qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu-common.h"
  24#include "target/arm/idau.h"
  25#include "qemu/module.h"
  26#include "qapi/error.h"
  27#include "qapi/visitor.h"
  28#include "cpu.h"
  29#include "internals.h"
  30#include "exec/exec-all.h"
  31#include "hw/qdev-properties.h"
  32#if !defined(CONFIG_USER_ONLY)
  33#include "hw/loader.h"
  34#include "hw/boards.h"
  35#endif
  36#include "sysemu/sysemu.h"
  37#include "sysemu/tcg.h"
  38#include "sysemu/hw_accel.h"
  39#include "kvm_arm.h"
  40#include "disas/capstone.h"
  41#include "fpu/softfloat.h"
  42
  43static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  44{
  45    ARMCPU *cpu = ARM_CPU(cs);
  46    CPUARMState *env = &cpu->env;
  47
  48    if (is_a64(env)) {
  49        env->pc = value;
  50        env->thumb = 0;
  51    } else {
  52        env->regs[15] = value & ~1;
  53        env->thumb = value & 1;
  54    }
  55}
  56
  57static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
  58{
  59    ARMCPU *cpu = ARM_CPU(cs);
  60    CPUARMState *env = &cpu->env;
  61
  62    /*
  63     * It's OK to look at env for the current mode here, because it's
  64     * never possible for an AArch64 TB to chain to an AArch32 TB.
  65     */
  66    if (is_a64(env)) {
  67        env->pc = tb->pc;
  68    } else {
  69        env->regs[15] = tb->pc;
  70    }
  71}
  72
  73static bool arm_cpu_has_work(CPUState *cs)
  74{
  75    ARMCPU *cpu = ARM_CPU(cs);
  76
  77    return (cpu->power_state != PSCI_OFF)
  78        && cs->interrupt_request &
  79        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  80         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  81         | CPU_INTERRUPT_EXITTB);
  82}
  83
  84void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  85                                 void *opaque)
  86{
  87    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  88
  89    entry->hook = hook;
  90    entry->opaque = opaque;
  91
  92    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
  93}
  94
  95void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  96                                 void *opaque)
  97{
  98    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  99
 100    entry->hook = hook;
 101    entry->opaque = opaque;
 102
 103    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 104}
 105
 106static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 107{
 108    /* Reset a single ARMCPRegInfo register */
 109    ARMCPRegInfo *ri = value;
 110    ARMCPU *cpu = opaque;
 111
 112    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
 113        return;
 114    }
 115
 116    if (ri->resetfn) {
 117        ri->resetfn(&cpu->env, ri);
 118        return;
 119    }
 120
 121    /* A zero offset is never possible as it would be regs[0]
 122     * so we use it to indicate that reset is being handled elsewhere.
 123     * This is basically only used for fields in non-core coprocessors
 124     * (like the pxa2xx ones).
 125     */
 126    if (!ri->fieldoffset) {
 127        return;
 128    }
 129
 130    if (cpreg_field_is_64bit(ri)) {
 131        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 132    } else {
 133        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 134    }
 135}
 136
 137static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 138{
 139    /* Purely an assertion check: we've already done reset once,
 140     * so now check that running the reset for the cpreg doesn't
 141     * change its value. This traps bugs where two different cpregs
 142     * both try to reset the same state field but to different values.
 143     */
 144    ARMCPRegInfo *ri = value;
 145    ARMCPU *cpu = opaque;
 146    uint64_t oldvalue, newvalue;
 147
 148    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 149        return;
 150    }
 151
 152    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 153    cp_reg_reset(key, value, opaque);
 154    newvalue = read_raw_cp_reg(&cpu->env, ri);
 155    assert(oldvalue == newvalue);
 156}
 157
 158static void arm_cpu_reset(DeviceState *dev)
 159{
 160    CPUState *s = CPU(dev);
 161    ARMCPU *cpu = ARM_CPU(s);
 162    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 163    CPUARMState *env = &cpu->env;
 164
 165    acc->parent_reset(dev);
 166
 167    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 168
 169    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 170    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 171
 172    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 173    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 174    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 175    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 176
 177    cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
 178    s->halted = cpu->start_powered_off;
 179
 180    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 181        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 182    }
 183
 184    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 185        /* 64 bit CPUs always start in 64 bit mode */
 186        env->aarch64 = 1;
 187#if defined(CONFIG_USER_ONLY)
 188        env->pstate = PSTATE_MODE_EL0t;
 189        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 190        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 191        /* Enable all PAC keys.  */
 192        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 193                                  SCTLR_EnDA | SCTLR_EnDB);
 194        /* and to the FP/Neon instructions */
 195        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 196        /* and to the SVE instructions */
 197        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 198        /* with reasonable vector length */
 199        if (cpu_isar_feature(aa64_sve, cpu)) {
 200            env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
 201        }
 202        /*
 203         * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
 204         * turning on both here will produce smaller code and otherwise
 205         * make no difference to the user-level emulation.
 206         */
 207        env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
 208#else
 209        /* Reset into the highest available EL */
 210        if (arm_feature(env, ARM_FEATURE_EL3)) {
 211            env->pstate = PSTATE_MODE_EL3h;
 212        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 213            env->pstate = PSTATE_MODE_EL2h;
 214        } else {
 215            env->pstate = PSTATE_MODE_EL1h;
 216        }
 217        env->pc = cpu->rvbar;
 218#endif
 219    } else {
 220#if defined(CONFIG_USER_ONLY)
 221        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 222        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 223#endif
 224    }
 225
 226#if defined(CONFIG_USER_ONLY)
 227    env->uncached_cpsr = ARM_CPU_MODE_USR;
 228    /* For user mode we must enable access to coprocessors */
 229    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 230    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 231        env->cp15.c15_cpar = 3;
 232    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 233        env->cp15.c15_cpar = 1;
 234    }
 235#else
 236
 237    /*
 238     * If the highest available EL is EL2, AArch32 will start in Hyp
 239     * mode; otherwise it starts in SVC. Note that if we start in
 240     * AArch64 then these values in the uncached_cpsr will be ignored.
 241     */
 242    if (arm_feature(env, ARM_FEATURE_EL2) &&
 243        !arm_feature(env, ARM_FEATURE_EL3)) {
 244        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 245    } else {
 246        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 247    }
 248    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 249
 250    if (arm_feature(env, ARM_FEATURE_M)) {
 251        uint32_t initial_msp; /* Loaded from 0x0 */
 252        uint32_t initial_pc; /* Loaded from 0x4 */
 253        uint8_t *rom;
 254        uint32_t vecbase;
 255
 256        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 257            env->v7m.secure = true;
 258        } else {
 259            /* This bit resets to 0 if security is supported, but 1 if
 260             * it is not. The bit is not present in v7M, but we set it
 261             * here so we can avoid having to make checks on it conditional
 262             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 263             */
 264            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 265            /*
 266             * Set NSACR to indicate "NS access permitted to everything";
 267             * this avoids having to have all the tests of it being
 268             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 269             * v8.1M the guest-visible value of NSACR in a CPU without the
 270             * Security Extension is 0xcff.
 271             */
 272            env->v7m.nsacr = 0xcff;
 273        }
 274
 275        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 276         * that it resets to 1, so QEMU always does that rather than making
 277         * it dependent on CPU model. In v8M it is RES1.
 278         */
 279        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 280        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 281        if (arm_feature(env, ARM_FEATURE_V8)) {
 282            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 283            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 284            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 285        }
 286        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 287            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 288            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 289        }
 290
 291        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 292            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 293            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 294                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 295        }
 296        /* Unlike A/R profile, M profile defines the reset LR value */
 297        env->regs[14] = 0xffffffff;
 298
 299        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 300
 301        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 302        vecbase = env->v7m.vecbase[env->v7m.secure];
 303        rom = rom_ptr(vecbase, 8);
 304        if (rom) {
 305            /* Address zero is covered by ROM which hasn't yet been
 306             * copied into physical memory.
 307             */
 308            initial_msp = ldl_p(rom);
 309            initial_pc = ldl_p(rom + 4);
 310        } else {
 311            /* Address zero not covered by a ROM blob, or the ROM blob
 312             * is in non-modifiable memory and this is a second reset after
 313             * it got copied into memory. In the latter case, rom_ptr
 314             * will return a NULL pointer and we should use ldl_phys instead.
 315             */
 316            initial_msp = ldl_phys(s->as, vecbase);
 317            initial_pc = ldl_phys(s->as, vecbase + 4);
 318        }
 319
 320        env->regs[13] = initial_msp & 0xFFFFFFFC;
 321        env->regs[15] = initial_pc & ~1;
 322        env->thumb = initial_pc & 1;
 323    }
 324
 325    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 326     * executing as AArch32 then check if highvecs are enabled and
 327     * adjust the PC accordingly.
 328     */
 329    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 330        env->regs[15] = 0xFFFF0000;
 331    }
 332
 333    /* M profile requires that reset clears the exclusive monitor;
 334     * A profile does not, but clearing it makes more sense than having it
 335     * set with an exclusive access on address zero.
 336     */
 337    arm_clear_exclusive(env);
 338
 339    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 340#endif
 341
 342    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 343        if (cpu->pmsav7_dregion > 0) {
 344            if (arm_feature(env, ARM_FEATURE_V8)) {
 345                memset(env->pmsav8.rbar[M_REG_NS], 0,
 346                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 347                       * cpu->pmsav7_dregion);
 348                memset(env->pmsav8.rlar[M_REG_NS], 0,
 349                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 350                       * cpu->pmsav7_dregion);
 351                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 352                    memset(env->pmsav8.rbar[M_REG_S], 0,
 353                           sizeof(*env->pmsav8.rbar[M_REG_S])
 354                           * cpu->pmsav7_dregion);
 355                    memset(env->pmsav8.rlar[M_REG_S], 0,
 356                           sizeof(*env->pmsav8.rlar[M_REG_S])
 357                           * cpu->pmsav7_dregion);
 358                }
 359            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 360                memset(env->pmsav7.drbar, 0,
 361                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 362                memset(env->pmsav7.drsr, 0,
 363                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 364                memset(env->pmsav7.dracr, 0,
 365                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 366            }
 367        }
 368        env->pmsav7.rnr[M_REG_NS] = 0;
 369        env->pmsav7.rnr[M_REG_S] = 0;
 370        env->pmsav8.mair0[M_REG_NS] = 0;
 371        env->pmsav8.mair0[M_REG_S] = 0;
 372        env->pmsav8.mair1[M_REG_NS] = 0;
 373        env->pmsav8.mair1[M_REG_S] = 0;
 374    }
 375
 376    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 377        if (cpu->sau_sregion > 0) {
 378            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 379            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 380        }
 381        env->sau.rnr = 0;
 382        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 383         * the Cortex-M33 does.
