fdt, node, "ibm,random-v1");
 882    if (node <= 0) {
 883        return -1;
 884    }
 885    ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
 886
 887    return ret ? -1 : 0;
 888}
 889
 890static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
 891{
 892    MachineState *ms = MACHINE(spapr);
 893    int rtas;
 894    GString *hypertas = g_string_sized_new(256);
 895    GString *qemu_hypertas = g_string_sized_new(256);
 896    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
 897    uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
 898        memory_region_size(&MACHINE(spapr)->device_memory->mr);
 899    uint32_t lrdr_capacity[] = {
 900        cpu_to_be32(max_device_addr >> 32),
 901        cpu_to_be32(max_device_addr & 0xffffffff),
 902        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
 903        cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
 904    };
 905    uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
 906    uint32_t maxdomains[] = {
 907        cpu_to_be32(4),
 908        maxdomain,
 909        maxdomain,
 910        maxdomain,
 911        cpu_to_be32(spapr->gpu_numa_id),
 912    };
 913
 914    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 915
 916    /* hypertas */
 917    add_str(hypertas, "hcall-pft");
 918    add_str(hypertas, "hcall-term");
 919    add_str(hypertas, "hcall-dabr");
 920    add_str(hypertas, "hcall-interrupt");
 921    add_str(hypertas, "hcall-tce");
 922    add_str(hypertas, "hcall-vio");
 923    add_str(hypertas, "hcall-splpar");
 924    add_str(hypertas, "hcall-join");
 925    add_str(hypertas, "hcall-bulk");
 926    add_str(hypertas, "hcall-set-mode");
 927    add_str(hypertas, "hcall-sprg0");
 928    add_str(hypertas, "hcall-copy");
 929    add_str(hypertas, "hcall-debug");
 930    add_str(hypertas, "hcall-vphn");
 931    add_str(qemu_hypertas, "hcall-memop1");
 932
 933    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 934        add_str(hypertas, "hcall-multi-tce");
 935    }
 936
 937    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 938        add_str(hypertas, "hcall-hpt-resize");
 939    }
 940
 941    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 942                     hypertas->str, hypertas->len));
 943    g_string_free(hypertas, TRUE);
 944    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 945                     qemu_hypertas->str, qemu_hypertas->len));
 946    g_string_free(qemu_hypertas, TRUE);
 947
 948    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 949                     refpoints, sizeof(refpoints)));
 950
 951    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
 952                     maxdomains, sizeof(maxdomains)));
 953
 954    /*
 955     * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
 956     * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
 957     *
 958     * The system reset requirements are driven by existing Linux and PowerVM
 959     * implementation which (contrary to PAPR) saves r3 in the error log
 960     * structure like machine check, so Linux expects to find the saved r3
 961     * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
 962     * does not look at the error value).
 963     *
 964     * System reset interrupts are not subject to interlock like machine
 965     * check, so this memory area could be corrupted if the sreset is
 966     * interrupted by a machine check (or vice versa) if it was shared. To
 967     * prevent this, system reset uses per-CPU areas for the sreset save
 968     * area. A system reset that interrupts a system reset handler could
 969     * still overwrite this area, but Linux doesn't try to recover in that
 970     * case anyway.
 971     *
 972     * The extra 8 bytes is required because Linux's FWNMI error log check
 973     * is off-by-one.
 974     */
 975    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
 976                          ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
 977    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 978                          RTAS_ERROR_LOG_MAX));
 979    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 980                          RTAS_EVENT_SCAN_RATE));
 981
 982    g_assert(msi_nonbroken);
 983    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 984
 985    /*
 986     * According to PAPR, rtas ibm,os-term does not guarantee a return
 987     * back to the guest cpu.
 988     *
 989     * While an additional ibm,extended-os-term property indicates
 990     * that rtas call return will always occur. Set this property.
 991     */
 992    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 993
 994    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 995                     lrdr_capacity, sizeof(lrdr_capacity)));
 996
 997    spapr_dt_rtas_tokens(fdt, rtas);
 998}
 999
1000/*
1001 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1002 * and the XIVE features that the guest may request and thus the valid
1003 * values for bytes 23..26 of option vector 5:
1004 */
1005static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1006                                          int chosen)
1007{
1008    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1009
1010    char val[2 * 4] = {
1011        23, 0x00, /* XICS / XIVE mode */
1012        24, 0x00, /* Hash/Radix, filled in below. */
1013        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1014        26, 0x40, /* Radix options: GTSE == yes. */
1015    };
1016
1017    if (spapr->irq->xics && spapr->irq->xive) {
1018        val[1] = SPAPR_OV5_XIVE_BOTH;
1019    } else if (spapr->irq->xive) {
1020        val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1021    } else {
1022        assert(spapr->irq->xics);
1023        val[1] = SPAPR_OV5_XIVE_LEGACY;
1024    }
1025
1026    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1027                          first_ppc_cpu->compat_pvr)) {
1028        /*
1029         * If we're in a pre POWER9 compat mode then the guest should
1030         * do hash and use the legacy interrupt mode
1031         */
1032        val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1033        val[3] = 0x00; /* Hash */
1034    } else if (kvm_enabled()) {
1035        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1036            val[3] = 0x80; /* OV5_MMU_BOTH */
1037        } else if (kvmppc_has_cap_mmu_radix()) {
1038            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1039        } else {
1040            val[3] = 0x00; /* Hash */
1041        }
1042    } else {
1043        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1044        val[3] = 0xC0;
1045    }
1046    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1047                     val, sizeof(val)));
1048}
1049
1050static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1051{
1052    MachineState *machine = MACHINE(spapr);
1053    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1054    int chosen;
1055
1056    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1057
1058    if (reset) {
1059        const char *boot_device = machine->boot_order;
1060        char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1061        size_t cb = 0;
1062        char *bootlist = get_boot_devices_list(&cb);
1063
1064        if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1065            _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1066                                    machine->kernel_cmdline));
1067        }
1068
1069        if (spapr->initrd_size) {
1070            _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1071                                  spapr->initrd_base));
1072            _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1073                                  spapr->initrd_base + spapr->initrd_size));
1074        }
1075
1076        if (spapr->kernel_size) {
1077            uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1078                                  cpu_to_be64(spapr->kernel_size) };
1079
1080            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1081                         &kprop, sizeof(kprop)));
1082            if (spapr->kernel_le) {
1083                _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1084            }
1085        }
1086        if (boot_menu) {
1087            _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1088        }
1089        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1090        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1091        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1092
1093        if (cb && bootlist) {
1094            int i;
1095
1096            for (i = 0; i < cb; i++) {
1097                if (bootlist[i] == '\n') {
1098                    bootlist[i] = ' ';
1099                }
1100            }
1101            _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1102        }
1103
1104        if (boot_device && strlen(boot_device)) {
1105            _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1106        }
1107
1108        if (!spapr->has_graphics && stdout_path) {
1109            /*
1110             * "linux,stdout-path" and "stdout" properties are
1111             * deprecated by linux kernel. New platforms should only
1112             * use the "stdout-path" property. Set the new property
1113             * and continue using older property to remain compatible
1114             * with the existing firmware.
1115             */
1116            _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1117            _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1118        }
1119
1120        /*
1121         * We can deal with BAR reallocation just fine, advertise it
1122         * to the guest
1123         */
1124        if (smc->linux_pci_probe) {
1125            _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1126        }
1127
1128        spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1129
1130        g_free(stdout_path);
1131        g_free(bootlist);
1132    }
1133
1134    _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1135}
1136
1137static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1138{
1139    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1140     * KVM to work under pHyp with some guest co-operation */
1141    int hypervisor;
1142    uint8_t hypercall[16];
1143
1144    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1145    /* indicate KVM hypercall interface */
1146    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1147    if (kvmppc_has_cap_fixup_hcalls()) {
1148        /*
1149         * Older KVM versions with older guest kernels were broken
1150         * with the magic page, don't allow the guest to map it.
1151         */
1152        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1153                                  sizeof(hypercall))) {
1154            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1155                             hypercall, sizeof(hypercall)));
1156        }
1157    }
1158}
1159
1160void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1161{
1162    MachineState *machine = MACHINE(spapr);
1163    MachineClass *mc = MACHINE_GET_CLASS(machine);
1164    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1165    int ret;
1166    void *fdt;
1167    SpaprPhbState *phb;
1168    char *buf;
1169
1170    fdt = g_malloc0(space);
1171    _FDT((fdt_create_empty_tree(fdt, space)));
1172
1173    /* Root node */
1174    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1175    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1176    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1177
1178    /* Guest UUID & Name*/
1179    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1180    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1181    if (qemu_uuid_set) {
1182        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1183    }
1184    g_free(buf);
1185
1186    if (qemu_get_vm_name()) {
1187        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1188                                qemu_get_vm_name()));
1189    }
1190
1191    /* Host Model & Serial Number */
1192    if (spapr->host_model) {
1193        _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1194    } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1195        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1196        g_free(buf);
1197    }
1198
1199    if (spapr->host_serial) {
1200        _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1201    } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1202        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1203        g_free(buf);
1204    }
1205
1206    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1207    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1208
1209    /* /interrupt controller */
1210    spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1211
1212    ret = spapr_dt_memory(spapr, fdt);
1213    if (ret < 0) {
1214        error_report("couldn't setup memory nodes in fdt");
1215        exit(1);
1216    }
1217
1218    /* /vdevice */
1219    spapr_dt_vdevice(spapr->vio_bus, fdt);
1220
1221    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1222        ret = spapr_dt_rng(fdt);
1223        if (ret < 0) {
1224            error_report("could not set up rng device in the fdt");
1225            exit(1);
1226        }
1227    }
1228
1229    QLIST_FOREACH(phb, &spapr->phbs, list) {
1230        ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1231        if (ret < 0) {
1232            error_report("couldn't setup PCI devices in fdt");
1233            exit(1);
1234        }
1235    }
1236
1237    spapr_dt_cpus(fdt, spapr);
1238
1239    if (smc->dr_lmb_enabled) {
1240        _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1241    }
1242
1243    if (mc->has_hotpluggable_cpus) {
1244        int offset = fdt_path_offset(fdt, "/cpus");
1245        ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1246        if (ret < 0) {
1247            error_report("Couldn't set up CPU DR device tree properties");
1248            exit(1);
1249        }
1250    }
1251
1252    /* /event-sources */
1253    spapr_dt_events(spapr, fdt);
1254
1255    /* /rtas */
1256    spapr_dt_rtas(spapr, fdt);
1257
1258    /* /chosen */
1259    spapr_dt_chosen(spapr, fdt, reset);
1260
1261    /* /hypervisor */
1262    if (kvm_enabled()) {
1263        spapr_dt_hypervisor(spapr, fdt);
1264    }
1265
1266    /* Build memory reserve map */
1267    if (reset) {
1268        if (spapr->kernel_size) {
1269            _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1270                                  spapr->kernel_size)));
1271        }
1272        if (spapr->initrd_size) {
1273            _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1274                                  spapr->initrd_size)));
1275        }
1276    }
1277
1278    if (smc->dr_phb_enabled) {
1279        ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1280        if (ret < 0) {
1281            error_report("Couldn't set up PHB DR device tree properties");
1282            exit(1);
1283        }
1284    }
1285
1286    /* NVDIMM devices */
1287    if (mc->nvdimm_supported) {
1288        spapr_dt_persistent_memory(fdt);
1289    }
1290
1291    return fdt;
1292}
1293
1294static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1295{
1296    SpaprMachineState *spapr = opaque;
1297
1298    return (addr & 0x0fffffff) + spapr->kernel_addr;
1299}
1300
1301static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1302                                    PowerPCCPU *cpu)
1303{
1304    CPUPPCState *env = &cpu->env;
1305
1306    /* The TCG path should also be holding the BQL at this point */
1307    g_assert(qemu_mutex_iothread_locked());
1308
1309    if (msr_pr) {
1310        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1311        env->gpr[3] = H_PRIVILEGE;
1312    } else {
1313        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1314    }
1315}
1316
1317struct LPCRSyncState {
1318    target_ulong value;
1319    target_ulong mask;
1320};
1321
1322static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1323{
1324    struct LPCRSyncState *s = arg.host_ptr;
1325    PowerPCCPU *cpu = POWERPC_CPU(cs);
1326    CPUPPCState *env = &cpu->env;
1327    target_ulong lpcr;
1328
1329    cpu_synchronize_state(cs);
1330    lpcr = env->spr[SPR_LPCR];
1331    lpcr &= ~s->mask;
1332    lpcr |= s->value;
1333    ppc_store_lpcr(cpu, lpcr);
1334}
1335
1336void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1337{
1338    CPUState *cs;
1339    struct LPCRSyncState s = {
1340        .value = value,
1341        .mask = mask
1342    };
1343    CPU_FOREACH(cs) {
1344        run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1345    }
1346}
1347
1348static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1349{
1350    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1351
1352    /* Copy PATE1:GR into PATE0:HR */
1353    entry->dw0 = spapr->patb_entry & PATE0_HR;
1354    entry->dw1 = spapr->patb_entry;
1355}
1356
1357#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1358#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1359#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1360#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1361#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1362
1363/*
1364 * Get the fd to access the kernel htab, re-opening it if necessary
1365 */
1366static int get_htab_fd(SpaprMachineState *spapr)
1367{
1368    Error *local_err = NULL;
1369
1370    if (spapr->htab_fd >= 0) {
1371        return spapr->htab_fd;
1372    }
1373
1374    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1375    if (spapr->htab_fd < 0) {
1376        error_report_err(local_err);
1377    }
1378
1379    return spapr->htab_fd;
1380}
1381
1382void close_htab_fd(SpaprMachineState *spapr)
1383{
1384    if (spapr->htab_fd >= 0) {
1385        close(spapr->htab_fd);
1386    }
1387    spapr->htab_fd = -1;
1388}
1389
1390static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1391{
1392    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1393
1394    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1395}
1396
1397static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1398{
1399    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1400
1401    assert(kvm_enabled());
1402
1403    if (!spapr->htab) {
1404        return 0;
1405    }
1406
1407    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1408}
1409
1410static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1411                                                hwaddr ptex, int n)
1412{
1413    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1414    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1415
1416    if (!spapr->htab) {
1417        /*
1418         * HTAB is controlled by KVM. Fetch into temporary buffer
1419         */
1420        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1421        kvmppc_read_hptes(hptes, ptex, n);
1422        return hptes;
1423    }
1424
1425    /*
1426     * HTAB is controlled by QEMU. Just point to the internally
1427     * accessible PTEG.
