qemu/hw/ssi/mss-spi.c
<<
>>
Prefs
   1/*
   2 * Block model of SPI controller present in
   3 * Microsemi's SmartFusion2 and SmartFusion SoCs.
   4 *
   5 * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a copy
   8 * of this software and associated documentation files (the "Software"), to deal
   9 * in the Software without restriction, including without limitation the rights
  10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 * copies of the Software, and to permit persons to whom the Software is
  12 * furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23 * THE SOFTWARE.
  24 */
  25
  26#include "qemu/osdep.h"
  27#include "hw/irq.h"
  28#include "hw/ssi/mss-spi.h"
  29#include "migration/vmstate.h"
  30#include "qemu/log.h"
  31#include "qemu/module.h"
  32
  33#ifndef MSS_SPI_ERR_DEBUG
  34#define MSS_SPI_ERR_DEBUG   0
  35#endif
  36
  37#define DB_PRINT_L(lvl, fmt, args...) do { \
  38    if (MSS_SPI_ERR_DEBUG >= lvl) { \
  39        qemu_log("%s: " fmt "\n", __func__, ## args); \
  40    } \
  41} while (0)
  42
  43#define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
  44
  45#define FIFO_CAPACITY         32
  46
  47#define R_SPI_CONTROL         0
  48#define R_SPI_DFSIZE          1
  49#define R_SPI_STATUS          2
  50#define R_SPI_INTCLR          3
  51#define R_SPI_RX              4
  52#define R_SPI_TX              5
  53#define R_SPI_CLKGEN          6
  54#define R_SPI_SS              7
  55#define R_SPI_MIS             8
  56#define R_SPI_RIS             9
  57
  58#define S_TXDONE             (1 << 0)
  59#define S_RXRDY              (1 << 1)
  60#define S_RXCHOVRF           (1 << 2)
  61#define S_RXFIFOFUL          (1 << 4)
  62#define S_RXFIFOFULNXT       (1 << 5)
  63#define S_RXFIFOEMP          (1 << 6)
  64#define S_RXFIFOEMPNXT       (1 << 7)
  65#define S_TXFIFOFUL          (1 << 8)
  66#define S_TXFIFOFULNXT       (1 << 9)
  67#define S_TXFIFOEMP          (1 << 10)
  68#define S_TXFIFOEMPNXT       (1 << 11)
  69#define S_FRAMESTART         (1 << 12)
  70#define S_SSEL               (1 << 13)
  71#define S_ACTIVE             (1 << 14)
  72
  73#define C_ENABLE             (1 << 0)
  74#define C_MODE               (1 << 1)
  75#define C_INTRXDATA          (1 << 4)
  76#define C_INTTXDATA          (1 << 5)
  77#define C_INTRXOVRFLO        (1 << 6)
  78#define C_SPS                (1 << 26)
  79#define C_BIGFIFO            (1 << 29)
  80#define C_RESET              (1 << 31)
  81
  82#define FRAMESZ_MASK         0x3F
  83#define FMCOUNT_MASK         0x00FFFF00
  84#define FMCOUNT_SHIFT        8
  85#define FRAMESZ_MAX          32
  86
  87static void txfifo_reset(MSSSpiState *s)
  88{
  89    fifo32_reset(&s->tx_fifo);
  90
  91    s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
  92    s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
  93}
  94
  95static void rxfifo_reset(MSSSpiState *s)
  96{
  97    fifo32_reset(&s->rx_fifo);
  98
  99    s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
 100    s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
 101}
 102
 103static void set_fifodepth(MSSSpiState *s)
 104{
 105    unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
 106
 107    if (size <= 8) {
 108        s->fifo_depth = 32;
 109    } else if (size <= 16) {
 110        s->fifo_depth = 16;
 111    } else {
 112        s->fifo_depth = 8;
 113    }
 114}
 115
 116static void update_mis(MSSSpiState *s)
 117{
 118    uint32_t reg = s->regs[R_SPI_CONTROL];
 119    uint32_t tmp;
 120
 121    /*
 122     * form the Control register interrupt enable bits
 123     * same as RIS, MIS and Interrupt clear registers for simplicity
 124     */
 125    tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
 126           ((reg & C_INTTXDATA) >> 5);
 127    s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
 128}
 129
 130static void spi_update_irq(MSSSpiState *s)
 131{
 132    int irq;
 133
 134    update_mis(s);
 135    irq = !!(s->regs[R_SPI_MIS]);
 136
 137    qemu_set_irq(s->irq, irq);
 138}
 139
 140static void mss_spi_reset(DeviceState *d)
 141{
 142    MSSSpiState *s = MSS_SPI(d);
 143
 144    memset(s->regs, 0, sizeof s->regs);
 145    s->regs[R_SPI_CONTROL] = 0x80000102;
 146    s->regs[R_SPI_DFSIZE] = 0x4;
 147    s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
 148    s->regs[R_SPI_CLKGEN] = 0x7;
 149    s->regs[R_SPI_RIS] = 0x0;
 150
 151    s->fifo_depth = 4;
 152    s->frame_count = 1;
 153    s->enabled = false;
 154
 155    rxfifo_reset(s);
 156    txfifo_reset(s);
 157}
 158
 159static uint64_t
 160spi_read(void *opaque, hwaddr addr, unsigned int size)
 161{
 162    MSSSpiState *s = opaque;
 163    uint32_t ret = 0;
 164
 165    addr >>= 2;
 166    switch (addr) {
 167    case R_SPI_RX:
 168        s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
 169        s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
 170        if (fifo32_is_empty(&s->rx_fifo)) {
 171            qemu_log_mask(LOG_GUEST_ERROR,