 384         */
 385        env->sau.ctrl = 0;
 386    }
 387
 388    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 389    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 390    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 391    set_float_detect_tininess(float_tininess_before_rounding,
 392                              &env->vfp.fp_status);
 393    set_float_detect_tininess(float_tininess_before_rounding,
 394                              &env->vfp.standard_fp_status);
 395    set_float_detect_tininess(float_tininess_before_rounding,
 396                              &env->vfp.fp_status_f16);
 397#ifndef CONFIG_USER_ONLY
 398    if (kvm_enabled()) {
 399        kvm_arm_reset_vcpu(cpu);
 400    }
 401#endif
 402
 403    hw_breakpoint_update_all(cpu);
 404    hw_watchpoint_update_all(cpu);
 405    arm_rebuild_hflags(env);
 406}
 407
 408static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 409                                     unsigned int target_el,
 410                                     unsigned int cur_el, bool secure,
 411                                     uint64_t hcr_el2)
 412{
 413    CPUARMState *env = cs->env_ptr;
 414    bool pstate_unmasked;
 415    bool unmasked = false;
 416
 417    /*
 418     * Don't take exceptions if they target a lower EL.
 419     * This check should catch any exceptions that would not be taken
 420     * but left pending.
 421     */
 422    if (cur_el > target_el) {
 423        return false;
 424    }
 425
 426    switch (excp_idx) {
 427    case EXCP_FIQ:
 428        pstate_unmasked = !(env->daif & PSTATE_F);
 429        break;
 430
 431    case EXCP_IRQ:
 432        pstate_unmasked = !(env->daif & PSTATE_I);
 433        break;
 434
 435    case EXCP_VFIQ:
 436        if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 437            /* VFIQs are only taken when hypervized and non-secure.  */
 438            return false;
 439        }
 440        return !(env->daif & PSTATE_F);
 441    case EXCP_VIRQ:
 442        if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 443            /* VIRQs are only taken when hypervized and non-secure.  */
 444            return false;
 445        }
 446        return !(env->daif & PSTATE_I);
 447    default:
 448        g_assert_not_reached();
 449    }
 450
 451    /*
 452     * Use the target EL, current execution state and SCR/HCR settings to
 453     * determine whether the corresponding CPSR bit is used to mask the
 454     * interrupt.
 455     */
 456    if ((target_el > cur_el) && (target_el != 1)) {
 457        /* Exceptions targeting a higher EL may not be maskable */
 458        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 459            /*
 460             * 64-bit masking rules are simple: exceptions to EL3
 461             * can't be masked, and exceptions to EL2 can only be
 462             * masked from Secure state. The HCR and SCR settings
 463             * don't affect the masking logic, only the interrupt routing.
 464             */
 465            if (target_el == 3 || !secure) {
 466                unmasked = true;
 467            }
 468        } else {
 469            /*
 470             * The old 32-bit-only environment has a more complicated
 471             * masking setup. HCR and SCR bits not only affect interrupt
 472             * routing but also change the behaviour of masking.
 473             */
 474            bool hcr, scr;
 475
 476            switch (excp_idx) {
 477            case EXCP_FIQ:
 478                /*
 479                 * If FIQs are routed to EL3 or EL2 then there are cases where
 480                 * we override the CPSR.F in determining if the exception is
 481                 * masked or not. If neither of these are set then we fall back
 482                 * to the CPSR.F setting otherwise we further assess the state
 483                 * below.
 484                 */
 485                hcr = hcr_el2 & HCR_FMO;
 486                scr = (env->cp15.scr_el3 & SCR_FIQ);
 487
 488                /*
 489                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
 490                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
 491                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 492                 * when non-secure but only when FIQs are only routed to EL3.
 493                 */
 494                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 495                break;
 496            case EXCP_IRQ:
 497                /*
 498                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
 499                 * we may override the CPSR.I masking when in non-secure state.
 500                 * The SCR.IRQ setting has already been taken into consideration
 501                 * when setting the target EL, so it does not have a further
 502                 * affect here.
 503                 */
 504                hcr = hcr_el2 & HCR_IMO;
 505                scr = false;
 506                break;
 507            default:
 508                g_assert_not_reached();
 509            }
 510
 511            if ((scr || hcr) && !secure) {
 512                unmasked = true;
 513            }
 514        }
 515    }
 516
 517    /*
 518     * The PSTATE bits only mask the interrupt if we have not overriden the
 519     * ability above.
 520     */
 521    return unmasked || pstate_unmasked;
 522}
 523
 524bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 525{
 526    CPUClass *cc = CPU_GET_CLASS(cs);
 527    CPUARMState *env = cs->env_ptr;
 528    uint32_t cur_el = arm_current_el(env);
 529    bool secure = arm_is_secure(env);
 530    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 531    uint32_t target_el;
 532    uint32_t excp_idx;
 533
 534    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 535
 536    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 537        excp_idx = EXCP_FIQ;
 538        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 539        if (arm_excp_unmasked(cs, excp_idx, target_el,
 540                              cur_el, secure, hcr_el2)) {
 541            goto found;
 542        }
 543    }
 544    if (interrupt_request & CPU_INTERRUPT_HARD) {
 545        excp_idx = EXCP_IRQ;
 546        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 547        if (arm_excp_unmasked(cs, excp_idx, target_el,
 548                              cur_el, secure, hcr_el2)) {
 549            goto found;
 550        }
 551    }
 552    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 553        excp_idx = EXCP_VIRQ;
 554        target_el = 1;
 555        if (arm_excp_unmasked(cs, excp_idx, target_el,
 556                              cur_el, secure, hcr_el2)) {
 557            goto found;
 558        }
 559    }
 560    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 561        excp_idx = EXCP_VFIQ;
 562        target_el = 1;
 563        if (arm_excp_unmasked(cs, excp_idx, target_el,
 564                              cur_el, secure, hcr_el2)) {
 565            goto found;
 566        }
 567    }
 568    return false;
 569
 570 found:
 571    cs->exception_index = excp_idx;
 572    env->exception.target_el = target_el;
 573    cc->do_interrupt(cs);
 574    return true;
 575}
 576
 577#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
 578static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 579{
 580    CPUClass *cc = CPU_GET_CLASS(cs);
 581    ARMCPU *cpu = ARM_CPU(cs);
 582    CPUARMState *env = &cpu->env;
 583    bool ret = false;
 584
 585    /* ARMv7-M interrupt masking works differently than -A or -R.
 586     * There is no FIQ/IRQ distinction. Instead of I and F bits
 587     * masking FIQ and IRQ interrupts, an exception is taken only
 588     * if it is higher priority than the current execution priority
 589     * (which depends on state like BASEPRI, FAULTMASK and the
 590     * currently active exception).
 591     */
 592    if (interrupt_request & CPU_INTERRUPT_HARD
 593        && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
 594        cs->exception_index = EXCP_IRQ;
 595        cc->do_interrupt(cs);
 596        ret = true;
 597    }
 598    return ret;
 599}
 600#endif
 601
 602void arm_cpu_update_virq(ARMCPU *cpu)
 603{
 604    /*
 605     * Update the interrupt level for VIRQ, which is the logical OR of
 606     * the HCR_EL2.VI bit and the input line level from the GIC.
 607     */
 608    CPUARMState *env = &cpu->env;
 609    CPUState *cs = CPU(cpu);
 610
 611    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 612        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 613
 614    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 615        if (new_state) {
 616            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 617        } else {
 618            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 619        }
 620    }
 621}
 622
 623void arm_cpu_update_vfiq(ARMCPU *cpu)
 624{
 625    /*
 626     * Update the interrupt level for VFIQ, which is the logical OR of
 627     * the HCR_EL2.VF bit and the input line level from the GIC.
 628     */
 629    CPUARMState *env = &cpu->env;
 630    CPUState *cs = CPU(cpu);
 631
 632    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 633        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 634
 635    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 636        if (new_state) {
 637            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 638        } else {
 639            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 640        }
 641    }
 642}
 643
 644#ifndef CONFIG_USER_ONLY
 645static void arm_cpu_set_irq(void *opaque, int irq, int level)
 646{
 647    ARMCPU *cpu = opaque;
 648    CPUARMState *env = &cpu->env;
 649    CPUState *cs = CPU(cpu);
 650    static const int mask[] = {
 651        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 652        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 653        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 654        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 655    };
 656
 657    if (level) {
 658        env->irq_line_state |= mask[irq];
 659    } else {
 660        env->irq_line_state &= ~mask[irq];
 661    }
 662
 663    switch (irq) {
 664    case ARM_CPU_VIRQ:
 665        assert(arm_feature(env, ARM_FEATURE_EL2));
 666        arm_cpu_update_virq(cpu);
 667        break;
 668    case ARM_CPU_VFIQ:
 669        assert(arm_feature(env, ARM_FEATURE_EL2));
 670        arm_cpu_update_vfiq(cpu);
 671        break;
 672    case ARM_CPU_IRQ:
 673    case ARM_CPU_FIQ:
 674        if (level) {
 675            cpu_interrupt(cs, mask[irq]);
 676        } else {
 677            cpu_reset_interrupt(cs, mask[irq]);
 678        }
 679        break;
 680    default:
 681        g_assert_not_reached();
 682    }
 683}
 684
 685static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 686{
 687#ifdef CONFIG_KVM
 688    ARMCPU *cpu = opaque;
 689    CPUARMState *env = &cpu->env;
 690    CPUState *cs = CPU(cpu);
 691    uint32_t linestate_bit;
 692    int irq_id;
 693
 694    switch (irq) {
 695    case ARM_CPU_IRQ:
 696        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 697        linestate_bit = CPU_INTERRUPT_HARD;
 698        break;
 699    case ARM_CPU_FIQ:
 700        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 701        linestate_bit = CPU_INTERRUPT_FIQ;
 702        break;
 703    default:
 704        g_assert_not_reached();
 705    }
 706
 707    if (level) {
 708        env->irq_line_state |= linestate_bit;
 709    } else {
 710        env->irq_line_state &= ~linestate_bit;
 711    }
 712    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 713#endif
 714}
 715
 716static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 717{
 718    ARMCPU *cpu = ARM_CPU(cs);
 719    CPUARMState *env = &cpu->env;
 720
 721    cpu_synchronize_state(cs);
 722    return arm_cpu_data_is_big_endian(env);
 723}
 724
 725#endif
 726
 727static inline void set_feature(CPUARMState *env, int feature)
 728{
 729    env->features |= 1ULL << feature;
 730}
 731
 732static inline void unset_feature(CPUARMState *env, int feature)
 733{
 734    env->features &= ~(1ULL << feature);
 735}
 736
 737static int
 738print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 739{
 740  return print_insn_arm(pc | 1, info);
 741}
 742
 743static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 744{
 745    ARMCPU *ac = ARM_CPU(cpu);
 746    CPUARMState *env = &ac->env;
 747    bool sctlr_b;
 748
 749    if (is_a64(env)) {
 750        /* We might not be compiled with the A64 disassembler
 751         * because it needs a C++ compiler. Leave print_insn
 752         * unset in this case to use the caller default behaviour.