1428     */
1429    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1430}
1431
1432static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1433                              const ppc_hash_pte64_t *hptes,
1434                              hwaddr ptex, int n)
1435{
1436    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1437
1438    if (!spapr->htab) {
1439        g_free((void *)hptes);
1440    }
1441
1442    /* Nothing to do for qemu managed HPT */
1443}
1444
1445void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1446                      uint64_t pte0, uint64_t pte1)
1447{
1448    SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1449    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1450
1451    if (!spapr->htab) {
1452        kvmppc_write_hpte(ptex, pte0, pte1);
1453    } else {
1454        if (pte0 & HPTE64_V_VALID) {
1455            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1456            /*
1457             * When setting valid, we write PTE1 first. This ensures
1458             * proper synchronization with the reading code in
1459             * ppc_hash64_pteg_search()
1460             */
1461            smp_wmb();
1462            stq_p(spapr->htab + offset, pte0);
1463        } else {
1464            stq_p(spapr->htab + offset, pte0);
1465            /*
1466             * When clearing it we set PTE0 first. This ensures proper
1467             * synchronization with the reading code in
1468             * ppc_hash64_pteg_search()
1469             */
1470            smp_wmb();
1471            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1472        }
1473    }
1474}
1475
1476static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1477                             uint64_t pte1)
1478{
1479    hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1480    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1481
1482    if (!spapr->htab) {
1483        /* There should always be a hash table when this is called */
1484        error_report("spapr_hpte_set_c called with no hash table !");
1485        return;
1486    }
1487
1488    /* The HW performs a non-atomic byte update */
1489    stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1490}
1491
1492static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1493                             uint64_t pte1)
1494{
1495    hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1496    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1497
1498    if (!spapr->htab) {
1499        /* There should always be a hash table when this is called */
1500        error_report("spapr_hpte_set_r called with no hash table !");
1501        return;
1502    }
1503
1504    /* The HW performs a non-atomic byte update */
1505    stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1506}
1507
1508int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1509{
1510    int shift;
1511
1512    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1513     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1514     * that's much more than is needed for Linux guests */
1515    shift = ctz64(pow2ceil(ramsize)) - 7;
1516    shift = MAX(shift, 18); /* Minimum architected size */
1517    shift = MIN(shift, 46); /* Maximum architected size */
1518    return shift;
1519}
1520
1521void spapr_free_hpt(SpaprMachineState *spapr)
1522{
1523    g_free(spapr->htab);
1524    spapr->htab = NULL;
1525    spapr->htab_shift = 0;
1526    close_htab_fd(spapr);
1527}
1528
1529void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1530                          Error **errp)
1531{
1532    long rc;
1533
1534    /* Clean up any HPT info from a previous boot */
1535    spapr_free_hpt(spapr);
1536
1537    rc = kvmppc_reset_htab(shift);
1538    if (rc < 0) {
1539        /* kernel-side HPT needed, but couldn't allocate one */
1540        error_setg_errno(errp, errno,
1541                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1542                         shift);
1543        /* This is almost certainly fatal, but if the caller really
1544         * wants to carry on with shift == 0, it's welcome to try */
1545    } else if (rc > 0) {
1546        /* kernel-side HPT allocated */
1547        if (rc != shift) {
1548            error_setg(errp,
1549                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1550                       shift, rc);
1551        }
1552
1553        spapr->htab_shift = shift;
1554        spapr->htab = NULL;
1555    } else {
1556        /* kernel-side HPT not needed, allocate in userspace instead */
1557        size_t size = 1ULL << shift;
1558        int i;
1559
1560        spapr->htab = qemu_memalign(size, size);
1561        if (!spapr->htab) {
1562            error_setg_errno(errp, errno,
1563                             "Could not allocate HPT of order %d", shift);
1564            return;
1565        }
1566
1567        memset(spapr->htab, 0, size);
1568        spapr->htab_shift = shift;
1569
1570        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1571            DIRTY_HPTE(HPTE(spapr->htab, i));
1572        }
1573    }
1574    /* We're setting up a hash table, so that means we're not radix */
1575    spapr->patb_entry = 0;
1576    spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1577}
1578
1579void spapr_setup_hpt(SpaprMachineState *spapr)
1580{
1581    int hpt_shift;
1582
1583    if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1584        || (spapr->cas_reboot
1585            && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1586        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1587    } else {
1588        uint64_t current_ram_size;
1589
1590        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1591        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1592    }
1593    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1594
1595    if (kvm_enabled()) {
1596        hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1597
1598        /* Check our RMA fits in the possible VRMA */
1599        if (vrma_limit < spapr->rma_size) {
1600            error_report("Unable to create %" HWADDR_PRIu
1601                         "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1602                         spapr->rma_size / MiB, vrma_limit / MiB);
1603            exit(EXIT_FAILURE);
1604        }
1605    }
1606}
1607
1608static int spapr_reset_drcs(Object *child, void *opaque)
1609{
1610    SpaprDrc *drc =
1611        (SpaprDrc *) object_dynamic_cast(child,
1612                                                 TYPE_SPAPR_DR_CONNECTOR);
1613
1614    if (drc) {
1615        spapr_drc_reset(drc);
1616    }
1617
1618    return 0;
1619}
1620
1621static void spapr_machine_reset(MachineState *machine)
1622{
1623    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1624    PowerPCCPU *first_ppc_cpu;
1625    hwaddr fdt_addr;
1626    void *fdt;
1627    int rc;
1628
1629    kvmppc_svm_off(&error_fatal);
1630    spapr_caps_apply(spapr);
1631
1632    first_ppc_cpu = POWERPC_CPU(first_cpu);
1633    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1634        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1635                              spapr->max_compat_pvr)) {
1636        /*
1637         * If using KVM with radix mode available, VCPUs can be started
1638         * without a HPT because KVM will start them in radix mode.
1639         * Set the GR bit in PATE so that we know there is no HPT.
1640         */
1641        spapr->patb_entry = PATE1_GR;
1642        spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1643    } else {
1644        spapr_setup_hpt(spapr);
1645    }
1646
1647    qemu_devices_reset();
1648
1649    /*
1650     * If this reset wasn't generated by CAS, we should reset our
1651     * negotiated options and start from scratch
1652     */
1653    if (!spapr->cas_reboot) {
1654        spapr_ovec_cleanup(spapr->ov5_cas);
1655        spapr->ov5_cas = spapr_ovec_new();
1656
1657        ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1658    }
1659
1660    /*
1661     * This is fixing some of the default configuration of the XIVE
1662     * devices. To be called after the reset of the machine devices.
1663     */
1664    spapr_irq_reset(spapr, &error_fatal);
1665
1666    /*
1667     * There is no CAS under qtest. Simulate one to please the code that
1668     * depends on spapr->ov5_cas. This is especially needed to test device
1669     * unplug, so we do that before resetting the DRCs.
1670     */
1671    if (qtest_enabled()) {
1672        spapr_ovec_cleanup(spapr->ov5_cas);
1673        spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1674    }
1675
1676    /* DRC reset may cause a device to be unplugged. This will cause troubles
1677     * if this device is used by another device (eg, a running vhost backend
1678     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1679     * situations, we reset DRCs after all devices have been reset.
1680     */
1681    object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1682
1683    spapr_clear_pending_events(spapr);
1684
1685    /*
1686     * We place the device tree and RTAS just below either the top of the RMA,
1687     * or just below 2GB, whichever is lower, so that it can be
1688     * processed with 32-bit real mode code if necessary
1689     */
1690    fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1691
1692    fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1693
1694    rc = fdt_pack(fdt);
1695
1696    /* Should only fail if we've built a corrupted tree */
1697    assert(rc == 0);
1698
1699    /* Load the fdt */
1700    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1701    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1702    g_free(spapr->fdt_blob);
1703    spapr->fdt_size = fdt_totalsize(fdt);
1704    spapr->fdt_initial_size = spapr->fdt_size;
1705    spapr->fdt_blob = fdt;
1706
1707    /* Set up the entry state */
1708    spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1709    first_ppc_cpu->env.gpr[5] = 0;
1710
1711    spapr->cas_reboot = false;
1712
1713    spapr->fwnmi_system_reset_addr = -1;
1714    spapr->fwnmi_machine_check_addr = -1;
1715    spapr->fwnmi_machine_check_interlock = -1;
1716
1717    /* Signal all vCPUs waiting on this condition */
1718    qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1719
1720    migrate_del_blocker(spapr->fwnmi_migration_blocker);
1721}
1722
1723static void spapr_create_nvram(SpaprMachineState *spapr)
1724{
1725    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1726    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1727
1728    if (dinfo) {
1729        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1730                            &error_fatal);
1731    }
1732
1733    qdev_init_nofail(dev);
1734
1735    spapr->nvram = (struct SpaprNvram *)dev;
1736}
1737
1738static void spapr_rtc_create(SpaprMachineState *spapr)
1739{
1740    object_initialize_child(OBJECT(spapr), "rtc",
1741                            &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1742                            &error_fatal, NULL);
1743    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1744                              &error_fatal);
1745    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1746                              "date", &error_fatal);
1747}
1748
1749/* Returns whether we want to use VGA or not */
1750static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1751{
1752    switch (vga_interface_type) {
1753    case VGA_NONE:
1754        return false;
1755    case VGA_DEVICE:
1756        return true;
1757    case VGA_STD:
1758    case VGA_VIRTIO:
1759    case VGA_CIRRUS:
1760        return pci_vga_init(pci_bus) != NULL;
1761    default:
1762        error_setg(errp,
1763                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1764        return false;
1765    }
1766}
1767
1768static int spapr_pre_load(void *opaque)
1769{
1770    int rc;
1771
1772    rc = spapr_caps_pre_load(opaque);
1773    if (rc) {
1774        return rc;
1775    }
1776
1777    return 0;
1778}
1779
1780static int spapr_post_load(void *opaque, int version_id)
1781{
1782    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1783    int err = 0;
1784
1785    err = spapr_caps_post_migration(spapr);
1786    if (err) {
1787        return err;
1788    }
1789
1790    /*
1791     * In earlier versions, there was no separate qdev for the PAPR
1792     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1793     * So when migrating from those versions, poke the incoming offset
1794     * value into the RTC device
1795     */
1796    if (version_id < 3) {
1797        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1798        if (err) {
1799            return err;
1800        }
1801    }
1802
1803    if (kvm_enabled() && spapr->patb_entry) {
1804        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1805        bool radix = !!(spapr->patb_entry & PATE1_GR);
1806        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1807
1808        /*
1809         * Update LPCR:HR and UPRT as they may not be set properly in
1810         * the stream
1811         */
1812        spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1813                            LPCR_HR | LPCR_UPRT);
1814
1815        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1816        if (err) {
1817            error_report("Process table config unsupported by the host");
1818            return -EINVAL;
1819        }
1820    }
1821
1822    err = spapr_irq_post_load(spapr, version_id);
1823    if (err) {
1824        return err;
1825    }
1826
1827    return err;
1828}
1829
1830static int spapr_pre_save(void *opaque)
1831{
1832    int rc;
1833
1834    rc = spapr_caps_pre_save(opaque);
1835    if (rc) {
1836        return rc;
1837    }
1838
1839    return 0;
1840}
1841
1842static bool version_before_3(void *opaque, int version_id)
1843{
1844    return version_id < 3;
1845}
1846
1847static bool spapr_pending_events_needed(void *opaque)
1848{
1849    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1850    return !QTAILQ_EMPTY(&spapr->pending_events);
1851}
1852
1853static const VMStateDescription vmstate_spapr_event_entry = {
1854    .name = "spapr_event_log_entry",
1855    .version_id = 1,
1856    .minimum_version_id = 1,
1857    .fields = (VMStateField[]) {
1858        VMSTATE_UINT32(summary, SpaprEventLogEntry),
1859        VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1860        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1861                                     NULL, extended_length),
1862        VMSTATE_END_OF_LIST()
1863    },
1864};
1865
1866static const VMStateDescription vmstate_spapr_pending_events = {
1867    .name = "spapr_pending_events",
1868    .version_id = 1,
1869    .minimum_version_id = 1,
1870    .needed = spapr_pending_events_needed,
1871    .fields = (VMStateField[]) {
1872        VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1873                         vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1874        VMSTATE_END_OF_LIST()
1875    },
1876};
1877
1878static bool spapr_ov5_cas_needed(void *opaque)
1879{
1880    SpaprMachineState *spapr = opaque;
1881    SpaprOptionVector *ov5_mask = spapr_ovec_new();
1882    bool cas_needed;
1883
1884    /* Prior to the introduction of SpaprOptionVector, we had two option
1885     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1886     * Both of these options encode machine topology into the device-tree
1887     * in such a way that the now-booted OS should still be able to interact
1888     * appropriately with QEMU regardless of what options were actually
1889     * negotiatied on the source side.
1890     *
1891     * As such, we can avoid migrating the CAS-negotiated options if these
1892     * are the only options available on the current machine/platform.
1893     * Since these are the only options available for pseries-2.7 and
1894     * earlier, this allows us to maintain old->new/new->old migration
1895     * compatibility.
1896     *
1897     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1898     * via default pseries-2.8 machines and explicit command-line parameters.
1899     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1900     * of the actual CAS-negotiated values to continue working properly. For
1901     * example, availability of memory unplug depends on knowing whether
1902     * OV5_HP_EVT was negotiated via CAS.
1903     *
1904     * Thus, for any cases where the set of available CAS-negotiatable
1905     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1906     * include the CAS-negotiated options in the migration stream, unless
1907     * if they affect boot time behaviour only.