 172                          "%s: Reading empty RX_FIFO\n",
 173                          __func__);
 174        } else {
 175            ret = fifo32_pop(&s->rx_fifo);
 176        }
 177        if (fifo32_is_empty(&s->rx_fifo)) {
 178            s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
 179        }
 180        break;
 181
 182    case R_SPI_MIS:
 183        update_mis(s);
 184        ret = s->regs[R_SPI_MIS];
 185        break;
 186
 187    default:
 188        if (addr < ARRAY_SIZE(s->regs)) {
 189            ret = s->regs[addr];
 190        } else {
 191            qemu_log_mask(LOG_GUEST_ERROR,
 192                         "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
 193                         addr * 4);
 194            return ret;
 195        }
 196        break;
 197    }
 198
 199    DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
 200    spi_update_irq(s);
 201    return ret;
 202}
 203
 204static void assert_cs(MSSSpiState *s)
 205{
 206    qemu_set_irq(s->cs_line, 0);
 207}
 208
 209static void deassert_cs(MSSSpiState *s)
 210{
 211    qemu_set_irq(s->cs_line, 1);
 212}
 213
 214static void spi_flush_txfifo(MSSSpiState *s)
 215{
 216    uint32_t tx;
 217    uint32_t rx;
 218    bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);
 219
 220    /*
 221     * Chip Select(CS) is automatically controlled by this controller.
 222     * If SPS bit is set in Control register then CS is asserted
 223     * until all the frames set in frame count of Control register are
 224     * transferred. If SPS is not set then CS pulses between frames.
 225     * Note that Slave Select register specifies which of the CS line
 226     * has to be controlled automatically by controller. Bits SS[7:1] are for
 227     * masters in FPGA fabric since we model only Microcontroller subsystem
 228     * of Smartfusion2 we control only one CS(SS[0]) line.
 229     */
 230    while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
 231        assert_cs(s);
 232
 233        s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);
 234
 235        tx = fifo32_pop(&s->tx_fifo);
 236        DB_PRINT("data tx:0x%" PRIx32, tx);
 237        rx = ssi_transfer(s->spi, tx);
 238        DB_PRINT("data rx:0x%" PRIx32, rx);
 239
 240        if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
 241            s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
 242            s->regs[R_SPI_RIS] |= S_RXCHOVRF;
 243        } else {
 244            fifo32_push(&s->rx_fifo, rx);
 245            s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
 246            if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
 247                s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
 248            } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
 249                s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
 250            }
 251        }
 252        s->frame_count--;
 253        if (!sps) {
 254            deassert_cs(s);
 255        }
 256    }
 257
 258    if (!s->frame_count) {
 259        s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
 260                            FMCOUNT_SHIFT;
 261        deassert_cs(s);
 262        s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
 263        s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
 264   }
 265}
 266
 267static void spi_write(void *opaque, hwaddr addr,
 268            uint64_t val64, unsigned int size)
 269{
 270    MSSSpiState *s = opaque;
 271    uint32_t value = val64;
 272
 273    DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
 274    addr >>= 2;
 275
 276    switch (addr) {
 277    case R_SPI_TX:
 278        /* adding to already full FIFO */
 279        if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
 280            break;
 281        }
 282        s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
 283        fifo32_push(&s->tx_fifo, value);
 284        if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
 285            s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
 286        } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
 287            s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
 288        }
 289        if (s->enabled) {
 290            spi_flush_txfifo(s);
 291        }
 292        break;
 293
 294    case R_SPI_CONTROL:
 295        s->regs[R_SPI_CONTROL] = value;
 296        if (value & C_BIGFIFO) {
 297            set_fifodepth(s);
 298        } else {
 299            s->fifo_depth = 4;
 300        }
 301        s->enabled = value & C_ENABLE;
 302        s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
 303        if (value & C_RESET) {
 304            mss_spi_reset(DEVICE(s));
 305        }
 306        break;
 307
 308    case R_SPI_DFSIZE:
 309        if (s->enabled) {
 310            break;
 311        }
 312        /*
 313         * [31:6] bits are reserved bits and for future use.