 753         */
 754#if defined(CONFIG_ARM_A64_DIS)
 755        info->print_insn = print_insn_arm_a64;
 756#endif
 757        info->cap_arch = CS_ARCH_ARM64;
 758        info->cap_insn_unit = 4;
 759        info->cap_insn_split = 4;
 760    } else {
 761        int cap_mode;
 762        if (env->thumb) {
 763            info->print_insn = print_insn_thumb1;
 764            info->cap_insn_unit = 2;
 765            info->cap_insn_split = 4;
 766            cap_mode = CS_MODE_THUMB;
 767        } else {
 768            info->print_insn = print_insn_arm;
 769            info->cap_insn_unit = 4;
 770            info->cap_insn_split = 4;
 771            cap_mode = CS_MODE_ARM;
 772        }
 773        if (arm_feature(env, ARM_FEATURE_V8)) {
 774            cap_mode |= CS_MODE_V8;
 775        }
 776        if (arm_feature(env, ARM_FEATURE_M)) {
 777            cap_mode |= CS_MODE_MCLASS;
 778        }
 779        info->cap_arch = CS_ARCH_ARM;
 780        info->cap_mode = cap_mode;
 781    }
 782
 783    sctlr_b = arm_sctlr_b(env);
 784    if (bswap_code(sctlr_b)) {
 785#ifdef TARGET_WORDS_BIGENDIAN
 786        info->endian = BFD_ENDIAN_LITTLE;
 787#else
 788        info->endian = BFD_ENDIAN_BIG;
 789#endif
 790    }
 791    info->flags &= ~INSN_ARM_BE32;
 792#ifndef CONFIG_USER_ONLY
 793    if (sctlr_b) {
 794        info->flags |= INSN_ARM_BE32;
 795    }
 796#endif
 797}
 798
 799#ifdef TARGET_AARCH64
 800
 801static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 802{
 803    ARMCPU *cpu = ARM_CPU(cs);
 804    CPUARMState *env = &cpu->env;
 805    uint32_t psr = pstate_read(env);
 806    int i;
 807    int el = arm_current_el(env);
 808    const char *ns_status;
 809
 810    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 811    for (i = 0; i < 32; i++) {
 812        if (i == 31) {
 813            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 814        } else {
 815            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 816                         (i + 2) % 3 ? " " : "\n");
 817        }
 818    }
 819
 820    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 821        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 822    } else {
 823        ns_status = "";
 824    }
 825    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 826                 psr,
 827                 psr & PSTATE_N ? 'N' : '-',
 828                 psr & PSTATE_Z ? 'Z' : '-',
 829                 psr & PSTATE_C ? 'C' : '-',
 830                 psr & PSTATE_V ? 'V' : '-',
 831                 ns_status,
 832                 el,
 833                 psr & PSTATE_SP ? 'h' : 't');
 834
 835    if (cpu_isar_feature(aa64_bti, cpu)) {
 836        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 837    }
 838    if (!(flags & CPU_DUMP_FPU)) {
 839        qemu_fprintf(f, "\n");
 840        return;
 841    }
 842    if (fp_exception_el(env, el) != 0) {
 843        qemu_fprintf(f, "    FPU disabled\n");
 844        return;
 845    }
 846    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 847                 vfp_get_fpcr(env), vfp_get_fpsr(env));
 848
 849    if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
 850        int j, zcr_len = sve_zcr_len_for_el(env, el);
 851
 852        for (i = 0; i <= FFR_PRED_NUM; i++) {
 853            bool eol;
 854            if (i == FFR_PRED_NUM) {
 855                qemu_fprintf(f, "FFR=");
 856                /* It's last, so end the line.  */
 857                eol = true;
 858            } else {
 859                qemu_fprintf(f, "P%02d=", i);
 860                switch (zcr_len) {
 861                case 0:
 862                    eol = i % 8 == 7;
 863                    break;
 864                case 1:
 865                    eol = i % 6 == 5;
 866                    break;
 867                case 2:
 868                case 3:
 869                    eol = i % 3 == 2;
 870                    break;
 871                default:
 872                    /* More than one quadword per predicate.  */
 873                    eol = true;
 874                    break;
 875                }
 876            }
 877            for (j = zcr_len / 4; j >= 0; j--) {
 878                int digits;
 879                if (j * 4 + 4 <= zcr_len + 1) {
 880                    digits = 16;
 881                } else {
 882                    digits = (zcr_len % 4 + 1) * 4;
 883                }
 884                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
 885                             env->vfp.pregs[i].p[j],
 886                             j ? ":" : eol ? "\n" : " ");
 887            }
 888        }
 889
 890        for (i = 0; i < 32; i++) {
 891            if (zcr_len == 0) {
 892                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 893                             i, env->vfp.zregs[i].d[1],
 894                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
 895            } else if (zcr_len == 1) {
 896                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
 897                             ":%016" PRIx64 ":%016" PRIx64 "\n",
 898                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
 899                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
 900            } else {
 901                for (j = zcr_len; j >= 0; j--) {
 902                    bool odd = (zcr_len - j) % 2 != 0;
 903                    if (j == zcr_len) {
 904                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
 905                    } else if (!odd) {
 906                        if (j > 0) {
 907                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
 908                        } else {
 909                            qemu_fprintf(f, "     [%x]=", j);
 910                        }
 911                    }
 912                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
 913                                 env->vfp.zregs[i].d[j * 2 + 1],
 914                                 env->vfp.zregs[i].d[j * 2],
 915                                 odd || j == 0 ? "\n" : ":");
 916                }
 917            }
 918        }
 919    } else {
 920        for (i = 0; i < 32; i++) {
 921            uint64_t *q = aa64_vfp_qreg(env, i);
 922            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 923                         i, q[1], q[0], (i & 1 ? "\n" : " "));
 924        }
 925    }
 926}
 927
 928#else
 929
 930static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 931{
 932    g_assert_not_reached();
 933}
 934
 935#endif
 936
 937static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 938{
 939    ARMCPU *cpu = ARM_CPU(cs);
 940    CPUARMState *env = &cpu->env;
 941    int i;
 942
 943    if (is_a64(env)) {
 944        aarch64_cpu_dump_state(cs, f, flags);
 945        return;
 946    }
 947
 948    for (i = 0; i < 16; i++) {
 949        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
 950        if ((i % 4) == 3) {
 951            qemu_fprintf(f, "\n");
 952        } else {
 953            qemu_fprintf(f, " ");
 954        }
 955    }
 956
 957    if (arm_feature(env, ARM_FEATURE_M)) {
 958        uint32_t xpsr = xpsr_read(env);
 959        const char *mode;
 960        const char *ns_status = "";
 961
 962        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 963            ns_status = env->v7m.secure ? "S " : "NS ";
 964        }
 965
 966        if (xpsr & XPSR_EXCP) {
 967            mode = "handler";
 968        } else {
 969            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
 970                mode = "unpriv-thread";
 971            } else {
 972                mode = "priv-thread";
 973            }
 974        }
 975
 976        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
 977                     xpsr,
 978                     xpsr & XPSR_N ? 'N' : '-',
 979                     xpsr & XPSR_Z ? 'Z' : '-',
 980                     xpsr & XPSR_C ? 'C' : '-',
 981                     xpsr & XPSR_V ? 'V' : '-',
 982                     xpsr & XPSR_T ? 'T' : 'A',
 983                     ns_status,
 984                     mode);
 985    } else {
 986        uint32_t psr = cpsr_read(env);
 987        const char *ns_status = "";
 988
 989        if (arm_feature(env, ARM_FEATURE_EL3) &&
 990            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
 991            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 992        }
 993
 994        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
 995                     psr,
 996                     psr & CPSR_N ? 'N' : '-',
 997                     psr & CPSR_Z ? 'Z' : '-',
 998                     psr & CPSR_C ? 'C' : '-',
 999                     psr & CPSR_V ? 'V' : '-',
1000                     psr & CPSR_T ? 'T' : 'A',
1001                     ns_status,
1002                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1003    }
1004
1005    if (flags & CPU_DUMP_FPU) {
1006        int numvfpregs = 0;
1007        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1008            numvfpregs = 32;
1009        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1010            numvfpregs = 16;
1011        }
1012        for (i = 0; i < numvfpregs; i++) {
1013            uint64_t v = *aa32_vfp_dreg(env, i);
1014            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1015                         i * 2, (uint32_t)v,
1016                         i * 2 + 1, (uint32_t)(v >> 32),
1017                         i, v);
1018        }
1019        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1020    }
1021}
1022
1023uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1024{
1025    uint32_t Aff1 = idx / clustersz;
1026    uint32_t Aff0 = idx % clustersz;
1027    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1028}
1029
1030static void cpreg_hashtable_data_destroy(gpointer data)
1031{
1032    /*
1033     * Destroy function for cpu->cp_regs hashtable data entries.
1034     * We must free the name string because it was g_strdup()ed in
1035     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1036     * from r->name because we know we definitely allocated it.
1037     */
1038    ARMCPRegInfo *r = data;
1039
1040    g_free((void *)r->name);
1041    g_free(r);
1042}
1043
1044static void arm_cpu_initfn(Object *obj)
1045{
1046    ARMCPU *cpu = ARM_CPU(obj);
1047
1048    cpu_set_cpustate_pointers(cpu);
1049    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1050                                         g_free, cpreg_hashtable_data_destroy);
1051
1052    QLIST_INIT(&cpu->pre_el_change_hooks);
1053    QLIST_INIT(&cpu->el_change_hooks);
1054
1055#ifndef CONFIG_USER_ONLY
1056    /* Our inbound IRQ and FIQ lines */
1057    if (kvm_enabled()) {
1058        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1059         * the same interface as non-KVM CPUs.
1060         */
1061        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1062    } else {
1063        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1064    }
1065
1066    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1067                       ARRAY_SIZE(cpu->gt_timer_outputs));
1068
1069    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1070                             "gicv3-maintenance-interrupt", 1);
1071    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1072                             "pmu-interrupt", 1);
1073#endif
1074
1075    /* DTB consumers generally don't in fact care what the 'compatible'
1076     * string is, so always provide some string and trust that a hypothetical
1077     * picky DTB consumer will also provide a helpful error message.
1078     */
1079    cpu->dtb_compatible = "qemu,unknown";
1080    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1081    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1082
1083    if (tcg_enabled()) {
1084        cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1085    }
1086}
1087
1088static Property arm_cpu_gt_cntfrq_property =
1089            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1090                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1091
1092static Property arm_cpu_reset_cbar_property =
1093            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1094
1095static Property arm_cpu_reset_hivecs_property =
1096            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1097
1098static Property arm_cpu_rvbar_property =
1099            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1100
1101#ifndef CONFIG_USER_ONLY
1102static Property arm_cpu_has_el2_property =
1103            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1104
1105static Property arm_cpu_has_el3_property =
1106            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1107#endif
1108
1109static Property arm_cpu_cfgend_property =
1110            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1111
1112static Property arm_cpu_has_vfp_property =
1113            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1114
1115static Property arm_cpu_has_neon_property =
1116            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1117
1118static Property arm_cpu_has_dsp_property =
1119            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1120
1121static Property arm_cpu_has_mpu_property =
1122            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1123
1124/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1125 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1126 * the right value for that particular CPU type, and we don't want
1127 * to override that with an incorrect constant value.