1908     */
1909    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1910    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1911    spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1912
1913    /* We need extra information if we have any bits outside the mask
1914     * defined above */
1915    cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1916
1917    spapr_ovec_cleanup(ov5_mask);
1918
1919    return cas_needed;
1920}
1921
1922static const VMStateDescription vmstate_spapr_ov5_cas = {
1923    .name = "spapr_option_vector_ov5_cas",
1924    .version_id = 1,
1925    .minimum_version_id = 1,
1926    .needed = spapr_ov5_cas_needed,
1927    .fields = (VMStateField[]) {
1928        VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1929                                 vmstate_spapr_ovec, SpaprOptionVector),
1930        VMSTATE_END_OF_LIST()
1931    },
1932};
1933
1934static bool spapr_patb_entry_needed(void *opaque)
1935{
1936    SpaprMachineState *spapr = opaque;
1937
1938    return !!spapr->patb_entry;
1939}
1940
1941static const VMStateDescription vmstate_spapr_patb_entry = {
1942    .name = "spapr_patb_entry",
1943    .version_id = 1,
1944    .minimum_version_id = 1,
1945    .needed = spapr_patb_entry_needed,
1946    .fields = (VMStateField[]) {
1947        VMSTATE_UINT64(patb_entry, SpaprMachineState),
1948        VMSTATE_END_OF_LIST()
1949    },
1950};
1951
1952static bool spapr_irq_map_needed(void *opaque)
1953{
1954    SpaprMachineState *spapr = opaque;
1955
1956    return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1957}
1958
1959static const VMStateDescription vmstate_spapr_irq_map = {
1960    .name = "spapr_irq_map",
1961    .version_id = 1,
1962    .minimum_version_id = 1,
1963    .needed = spapr_irq_map_needed,
1964    .fields = (VMStateField[]) {
1965        VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1966        VMSTATE_END_OF_LIST()
1967    },
1968};
1969
1970static bool spapr_dtb_needed(void *opaque)
1971{
1972    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1973
1974    return smc->update_dt_enabled;
1975}
1976
1977static int spapr_dtb_pre_load(void *opaque)
1978{
1979    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1980
1981    g_free(spapr->fdt_blob);
1982    spapr->fdt_blob = NULL;
1983    spapr->fdt_size = 0;
1984
1985    return 0;
1986}
1987
1988static const VMStateDescription vmstate_spapr_dtb = {
1989    .name = "spapr_dtb",
1990    .version_id = 1,
1991    .minimum_version_id = 1,
1992    .needed = spapr_dtb_needed,
1993    .pre_load = spapr_dtb_pre_load,
1994    .fields = (VMStateField[]) {
1995        VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1996        VMSTATE_UINT32(fdt_size, SpaprMachineState),
1997        VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1998                                     fdt_size),
1999        VMSTATE_END_OF_LIST()
2000    },
2001};
2002
2003static bool spapr_fwnmi_needed(void *opaque)
2004{
2005    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2006
2007    return spapr->fwnmi_machine_check_addr != -1;
2008}
2009
2010static int spapr_fwnmi_pre_save(void *opaque)
2011{
2012    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2013
2014    /*
2015     * Check if machine check handling is in progress and print a
2016     * warning message.
2017     */
2018    if (spapr->fwnmi_machine_check_interlock != -1) {
2019        warn_report("A machine check is being handled during migration. The"
2020                "handler may run and log hardware error on the destination");
2021    }
2022
2023    return 0;
2024}
2025
2026static const VMStateDescription vmstate_spapr_fwnmi = {
2027    .name = "spapr_fwnmi",
2028    .version_id = 1,
2029    .minimum_version_id = 1,
2030    .needed = spapr_fwnmi_needed,
2031    .pre_save = spapr_fwnmi_pre_save,
2032    .fields = (VMStateField[]) {
2033        VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2034        VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2035        VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2036        VMSTATE_END_OF_LIST()
2037    },
2038};
2039
2040static const VMStateDescription vmstate_spapr = {
2041    .name = "spapr",
2042    .version_id = 3,
2043    .minimum_version_id = 1,
2044    .pre_load = spapr_pre_load,
2045    .post_load = spapr_post_load,
2046    .pre_save = spapr_pre_save,
2047    .fields = (VMStateField[]) {
2048        /* used to be @next_irq */
2049        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2050
2051        /* RTC offset */
2052        VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2053
2054        VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2055        VMSTATE_END_OF_LIST()
2056    },
2057    .subsections = (const VMStateDescription*[]) {
2058        &vmstate_spapr_ov5_cas,
2059        &vmstate_spapr_patb_entry,
2060        &vmstate_spapr_pending_events,
2061        &vmstate_spapr_cap_htm,
2062        &vmstate_spapr_cap_vsx,
2063        &vmstate_spapr_cap_dfp,
2064        &vmstate_spapr_cap_cfpc,
2065        &vmstate_spapr_cap_sbbc,
2066        &vmstate_spapr_cap_ibs,
2067        &vmstate_spapr_cap_hpt_maxpagesize,
2068        &vmstate_spapr_irq_map,
2069        &vmstate_spapr_cap_nested_kvm_hv,
2070        &vmstate_spapr_dtb,
2071        &vmstate_spapr_cap_large_decr,
2072        &vmstate_spapr_cap_ccf_assist,
2073        &vmstate_spapr_cap_fwnmi,
2074        &vmstate_spapr_fwnmi,
2075        NULL
2076    }
2077};
2078
2079static int htab_save_setup(QEMUFile *f, void *opaque)
2080{
2081    SpaprMachineState *spapr = opaque;
2082
2083    /* "Iteration" header */
2084    if (!spapr->htab_shift) {
2085        qemu_put_be32(f, -1);
2086    } else {
2087        qemu_put_be32(f, spapr->htab_shift);
2088    }
2089
2090    if (spapr->htab) {
2091        spapr->htab_save_index = 0;
2092        spapr->htab_first_pass = true;
2093    } else {
2094        if (spapr->htab_shift) {
2095            assert(kvm_enabled());
2096        }
2097    }
2098
2099
2100    return 0;
2101}
2102
2103static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2104                            int chunkstart, int n_valid, int n_invalid)
2105{
2106    qemu_put_be32(f, chunkstart);
2107    qemu_put_be16(f, n_valid);
2108    qemu_put_be16(f, n_invalid);
2109    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2110                    HASH_PTE_SIZE_64 * n_valid);
2111}
2112
2113static void htab_save_end_marker(QEMUFile *f)
2114{
2115    qemu_put_be32(f, 0);
2116    qemu_put_be16(f, 0);
2117    qemu_put_be16(f, 0);
2118}
2119
2120static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2121                                 int64_t max_ns)
2122{
2123    bool has_timeout = max_ns != -1;
2124    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2125    int index = spapr->htab_save_index;
2126    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2127
2128    assert(spapr->htab_first_pass);
2129
2130    do {
2131        int chunkstart;
2132
2133        /* Consume invalid HPTEs */
2134        while ((index < htabslots)
2135               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2136            CLEAN_HPTE(HPTE(spapr->htab, index));
2137            index++;
2138        }
2139
2140        /* Consume valid HPTEs */
2141        chunkstart = index;
2142        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2143               && HPTE_VALID(HPTE(spapr->htab, index))) {
2144            CLEAN_HPTE(HPTE(spapr->htab, index));
2145            index++;
2146        }
2147
2148        if (index > chunkstart) {
2149            int n_valid = index - chunkstart;
2150
2151            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2152
2153            if (has_timeout &&
2154                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2155                break;
2156            }
2157        }
2158    } while ((index < htabslots) && !qemu_file_rate_limit(f));
2159
2160    if (index >= htabslots) {
2161        assert(index == htabslots);
2162        index = 0;
2163        spapr->htab_first_pass = false;
2164    }
2165    spapr->htab_save_index = index;
2166}
2167
2168static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2169                                int64_t max_ns)
2170{
2171    bool final = max_ns < 0;
2172    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2173    int examined = 0, sent = 0;
2174    int index = spapr->htab_save_index;
2175    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2176
2177    assert(!spapr->htab_first_pass);
2178
2179    do {
2180        int chunkstart, invalidstart;
2181
2182        /* Consume non-dirty HPTEs */
2183        while ((index < htabslots)
2184               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2185            index++;
2186            examined++;
2187        }
2188
2189        chunkstart = index;
2190        /* Consume valid dirty HPTEs */
2191        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2192               && HPTE_DIRTY(HPTE(spapr->htab, index))
2193               && HPTE_VALID(HPTE(spapr->htab, index))) {
2194            CLEAN_HPTE(HPTE(spapr->htab, index));
2195            index++;
2196            examined++;
2197        }
2198
2199        invalidstart = index;
2200        /* Consume invalid dirty HPTEs */
2201        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2202               && HPTE_DIRTY(HPTE(spapr->htab, index))
2203               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2204            CLEAN_HPTE(HPTE(spapr->htab, index));
2205            index++;
2206            examined++;
2207        }
2208
2209        if (index > chunkstart) {
2210            int n_valid = invalidstart - chunkstart;
2211            int n_invalid = index - invalidstart;
2212
2213            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2214            sent += index - chunkstart;
2215
2216            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2217                break;
2218            }
2219        }
2220
2221        if (examined >= htabslots) {
2222            break;
2223        }
2224
2225        if (index >= htabslots) {
2226            assert(index == htabslots);
2227            index = 0;
2228        }
2229    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2230
2231    if (index >= htabslots) {
2232        assert(index == htabslots);
2233        index = 0;
2234    }
2235
2236    spapr->htab_save_index = index;
2237
2238    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2239}
2240
2241#define MAX_ITERATION_NS    5000000 /* 5 ms */
2242#define MAX_KVM_BUF_SIZE    2048
2243
2244static int htab_save_iterate(QEMUFile *f, void *opaque)
2245{
2246    SpaprMachineState *spapr = opaque;
2247    int fd;
2248    int rc = 0;
2249
2250    /* Iteration header */
2251    if (!spapr->htab_shift) {
2252        qemu_put_be32(f, -1);
2253        return 1;
2254    } else {
2255        qemu_put_be32(f, 0);
2256    }
2257
2258    if (!spapr->htab) {
2259        assert(kvm_enabled());
2260
2261        fd = get_htab_fd(spapr);
2262        if (fd < 0) {
2263            return fd;
2264        }
2265
2266        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2267        if (rc < 0) {
2268            return rc;
2269        }
2270    } else  if (spapr->htab_first_pass) {
2271        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2272    } else {
2273        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2274    }
2275
2276    htab_save_end_marker(f);
2277
2278    return rc;
2279}
2280
2281static int htab_save_complete(QEMUFile *f, void *opaque)
2282{
2283    SpaprMachineState *spapr = opaque;
2284    int fd;
2285
2286    /* Iteration header */
2287    if (!spapr->htab_shift) {
2288        qemu_put_be32(f, -1);
2289        return 0;
2290    } else {
2291        qemu_put_be32(f, 0);
2292    }
2293
2294    if (!spapr->htab) {
2295        int rc;
2296
2297        assert(kvm_enabled());
2298
2299        fd = get_htab_fd(spapr);
2300        if (fd < 0) {
2301            return fd;
2302        }
2303
2304        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2305        if (rc < 0) {
2306            return rc;
2307        }
2308    } else {
2309        if (spapr->htab_first_pass) {
2310            htab_save_first_pass(f, spapr, -1);
2311        }
2312        htab_save_later_pass(f, spapr, -1);
2313    }
2314
2315    /* End marker */
2316    htab_save_end_marker(f);
2317
2318    return 0;
2319}
2320
2321static int htab_load(QEMUFile *f, void *opaque, int version_id)
2322{
2323    SpaprMachineState *spapr = opaque;
2324    uint32_t section_hdr;
2325    int fd = -1;
2326    Error *local_err = NULL;
2327
2328    if (version_id < 1 || version_id > 1) {
2329        error_report("htab_load() bad version");
2330        return -EINVAL;
2331    }
2332
2333    section_hdr = qemu_get_be32(f);
2334
2335    if (section_hdr == -1) {
2336        spapr_free_hpt(spapr);
2337        return 0;
2338    }
2339
2340    if (section_hdr) {
2341        /* First section gives the htab size */
2342        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2343        if (local_err) {
2344            error_report_err(local_err);
2345            return -EINVAL;
2346        }
2347        return 0;
2348    }
2349
2350    if (!spapr->htab) {
2351        assert(kvm_enabled());
2352
2353        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2354        if (fd < 0) {
2355            error_report_err(local_err);
2356            return fd;
2357        }
2358    }
2359
2360    while (true) {
2361        uint32_t index;
2362        uint16_t n_valid, n_invalid;
2363
2364        index = qemu_get_be32(f);
2365        n_valid = qemu_get_be16(f);
2366        n_invalid = qemu_get_be16(f);
2367
2368        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2369            /* End of Stream */
2370            break;
2371        }
2372
2373        if ((index + n_valid + n_invalid) >
2374            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2375            /* Bad index in stream */
2376            error_report(
2377                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2378                index, n_valid, n_invalid, spapr->htab_shift);
2379            return -EINVAL;
2380        }
2381
2382        if (spapr->htab) {
2383            if (n_valid) {
2384                qemu_get_buffer(f, HPTE(spapr->htab, index),
2385                                HASH_PTE_SIZE_64 * n_valid);
2386            }
2387            if (n_invalid) {
2388                memset(HPTE(spapr->htab, index + n_valid), 0,
2389                       HASH_PTE_SIZE_64 * n_invalid);
2390            }
2391        } else {
2392            int rc;
2393
2394            assert(fd >= 0);
2395
2396            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2397            if (rc < 0) {
2398                return rc;
2399            }
2400        }
2401    }
2402
2403    if (!spapr->htab) {
2404        assert(fd >= 0);
2405        close(fd);
2406    }
2407
2408    return 0;
2409}
2410
2411static void htab_save_cleanup(void *opaque)
2412{
2413    SpaprMachineState *spapr = opaque;
2414
2415    close_htab_fd(spapr);
2416}
2417
2418static SaveVMHandlers savevm_htab_handlers = {
2419    .save_setup = htab_save_setup,
2420    .save_live_iterate = htab_save_iterate,
2421    .save_live_complete_precopy = htab_save_complete,
2422    .save_cleanup = htab_save_cleanup,
2423    .load_state = htab_load,
2424};
2425
2426static void spapr_boot_set(void *opaque, const char *boot_device,
2427                           Error **errp)
2428{
2429    MachineState *machine = MACHINE(opaque);
2430    machine->boot_order = g_strdup(boot_device);
2431}
2432
2433static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2434{
2435    MachineState *machine = MACHINE(spapr);
2436    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2437    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2438    int i;
2439
2440    for (i = 0; i < nr_lmbs; i++) {
2441        uint64_t addr;
2442
2443        addr = i * lmb_size + machine->device_memory->base;
2444        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2445                               addr / lmb_size);
2446    }
2447}
2448
2449/*
2450 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2451 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2452 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2453 */
2454static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2455{
2456    int i;
2457
2458    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2459        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2460                   " is not aligned to %" PRIu64 " MiB",
2461                   machine->ram_size,
2462                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2463        return;
2464    }
2465
2466    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2467        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2468                   " is not aligned to %" PRIu64 " MiB",
2469                   machine->ram_size,
2470                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2471        return;
2472    }
2473
2474    for (i = 0; i < machine->numa_state->num_nodes; i++) {
2475        if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2476            error_setg(errp,
2477                       "Node %d memory size 0x%" PRIx64
2478                       " is not aligned to %" PRIu64 " MiB",
2479                       i, machine->numa_state->nodes[i].node_mem,
2480                       SPAPR_MEMORY_BLOCK_SIZE / MiB);
2481            return;
2482        }
2483    }
2484}
2485
2486/* find cpu slot in machine->possible_cpus by core_id */
2487static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2488{
2489    int index = id / ms->smp.threads;
2490
2491    if (index >= ms->possible_cpus->len) {
2492        return NULL;
2493    }
2494    if (idx) {
2495        *idx = index;
2496    }
2497    return &ms->possible_cpus->cpus[index];
2498}
2499
2500static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2501{
2502    MachineState *ms = MACHINE(spapr);
2503    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2504    Error *local_err = NULL;
2505    bool vsmt_user = !!spapr->vsmt;
2506    int kvm_smt = kvmppc_smt_threads();
2507    int ret;
2508    unsigned int smp_threads = ms->smp.threads;
2509
2510    if (!kvm_enabled() && (smp_threads > 1)) {
2511        error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2512                     "on a pseries machine");
2513        goto out;
2514    }
2515    if (!is_power_of_2(smp_threads)) {
2516        error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2517                     "machine because it must be a power of 2", smp_threads);
2518        goto out;
2519    }
2520
2521    /* Detemine the VSMT mode to use: */
2522    if (vsmt_user) {
2523        if (spapr->vsmt < smp_threads) {
2524            error_setg(&local_err, "Cannot support VSMT mode %d"
2525                         " because it must be >= threads/core (%d)",
2526                         spapr->vsmt, smp_threads);
2527            goto out;
2528        }
2529        /* In this case, spapr->vsmt has been set by the command line */
2530    } else if (!smc->smp_threads_vsmt) {
2531        /*
2532         * Default VSMT value is tricky, because we need it to be as
2533         * consistent as possible (for migration), but this requires
2534         * changing it for at least some existing cases.  We pick 8 as
2535         * the value that we'd get with KVM on POWER8, the
2536         * overwhelmingly common case in production systems.