 314         * [5:0] are for frame size. Only [5:0] bits are validated
 315         * during write, [31:6] bits are untouched.
 316         */
 317        if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
 318            qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
 319                         "Maximum frame size is %u\n",
 320                         __func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
 321            break;
 322        }
 323        s->regs[R_SPI_DFSIZE] = value;
 324        break;
 325
 326    case R_SPI_INTCLR:
 327        s->regs[R_SPI_INTCLR] = value;
 328        if (value & S_TXDONE) {
 329            s->regs[R_SPI_RIS] &= ~S_TXDONE;
 330        }
 331        if (value & S_RXRDY) {
 332            s->regs[R_SPI_RIS] &= ~S_RXRDY;
 333        }
 334        if (value & S_RXCHOVRF) {
 335            s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
 336        }
 337        break;
 338
 339    case R_SPI_MIS:
 340    case R_SPI_STATUS:
 341    case R_SPI_RIS:
 342            qemu_log_mask(LOG_GUEST_ERROR,
 343                         "%s: Write to read only register 0x%" HWADDR_PRIx "\n",
 344                         __func__, addr * 4);
 345        break;
 346
 347    default:
 348        if (addr < ARRAY_SIZE(s->regs)) {
 349            s->regs[addr] = value;
 350        } else {
 351            qemu_log_mask(LOG_GUEST_ERROR,
 352                         "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
 353                         addr * 4);
 354        }
 355        break;
 356    }
 357
 358    spi_update_irq(s);
 359}
 360
 361static const MemoryRegionOps spi_ops = {
 362    .read = spi_read,
 363    .write = spi_write,
 364    .endianness = DEVICE_NATIVE_ENDIAN,
 365    .valid = {
 366        .min_access_size = 1,
 367        .max_access_size = 4
 368    }
 369};
 370
 371static void mss_spi_realize(DeviceState *dev, Error **errp)
 372{
 373    MSSSpiState *s = MSS_SPI(dev);
 374    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 375
 376    s->spi = ssi_create_bus(dev, "spi");
 377
 378    sysbus_init_irq(sbd, &s->irq);
 379    ssi_auto_connect_slaves(dev, &s->cs_line, s->spi);
 380    sysbus_init_irq(sbd, &s->cs_line);
 381
 382    memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
 383                          TYPE_MSS_SPI, R_SPI_MAX * 4);
 384    sysbus_init_mmio(sbd, &s->mmio);
 385
 386    fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
 387    fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
 388}
 389
 390static const VMStateDescription vmstate_mss_spi = {
 391    .name = TYPE_MSS_SPI,
 392    .version_id = 1,
 393    .minimum_version_id = 1,
 394    .fields = (VMStateField[]) {
 395        VMSTATE_FIFO32(tx_fifo, MSSSpiState),
 396        VMSTATE_FIFO32(rx_fifo, MSSSpiState),
 397        VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
 398        VMSTATE_END_OF_LIST()
 399    }
 400};
 401
 402static void mss_spi_class_init(ObjectClass *klass, void *data)
 403{
 404    DeviceClass *dc = DEVICE_CLASS(klass);
 405
 406    dc->realize = mss_spi_realize;
 407    dc->reset = mss_spi_reset;
 408    dc->vmsd = &vmstate_mss_spi;
 409}
 410
 411static const TypeInfo mss_spi_info = {
 412    .name           = TYPE_MSS_SPI,
 413    .parent         = TYPE_SYS_BUS_DEVICE,
 414    .instance_size  = sizeof(MSSSpiState),
 415    .class_init     = mss_spi_class_init,
 416};
 417
 418static void mss_spi_register_types(void)
 419{
 420    type_register_static(&mss_spi_info);
 421}
 422
 423type_init(mss_spi_register_types)
 424