1128 */
1129static Property arm_cpu_pmsav7_dregion_property =
1130            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1131                                           pmsav7_dregion,
1132                                           qdev_prop_uint32, uint32_t);
1133
1134static bool arm_get_pmu(Object *obj, Error **errp)
1135{
1136    ARMCPU *cpu = ARM_CPU(obj);
1137
1138    return cpu->has_pmu;
1139}
1140
1141static void arm_set_pmu(Object *obj, bool value, Error **errp)
1142{
1143    ARMCPU *cpu = ARM_CPU(obj);
1144
1145    if (value) {
1146        if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1147            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1148            return;
1149        }
1150        set_feature(&cpu->env, ARM_FEATURE_PMU);
1151    } else {
1152        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1153    }
1154    cpu->has_pmu = value;
1155}
1156
1157unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1158{
1159    /*
1160     * The exact approach to calculating guest ticks is:
1161     *
1162     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1163     *              NANOSECONDS_PER_SECOND);
1164     *
1165     * We don't do that. Rather we intentionally use integer division
1166     * truncation below and in the caller for the conversion of host monotonic
1167     * time to guest ticks to provide the exact inverse for the semantics of
1168     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1169     * it loses precision when representing frequencies where
1170     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1171     * provide an exact inverse leads to scheduling timers with negative
1172     * periods, which in turn leads to sticky behaviour in the guest.
1173     *
1174     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1175     * cannot become zero.
1176     */
1177    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1178      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1179}
1180
1181void arm_cpu_post_init(Object *obj)
1182{
1183    ARMCPU *cpu = ARM_CPU(obj);
1184
1185    /* M profile implies PMSA. We have to do this here rather than
1186     * in realize with the other feature-implication checks because
1187     * we look at the PMSA bit to see if we should add some properties.
1188     */
1189    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1190        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1191    }
1192
1193    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1194        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1195        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1196    }
1197
1198    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1199        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1200    }
1201
1202    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1203        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1204    }
1205
1206#ifndef CONFIG_USER_ONLY
1207    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1208        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1209         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1210         */
1211        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1212
1213        object_property_add_link(obj, "secure-memory",
1214                                 TYPE_MEMORY_REGION,
1215                                 (Object **)&cpu->secure_memory,
1216                                 qdev_prop_allow_set_link_before_realize,
1217                                 OBJ_PROP_LINK_STRONG,
1218                                 &error_abort);
1219    }
1220
1221    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1222        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1223    }
1224#endif
1225
1226    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1227        cpu->has_pmu = true;
1228        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1229                                 &error_abort);
1230    }
1231
1232    /*
1233     * Allow user to turn off VFP and Neon support, but only for TCG --
1234     * KVM does not currently allow us to lie to the guest about its
1235     * ID/feature registers, so the guest always sees what the host has.
1236     */
1237    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1238        ? cpu_isar_feature(aa64_fp_simd, cpu)
1239        : cpu_isar_feature(aa32_vfp, cpu)) {
1240        cpu->has_vfp = true;
1241        if (!kvm_enabled()) {
1242            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1243        }
1244    }
1245
1246    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1247        cpu->has_neon = true;
1248        if (!kvm_enabled()) {
1249            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1250        }
1251    }
1252
1253    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1254        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1255        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1256    }
1257
1258    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1259        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1260        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1261            qdev_property_add_static(DEVICE(obj),
1262                                     &arm_cpu_pmsav7_dregion_property);
1263        }
1264    }
1265
1266    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1267        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1268                                 qdev_prop_allow_set_link_before_realize,
1269                                 OBJ_PROP_LINK_STRONG,
1270                                 &error_abort);
1271        /*
1272         * M profile: initial value of the Secure VTOR. We can't just use
1273         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1274         * the property to be set after realize.
1275         */
1276        object_property_add_uint32_ptr(obj, "init-svtor",
1277                                       &cpu->init_svtor,
1278                                       OBJ_PROP_FLAG_READWRITE, &error_abort);
1279    }
1280
1281    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1282
1283    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1284        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1285    }
1286}
1287
1288static void arm_cpu_finalizefn(Object *obj)
1289{
1290    ARMCPU *cpu = ARM_CPU(obj);
1291    ARMELChangeHook *hook, *next;
1292
1293    g_hash_table_destroy(cpu->cp_regs);
1294
1295    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1296        QLIST_REMOVE(hook, node);
1297        g_free(hook);
1298    }
1299    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1300        QLIST_REMOVE(hook, node);
1301        g_free(hook);
1302    }
1303#ifndef CONFIG_USER_ONLY
1304    if (cpu->pmu_timer) {
1305        timer_del(cpu->pmu_timer);
1306        timer_deinit(cpu->pmu_timer);
1307        timer_free(cpu->pmu_timer);
1308    }
1309#endif
1310}
1311
1312void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1313{
1314    Error *local_err = NULL;
1315
1316    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1317        arm_cpu_sve_finalize(cpu, &local_err);
1318        if (local_err != NULL) {
1319            error_propagate(errp, local_err);
1320            return;
1321        }
1322    }
1323}
1324
1325static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1326{
1327    CPUState *cs = CPU(dev);
1328    ARMCPU *cpu = ARM_CPU(dev);
1329    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1330    CPUARMState *env = &cpu->env;
1331    int pagebits;
1332    Error *local_err = NULL;
1333    bool no_aa32 = false;
1334
1335    /* If we needed to query the host kernel for the CPU features
1336     * then it's possible that might have failed in the initfn, but
1337     * this is the first point where we can report it.
1338     */
1339    if (cpu->host_cpu_probe_failed) {
1340        if (!kvm_enabled()) {
1341            error_setg(errp, "The 'host' CPU type can only be used with KVM");
1342        } else {
1343            error_setg(errp, "Failed to retrieve host CPU features");
1344        }
1345        return;
1346    }
1347
1348#ifndef CONFIG_USER_ONLY
1349    /* The NVIC and M-profile CPU are two halves of a single piece of
1350     * hardware; trying to use one without the other is a command line
1351     * error and will result in segfaults if not caught here.
1352     */
1353    if (arm_feature(env, ARM_FEATURE_M)) {
1354        if (!env->nvic) {
1355            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1356            return;
1357        }
1358    } else {
1359        if (env->nvic) {
1360            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1361            return;
1362        }
1363    }
1364
1365    {
1366        uint64_t scale;
1367
1368        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1369            if (!cpu->gt_cntfrq_hz) {
1370                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1371                           cpu->gt_cntfrq_hz);
1372                return;
1373            }
1374            scale = gt_cntfrq_period_ns(cpu);
1375        } else {
1376            scale = GTIMER_SCALE;
1377        }
1378
1379        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1380                                               arm_gt_ptimer_cb, cpu);
1381        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1382                                               arm_gt_vtimer_cb, cpu);
1383        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1384                                              arm_gt_htimer_cb, cpu);
1385        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1386                                              arm_gt_stimer_cb, cpu);
1387        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1388                                                  arm_gt_hvtimer_cb, cpu);
1389    }
1390#endif
1391
1392    cpu_exec_realizefn(cs, &local_err);
1393    if (local_err != NULL) {
1394        error_propagate(errp, local_err);
1395        return;
1396    }
1397
1398    arm_cpu_finalize_features(cpu, &local_err);
1399    if (local_err != NULL) {
1400        error_propagate(errp, local_err);
1401        return;
1402    }
1403
1404    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1405        cpu->has_vfp != cpu->has_neon) {
1406        /*
1407         * This is an architectural requirement for AArch64; AArch32 is
1408         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1409         */
1410        error_setg(errp,
1411                   "AArch64 CPUs must have both VFP and Neon or neither");
1412        return;
1413    }
1414
1415    if (!cpu->has_vfp) {
1416        uint64_t t;
1417        uint32_t u;
1418
1419        t = cpu->isar.id_aa64isar1;
1420        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1421        cpu->isar.id_aa64isar1 = t;
1422
1423        t = cpu->isar.id_aa64pfr0;
1424        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1425        cpu->isar.id_aa64pfr0 = t;
1426
1427        u = cpu->isar.id_isar6;
1428        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1429        cpu->isar.id_isar6 = u;
1430
1431        u = cpu->isar.mvfr0;
1432        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1433        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1434        u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1435        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1436        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1437        u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1438        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1439        cpu->isar.mvfr0 = u;
1440
1441        u = cpu->isar.mvfr1;
1442        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1443        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1444        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1445        cpu->isar.mvfr1 = u;
1446
1447        u = cpu->isar.mvfr2;
1448        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1449        cpu->isar.mvfr2 = u;
1450    }
1451
1452    if (!cpu->has_neon) {
1453        uint64_t t;
1454        uint32_t u;
1455
1456        unset_feature(env, ARM_FEATURE_NEON);
1457
1458        t = cpu->isar.id_aa64isar0;
1459        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1460        cpu->isar.id_aa64isar0 = t;
1461
1462        t = cpu->isar.id_aa64isar1;
1463        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1464        cpu->isar.id_aa64isar1 = t;
1465
1466        t = cpu->isar.id_aa64pfr0;
1467        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1468        cpu->isar.id_aa64pfr0 = t;
1469
1470        u = cpu->isar.id_isar5;
1471        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1472        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1473        cpu->isar.id_isar5 = u;
1474
1475        u = cpu->isar.id_isar6;
1476        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1477        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1478        cpu->isar.id_isar6 = u;
1479
1480        u = cpu->isar.mvfr1;
1481        u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1482        u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1483        u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1484        u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1485        cpu->isar.mvfr1 = u;
1486
1487        u = cpu->isar.mvfr2;
1488        u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1489        cpu->isar.mvfr2 = u;
1490    }
1491
1492    if (!cpu->has_neon && !cpu->has_vfp) {
1493        uint64_t t;
1494        uint32_t u;
1495
1496        t = cpu->isar.id_aa64isar0;
1497        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1498        cpu->isar.id_aa64isar0 = t;
1499
1500        t = cpu->isar.id_aa64isar1;
1501        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1502        cpu->isar.id_aa64isar1 = t;
1503
1504        u = cpu->isar.mvfr0;
1505        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1506        cpu->isar.mvfr0 = u;
1507
1508        /* Despite the name, this field covers both VFP and Neon */
1509        u = cpu->isar.mvfr1;
1510        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1511        cpu->isar.mvfr1 = u;
1512    }
1513
1514    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1515        uint32_t u;
1516
1517        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1518
1519        u = cpu->isar.id_isar1;
1520        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1521        cpu->isar.id_isar1 = u;
1522
1523        u = cpu->isar.id_isar2;
1524        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1525        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1526        cpu->isar.id_isar2 = u;
1527
1528        u = cpu->isar.id_isar3;
1529        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1530        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1531        cpu->isar.id_isar3 = u;
1532    }
1533
1534    /* Some features automatically imply others: */
1535    if (arm_feature(env, ARM_FEATURE_V8)) {
1536        if (arm_feature(env, ARM_FEATURE_M)) {
1537            set_feature(env, ARM_FEATURE_V7);
1538        } else {
1539            set_feature(env, ARM_FEATURE_V7VE);
1540        }
1541    }
1542
1543    /*
1544     * There exist AArch64 cpus without AArch32 support.  When KVM
1545     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1546     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1547     * As a general principle, we also do not make ID register
1548     * consistency checks anywhere unless using TCG, because only
1549     * for TCG would a consistency-check failure be a QEMU bug.