2537         */
2538        spapr->vsmt = MAX(8, smp_threads);
2539    } else {
2540        spapr->vsmt = smp_threads;
2541    }
2542
2543    /* KVM: If necessary, set the SMT mode: */
2544    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2545        ret = kvmppc_set_smt_threads(spapr->vsmt);
2546        if (ret) {
2547            /* Looks like KVM isn't able to change VSMT mode */
2548            error_setg(&local_err,
2549                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2550                       spapr->vsmt, ret);
2551            /* We can live with that if the default one is big enough
2552             * for the number of threads, and a submultiple of the one
2553             * we want.  In this case we'll waste some vcpu ids, but
2554             * behaviour will be correct */
2555            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2556                warn_report_err(local_err);
2557                local_err = NULL;
2558                goto out;
2559            } else {
2560                if (!vsmt_user) {
2561                    error_append_hint(&local_err,
2562                                      "On PPC, a VM with %d threads/core"
2563                                      " on a host with %d threads/core"
2564                                      " requires the use of VSMT mode %d.\n",
2565                                      smp_threads, kvm_smt, spapr->vsmt);
2566                }
2567                kvmppc_error_append_smt_possible_hint(&local_err);
2568                goto out;
2569            }
2570        }
2571    }
2572    /* else TCG: nothing to do currently */
2573out:
2574    error_propagate(errp, local_err);
2575}
2576
2577static void spapr_init_cpus(SpaprMachineState *spapr)
2578{
2579    MachineState *machine = MACHINE(spapr);
2580    MachineClass *mc = MACHINE_GET_CLASS(machine);
2581    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2582    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2583    const CPUArchIdList *possible_cpus;
2584    unsigned int smp_cpus = machine->smp.cpus;
2585    unsigned int smp_threads = machine->smp.threads;
2586    unsigned int max_cpus = machine->smp.max_cpus;
2587    int boot_cores_nr = smp_cpus / smp_threads;
2588    int i;
2589
2590    possible_cpus = mc->possible_cpu_arch_ids(machine);
2591    if (mc->has_hotpluggable_cpus) {
2592        if (smp_cpus % smp_threads) {
2593            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2594                         smp_cpus, smp_threads);
2595            exit(1);
2596        }
2597        if (max_cpus % smp_threads) {
2598            error_report("max_cpus (%u) must be multiple of threads (%u)",
2599                         max_cpus, smp_threads);
2600            exit(1);
2601        }
2602    } else {
2603        if (max_cpus != smp_cpus) {
2604            error_report("This machine version does not support CPU hotplug");
2605            exit(1);
2606        }
2607        boot_cores_nr = possible_cpus->len;
2608    }
2609
2610    if (smc->pre_2_10_has_unused_icps) {
2611        int i;
2612
2613        for (i = 0; i < spapr_max_server_number(spapr); i++) {
2614            /* Dummy entries get deregistered when real ICPState objects
2615             * are registered during CPU core hotplug.
2616             */
2617            pre_2_10_vmstate_register_dummy_icp(i);
2618        }
2619    }
2620
2621    for (i = 0; i < possible_cpus->len; i++) {
2622        int core_id = i * smp_threads;
2623
2624        if (mc->has_hotpluggable_cpus) {
2625            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2626                                   spapr_vcpu_id(spapr, core_id));
2627        }
2628
2629        if (i < boot_cores_nr) {
2630            Object *core  = object_new(type);
2631            int nr_threads = smp_threads;
2632
2633            /* Handle the partially filled core for older machine types */
2634            if ((i + 1) * smp_threads >= smp_cpus) {
2635                nr_threads = smp_cpus - i * smp_threads;
2636            }
2637
2638            object_property_set_int(core, nr_threads, "nr-threads",
2639                                    &error_fatal);
2640            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2641                                    &error_fatal);
2642            object_property_set_bool(core, true, "realized", &error_fatal);
2643
2644            object_unref(core);
2645        }
2646    }
2647}
2648
2649static PCIHostState *spapr_create_default_phb(void)
2650{
2651    DeviceState *dev;
2652
2653    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2654    qdev_prop_set_uint32(dev, "index", 0);
2655    qdev_init_nofail(dev);
2656
2657    return PCI_HOST_BRIDGE(dev);
2658}
2659
2660static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2661{
2662    MachineState *machine = MACHINE(spapr);
2663    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2664    hwaddr rma_size = machine->ram_size;
2665    hwaddr node0_size = spapr_node0_size(machine);
2666
2667    /* RMA has to fit in the first NUMA node */
2668    rma_size = MIN(rma_size, node0_size);
2669
2670    /*
2671     * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2672     * never exceed that
2673     */
2674    rma_size = MIN(rma_size, 1 * TiB);
2675
2676    /*
2677     * Clamp the RMA size based on machine type.  This is for
2678     * migration compatibility with older qemu versions, which limited
2679     * the RMA size for complicated and mostly bad reasons.
2680     */
2681    if (smc->rma_limit) {
2682        rma_size = MIN(rma_size, smc->rma_limit);
2683    }
2684
2685    if (rma_size < MIN_RMA_SLOF) {
2686        error_setg(errp,
2687                   "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2688                   "ldMiB guest RMA (Real Mode Area memory)",
2689                   MIN_RMA_SLOF / MiB);
2690        return 0;
2691    }
2692
2693    return rma_size;
2694}
2695
2696/* pSeries LPAR / sPAPR hardware init */
2697static void spapr_machine_init(MachineState *machine)
2698{
2699    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2700    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2701    MachineClass *mc = MACHINE_GET_CLASS(machine);
2702    const char *kernel_filename = machine->kernel_filename;
2703    const char *initrd_filename = machine->initrd_filename;
2704    PCIHostState *phb;
2705    int i;
2706    MemoryRegion *sysmem = get_system_memory();
2707    long load_limit, fw_size;
2708    char *filename;
2709    Error *resize_hpt_err = NULL;
2710
2711    msi_nonbroken = true;
2712
2713    QLIST_INIT(&spapr->phbs);
2714    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2715
2716    /* Determine capabilities to run with */
2717    spapr_caps_init(spapr);
2718
2719    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2720    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2721        /*
2722         * If the user explicitly requested a mode we should either
2723         * supply it, or fail completely (which we do below).  But if
2724         * it's not set explicitly, we reset our mode to something
2725         * that works
2726         */
2727        if (resize_hpt_err) {
2728            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2729            error_free(resize_hpt_err);
2730            resize_hpt_err = NULL;
2731        } else {
2732            spapr->resize_hpt = smc->resize_hpt_default;
2733        }
2734    }
2735
2736    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2737
2738    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2739        /*
2740         * User requested HPT resize, but this host can't supply it.  Bail out
2741         */
2742        error_report_err(resize_hpt_err);
2743        exit(1);
2744    }
2745
2746    spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2747
2748    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2749    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2750
2751    /*
2752     * VSMT must be set in order to be able to compute VCPU ids, ie to
2753     * call spapr_max_server_number() or spapr_vcpu_id().
2754     */
2755    spapr_set_vsmt_mode(spapr, &error_fatal);
2756
2757    /* Set up Interrupt Controller before we create the VCPUs */
2758    spapr_irq_init(spapr, &error_fatal);
2759
2760    /* Set up containers for ibm,client-architecture-support negotiated options
2761     */
2762    spapr->ov5 = spapr_ovec_new();
2763    spapr->ov5_cas = spapr_ovec_new();
2764
2765    if (smc->dr_lmb_enabled) {
2766        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2767        spapr_validate_node_memory(machine, &error_fatal);
2768    }
2769
2770    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2771
2772    /* advertise support for dedicated HP event source to guests */
2773    if (spapr->use_hotplug_event_source) {
2774        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2775    }
2776
2777    /* advertise support for HPT resizing */
2778    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2779        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2780    }
2781
2782    /* advertise support for ibm,dyamic-memory-v2 */
2783    spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2784
2785    /* advertise XIVE on POWER9 machines */
2786    if (spapr->irq->xive) {
2787        spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2788    }
2789
2790    /* init CPUs */
2791    spapr_init_cpus(spapr);
2792
2793    /*
2794     * check we don't have a memory-less/cpu-less NUMA node
2795     * Firmware relies on the existing memory/cpu topology to provide the
2796     * NUMA topology to the kernel.
2797     * And the linux kernel needs to know the NUMA topology at start
2798     * to be able to hotplug CPUs later.
2799     */
2800    if (machine->numa_state->num_nodes) {
2801        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2802            /* check for memory-less node */
2803            if (machine->numa_state->nodes[i].node_mem == 0) {
2804                CPUState *cs;
2805                int found = 0;
2806                /* check for cpu-less node */
2807                CPU_FOREACH(cs) {
2808                    PowerPCCPU *cpu = POWERPC_CPU(cs);
2809                    if (cpu->node_id == i) {
2810                        found = 1;
2811                        break;
2812                    }
2813                }
2814                /* memory-less and cpu-less node */
2815                if (!found) {
2816                    error_report(
2817                       "Memory-less/cpu-less nodes are not supported (node %d)",
2818                                 i);
2819                    exit(1);
2820                }
2821            }
2822        }
2823
2824    }
2825
2826    /*
2827     * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2828     * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2829     * called from vPHB reset handler so we initialize the counter here.
2830     * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2831     * must be equally distant from any other node.
2832     * The final value of spapr->gpu_numa_id is going to be written to
2833     * max-associativity-domains in spapr_build_fdt().
2834     */
2835    spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2836
2837    if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2838        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2839                              spapr->max_compat_pvr)) {
2840        /* KVM and TCG always allow GTSE with radix... */
2841        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2842    }
2843    /* ... but not with hash (currently). */
2844
2845    if (kvm_enabled()) {
2846        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2847        kvmppc_enable_logical_ci_hcalls();
2848        kvmppc_enable_set_mode_hcall();
2849
2850        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2851        kvmppc_enable_clear_ref_mod_hcalls();
2852
2853        /* Enable H_PAGE_INIT */
2854        kvmppc_enable_h_page_init();
2855    }
2856
2857    /* map RAM */
2858    memory_region_add_subregion(sysmem, 0, machine->ram);
2859
2860    /* always allocate the device memory information */
2861    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2862
2863    /* initialize hotplug memory address space */
2864    if (machine->ram_size < machine->maxram_size) {
2865        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2866        /*
2867         * Limit the number of hotpluggable memory slots to half the number
2868         * slots that KVM supports, leaving the other half for PCI and other
2869         * devices. However ensure that number of slots doesn't drop below 32.
2870         */
2871        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2872                           SPAPR_MAX_RAM_SLOTS;
2873
2874        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2875            max_memslots = SPAPR_MAX_RAM_SLOTS;
2876        }
2877        if (machine->ram_slots > max_memslots) {
2878            error_report("Specified number of memory slots %"
2879                         PRIu64" exceeds max supported %d",
2880                         machine->ram_slots, max_memslots);
2881            exit(1);
2882        }
2883
2884        machine->device_memory->base = ROUND_UP(machine->ram_size,
2885                                                SPAPR_DEVICE_MEM_ALIGN);
2886        memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2887                           "device-memory", device_mem_size);
2888        memory_region_add_subregion(sysmem, machine->device_memory->base,
2889                                    &machine->device_memory->mr);
2890    }
2891
2892    if (smc->dr_lmb_enabled) {
2893        spapr_create_lmb_dr_connectors(spapr);
2894    }
2895
2896    if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2897        /* Create the error string for live migration blocker */
2898        error_setg(&spapr->fwnmi_migration_blocker,
2899            "A machine check is being handled during migration. The handler"
2900            "may run and log hardware error on the destination");
2901    }
2902
2903    if (mc->nvdimm_supported) {
2904        spapr_create_nvdimm_dr_connectors(spapr);
2905    }
2906
2907    /* Set up RTAS event infrastructure */
2908    spapr_events_init(spapr);
2909
2910    /* Set up the RTC RTAS interfaces */
2911    spapr_rtc_create(spapr);
2912
2913    /* Set up VIO bus */
2914    spapr->vio_bus = spapr_vio_bus_init();
2915
2916    for (i = 0; i < serial_max_hds(); i++) {
2917        if (serial_hd(i)) {
2918            spapr_vty_create(spapr->vio_bus, serial_hd(i));
2919        }
2920    }
2921
2922    /* We always have at least the nvram device on VIO */
2923    spapr_create_nvram(spapr);
2924
2925    /*
2926     * Setup hotplug / dynamic-reconfiguration connectors. top-level
2927     * connectors (described in root DT node's "ibm,drc-types" property)
2928     * are pre-initialized here. additional child connectors (such as
2929     * connectors for a PHBs PCI slots) are added as needed during their
2930     * parent's realization.
2931     */
2932    if (smc->dr_phb_enabled) {
2933        for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2934            spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2935        }
2936    }
2937
2938    /* Set up PCI */
2939    spapr_pci_rtas_init();
2940
2941    phb = spapr_create_default_phb();
2942
2943    for (i = 0; i < nb_nics; i++) {
2944        NICInfo *nd = &nd_table[i];
2945
2946        if (!nd->model) {
2947            nd->model = g_strdup("spapr-vlan");
2948        }
2949
2950        if (g_str_equal(nd->model, "spapr-vlan") ||
2951            g_str_equal(nd->model, "ibmveth")) {
2952            spapr_vlan_create(spapr->vio_bus, nd);
2953        } else {
2954            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2955        }
2956    }
2957
2958    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2959        spapr_vscsi_create(spapr->vio_bus);
2960    }
2961
2962    /* Graphics */
2963    if (spapr_vga_init(phb->bus, &error_fatal)) {
2964        spapr->has_graphics = true;
2965        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2966    }
2967
2968    if (machine->usb) {
2969        if (smc->use_ohci_by_default) {
2970            pci_create_simple(phb->bus, -1, "pci-ohci");
2971        } else {
2972            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2973        }
2974
2975        if (spapr->has_graphics) {
2976            USBBus *usb_bus = usb_bus_find(-1);
2977
2978            usb_create_simple(usb_bus, "usb-kbd");
2979            usb_create_simple(usb_bus, "usb-mouse");
2980        }
2981    }
2982
2983    if (kernel_filename) {
2984        uint64_t lowaddr = 0;
2985
2986        spapr->kernel_size = load_elf(kernel_filename, NULL,
2987                                      translate_kernel_address, spapr,
2988                                      NULL, &lowaddr, NULL, NULL, 1,
2989                                      PPC_ELF_MACHINE, 0, 0);
2990        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2991            spapr->kernel_size = load_elf(kernel_filename, NULL,
2992                                          translate_kernel_address, spapr, NULL,
2993                                          &lowaddr, NULL, NULL, 0,
2994                                          PPC_ELF_MACHINE,
2995                                          0, 0);
2996            spapr->kernel_le = spapr->kernel_size > 0;
2997        }
2998        if (spapr->kernel_size < 0) {
2999            error_report("error loading %s: %s", kernel_filename,
3000                         load_elf_strerror(spapr->kernel_size));
3001            exit(1);
3002        }
3003
3004        /* load initrd */
3005        if (initrd_filename) {
3006            /* Try to locate the initrd in the gap between the kernel
3007             * and the firmware. Add a bit of space just in case
3008             */
3009            spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3010                                  + 0x1ffff) & ~0xffff;
3011            spapr->initrd_size = load_image_targphys(initrd_filename,
3012                                                     spapr->initrd_base,
3013                                                     load_limit
3014                                                     - spapr->initrd_base);
3015            if (spapr->initrd_size < 0) {
3016                error_report("could not load initial ram disk '%s'",
3017                             initrd_filename);
3018                exit(1);
3019            }
3020        }
3021    }
3022
3023    if (bios_name == NULL) {
3024        bios_name = FW_FILE_NAME;
3025    }
3026    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3027    if (!filename) {
3028        error_report("Could not find LPAR firmware '%s'", bios_name);
3029        exit(1);
3030    }
3031    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3032    if (fw_size <= 0) {
3033        error_report("Could not load LPAR firmware '%s'", filename);
3034        exit(1);
3035    }
3036    g_free(filename);
3037
3038    /* FIXME: Should register things through the MachineState's qdev
3039     * interface, this is a legacy from the sPAPREnvironment structure
3040     * which predated MachineState but had a similar function */
3041    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3042    register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3043                         &savevm_htab_handlers, spapr);
3044
3045    qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3046                             &error_fatal);
3047
3048    qemu_register_boot_set(spapr_boot_set, spapr);
3049
3050    /*
3051     * Nothing needs to be done to resume a suspended guest because
3052     * suspending does not change the machine state, so no need for
3053     * a ->wakeup method.
3054     */
3055    qemu_register_wakeup_support();
3056
3057    if (kvm_enabled()) {
3058        /* to stop and start vmclock */
3059        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3060                                         &spapr->tb);
3061
3062        kvmppc_spapr_enable_inkernel_multitce();
3063    }
3064
3065    qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3066}
3067
3068static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3069{
3070    if (!vm_type) {
3071        return 0;
3072    }
3073
3074    if (!strcmp(vm_type, "HV")) {
3075        return 1;
3076    }
3077
3078    if (!strcmp(vm_type, "PR")) {
3079        return 2;
3080    }
3081
3082    error_report("Unknown kvm-type specified '%s'", vm_type);
3083    exit(1);
3084}
3085
3086/*
3087 * Implementation of an interface to adjust firmware path
3088 * for the bootindex property handling.
3089 */
3090static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3091                                   DeviceState *dev)
3092{
3093#define CAST(type, obj, name) \
3094    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3095    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3096    SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3097    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3098
3099    if (d) {
3100        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3101        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3102        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3103
3104        if (spapr) {
3105            /*
3106             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3107             * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3108             * 0x8000 | (target << 8) | (bus << 5) | lun
3109             * (see the "Logical unit addressing format" table in SAM5)
3110             */
3111            unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3112            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3113                                   (uint64_t)id << 48);
3114        } else if (virtio) {
3115            /*
3116             * We use SRP luns of the form 01000000 | (target << 8) | lun
3117             * in the top 32 bits of the 64-bit LUN
3118             * Note: the quote above is from SLOF and it is wrong,
3119             * the actual binding is:
3120             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3121             */
3122            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3123            if (d->lun >= 256) {
3124                /* Use the LUN "flat space addressing method" */
3125                id |= 0x4000;
3126            }
3127            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3128                                   (uint64_t)id << 32);
3129        } else if (usb) {
3130            /*
3131             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3132             * in the top 32 bits of the 64-bit LUN
3133             */
3134            unsigned usb_port = atoi(usb->port->path);
3135            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3136            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3137                                   (uint64_t)id << 32);
3138        }
3139    }
3140
3141    /*
3142     * SLOF probes the USB devices, and if it recognizes that the device is a
3143     * storage device, it changes its name to "storage" instead of "usb-host",
3144     * and additionally adds a child node for the SCSI LUN, so the correct
3145     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3146     */
3147    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3148        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3149        if (usb_host_dev_is_scsi_storage(usbdev)) {
3150            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3151        }
3152    }
3153
3154    if (phb) {
3155        /* Replace "pci" with "pci@800000020000000" */
3156        return g_strdup_printf("pci@%"PRIX64, phb->buid);
3157    }
3158
3159    if (vsc) {
3160        /* Same logic as virtio above */
3161        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3162        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3163    }
3164
3165    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3166        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3167        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3168        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3169    }
3170
3171    return NULL;
3172}
3173
3174static char *spapr_get_kvm_type(Object *obj, Error **errp)
3175{
3176    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3177
3178    return g_strdup(spapr->kvm_type);
3179}
3180
3181static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3182{
3183    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3184
3185    g_free(spapr->kvm_type);
3186    spapr->kvm_type = g_strdup(value);
3187}
3188
3189static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3190{
3191    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3192
3193    return spapr->use_hotplug_event_source;
3194}
3195
3196static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3197                                            Error **errp)
3198{
3199    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3200
3201    spapr->use_hotplug_event_source = value;
3202}
3203
3204static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3205{
3206    return true;
3207}
3208
3209static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3210{
3211    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3212
3213    switch (spapr->resize_hpt) {
3214    case SPAPR_RESIZE_HPT_DEFAULT:
3215        return g_strdup("default");
3216    case SPAPR_RESIZE_HPT_DISABLED:
3217        return g_strdup("disabled");
3218    case SPAPR_RESIZE_HPT_ENABLED:
3219        return g_strdup("enabled");
3220    case SPAPR_RESIZE_HPT_REQUIRED:
3221        return g_strdup("required");
3222    }
3223    g_assert_not_reached();
3224}
3225
3226static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3227{
3228    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3229
3230    if (strcmp(value, "default") == 0) {
3231        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3232    } else if (strcmp(value, "disabled") == 0) {
3233        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3234    } else if (strcmp(value, "enabled") == 0) {
3235        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3236    } else if (strcmp(value, "required") == 0) {
3237        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3238    } else {
3239        error_setg(errp, "Bad value for \"resize-hpt\" property");
3240    }
3241}
3242
3243static char *spapr_get_ic_mode(Object *obj, Error **errp)
3244{
3245    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3246
3247    if (spapr->irq == &spapr_irq_xics_legacy) {
3248        return g_strdup("legacy");
3249    } else if (spapr->irq == &spapr_irq_xics) {
3250        return g_strdup("xics");
3251    } else if (spapr->irq == &spapr_irq_xive) {
3252        return g_strdup("xive");
3253    } else if (spapr->irq == &spapr_irq_dual) {
3254        return g_strdup("dual");
3255    }
3256    g_assert_not_reached();
3257}
3258
3259static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3260{
3261    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3262
3263    if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3264        error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3265        return;
3266    }
3267
3268    /* The legacy IRQ backend can not be set */
3269    if (strcmp(value, "xics") == 0) {
3270        spapr->irq = &spapr_irq_xics;
3271    } else if (strcmp(value, "xive") == 0) {
3272        spapr->irq = &spapr_irq_xive;
3273    } else if (strcmp(value, "dual") == 0) {
3274        spapr->irq = &spapr_irq_dual;
3275    } else {
3276        error_setg(errp, "Bad value for \"ic-mode\" property");
3277    }
3278}
3279
3280static char *spapr_get_host_model(Object *obj, Error **errp)
3281{
3282    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3283
3284    return g_strdup(spapr->host_model);
3285}
3286
3287static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3288{
3289    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3290
3291    g_free(spapr->host_model);
3292    spapr->host_model = g_strdup(value);
3293}
3294
3295static char *spapr_get_host_serial(Object *obj, Error **errp)
3296{
3297    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3298
3299    return g_strdup(spapr->host_serial);
3300}
3301
3302static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3303{
3304    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3305
3306    g_free(spapr->host_serial);
3307    spapr->host_serial = g_strdup(value);
3308}
3309
3310static void spapr_instance_init(Object *obj)
3311{
3312    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3313    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3314
3315    spapr->htab_fd = -1;
3316    spapr->use_hotplug_event_source = true;
3317    object_property_add_str(obj, "kvm-type",
3318                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3319    object_property_set_description(obj, "kvm-type",
3320                                    "Specifies the KVM virtualization mode (HV, PR)",
3321                                    NULL);
3322    object_property_add_bool(obj, "modern-hotplug-events",
3323                            spapr_get_modern_hotplug_events,
3324                            spapr_set_modern_hotplug_events,
3325                            NULL);
3326    object_property_set_description(obj, "modern-hotplug-events",
3327                                    "Use dedicated hotplug event mechanism in"
3328                                    " place of standard EPOW events when possible"
3329                                    " (required for memory hot-unplug support)",
3330                                    NULL);
3331    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3332                            "Maximum permitted CPU compatibility mode",
3333                            &error_fatal);
3334
3335    object_property_add_str(obj, "resize-hpt",
3336                            spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3337    object_property_set_description(obj, "resize-hpt",
3338                                    "Resizing of the Hash Page Table (enabled, disabled, required)",
3339                                    NULL);
3340    object_property_add_uint32_ptr(obj, "vsmt",
3341                                   &spapr->vsmt, OBJ_PROP_FLAG_READWRITE,
3342                                   &error_abort);
3343    object_property_set_description(obj, "vsmt",
3344                                    "Virtual SMT: KVM behaves as if this were"
3345                                    " the host's SMT mode", &error_abort);
3346
3347    object_property_add_bool(obj, "vfio-no-msix-emulation",
3348                             spapr_get_msix_emulation, NULL, NULL);
3349
3350    object_property_add_uint64_ptr(obj, "kernel-addr",
3351                                   &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE,
3352                                   &error_abort);
3353    object_property_set_description(obj, "kernel-addr",
3354                                    stringify(KERNEL_LOAD_ADDR)
3355                                    " for -kernel is the default",
3356                                    NULL);
3357    spapr->kernel_addr = KERNEL_LOAD_ADDR;
3358    /* The machine class defines the default interrupt controller mode */
3359    spapr->irq = smc->irq;
3360    object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3361                            spapr_set_ic_mode, NULL);
3362    object_property_set_description(obj, "ic-mode",
3363                 "Specifies the interrupt controller mode (xics, xive, dual)",
3364                 NULL);
3365
3366    object_property_add_str(obj, "host-model",
3367        spapr_get_host_model, spapr_set_host_model,
3368        &error_abort);
3369    object_property_set_description(obj, "host-model",
3370        "Host model to advertise in guest device tree", &error_abort);
3371    object_property_add_str(obj, "host-serial",
3372        spapr_get_host_serial, spapr_set_host_serial,
3373        &error_abort);
3374    object_property_set_description(obj, "host-serial",
3375        "Host serial number to advertise in guest device tree", &error_abort);
3376}
3377
3378static void spapr_machine_finalizefn(Object *obj)
3379{
3380    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3381
3382    g_free(spapr->kvm_type);
3383}
3384
3385void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3386{
3387    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3388
3389    cpu_synchronize_state(cs);
3390    /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3391    if (spapr->fwnmi_system_reset_addr != -1) {
3392        uint64_t rtas_addr, addr;
3393        PowerPCCPU *cpu = POWERPC_CPU(cs);
3394        CPUPPCState *env = &cpu->env;
3395
3396        /* get rtas addr from fdt */
3397        rtas_addr = spapr_get_rtas_addr();
3398        if (!rtas_addr) {
3399            qemu_system_guest_panicked(NULL);
3400            return;
3401        }
3402
3403        addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3404        stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3405        stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3406        env->gpr[3] = addr;
3407    }
3408    ppc_cpu_do_system_reset(cs, spapr->fwnmi_system_reset_addr);
3409}
3410