1550     */
1551    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1552        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1553    }
1554
1555    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1556        /* v7 Virtualization Extensions. In real hardware this implies
1557         * EL2 and also the presence of the Security Extensions.
1558         * For QEMU, for backwards-compatibility we implement some
1559         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1560         * include the various other features that V7VE implies.
1561         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1562         * Security Extensions is ARM_FEATURE_EL3.
1563         */
1564        assert(!tcg_enabled() || no_aa32 ||
1565               cpu_isar_feature(aa32_arm_div, cpu));
1566        set_feature(env, ARM_FEATURE_LPAE);
1567        set_feature(env, ARM_FEATURE_V7);
1568    }
1569    if (arm_feature(env, ARM_FEATURE_V7)) {
1570        set_feature(env, ARM_FEATURE_VAPA);
1571        set_feature(env, ARM_FEATURE_THUMB2);
1572        set_feature(env, ARM_FEATURE_MPIDR);
1573        if (!arm_feature(env, ARM_FEATURE_M)) {
1574            set_feature(env, ARM_FEATURE_V6K);
1575        } else {
1576            set_feature(env, ARM_FEATURE_V6);
1577        }
1578
1579        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1580         * non-EL3 configs. This is needed by some legacy boards.
1581         */
1582        set_feature(env, ARM_FEATURE_VBAR);
1583    }
1584    if (arm_feature(env, ARM_FEATURE_V6K)) {
1585        set_feature(env, ARM_FEATURE_V6);
1586        set_feature(env, ARM_FEATURE_MVFR);
1587    }
1588    if (arm_feature(env, ARM_FEATURE_V6)) {
1589        set_feature(env, ARM_FEATURE_V5);
1590        if (!arm_feature(env, ARM_FEATURE_M)) {
1591            assert(!tcg_enabled() || no_aa32 ||
1592                   cpu_isar_feature(aa32_jazelle, cpu));
1593            set_feature(env, ARM_FEATURE_AUXCR);
1594        }
1595    }
1596    if (arm_feature(env, ARM_FEATURE_V5)) {
1597        set_feature(env, ARM_FEATURE_V4T);
1598    }
1599    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1600        set_feature(env, ARM_FEATURE_V7MP);
1601        set_feature(env, ARM_FEATURE_PXN);
1602    }
1603    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1604        set_feature(env, ARM_FEATURE_CBAR);
1605    }
1606    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1607        !arm_feature(env, ARM_FEATURE_M)) {
1608        set_feature(env, ARM_FEATURE_THUMB_DSP);
1609    }
1610
1611    /*
1612     * We rely on no XScale CPU having VFP so we can use the same bits in the
1613     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1614     */
1615    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1616           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1617           !arm_feature(env, ARM_FEATURE_XSCALE));
1618
1619    if (arm_feature(env, ARM_FEATURE_V7) &&
1620        !arm_feature(env, ARM_FEATURE_M) &&
1621        !arm_feature(env, ARM_FEATURE_PMSA)) {
1622        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1623         * can use 4K pages.
1624         */
1625        pagebits = 12;
1626    } else {
1627        /* For CPUs which might have tiny 1K pages, or which have an
1628         * MPU and might have small region sizes, stick with 1K pages.
1629         */
1630        pagebits = 10;
1631    }
1632    if (!set_preferred_target_page_bits(pagebits)) {
1633        /* This can only ever happen for hotplugging a CPU, or if
1634         * the board code incorrectly creates a CPU which it has
1635         * promised via minimum_page_size that it will not.
1636         */
1637        error_setg(errp, "This CPU requires a smaller page size than the "
1638                   "system is using");
1639        return;
1640    }
1641
1642    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1643     * We don't support setting cluster ID ([16..23]) (known as Aff2
1644     * in later ARM ARM versions), or any of the higher affinity level fields,
1645     * so these bits always RAZ.
1646     */
1647    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1648        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1649                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1650    }
1651
1652    if (cpu->reset_hivecs) {
1653            cpu->reset_sctlr |= (1 << 13);
1654    }
1655
1656    if (cpu->cfgend) {
1657        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1658            cpu->reset_sctlr |= SCTLR_EE;
1659        } else {
1660            cpu->reset_sctlr |= SCTLR_B;
1661        }
1662    }
1663
1664    if (!cpu->has_el3) {
1665        /* If the has_el3 CPU property is disabled then we need to disable the
1666         * feature.
1667         */
1668        unset_feature(env, ARM_FEATURE_EL3);
1669
1670        /* Disable the security extension feature bits in the processor feature
1671         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1672         */
1673        cpu->id_pfr1 &= ~0xf0;
1674        cpu->isar.id_aa64pfr0 &= ~0xf000;
1675    }
1676
1677    if (!cpu->has_el2) {
1678        unset_feature(env, ARM_FEATURE_EL2);
1679    }
1680
1681    if (!cpu->has_pmu) {
1682        unset_feature(env, ARM_FEATURE_PMU);
1683    }
1684    if (arm_feature(env, ARM_FEATURE_PMU)) {
1685        pmu_init(cpu);
1686
1687        if (!kvm_enabled()) {
1688            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1689            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1690        }
1691
1692#ifndef CONFIG_USER_ONLY
1693        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1694                cpu);
1695#endif
1696    } else {
1697        cpu->isar.id_aa64dfr0 =
1698            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1699        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1700        cpu->pmceid0 = 0;
1701        cpu->pmceid1 = 0;
1702    }
1703
1704    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1705        /* Disable the hypervisor feature bits in the processor feature
1706         * registers if we don't have EL2. These are id_pfr1[15:12] and
1707         * id_aa64pfr0_el1[11:8].
1708         */
1709        cpu->isar.id_aa64pfr0 &= ~0xf00;
1710        cpu->id_pfr1 &= ~0xf000;
1711    }
1712
1713    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1714     * to false or by setting pmsav7-dregion to 0.
1715     */
1716    if (!cpu->has_mpu) {
1717        cpu->pmsav7_dregion = 0;
1718    }
1719    if (cpu->pmsav7_dregion == 0) {
1720        cpu->has_mpu = false;
1721    }
1722
1723    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1724        arm_feature(env, ARM_FEATURE_V7)) {
1725        uint32_t nr = cpu->pmsav7_dregion;
1726
1727        if (nr > 0xff) {
1728            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1729            return;
1730        }
1731
1732        if (nr) {
1733            if (arm_feature(env, ARM_FEATURE_V8)) {
1734                /* PMSAv8 */
1735                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1736                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1737                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1738                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1739                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1740                }
1741            } else {
1742                env->pmsav7.drbar = g_new0(uint32_t, nr);
1743                env->pmsav7.drsr = g_new0(uint32_t, nr);
1744                env->pmsav7.dracr = g_new0(uint32_t, nr);
1745            }
1746        }
1747    }
1748
1749    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1750        uint32_t nr = cpu->sau_sregion;
1751
1752        if (nr > 0xff) {
1753            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1754            return;
1755        }
1756
1757        if (nr) {
1758            env->sau.rbar = g_new0(uint32_t, nr);
1759            env->sau.rlar = g_new0(uint32_t, nr);
1760        }
1761    }
1762
1763    if (arm_feature(env, ARM_FEATURE_EL3)) {
1764        set_feature(env, ARM_FEATURE_VBAR);
1765    }
1766
1767    register_cp_regs_for_features(cpu);
1768    arm_cpu_register_gdb_regs_for_features(cpu);
1769
1770    init_cpreg_list(cpu);
1771
1772#ifndef CONFIG_USER_ONLY
1773    MachineState *ms = MACHINE(qdev_get_machine());
1774    unsigned int smp_cpus = ms->smp.cpus;
1775
1776    if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1777        cs->num_ases = 2;
1778
1779        if (!cpu->secure_memory) {
1780            cpu->secure_memory = cs->memory;
1781        }
1782        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1783                               cpu->secure_memory);
1784    } else {
1785        cs->num_ases = 1;
1786    }
1787    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1788
1789    /* No core_count specified, default to smp_cpus. */
1790    if (cpu->core_count == -1) {
1791        cpu->core_count = smp_cpus;
1792    }
1793#endif
1794
1795    qemu_init_vcpu(cs);
1796    cpu_reset(cs);
1797
1798    acc->parent_realize(dev, errp);
1799}
1800
1801static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1802{
1803    ObjectClass *oc;
1804    char *typename;
1805    char **cpuname;
1806    const char *cpunamestr;
1807
1808    cpuname = g_strsplit(cpu_model, ",", 1);
1809    cpunamestr = cpuname[0];
1810#ifdef CONFIG_USER_ONLY
1811    /* For backwards compatibility usermode emulation allows "-cpu any",
1812     * which has the same semantics as "-cpu max".
1813     */
1814    if (!strcmp(cpunamestr, "any")) {
1815        cpunamestr = "max";
1816    }
1817#endif
1818    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1819    oc = object_class_by_name(typename);
1820    g_strfreev(cpuname);
1821    g_free(typename);
1822    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1823        object_class_is_abstract(oc)) {
1824        return NULL;
1825    }
1826    return oc;
1827}
1828
1829/* CPU models. These are not needed for the AArch64 linux-user build. */
1830#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1831
1832static void arm926_initfn(Object *obj)
1833{
1834    ARMCPU *cpu = ARM_CPU(obj);
1835
1836    cpu->dtb_compatible = "arm,arm926";
1837    set_feature(&cpu->env, ARM_FEATURE_V5);
1838    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1839    set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1840    cpu->midr = 0x41069265;
1841    cpu->reset_fpsid = 0x41011090;
1842    cpu->ctr = 0x1dd20d2;
1843    cpu->reset_sctlr = 0x00090078;
1844
1845    /*
1846     * ARMv5 does not have the ID_ISAR registers, but we can still
1847     * set the field to indicate Jazelle support within QEMU.
1848     */
1849    cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1850    /*
1851     * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1852     * support even though ARMv5 doesn't have this register.
1853     */
1854    cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1855    cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1856    cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1857}
1858
1859static void arm946_initfn(Object *obj)
1860{
1861    ARMCPU *cpu = ARM_CPU(obj);
1862
1863    cpu->dtb_compatible = "arm,arm946";
1864    set_feature(&cpu->env, ARM_FEATURE_V5);
1865    set_feature(&cpu->env, ARM_FEATURE_PMSA);
1866    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1867    cpu->midr = 0x41059461;
1868    cpu->ctr = 0x0f004006;
1869    cpu->reset_sctlr = 0x00000078;
1870}
1871
1872static void arm1026_initfn(Object *obj)
1873{
1874    ARMCPU *cpu = ARM_CPU(obj);
1875
1876    cpu->dtb_compatible = "arm,arm1026";
1877    set_feature(&cpu->env, ARM_FEATURE_V5);
1878    set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1879    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1880    set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1881    cpu->midr = 0x4106a262;
1882    cpu->reset_fpsid = 0x410110a0;
1883    cpu->ctr = 0x1dd20d2;
1884    cpu->reset_sctlr = 0x00090078;
1885    cpu->reset_auxcr = 1;
1886
1887    /*
1888     * ARMv5 does not have the ID_ISAR registers, but we can still
1889     * set the field to indicate Jazelle support within QEMU.
1890     */
1891    cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1892    /*
1893     * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1894     * support even though ARMv5 doesn't have this register.
1895     */
1896    cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1897    cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1898    cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1899
1900    {
1901        /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1902        ARMCPRegInfo ifar = {
1903            .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1904            .access = PL1_RW,
1905            .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1906            .resetvalue = 0
1907        };
1908        define_one_arm_cp_reg(cpu, &ifar);
1909    }
1910}
1911
1912static void arm1136_r2_initfn(Object *obj)
1913{
1914    ARMCPU *cpu = ARM_CPU(obj);
1915    /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1916     * older core than plain "arm1136". In particular this does not
1917     * have the v6K features.
1918     * These ID register values are correct for 1136 but may be wrong
1919     * for 1136_r2 (in particular r0p2 does not actually implement most
1920     * of the ID registers).
1921     */
1922
1923    cpu->dtb_compatible = "arm,arm1136";
1924    set_feature(&cpu->env, ARM_FEATURE_V6);
1925    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1926    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1927    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1928    cpu->midr = 0x4107b362;
1929    cpu->reset_fpsid = 0x410120b4;
1930    cpu->isar.mvfr0 = 0x11111111;
1931    cpu->isar.mvfr1 = 0x00000000;
1932    cpu->ctr = 0x1dd20d2;
1933    cpu->reset_sctlr = 0x00050078;
1934    cpu->id_pfr0 = 0x111;
1935    cpu->id_pfr1 = 0x1;
1936    cpu->isar.id_dfr0 = 0x2;
1937    cpu->id_afr0 = 0x3;
1938    cpu->isar.id_mmfr0 = 0x01130003;
1939    cpu->isar.id_mmfr1 = 0x10030302;
1940    cpu->isar.id_mmfr2 = 0x01222110;
1941    cpu->isar.id_isar0 = 0x00140011;
1942    cpu->isar.id_isar1 = 0x12002111;
1943    cpu->isar.id_isar2 = 0x11231111;
1944    cpu->isar.id_isar3 = 0x01102131;
1945    cpu->isar.id_isar4 = 0x141;
1946    cpu->reset_auxcr = 7;
1947}
1948
1949static void arm1136_initfn(Object *obj)
1950{
1951    ARMCPU *cpu = ARM_CPU(obj);
1952
1953    cpu->dtb_compatible = "arm,arm1136";
1954    set_feature(&cpu->env, ARM_FEATURE_V6K);
1955    set_feature(&cpu->env, ARM_FEATURE_V6);
1956    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1957    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1958    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1959    cpu->midr = 0x4117b363;
1960    cpu->reset_fpsid = 0x410120b4;
1961    cpu->isar.mvfr0 = 0x11111111;
1962    cpu->isar.mvfr1 = 0x00000000;
1963    cpu->ctr = 0x1dd20d2;
1964    cpu->reset_sctlr = 0x00050078;
1965    cpu->id_pfr0 = 0x111;
1966    cpu->id_pfr1 = 0x1;
1967    cpu->isar.id_dfr0 = 0x2;
1968    cpu->id_afr0 = 0x3;
1969    cpu->isar.id_mmfr0 = 0x01130003;
1970    cpu->isar.id_mmfr1 = 0x10030302;
1971    cpu->isar.id_mmfr2 = 0x01222110;
1972    cpu->isar.id_isar0 = 0x00140011;
1973    cpu->isar.id_isar1 = 0x12002111;
1974    cpu->isar.id_isar2 = 0x11231111;
1975    cpu->isar.id_isar3 = 0x01102131;
1976    cpu->isar.id_isar4 = 0x141;
1977    cpu->reset_auxcr = 7;
1978}
1979
1980static void arm1176_initfn(Object *obj)
1981{
1982    ARMCPU *cpu = ARM_CPU(obj);
1983
1984    cpu->dtb_compatible = "arm,arm1176";
1985    set_feature(&cpu->env, ARM_FEATURE_V6K);
1986    set_feature(&cpu->env, ARM_FEATURE_VAPA);
1987    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1988    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1989    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1990    set_feature(&cpu->env, ARM_FEATURE_EL3);
1991    cpu->midr = 0x410fb767;
1992    cpu->reset_fpsid = 0x410120b5;
1993    cpu->isar.mvfr0 = 0x11111111;
1994    cpu->isar.mvfr1 = 0x00000000;
1995    cpu->ctr = 0x1dd20d2;
1996    cpu->reset_sctlr = 0x00050078;
1997    cpu->id_pfr0 = 0x111;
1998    cpu->id_pfr1 = 0x11;
1999    cpu->isar.id_dfr0 = 0x33;
2000    cpu->id_afr0 = 0;
2001    cpu->isar.id_mmfr0 = 0x01130003;
2002    cpu->isar.id_mmfr1 = 0x10030302;
2003    cpu->isar.id_mmfr2 = 0x01222100;
2004    cpu->isar.id_isar0 = 0x0140011;
2005    cpu->isar.id_isar1 = 0x12002111;
2006    cpu->isar.id_isar2 = 0x11231121;
2007    cpu->isar.id_isar3 = 0x01102131;
2008    cpu->isar.id_isar4 = 0x01141;
2009    cpu->reset_auxcr = 7;
2010}
2011
2012static void arm11mpcore_initfn(Object *obj)
2013{
2014    ARMCPU *cpu = ARM_CPU(obj);
2015
2016    cpu->dtb_compatible = "arm,arm11mpcore";
2017    set_feature(&cpu->env, ARM_FEATURE_V6K);
2018    set_feature(&cpu->env, ARM_FEATURE_VAPA);
2019    set_feature(&cpu->env, ARM_FEATURE_MPIDR);
2020    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2021    cpu->midr = 0x410fb022;
2022    cpu->reset_fpsid = 0x410120b4;
2023    cpu->isar.mvfr0 = 0x11111111;
2024    cpu->isar.mvfr1 = 0x00000000;
2025    cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
2026    cpu->id_pfr0 = 0x111;
2027    cpu->id_pfr1 = 0x1;
2028    cpu->isar.id_dfr0 = 0;
2029    cpu->id_afr0 = 0x2;
2030    cpu->isar.id_mmfr0 = 0x01100103;
2031    cpu->isar.id_mmfr1 = 0x10020302;
2032    cpu->isar.id_mmfr2 = 0x01222000;
2033    cpu->isar.id_isar0 = 0x00100011;
2034    cpu->isar.id_isar1 = 0x12002111;
2035    cpu->isar.id_isar2 = 0x11221011;
2036    cpu->isar.id_isar3 = 0x01102131;
2037    cpu->isar.id_isar4 = 0x141;
2038    cpu->reset_auxcr = 1;
2039}
2040
2041static void cortex_m0_initfn(Object *obj)
2042{
2043    ARMCPU *cpu = ARM_CPU(obj);
2044    set_feature(&cpu->env, ARM_FEATURE_V6);
2045    set_feature(&cpu->env, ARM_FEATURE_M);
2046
2047    cpu->midr = 0x410cc200;
2048}
2049
2050static void cortex_m3_initfn(Object *obj)
2051{
2052    ARMCPU *cpu = ARM_CPU(obj);
2053    set_feature(&cpu->env, ARM_FEATURE_V7);
2054    set_feature(&cpu->env, ARM_FEATURE_M);
2055    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2056    cpu->midr = 0x410fc231;
2057    cpu->pmsav7_dregion = 8;
2058    cpu->id_pfr0 = 0x00000030;
2059    cpu->id_pfr1 = 0x00000200;
2060    cpu->isar.id_dfr0 = 0x00100000;
2061    cpu->id_afr0 = 0x00000000;
2062    cpu->isar.id_mmfr0 = 0x00000030;
2063    cpu->isar.id_mmfr1 = 0x00000000;
2064    cpu->isar.id_mmfr2 = 0x00000000;
2065    cpu->isar.id_mmfr3 = 0x00000000;
2066    cpu->isar.id_isar0 = 0x01141110;
2067    cpu->isar.id_isar1 = 0x02111000;
2068    cpu->isar.id_isar2 = 0x21112231;
2069    cpu->isar.id_isar3 = 0x01111110;
2070    cpu->isar.id_isar4 = 0x01310102;
2071    cpu->isar.id_isar5 = 0x00000000;
2072    cpu->isar.id_isar6 = 0x00000000;
2073}
2074
2075static void cortex_m4_initfn(Object *obj)
2076{
2077    ARMCPU *cpu = ARM_CPU(obj);
2078
2079    set_feature(&cpu->env, ARM_FEATURE_V7);
2080    set_feature(&cpu->env, ARM_FEATURE_M);
2081    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2082    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2083    cpu->midr = 0x410fc240; /* r0p0 */
2084    cpu->pmsav7_dregion = 8;
2085    cpu->isar.mvfr0 = 0x10110021;
2086    cpu->isar.mvfr1 = 0x11000011;
2087    cpu->isar.mvfr2 = 0x00000000;
2088    cpu->id_pfr0 = 0x00000030;
2089    cpu->id_pfr1 = 0x00000200;
2090    cpu->isar.id_dfr0 = 0x00100000;
2091    cpu->id_afr0 = 0x00000000;
2092    cpu->isar.id_mmfr0 = 0x00000030;
2093    cpu->isar.id_mmfr1 = 0x00000000;
2094    cpu->isar.id_mmfr2 = 0x00000000;
2095    cpu->isar.id_mmfr3 = 0x00000000;
2096    cpu->isar.id_isar0 = 0x01141110;
2097    cpu->isar.id_isar1 = 0x02111000;
2098    cpu->isar.id_isar2 = 0x21112231;
2099    cpu->isar.id_isar3 = 0x01111110;
2100    cpu->isar.id_isar4 = 0x01310102;
2101    cpu->isar.id_isar5 = 0x00000000;
2102    cpu->isar.id_isar6 = 0x00000000;
2103}
2104
2105static void cortex_m7_initfn(Object *obj)
2106{
2107    ARMCPU *cpu = ARM_CPU(obj);
2108
2109    set_feature(&cpu->env, ARM_FEATURE_V7);
2110    set_feature(&cpu->env, ARM_FEATURE_M);
2111    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2112    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2113    cpu->midr = 0x411fc272; /* r1p2 */