3411static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3412{
3413    CPUState *cs;
3414
3415    CPU_FOREACH(cs) {
3416        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3417    }
3418}
3419
3420int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3421                          void *fdt, int *fdt_start_offset, Error **errp)
3422{
3423    uint64_t addr;
3424    uint32_t node;
3425
3426    addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3427    node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3428                                    &error_abort);
3429    *fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
3430                                             SPAPR_MEMORY_BLOCK_SIZE);
3431    return 0;
3432}
3433
3434static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3435                           bool dedicated_hp_event_source, Error **errp)
3436{
3437    SpaprDrc *drc;
3438    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3439    int i;
3440    uint64_t addr = addr_start;
3441    bool hotplugged = spapr_drc_hotplugged(dev);
3442    Error *local_err = NULL;
3443
3444    for (i = 0; i < nr_lmbs; i++) {
3445        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3446                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3447        g_assert(drc);
3448
3449        spapr_drc_attach(drc, dev, &local_err);
3450        if (local_err) {
3451            while (addr > addr_start) {
3452                addr -= SPAPR_MEMORY_BLOCK_SIZE;
3453                drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3454                                      addr / SPAPR_MEMORY_BLOCK_SIZE);
3455                spapr_drc_detach(drc);
3456            }
3457            error_propagate(errp, local_err);
3458            return;
3459        }
3460        if (!hotplugged) {
3461            spapr_drc_reset(drc);
3462        }
3463        addr += SPAPR_MEMORY_BLOCK_SIZE;
3464    }
3465    /* send hotplug notification to the
3466     * guest only in case of hotplugged memory
3467     */
3468    if (hotplugged) {
3469        if (dedicated_hp_event_source) {
3470            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3471                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3472            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3473                                                   nr_lmbs,
3474                                                   spapr_drc_index(drc));
3475        } else {
3476            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3477                                           nr_lmbs);
3478        }
3479    }
3480}
3481
3482static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3483                              Error **errp)
3484{
3485    Error *local_err = NULL;
3486    SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3487    PCDIMMDevice *dimm = PC_DIMM(dev);
3488    uint64_t size, addr, slot;
3489    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3490
3491    size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3492
3493    pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3494    if (local_err) {
3495        goto out;
3496    }
3497
3498    if (!is_nvdimm) {
3499        addr = object_property_get_uint(OBJECT(dimm),
3500                                        PC_DIMM_ADDR_PROP, &local_err);
3501        if (local_err) {
3502            goto out_unplug;
3503        }
3504        spapr_add_lmbs(dev, addr, size,
3505                       spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3506                       &local_err);
3507    } else {
3508        slot = object_property_get_uint(OBJECT(dimm),
3509                                        PC_DIMM_SLOT_PROP, &local_err);
3510        if (local_err) {
3511            goto out_unplug;
3512        }
3513        spapr_add_nvdimm(dev, slot, &local_err);
3514    }
3515
3516    if (local_err) {
3517        goto out_unplug;
3518    }
3519
3520    return;
3521
3522out_unplug:
3523    pc_dimm_unplug(dimm, MACHINE(ms));
3524out:
3525    error_propagate(errp, local_err);
3526}
3527
3528static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3529                                  Error **errp)
3530{
3531    const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3532    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3533    const MachineClass *mc = MACHINE_CLASS(smc);
3534    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3535    PCDIMMDevice *dimm = PC_DIMM(dev);
3536    Error *local_err = NULL;
3537    uint64_t size;
3538    Object *memdev;
3539    hwaddr pagesize;
3540
3541    if (!smc->dr_lmb_enabled) {
3542        error_setg(errp, "Memory hotplug not supported for this machine");
3543        return;
3544    }
3545
3546    if (is_nvdimm && !mc->nvdimm_supported) {
3547        error_setg(errp, "NVDIMM hotplug not supported for this machine");
3548        return;
3549    }
3550
3551    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3552    if (local_err) {
3553        error_propagate(errp, local_err);
3554        return;
3555    }
3556
3557    if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
3558        error_setg(errp, "Hotplugged memory size must be a multiple of "
3559                   "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3560        return;
3561    } else if (is_nvdimm) {
3562        spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
3563        if (local_err) {
3564            error_propagate(errp, local_err);
3565            return;
3566        }
3567    }
3568
3569    memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3570                                      &error_abort);
3571    pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3572    spapr_check_pagesize(spapr, pagesize, &local_err);
3573    if (local_err) {
3574        error_propagate(errp, local_err);
3575        return;
3576    }
3577
3578    pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3579}
3580
3581struct SpaprDimmState {
3582    PCDIMMDevice *dimm;
3583    uint32_t nr_lmbs;
3584    QTAILQ_ENTRY(SpaprDimmState) next;
3585};
3586
3587static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3588                                                       PCDIMMDevice *dimm)
3589{
3590    SpaprDimmState *dimm_state = NULL;
3591
3592    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3593        if (dimm_state->dimm == dimm) {
3594            break;
3595        }
3596    }
3597    return dimm_state;
3598}
3599
3600static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3601                                                      uint32_t nr_lmbs,
3602                                                      PCDIMMDevice *dimm)
3603{
3604    SpaprDimmState *ds = NULL;
3605
3606    /*
3607     * If this request is for a DIMM whose removal had failed earlier
3608     * (due to guest's refusal to remove the LMBs), we would have this
3609     * dimm already in the pending_dimm_unplugs list. In that
3610     * case don't add again.
3611     */
3612    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3613    if (!ds) {
3614        ds = g_malloc0(sizeof(SpaprDimmState));
3615        ds->nr_lmbs = nr_lmbs;
3616        ds->dimm = dimm;
3617        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3618    }
3619    return ds;
3620}
3621
3622static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3623                                              SpaprDimmState *dimm_state)
3624{
3625    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3626    g_free(dimm_state);
3627}
3628
3629static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3630                                                        PCDIMMDevice *dimm)
3631{
3632    SpaprDrc *drc;
3633    uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3634                                                  &error_abort);
3635    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3636    uint32_t avail_lmbs = 0;
3637    uint64_t addr_start, addr;
3638    int i;
3639
3640    addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3641                                         &error_abort);
3642
3643    addr = addr_start;
3644    for (i = 0; i < nr_lmbs; i++) {
3645        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3646                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3647        g_assert(drc);
3648        if (drc->dev) {
3649            avail_lmbs++;
3650        }
3651        addr += SPAPR_MEMORY_BLOCK_SIZE;
3652    }
3653
3654    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3655}
3656
3657/* Callback to be called during DRC release. */
3658void spapr_lmb_release(DeviceState *dev)
3659{
3660    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3661    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3662    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3663
3664    /* This information will get lost if a migration occurs
3665     * during the unplug process. In this case recover it. */
3666    if (ds == NULL) {
3667        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3668        g_assert(ds);
3669        /* The DRC being examined by the caller at least must be counted */
3670        g_assert(ds->nr_lmbs);
3671    }
3672
3673    if (--ds->nr_lmbs) {
3674        return;
3675    }
3676
3677    /*
3678     * Now that all the LMBs have been removed by the guest, call the
3679     * unplug handler chain. This can never fail.
3680     */
3681    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3682    object_unparent(OBJECT(dev));
3683}
3684
3685static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3686{
3687    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3688    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3689
3690    pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3691    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3692    spapr_pending_dimm_unplugs_remove(spapr, ds);
3693}
3694
3695static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3696                                        DeviceState *dev, Error **errp)
3697{
3698    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3699    Error *local_err = NULL;
3700    PCDIMMDevice *dimm = PC_DIMM(dev);
3701    uint32_t nr_lmbs;
3702    uint64_t size, addr_start, addr;
3703    int i;
3704    SpaprDrc *drc;
3705
3706    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3707        error_setg(&local_err,
3708                   "nvdimm device hot unplug is not supported yet.");
3709        goto out;
3710    }
3711
3712    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3713    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3714
3715    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3716                                         &local_err);
3717    if (local_err) {
3718        goto out;
3719    }
3720
3721    /*
3722     * An existing pending dimm state for this DIMM means that there is an
3723     * unplug operation in progress, waiting for the spapr_lmb_release
3724     * callback to complete the job (BQL can't cover that far). In this case,
3725     * bail out to avoid detaching DRCs that were already released.
3726     */
3727    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3728        error_setg(&local_err,
3729                   "Memory unplug already in progress for device %s",
3730                   dev->id);
3731        goto out;
3732    }
3733
3734    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3735
3736    addr = addr_start;
3737    for (i = 0; i < nr_lmbs; i++) {
3738        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3739                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3740        g_assert(drc);
3741
3742        spapr_drc_detach(drc);
3743        addr += SPAPR_MEMORY_BLOCK_SIZE;
3744    }
3745
3746    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3747                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3748    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3749                                              nr_lmbs, spapr_drc_index(drc));
3750out:
3751    error_propagate(errp, local_err);
3752}
3753
3754/* Callback to be called during DRC release. */
3755void spapr_core_release(DeviceState *dev)
3756{
3757    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3758
3759    /* Call the unplug handler chain. This can never fail. */
3760    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3761    object_unparent(OBJECT(dev));
3762}
3763
3764static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3765{
3766    MachineState *ms = MACHINE(hotplug_dev);
3767    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3768    CPUCore *cc = CPU_CORE(dev);
3769    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3770
3771    if (smc->pre_2_10_has_unused_icps) {
3772        SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3773        int i;
3774
3775        for (i = 0; i < cc->nr_threads; i++) {
3776            CPUState *cs = CPU(sc->threads[i]);
3777
3778            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3779        }
3780    }
3781
3782    assert(core_slot);
3783    core_slot->cpu = NULL;
3784    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3785}
3786
3787static
3788void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3789                               Error **errp)
3790{
3791    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3792    int index;
3793    SpaprDrc *drc;
3794    CPUCore *cc = CPU_CORE(dev);
3795
3796    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3797        error_setg(errp, "Unable to find CPU core with core-id: %d",
3798                   cc->core_id);
3799        return;
3800    }
3801    if (index == 0) {
3802        error_setg(errp, "Boot CPU core may not be unplugged");
3803        return;
3804    }
3805
3806    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3807                          spapr_vcpu_id(spapr, cc->core_id));
3808    g_assert(drc);
3809
3810    if (!spapr_drc_unplug_requested(drc)) {
3811        spapr_drc_detach(drc);
3812        spapr_hotplug_req_remove_by_index(drc);
3813    }
3814}
3815
3816int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3817                           void *fdt, int *fdt_start_offset, Error **errp)
3818{
3819    SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3820    CPUState *cs = CPU(core->threads[0]);
3821    PowerPCCPU *cpu = POWERPC_CPU(cs);
3822    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3823    int id = spapr_get_vcpu_id(cpu);
3824    char *nodename;
3825    int offset;
3826
3827    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3828    offset = fdt_add_subnode(fdt, 0, nodename);
3829    g_free(nodename);
3830
3831    spapr_dt_cpu(cs, fdt, offset, spapr);
3832
3833    *fdt_start_offset = offset;
3834    return 0;
3835}
3836
3837static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3838                            Error **errp)
3839{
3840    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3841    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3842    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3843    SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3844    CPUCore *cc = CPU_CORE(dev);
3845    CPUState *cs;
3846    SpaprDrc *drc;
3847    Error *local_err = NULL;
3848    CPUArchId *core_slot;
3849    int index;
3850    bool hotplugged = spapr_drc_hotplugged(dev);
3851    int i;
3852
3853    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3854    if (!core_slot) {
3855        error_setg(errp, "Unable to find CPU core with core-id: %d",
3856                   cc->core_id);
3857        return;
3858    }
3859    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3860                          spapr_vcpu_id(spapr, cc->core_id));
3861
3862    g_assert(drc || !mc->has_hotpluggable_cpus);
3863
3864    if (drc) {
3865        spapr_drc_attach(drc, dev, &local_err);
3866        if (local_err) {
3867            error_propagate(errp, local_err);
3868            return;
3869        }
3870
3871        if (hotplugged) {
3872            /*
3873             * Send hotplug notification interrupt to the guest only
3874             * in case of hotplugged CPUs.
3875             */
3876            spapr_hotplug_req_add_by_index(drc);
3877        } else {
3878            spapr_drc_reset(drc);
3879        }
3880    }
3881
3882    core_slot->cpu = OBJECT(dev);
3883
3884    if (smc->pre_2_10_has_unused_icps) {
3885        for (i = 0; i < cc->nr_threads; i++) {
3886            cs = CPU(core->threads[i]);
3887            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3888        }
3889    }
3890
3891    /*
3892     * Set compatibility mode to match the boot CPU, which was either set
3893     * by the machine reset code or by CAS.
3894     */
3895    if (hotplugged) {
3896        for (i = 0; i < cc->nr_threads; i++) {
3897            ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3898                           &local_err);
3899            if (local_err) {
3900                error_propagate(errp, local_err);
3901                return;
3902            }
3903        }
3904    }
3905}
3906
3907static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3908                                Error **errp)
3909{
3910    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3911    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3912    Error *local_err = NULL;
3913    CPUCore *cc = CPU_CORE(dev);
3914    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3915    const char *type = object_get_typename(OBJECT(dev));
3916    CPUArchId *core_slot;
3917    int index;
3918    unsigned int smp_threads = machine->smp.threads;
3919
3920    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3921        error_setg(&local_err, "CPU hotplug not supported for this machine");
3922        goto out;
3923    }
3924
3925    if (strcmp(base_core_type, type)) {
3926        error_setg(&local_err, "CPU core type should be %s", base_core_type);
3927        goto out;
3928    }
3929
3930    if (cc->core_id % smp_threads) {
3931        error_setg(&local_err, "invalid core id %d", cc->core_id);
3932        goto out;
3933    }
3934
3935    /*
3936     * In general we should have homogeneous threads-per-core, but old
3937     * (pre hotplug support) machine types allow the last core to have
3938     * reduced threads as a compatibility hack for when we allowed
3939     * total vcpus not a multiple of threads-per-core.
3940     */
3941    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3942        error_setg(&local_err, "invalid nr-threads %d, must be %d",
3943                   cc->nr_threads, smp_threads);
3944        goto out;
3945    }
3946
3947    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3948    if (!core_slot) {
3949        error_setg(&local_err, "core id %d out of range", cc->core_id);
3950        goto out;
3951    }
3952
3953    if (core_slot->cpu) {
3954        error_setg(&local_err, "core %d already populated", cc->core_id);
3955        goto out;
3956    }
3957
3958    numa_cpu_pre_plug(core_slot, dev, &local_err);
3959
3960out:
3961    error_propagate(errp, local_err);
3962}
3963
3964int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3965                          void *fdt, int *fdt_start_offset, Error **errp)
3966{
3967    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3968    int intc_phandle;
3969
3970    intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3971    if (intc_phandle <= 0) {
3972        return -1;
3973    }
3974
3975    if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3976        error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3977        return -1;
3978    }
3979
3980    /* generally SLOF creates these, for hotplug it's up to QEMU */
3981    _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3982
3983    return 0;
3984}
3985
3986static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3987                               Error **errp)
3988{
3989    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3990    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3991    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3992    const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3993
3994    if (dev->hotplugged && !smc->dr_phb_enabled) {
3995        error_setg(errp, "PHB hotplug not supported for this machine");
3996        return;
3997    }
3998
3999    if (sphb->index == (uint32_t)-1) {
4000        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4001        return;
4002    }
4003
4004    /*
4005     * This will check that sphb->index doesn't exceed the maximum number of
4006     * PHBs for the current machine type.
4007     */
4008    smc->phb_placement(spapr, sphb->index,
4009                       &sphb->buid, &sphb->io_win_addr,
4010                       &sphb->mem_win_addr, &sphb->mem64_win_addr,
4011                       windows_supported, sphb->dma_liobn,
4012                       &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4013                       errp);
4014}
4015
4016static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4017                           Error **errp)
4018{
4019    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4020    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4021    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4022    SpaprDrc *drc;
4023    bool hotplugged = spapr_drc_hotplugged(dev);
4024    Error *local_err = NULL;
4025
4026    if (!smc->dr_phb_enabled) {
4027        return;
4028    }
4029
4030    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4031    /* hotplug hooks should check it's enabled before getting this far */
4032    assert(drc);
4033
4034    spapr_drc_attach(drc, DEVICE(dev), &local_err);
4035    if (local_err) {
4036        error_propagate(errp, local_err);
4037        return;
4038    }
4039
4040    if (hotplugged) {
4041        spapr_hotplug_req_add_by_index(drc);
4042    } else {
4043        spapr_drc_reset(drc);
4044    }
4045}
4046
4047void spapr_phb_release(DeviceState *dev)
4048{
4049    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4050
4051    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4052    object_unparent(OBJECT(dev));
4053}
4054
4055static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4056{
4057    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4058}
4059
4060static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4061                                     DeviceState *dev, Error **errp)
4062{
4063    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4064    SpaprDrc *drc;
4065
4066    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4067    assert(drc);
4068
4069    if (!spapr_drc_unplug_requested(drc)) {
4070        spapr_drc_detach(drc);
4071        spapr_hotplug_req_remove_by_index(drc);
4072    }
4073}
4074
4075static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4076                                 Error **errp)
4077{
4078    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4079    SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4080
4081    if (spapr->tpm_proxy != NULL) {
4082        error_setg(errp, "Only one TPM proxy can be specified for this machine");
4083        return;
4084    }
4085
4086    spapr->tpm_proxy = tpm_proxy;
4087}
4088
4089static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4090{
4091    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4092
4093    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4094    object_unparent(OBJECT(dev));
4095    spapr->tpm_proxy = NULL;
4096}
4097
4098static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4099                                      DeviceState *dev, Error **errp)
4100{
4101    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4102        spapr_memory_plug(hotplug_dev, dev, errp);
4103    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4104        spapr_core_plug(hotplug_dev, dev, errp);
4105    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4106        spapr_phb_plug(hotplug_dev, dev, errp);
4107    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4108        spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4109    }
4110}
4111
4112static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4113                                        DeviceState *dev, Error **errp)
4114{
4115    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4116        spapr_memory_unplug(hotplug_dev, dev);
4117    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4118        spapr_core_unplug(hotplug_dev, dev);
4119    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4120        spapr_phb_unplug(hotplug_dev, dev);
4121    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4122        spapr_tpm_proxy_unplug(hotplug_dev, dev);
4123    }
4124}
4125
4126static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4127                                                DeviceState *dev, Error **errp)
4128{
4129    SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4130    MachineClass *mc = MACHINE_GET_CLASS(sms);
4131    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4132
4133    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4134        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4135            spapr_memory_unplug_request(hotplug_dev, dev, errp);
4136        } else {
4137            /* NOTE: this means there is a window after guest reset, prior to
4138             * CAS negotiation, where unplug requests will fail due to the
4139             * capability not being detected yet. This is a bit different than
4140             * the case with PCI unplug, where the events will be queued and
4141             * eventually handled by the guest after boot
4142             */
4143            error_setg(errp, "Memory hot unplug not supported for this guest");
4144        }
4145    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4146        if (!mc->has_hotpluggable_cpus) {
4147            error_setg(errp, "CPU hot unplug not supported on this machine");
4148            return;
4149        }
4150        spapr_core_unplug_request(hotplug_dev, dev, errp);
4151    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4152        if (!smc->dr_phb_enabled) {
4153            error_setg(errp, "PHB hot unplug not supported on this machine");
4154            return;
4155        }
4156        spapr_phb_unplug_request(hotplug_dev, dev, errp);
4157    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4158        spapr_tpm_proxy_unplug(hotplug_dev, dev);
4159    }
4160}
4161
4162static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4163                                          DeviceState *dev, Error **errp)
4164{
4165    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4166        spapr_memory_pre_plug(hotplug_dev, dev, errp);
4167    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4168        spapr_core_pre_plug(hotplug_dev, dev, errp);
4169    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4170        spapr_phb_pre_plug(hotplug_dev, dev, errp);
4171    }
4172}
4173
4174static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4175                                                 DeviceState *dev)
4176{
4177    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4178        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4179        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4180        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4181        return HOTPLUG_HANDLER(machine);
4182    }
4183    if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4184        PCIDevice *pcidev = PCI_DEVICE(dev);
4185        PCIBus *root = pci_device_root_bus(pcidev);
4186        SpaprPhbState *phb =
4187            (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4188                                                 TYPE_SPAPR_PCI_HOST_BRIDGE);
4189
4190        if (phb) {
4191            return HOTPLUG_HANDLER(phb);
4192        }
4193    }
4194    return NULL;
4195}
4196
4197static CpuInstanceProperties
4198spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4199{
4200    CPUArchId *core_slot;
4201    MachineClass *mc = MACHINE_GET_CLASS(machine);
4202
4203    /* make sure possible_cpu are intialized */
4204    mc->possible_cpu_arch_ids(machine);
4205    /* get CPU core slot containing thread that matches cpu_index */
4206    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4207    assert(core_slot);
4208    return core_slot->props;
4209}
4210
4211static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4212{
4213    return idx / ms->smp.cores % ms->numa_state->num_nodes;
4214}
4215
4216static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4217{
4218    int i;
4219    unsigned int smp_threads = machine->smp.threads;
4220    unsigned int smp_cpus = machine->smp.cpus;
4221    const char *core_type;
4222    int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4223    MachineClass *mc = MACHINE_GET_CLASS(machine);
4224
4225    if (!mc->has_hotpluggable_cpus) {
4226        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4227    }
4228    if (machine->possible_cpus) {
4229        assert(machine->possible_cpus->len == spapr_max_cores);
4230        return machine->possible_cpus;
4231    }
4232
4233    core_type = spapr_get_cpu_core_type(machine->cpu_type);
4234    if (!core_type) {
4235        error_report("Unable to find sPAPR CPU Core definition");
4236        exit(1);
4237    }
4238
4239    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4240                             sizeof(CPUArchId) * spapr_max_cores);
4241    machine->possible_cpus->len = spapr_max_cores;
4242    for (i = 0; i < machine->possible_cpus->len; i++) {
4243        int core_id = i * smp_threads;
4244
4245        machine->possible_cpus->cpus[i].type = core_type;
4246        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4247        machine->possible_cpus->cpus[i].arch_id = core_id;
4248        machine->possible_cpus->cpus[i].props.has_core_id = true;
4249        machine->possible_cpus->cpus[i].props.core_id = core_id;
4250    }
4251    return machine->possible_cpus;
4252}
4253
4254static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4255                                uint64_t *buid, hwaddr *pio,
4256                                hwaddr *mmio32, hwaddr *mmio64,
4257                                unsigned n_dma, uint32_t *liobns,
4258                                hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4259{
4260    /*
4261     * New-style PHB window placement.
4262     *
4263     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4264     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4265     * windows.
4266     *
4267     * Some guest kernels can't work with MMIO windows above 1<<46
4268     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4269     *
4270     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4271     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4272     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4273     * 1TiB 64-bit MMIO windows for each PHB.
4274     */
4275    const uint64_t base_buid = 0x800000020000000ULL;
4276    int i;
4277
4278    /* Sanity check natural alignments */
4279    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4280    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4281    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4282    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4283    /* Sanity check bounds */
4284    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4285                      SPAPR_PCI_MEM32_WIN_SIZE);
4286    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4287                      SPAPR_PCI_MEM64_WIN_SIZE);
4288
4289    if (index >= SPAPR_MAX_PHBS) {
4290        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4291                   SPAPR_MAX_PHBS - 1);
4292        return;
4293    }
4294
4295    *buid = base_buid + index;
4296    for (i = 0; i < n_dma; ++i) {
4297        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4298    }
4299
4300    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4301    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4302    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4303
4304    *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4305    *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4306}
4307
4308static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4309{
4310    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4311
4312    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4313}
4314
4315static void spapr_ics_resend(XICSFabric *dev)
4316{
4317    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4318
4319    ics_resend(spapr->ics);
4320}
4321
4322static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4323{
4324    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4325
4326    return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4327}
4328
4329static void spapr_pic_print_info(InterruptStatsProvider *obj,
4330                                 Monitor *mon)
4331{
4332    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4333
4334    spapr_irq_print_info(spapr, mon);
4335    monitor_printf(mon, "irqchip: %s\n",
4336                   kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4337}
4338
4339/*
4340 * This is a XIVE only operation
4341 */
4342static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4343                           uint8_t nvt_blk, uint32_t nvt_idx,
4344                           bool cam_ignore, uint8_t priority,
4345                           uint32_t logic_serv, XiveTCTXMatch *match)
4346{
4347    SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4348    XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4349    XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4350    int count;
4351
4352    count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4353                           priority, logic_serv, match);
4354    if (count < 0) {
4355        return count;
4356    }
4357
4358    /*
4359     * When we implement the save and restore of the thread interrupt
4360     * contexts in the enter/exit CPU handlers of the machine and the
4361     * escalations in QEMU, we should be able to handle non dispatched
4362     * vCPUs.
4363     *
4364     * Until this is done, the sPAPR machine should find at least one
4365     * matching context always.