2114    cpu->pmsav7_dregion = 8;
2115    cpu->isar.mvfr0 = 0x10110221;
2116    cpu->isar.mvfr1 = 0x12000011;
2117    cpu->isar.mvfr2 = 0x00000040;
2118    cpu->id_pfr0 = 0x00000030;
2119    cpu->id_pfr1 = 0x00000200;
2120    cpu->isar.id_dfr0 = 0x00100000;
2121    cpu->id_afr0 = 0x00000000;
2122    cpu->isar.id_mmfr0 = 0x00100030;
2123    cpu->isar.id_mmfr1 = 0x00000000;
2124    cpu->isar.id_mmfr2 = 0x01000000;
2125    cpu->isar.id_mmfr3 = 0x00000000;
2126    cpu->isar.id_isar0 = 0x01101110;
2127    cpu->isar.id_isar1 = 0x02112000;
2128    cpu->isar.id_isar2 = 0x20232231;
2129    cpu->isar.id_isar3 = 0x01111131;
2130    cpu->isar.id_isar4 = 0x01310132;
2131    cpu->isar.id_isar5 = 0x00000000;
2132    cpu->isar.id_isar6 = 0x00000000;
2133}
2134
2135static void cortex_m33_initfn(Object *obj)
2136{
2137    ARMCPU *cpu = ARM_CPU(obj);
2138
2139    set_feature(&cpu->env, ARM_FEATURE_V8);
2140    set_feature(&cpu->env, ARM_FEATURE_M);
2141    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2142    set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2143    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2144    cpu->midr = 0x410fd213; /* r0p3 */
2145    cpu->pmsav7_dregion = 16;
2146    cpu->sau_sregion = 8;
2147    cpu->isar.mvfr0 = 0x10110021;
2148    cpu->isar.mvfr1 = 0x11000011;
2149    cpu->isar.mvfr2 = 0x00000040;
2150    cpu->id_pfr0 = 0x00000030;
2151    cpu->id_pfr1 = 0x00000210;
2152    cpu->isar.id_dfr0 = 0x00200000;
2153    cpu->id_afr0 = 0x00000000;
2154    cpu->isar.id_mmfr0 = 0x00101F40;
2155    cpu->isar.id_mmfr1 = 0x00000000;
2156    cpu->isar.id_mmfr2 = 0x01000000;
2157    cpu->isar.id_mmfr3 = 0x00000000;
2158    cpu->isar.id_isar0 = 0x01101110;
2159    cpu->isar.id_isar1 = 0x02212000;
2160    cpu->isar.id_isar2 = 0x20232232;
2161    cpu->isar.id_isar3 = 0x01111131;
2162    cpu->isar.id_isar4 = 0x01310132;
2163    cpu->isar.id_isar5 = 0x00000000;
2164    cpu->isar.id_isar6 = 0x00000000;
2165    cpu->clidr = 0x00000000;
2166    cpu->ctr = 0x8000c000;
2167}
2168
2169static void arm_v7m_class_init(ObjectClass *oc, void *data)
2170{
2171    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2172    CPUClass *cc = CPU_CLASS(oc);
2173
2174    acc->info = data;
2175#ifndef CONFIG_USER_ONLY
2176    cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2177#endif
2178
2179    cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2180}
2181
2182static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2183    /* Dummy the TCM region regs for the moment */
2184    { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2185      .access = PL1_RW, .type = ARM_CP_CONST },
2186    { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2187      .access = PL1_RW, .type = ARM_CP_CONST },
2188    { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2189      .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2190    REGINFO_SENTINEL
2191};
2192
2193static void cortex_r5_initfn(Object *obj)
2194{
2195    ARMCPU *cpu = ARM_CPU(obj);
2196
2197    set_feature(&cpu->env, ARM_FEATURE_V7);
2198    set_feature(&cpu->env, ARM_FEATURE_V7MP);
2199    set_feature(&cpu->env, ARM_FEATURE_PMSA);
2200    set_feature(&cpu->env, ARM_FEATURE_PMU);
2201    cpu->midr = 0x411fc153; /* r1p3 */
2202    cpu->id_pfr0 = 0x0131;
2203    cpu->id_pfr1 = 0x001;
2204    cpu->isar.id_dfr0 = 0x010400;
2205    cpu->id_afr0 = 0x0;
2206    cpu->isar.id_mmfr0 = 0x0210030;
2207    cpu->isar.id_mmfr1 = 0x00000000;
2208    cpu->isar.id_mmfr2 = 0x01200000;
2209    cpu->isar.id_mmfr3 = 0x0211;
2210    cpu->isar.id_isar0 = 0x02101111;
2211    cpu->isar.id_isar1 = 0x13112111;
2212    cpu->isar.id_isar2 = 0x21232141;
2213    cpu->isar.id_isar3 = 0x01112131;
2214    cpu->isar.id_isar4 = 0x0010142;
2215    cpu->isar.id_isar5 = 0x0;
2216    cpu->isar.id_isar6 = 0x0;
2217    cpu->mp_is_up = true;
2218    cpu->pmsav7_dregion = 16;
2219    define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2220}
2221
2222static void cortex_r5f_initfn(Object *obj)
2223{
2224    ARMCPU *cpu = ARM_CPU(obj);
2225
2226    cortex_r5_initfn(obj);
2227    cpu->isar.mvfr0 = 0x10110221;
2228    cpu->isar.mvfr1 = 0x00000011;
2229}
2230
2231static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2232    { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2233      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2234    { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2235      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2236    REGINFO_SENTINEL
2237};
2238
2239static void cortex_a8_initfn(Object *obj)
2240{
2241    ARMCPU *cpu = ARM_CPU(obj);
2242
2243    cpu->dtb_compatible = "arm,cortex-a8";
2244    set_feature(&cpu->env, ARM_FEATURE_V7);
2245    set_feature(&cpu->env, ARM_FEATURE_NEON);
2246    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2247    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2248    set_feature(&cpu->env, ARM_FEATURE_EL3);
2249    cpu->midr = 0x410fc080;
2250    cpu->reset_fpsid = 0x410330c0;
2251    cpu->isar.mvfr0 = 0x11110222;
2252    cpu->isar.mvfr1 = 0x00011111;
2253    cpu->ctr = 0x82048004;
2254    cpu->reset_sctlr = 0x00c50078;
2255    cpu->id_pfr0 = 0x1031;
2256    cpu->id_pfr1 = 0x11;
2257    cpu->isar.id_dfr0 = 0x400;
2258    cpu->id_afr0 = 0;
2259    cpu->isar.id_mmfr0 = 0x31100003;
2260    cpu->isar.id_mmfr1 = 0x20000000;
2261    cpu->isar.id_mmfr2 = 0x01202000;
2262    cpu->isar.id_mmfr3 = 0x11;
2263    cpu->isar.id_isar0 = 0x00101111;
2264    cpu->isar.id_isar1 = 0x12112111;
2265    cpu->isar.id_isar2 = 0x21232031;
2266    cpu->isar.id_isar3 = 0x11112131;
2267    cpu->isar.id_isar4 = 0x00111142;
2268    cpu->isar.dbgdidr = 0x15141000;
2269    cpu->clidr = (1 << 27) | (2 << 24) | 3;
2270    cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2271    cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2272    cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2273    cpu->reset_auxcr = 2;
2274    define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2275}
2276
2277static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2278    /* power_control should be set to maximum latency. Again,
2279     * default to 0 and set by private hook
2280     */
2281    { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2282      .access = PL1_RW, .resetvalue = 0,
2283      .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2284    { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2285      .access = PL1_RW, .resetvalue = 0,
2286      .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2287    { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2288      .access = PL1_RW, .resetvalue = 0,
2289      .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2290    { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2291      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2292    /* TLB lockdown control */
2293    { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2294      .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2295    { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2296      .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2297    { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2298      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2299    { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2300      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2301    { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2302      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2303    REGINFO_SENTINEL
2304};
2305
2306static void cortex_a9_initfn(Object *obj)
2307{
2308    ARMCPU *cpu = ARM_CPU(obj);
2309
2310    cpu->dtb_compatible = "arm,cortex-a9";
2311    set_feature(&cpu->env, ARM_FEATURE_V7);
2312    set_feature(&cpu->env, ARM_FEATURE_NEON);
2313    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2314    set_feature(&cpu->env, ARM_FEATURE_EL3);
2315    /* Note that A9 supports the MP extensions even for
2316     * A9UP and single-core A9MP (which are both different
2317     * and valid configurations; we don't model A9UP).
2318     */
2319    set_feature(&cpu->env, ARM_FEATURE_V7MP);
2320    set_feature(&cpu->env, ARM_FEATURE_CBAR);
2321    cpu->midr = 0x410fc090;
2322    cpu->reset_fpsid = 0x41033090;
2323    cpu->isar.mvfr0 = 0x11110222;
2324    cpu->isar.mvfr1 = 0x01111111;
2325    cpu->ctr = 0x80038003;
2326    cpu->reset_sctlr = 0x00c50078;
2327    cpu->id_pfr0 = 0x1031;
2328    cpu->id_pfr1 = 0x11;
2329    cpu->isar.id_dfr0 = 0x000;
2330    cpu->id_afr0 = 0;
2331    cpu->isar.id_mmfr0 = 0x00100103;
2332    cpu->isar.id_mmfr1 = 0x20000000;
2333    cpu->isar.id_mmfr2 = 0x01230000;
2334    cpu->isar.id_mmfr3 = 0x00002111;
2335    cpu->isar.id_isar0 = 0x00101111;
2336    cpu->isar.id_isar1 = 0x13112111;
2337    cpu->isar.id_isar2 = 0x21232041;
2338    cpu->isar.id_isar3 = 0x11112131;
2339    cpu->isar.id_isar4 = 0x00111142;
2340    cpu->isar.dbgdidr = 0x35141000;
2341    cpu->clidr = (1 << 27) | (1 << 24) | 3;
2342    cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2343    cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2344    define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2345}
2346
2347#ifndef CONFIG_USER_ONLY
2348static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2349{
2350    MachineState *ms = MACHINE(qdev_get_machine());
2351
2352    /* Linux wants the number of processors from here.
2353     * Might as well set the interrupt-controller bit too.