4366     */
4367    if (count == 0) {
4368        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4369                      nvt_blk, nvt_idx);
4370    }
4371
4372    return count;
4373}
4374
4375int spapr_get_vcpu_id(PowerPCCPU *cpu)
4376{
4377    return cpu->vcpu_id;
4378}
4379
4380void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4381{
4382    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4383    MachineState *ms = MACHINE(spapr);
4384    int vcpu_id;
4385
4386    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4387
4388    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4389        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4390        error_append_hint(errp, "Adjust the number of cpus to %d "
4391                          "or try to raise the number of threads per core\n",
4392                          vcpu_id * ms->smp.threads / spapr->vsmt);
4393        return;
4394    }
4395
4396    cpu->vcpu_id = vcpu_id;
4397}
4398
4399PowerPCCPU *spapr_find_cpu(int vcpu_id)
4400{
4401    CPUState *cs;
4402
4403    CPU_FOREACH(cs) {
4404        PowerPCCPU *cpu = POWERPC_CPU(cs);
4405
4406        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4407            return cpu;
4408        }
4409    }
4410
4411    return NULL;
4412}
4413
4414static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4415{
4416    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4417
4418    /* These are only called by TCG, KVM maintains dispatch state */
4419
4420    spapr_cpu->prod = false;
4421    if (spapr_cpu->vpa_addr) {
4422        CPUState *cs = CPU(cpu);
4423        uint32_t dispatch;
4424
4425        dispatch = ldl_be_phys(cs->as,
4426                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4427        dispatch++;
4428        if ((dispatch & 1) != 0) {
4429            qemu_log_mask(LOG_GUEST_ERROR,
4430                          "VPA: incorrect dispatch counter value for "
4431                          "dispatched partition %u, correcting.\n", dispatch);
4432            dispatch++;
4433        }
4434        stl_be_phys(cs->as,
4435                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4436    }
4437}
4438
4439static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4440{
4441    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4442
4443    if (spapr_cpu->vpa_addr) {
4444        CPUState *cs = CPU(cpu);
4445        uint32_t dispatch;
4446
4447        dispatch = ldl_be_phys(cs->as,
4448                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4449        dispatch++;
4450        if ((dispatch & 1) != 1) {
4451            qemu_log_mask(LOG_GUEST_ERROR,
4452                          "VPA: incorrect dispatch counter value for "
4453                          "preempted partition %u, correcting.\n", dispatch);
4454            dispatch++;
4455        }
4456        stl_be_phys(cs->as,
4457                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4458    }
4459}
4460
4461static void spapr_machine_class_init(ObjectClass *oc, void *data)
4462{
4463    MachineClass *mc = MACHINE_CLASS(oc);
4464    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4465    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4466    NMIClass *nc = NMI_CLASS(oc);
4467    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4468    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4469    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4470    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4471    XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4472
4473    mc->desc = "pSeries Logical Partition (PAPR compliant)";
4474    mc->ignore_boot_device_suffixes = true;
4475
4476    /*
4477     * We set up the default / latest behaviour here.  The class_init
4478     * functions for the specific versioned machine types can override
4479     * these details for backwards compatibility
4480     */
4481    mc->init = spapr_machine_init;
4482    mc->reset = spapr_machine_reset;
4483    mc->block_default_type = IF_SCSI;
4484    mc->max_cpus = 1024;
4485    mc->no_parallel = 1;
4486    mc->default_boot_order = "";
4487    mc->default_ram_size = 512 * MiB;
4488    mc->default_ram_id = "ppc_spapr.ram";
4489    mc->default_display = "std";
4490    mc->kvm_type = spapr_kvm_type;
4491    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4492    mc->pci_allow_0_address = true;
4493    assert(!mc->get_hotplug_handler);
4494    mc->get_hotplug_handler = spapr_get_hotplug_handler;
4495    hc->pre_plug = spapr_machine_device_pre_plug;
4496    hc->plug = spapr_machine_device_plug;
4497    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4498    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4499    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4500    hc->unplug_request = spapr_machine_device_unplug_request;
4501    hc->unplug = spapr_machine_device_unplug;
4502
4503    smc->dr_lmb_enabled = true;
4504    smc->update_dt_enabled = true;
4505    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4506    mc->has_hotpluggable_cpus = true;
4507    mc->nvdimm_supported = true;
4508    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4509    fwc->get_dev_path = spapr_get_fw_dev_path;
4510    nc->nmi_monitor_handler = spapr_nmi;
4511    smc->phb_placement = spapr_phb_placement;
4512    vhc->hypercall = emulate_spapr_hypercall;
4513    vhc->hpt_mask = spapr_hpt_mask;
4514    vhc->map_hptes = spapr_map_hptes;
4515    vhc->unmap_hptes = spapr_unmap_hptes;
4516    vhc->hpte_set_c = spapr_hpte_set_c;
4517    vhc->hpte_set_r = spapr_hpte_set_r;
4518    vhc->get_pate = spapr_get_pate;
4519    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4520    vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4521    vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4522    xic->ics_get = spapr_ics_get;
4523    xic->ics_resend = spapr_ics_resend;
4524    xic->icp_get = spapr_icp_get;
4525    ispc->print_info = spapr_pic_print_info;
4526    /* Force NUMA node memory size to be a multiple of
4527     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4528     * in which LMBs are represented and hot-added
4529     */
4530    mc->numa_mem_align_shift = 28;
4531    mc->numa_mem_supported = true;
4532    mc->auto_enable_numa = true;
4533
4534    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4535    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4536    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4537    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4538    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4539    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4540    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4541    smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4542    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4543    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4544    smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4545    spapr_caps_add_properties(smc, &error_abort);
4546    smc->irq = &spapr_irq_dual;
4547    smc->dr_phb_enabled = true;
4548    smc->linux_pci_probe = true;
4549    smc->smp_threads_vsmt = true;
4550    smc->nr_xirqs = SPAPR_NR_XIRQS;
4551    xfc->match_nvt = spapr_match_nvt;
4552}
4553
4554static const TypeInfo spapr_machine_info = {
4555    .name          = TYPE_SPAPR_MACHINE,
4556    .parent        = TYPE_MACHINE,
4557    .abstract      = true,
4558    .instance_size = sizeof(SpaprMachineState),
4559    .instance_init = spapr_instance_init,
4560    .instance_finalize = spapr_machine_finalizefn,
4561    .class_size    = sizeof(SpaprMachineClass),
4562    .class_init    = spapr_machine_class_init,
4563    .interfaces = (InterfaceInfo[]) {
4564        { TYPE_FW_PATH_PROVIDER },
4565        { TYPE_NMI },
4566        { TYPE_HOTPLUG_HANDLER },
4567        { TYPE_PPC_VIRTUAL_HYPERVISOR },
4568        { TYPE_XICS_FABRIC },
4569        { TYPE_INTERRUPT_STATS_PROVIDER },
4570        { TYPE_XIVE_FABRIC },
4571        { }
4572    },
4573};
4574
4575static void spapr_machine_latest_class_options(MachineClass *mc)
4576{
4577    mc->alias = "pseries";
4578    mc->is_default = true;
4579}
4580
4581#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4582    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4583                                                    void *data)      \
4584    {                                                                \
4585        MachineClass *mc = MACHINE_CLASS(oc);                        \
4586        spapr_machine_##suffix##_class_options(mc);                  \
4587        if (latest) {                                                \
4588            spapr_machine_latest_class_options(mc);                  \
4589        }                                                            \
4590    }                                                                \
4591    static const TypeInfo spapr_machine_##suffix##_info = {          \
4592        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4593        .parent = TYPE_SPAPR_MACHINE,                                \
4594        .class_init = spapr_machine_##suffix##_class_init,           \
4595    };                                                               \
4596    static void spapr_machine_register_##suffix(void)                \
4597    {                                                                \
4598        type_register(&spapr_machine_##suffix##_info);               \
4599    }                                                                \
4600    type_init(spapr_machine_register_##suffix)
4601
4602/*
4603 * pseries-5.0
4604 */
4605static void spapr_machine_5_0_class_options(MachineClass *mc)
4606{
4607    /* Defaults for the latest behaviour inherited from the base class */
4608}
4609
4610DEFINE_SPAPR_MACHINE(5_0, "5.0", true);
4611
4612/*
4613 * pseries-4.2
4614 */
4615static void spapr_machine_4_2_class_options(MachineClass *mc)
4616{
4617    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4618
4619    spapr_machine_5_0_class_options(mc);
4620    compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4621    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4622    smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4623    smc->rma_limit = 16 * GiB;
4624    mc->nvdimm_supported = false;
4625}
4626
4627DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4628
4629/*
4630 * pseries-4.1
4631 */
4632static void spapr_machine_4_1_class_options(MachineClass *mc)
4633{
4634    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4635    static GlobalProperty compat[] = {
4636        /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4637        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4638    };
4639
4640    spapr_machine_4_2_class_options(mc);
4641    smc->linux_pci_probe = false;
4642    smc->smp_threads_vsmt = false;
4643    compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4644    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4645}
4646
4647DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4648
4649/*
4650 * pseries-4.0
4651 */
4652static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4653                              uint64_t *buid, hwaddr *pio,
4654                              hwaddr *mmio32, hwaddr *mmio64,
4655                              unsigned n_dma, uint32_t *liobns,
4656                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4657{
4658    spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4659                        nv2gpa, nv2atsd, errp);
4660    *nv2gpa = 0;
4661    *nv2atsd = 0;
4662}
4663
4664static void spapr_machine_4_0_class_options(MachineClass *mc)
4665{
4666    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4667
4668    spapr_machine_4_1_class_options(mc);
4669    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4670    smc->phb_placement = phb_placement_4_0;
4671    smc->irq = &spapr_irq_xics;
4672    smc->pre_4_1_migration = true;
4673}
4674
4675DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4676
4677/*
4678 * pseries-3.1
4679 */
4680static void spapr_machine_3_1_class_options(MachineClass *mc)
4681{
4682    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4683
4684    spapr_machine_4_0_class_options(mc);
4685    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4686
4687    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4688    smc->update_dt_enabled = false;
4689    smc->dr_phb_enabled = false;
4690    smc->broken_host_serial_model = true;
4691    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4692    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4693    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4694    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4695}
4696
4697DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4698
4699/*
4700 * pseries-3.0
4701 */
4702
4703static void spapr_machine_3_0_class_options(MachineClass *mc)
4704{
4705    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4706
4707    spapr_machine_3_1_class_options(mc);
4708    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4709
4710    smc->legacy_irq_allocation = true;
4711    smc->nr_xirqs = 0x400;
4712    smc->irq = &spapr_irq_xics_legacy;
4713}
4714
4715DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4716
4717/*
4718 * pseries-2.12
4719 */
4720static void spapr_machine_2_12_class_options(MachineClass *mc)
4721{
4722    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4723    static GlobalProperty compat[] = {
4724        { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4725        { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4726    };
4727
4728    spapr_machine_3_0_class_options(mc);
4729    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4730    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4731
4732    /* We depend on kvm_enabled() to choose a default value for the
4733     * hpt-max-page-size capability. Of course we can't do it here
4734     * because this is too early and the HW accelerator isn't initialzed
4735     * yet. Postpone this to machine init (see default_caps_with_cpu()).
4736     */
4737    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4738}
4739
4740DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4741
4742static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4743{
4744    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4745
4746    spapr_machine_2_12_class_options(mc);
4747    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4748    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4749    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4750}
4751
4752DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4753
4754/*
4755 * pseries-2.11
4756 */
4757
4758static void spapr_machine_2_11_class_options(MachineClass *mc)
4759{
4760    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4761
4762    spapr_machine_2_12_class_options(mc);
4763    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4764    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4765}
4766
4767DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4768
4769/*
4770 * pseries-2.10
4771 */
4772
4773static void spapr_machine_2_10_class_options(MachineClass *mc)
4774{
4775    spapr_machine_2_11_class_options(mc);
4776    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4777}
4778
4779DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4780
4781/*
4782 * pseries-2.9
4783 */
4784
4785static void spapr_machine_2_9_class_options(MachineClass *mc)
4786{
4787    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4788    static GlobalProperty compat[] = {
4789        { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4790    };
4791
4792    spapr_machine_2_10_class_options(mc);
4793    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4794    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4795    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4796    smc->pre_2_10_has_unused_icps = true;
4797    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4798}
4799
4800DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4801
4802/*
4803 * pseries-2.8
4804 */
4805
4806static void spapr_machine_2_8_class_options(MachineClass *mc)
4807{
4808    static GlobalProperty compat[] = {
4809        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4810    };
4811
4812    spapr_machine_2_9_class_options(mc);
4813    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4814    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4815    mc->numa_mem_align_shift = 23;
4816}
4817
4818DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4819
4820/*
4821 * pseries-2.7
4822 */
4823
4824static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4825                              uint64_t *buid, hwaddr *pio,
4826                              hwaddr *mmio32, hwaddr *mmio64,
4827                              unsigned n_dma, uint32_t *liobns,
4828                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4829{
4830    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4831    const uint64_t base_buid = 0x800000020000000ULL;
4832    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4833    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4834    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4835    const uint32_t max_index = 255;
4836    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4837
4838    uint64_t ram_top = MACHINE(spapr)->ram_size;
4839    hwaddr phb0_base, phb_base;
4840    int i;
4841
4842    /* Do we have device memory? */
4843    if (MACHINE(spapr)->maxram_size > ram_top) {
4844        /* Can't just use maxram_size, because there may be an
4845         * alignment gap between normal and device memory regions
4846         */
4847        ram_top = MACHINE(spapr)->device_memory->base +
4848            memory_region_size(&MACHINE(spapr)->device_memory->mr);
4849    }
4850
4851    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4852
4853    if (index > max_index) {
4854        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4855                   max_index);
4856        return;
4857    }
4858
4859    *buid = base_buid + index;
4860    for (i = 0; i < n_dma; ++i) {
4861        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4862    }
4863
4864    phb_base = phb0_base + index * phb_spacing;
4865    *pio = phb_base + pio_offset;
4866    *mmio32 = phb_base + mmio_offset;
4867    /*
4868     * We don't set the 64-bit MMIO window, relying on the PHB's
4869     * fallback behaviour of automatically splitting a large "32-bit"
4870     * window into contiguous 32-bit and 64-bit windows
4871     */
4872
4873    *nv2gpa = 0;
4874    *nv2atsd = 0;
4875}
4876
4877static void spapr_machine_2_7_class_options(MachineClass *mc)
4878{
4879    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4880    static GlobalProperty compat[] = {
4881        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4882        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4883        { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4884        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4885    };
4886
4887    spapr_machine_2_8_class_options(mc);
4888    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4889    mc->default_machine_opts = "modern-hotplug-events=off";
4890    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4891    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4892    smc->phb_placement = phb_placement_2_7;
4893}
4894
4895DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4896
4897/*
4898 * pseries-2.6
4899 */
4900
4901static void spapr_machine_2_6_class_options(MachineClass *mc)
4902{
4903    static GlobalProperty compat[] = {
4904        { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4905    };
4906
4907    spapr_machine_2_7_class_options(mc);
4908    mc->has_hotpluggable_cpus = false;
4909    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4910    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4911}
4912
4913DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4914
4915/*
4916 * pseries-2.5
4917 */
4918
4919static void spapr_machine_2_5_class_options(MachineClass *mc)
4920{
4921    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4922    static GlobalProperty compat[] = {
4923        { "spapr-vlan", "use-rx-buffer-pools", "off" },
4924    };
4925
4926    spapr_machine_2_6_class_options(mc);
4927    smc->use_ohci_by_default = true;
4928    compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4929    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4930}
4931
4932DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4933
4934/*
4935 * pseries-2.4
4936 */
4937
4938static void spapr_machine_2_4_class_options(MachineClass *mc)
4939{
4940    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4941
4942    spapr_machine_2_5_class_options(mc);
4943    smc->dr_lmb_enabled = false;
4944    compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4945}
4946
4947DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4948
4949/*
4950 * pseries-2.3
4951 */
4952
4953static void spapr_machine_2_3_class_options(MachineClass *mc)
4954{
4955    static GlobalProperty compat[] = {
4956        { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4957    };
4958    spapr_machine_2_4_class_options(mc);
4959    compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4960    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4961}
4962DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4963
4964/*
4965 * pseries-2.2
4966 */
4967
4968static void spapr_machine_2_2_class_options(MachineClass *mc)
4969{
4970    static GlobalProperty compat[] = {
4971        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4972    };
4973
4974    spapr_machine_2_3_class_options(mc);
4975    compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4976    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4977    mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4978}
4979DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4980
4981/*
4982 * pseries-2.1
4983 */
4984
4985static void spapr_machine_2_1_class_options(MachineClass *mc)
4986{
4987    spapr_machine_2_2_class_options(mc);
4988    compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4989}
4990DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4991
4992static void spapr_machine_register_types(void)
4993{
4994    type_register_static(&spapr_machine_info);
4995}
4996
4997type_init(spapr_machine_register_types)
4998