2354     */
2355    return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2356}
2357#endif
2358
2359static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2360#ifndef CONFIG_USER_ONLY
2361    { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2362      .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2363      .writefn = arm_cp_write_ignore, },
2364#endif
2365    { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2366      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2367    REGINFO_SENTINEL
2368};
2369
2370static void cortex_a7_initfn(Object *obj)
2371{
2372    ARMCPU *cpu = ARM_CPU(obj);
2373
2374    cpu->dtb_compatible = "arm,cortex-a7";
2375    set_feature(&cpu->env, ARM_FEATURE_V7VE);
2376    set_feature(&cpu->env, ARM_FEATURE_NEON);
2377    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2378    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2379    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2380    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2381    set_feature(&cpu->env, ARM_FEATURE_EL2);
2382    set_feature(&cpu->env, ARM_FEATURE_EL3);
2383    set_feature(&cpu->env, ARM_FEATURE_PMU);
2384    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2385    cpu->midr = 0x410fc075;
2386    cpu->reset_fpsid = 0x41023075;
2387    cpu->isar.mvfr0 = 0x10110222;
2388    cpu->isar.mvfr1 = 0x11111111;
2389    cpu->ctr = 0x84448003;
2390    cpu->reset_sctlr = 0x00c50078;
2391    cpu->id_pfr0 = 0x00001131;
2392    cpu->id_pfr1 = 0x00011011;
2393    cpu->isar.id_dfr0 = 0x02010555;
2394    cpu->id_afr0 = 0x00000000;
2395    cpu->isar.id_mmfr0 = 0x10101105;
2396    cpu->isar.id_mmfr1 = 0x40000000;
2397    cpu->isar.id_mmfr2 = 0x01240000;
2398    cpu->isar.id_mmfr3 = 0x02102211;
2399    /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2400     * table 4-41 gives 0x02101110, which includes the arm div insns.
2401     */
2402    cpu->isar.id_isar0 = 0x02101110;
2403    cpu->isar.id_isar1 = 0x13112111;
2404    cpu->isar.id_isar2 = 0x21232041;
2405    cpu->isar.id_isar3 = 0x11112131;
2406    cpu->isar.id_isar4 = 0x10011142;
2407    cpu->isar.dbgdidr = 0x3515f005;
2408    cpu->clidr = 0x0a200023;
2409    cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2410    cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2411    cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2412    define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2413}
2414
2415static void cortex_a15_initfn(Object *obj)
2416{
2417    ARMCPU *cpu = ARM_CPU(obj);
2418
2419    cpu->dtb_compatible = "arm,cortex-a15";
2420    set_feature(&cpu->env, ARM_FEATURE_V7VE);
2421    set_feature(&cpu->env, ARM_FEATURE_NEON);
2422    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2423    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2424    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2425    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2426    set_feature(&cpu->env, ARM_FEATURE_EL2);
2427    set_feature(&cpu->env, ARM_FEATURE_EL3);
2428    set_feature(&cpu->env, ARM_FEATURE_PMU);
2429    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2430    cpu->midr = 0x412fc0f1;
2431    cpu->reset_fpsid = 0x410430f0;
2432    cpu->isar.mvfr0 = 0x10110222;
2433    cpu->isar.mvfr1 = 0x11111111;
2434    cpu->ctr = 0x8444c004;
2435    cpu->reset_sctlr = 0x00c50078;
2436    cpu->id_pfr0 = 0x00001131;
2437    cpu->id_pfr1 = 0x00011011;
2438    cpu->isar.id_dfr0 = 0x02010555;
2439    cpu->id_afr0 = 0x00000000;
2440    cpu->isar.id_mmfr0 = 0x10201105;
2441    cpu->isar.id_mmfr1 = 0x20000000;
2442    cpu->isar.id_mmfr2 = 0x01240000;
2443    cpu->isar.id_mmfr3 = 0x02102211;
2444    cpu->isar.id_isar0 = 0x02101110;
2445    cpu->isar.id_isar1 = 0x13112111;
2446    cpu->isar.id_isar2 = 0x21232041;
2447    cpu->isar.id_isar3 = 0x11112131;
2448    cpu->isar.id_isar4 = 0x10011142;
2449    cpu->isar.dbgdidr = 0x3515f021;
2450    cpu->clidr = 0x0a200023;
2451    cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2452    cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2453    cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2454    define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2455}
2456
2457static void ti925t_initfn(Object *obj)
2458{
2459    ARMCPU *cpu = ARM_CPU(obj);
2460    set_feature(&cpu->env, ARM_FEATURE_V4T);
2461    set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2462    cpu->midr = ARM_CPUID_TI925T;
2463    cpu->ctr = 0x5109149;
2464    cpu->reset_sctlr = 0x00000070;
2465}
2466
2467static void sa1100_initfn(Object *obj)
2468{
2469    ARMCPU *cpu = ARM_CPU(obj);
2470
2471    cpu->dtb_compatible = "intel,sa1100";
2472    set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2473    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2474    cpu->midr = 0x4401A11B;
2475    cpu->reset_sctlr = 0x00000070;
2476}
2477
2478static void sa1110_initfn(Object *obj)
2479{
2480    ARMCPU *cpu = ARM_CPU(obj);
2481    set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2482    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2483    cpu->midr = 0x6901B119;
2484    cpu->reset_sctlr = 0x00000070;
2485}
2486
2487static void pxa250_initfn(Object *obj)
2488{
2489    ARMCPU *cpu = ARM_CPU(obj);
2490
2491    cpu->dtb_compatible = "marvell,xscale";
2492    set_feature(&cpu->env, ARM_FEATURE_V5);
2493    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2494    cpu->midr = 0x69052100;
2495    cpu->ctr = 0xd172172;
2496    cpu->reset_sctlr = 0x00000078;
2497}
2498
2499static void pxa255_initfn(Object *obj)
2500{
2501    ARMCPU *cpu = ARM_CPU(obj);
2502
2503    cpu->dtb_compatible = "marvell,xscale";
2504    set_feature(&cpu->env, ARM_FEATURE_V5);
2505    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2506    cpu->midr = 0x69052d00;
2507    cpu->ctr = 0xd172172;
2508    cpu->reset_sctlr = 0x00000078;
2509}
2510
2511static void pxa260_initfn(Object *obj)
2512{
2513    ARMCPU *cpu = ARM_CPU(obj);
2514
2515    cpu->dtb_compatible = "marvell,xscale";
2516    set_feature(&cpu->env, ARM_FEATURE_V5);
2517    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2518    cpu->midr = 0x69052903;
2519    cpu->ctr = 0xd172172;
2520    cpu->reset_sctlr = 0x00000078;
2521}
2522
2523static void pxa261_initfn(Object *obj)
2524{
2525    ARMCPU *cpu = ARM_CPU(obj);
2526
2527    cpu->dtb_compatible = "marvell,xscale";
2528    set_feature(&cpu->env, ARM_FEATURE_V5);
2529    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2530    cpu->midr = 0x69052d05;
2531    cpu->ctr = 0xd172172;
2532    cpu->reset_sctlr = 0x00000078;
2533}
2534
2535static void pxa262_initfn(Object *obj)
2536{
2537    ARMCPU *cpu = ARM_CPU(obj);
2538
2539    cpu->dtb_compatible = "marvell,xscale";
2540    set_feature(&cpu->env, ARM_FEATURE_V5);
2541    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2542    cpu->midr = 0x69052d06;
2543    cpu->ctr = 0xd172172;
2544    cpu->reset_sctlr = 0x00000078;
2545}
2546
2547static void pxa270a0_initfn(Object *obj)
2548{
2549    ARMCPU *cpu = ARM_CPU(obj);
2550
2551    cpu->dtb_compatible = "marvell,xscale";
2552    set_feature(&cpu->env, ARM_FEATURE_V5);
2553    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2554    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2555    cpu->midr = 0x69054110;
2556    cpu->ctr = 0xd172172;
2557    cpu->reset_sctlr = 0x00000078;
2558}
2559
2560static void pxa270a1_initfn(Object *obj)
2561{
2562    ARMCPU *cpu = ARM_CPU(obj);
2563
2564    cpu->dtb_compatible = "marvell,xscale";
2565    set_feature(&cpu->env, ARM_FEATURE_V5);
2566    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2567    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2568    cpu->midr = 0x69054111;
2569    cpu->ctr = 0xd172172;
2570    cpu->reset_sctlr = 0x00000078;
2571}
2572
2573static void pxa270b0_initfn(Object *obj)
2574{
2575    ARMCPU *cpu = ARM_CPU(obj);
2576
2577    cpu->dtb_compatible = "marvell,xscale";
2578    set_feature(&cpu->env, ARM_FEATURE_V5);
2579    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2580    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2581    cpu->midr = 0x69054112;
2582    cpu->ctr = 0xd172172;
2583    cpu->reset_sctlr = 0x00000078;
2584}
2585
2586static void pxa270b1_initfn(Object *obj)
2587{
2588    ARMCPU *cpu = ARM_CPU(obj);
2589
2590    cpu->dtb_compatible = "marvell,xscale";
2591    set_feature(&cpu->env, ARM_FEATURE_V5);
2592    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2593    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2594    cpu->midr = 0x69054113;
2595    cpu->ctr = 0xd172172;
2596    cpu->reset_sctlr = 0x00000078;
2597}
2598
2599static void pxa270c0_initfn(Object *obj)
2600{
2601    ARMCPU *cpu = ARM_CPU(obj);
2602
2603    cpu->dtb_compatible = "marvell,xscale";
2604    set_feature(&cpu->env, ARM_FEATURE_V5);
2605    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2606    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2607    cpu->midr = 0x69054114;
2608    cpu->ctr = 0xd172172;
2609    cpu->reset_sctlr = 0x00000078;
2610}
2611
2612static void pxa270c5_initfn(Object *obj)
2613{
2614    ARMCPU *cpu = ARM_CPU(obj);
2615
2616    cpu->dtb_compatible = "marvell,xscale";
2617    set_feature(&cpu->env, ARM_FEATURE_V5);
2618    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2619    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2620    cpu->midr = 0x69054117;
2621    cpu->ctr = 0xd172172;
2622    cpu->reset_sctlr = 0x00000078;
2623}
2624
2625#ifndef TARGET_AARCH64
2626/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2627 * otherwise, a CPU with as many features enabled as our emulation supports.
2628 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2629 * this only needs to handle 32 bits.
2630 */
2631static void arm_max_initfn(Object *obj)
2632{
2633    ARMCPU *cpu = ARM_CPU(obj);
2634
2635    if (kvm_enabled()) {
2636        kvm_arm_set_cpu_features_from_host(cpu);
2637        kvm_arm_add_vcpu_properties(obj);
2638    } else {
2639        cortex_a15_initfn(obj);
2640
2641        /* old-style VFP short-vector support */
2642        cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2643
2644#ifdef CONFIG_USER_ONLY
2645        /* We don't set these in system emulation mode for the moment,
2646         * since we don't correctly set (all of) the ID registers to
2647         * advertise them.
2648         */
2649        set_feature(&cpu->env, ARM_FEATURE_V8);
2650        {
2651            uint32_t t;
2652
2653            t = cpu->isar.id_isar5;
2654            t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2655            t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2656            t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2657            t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2658            t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2659            t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2660            cpu->isar.id_isar5 = t;
2661
2662            t = cpu->isar.id_isar6;
2663            t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2664            t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2665            t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2666            t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2667            t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2668            cpu->isar.id_isar6 = t;
2669
2670            t = cpu->isar.mvfr1;
2671            t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2672            cpu->isar.mvfr1 = t;
2673
2674            t = cpu->isar.mvfr2;
2675            t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2676            t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2677            cpu->isar.mvfr2 = t;
2678
2679            t = cpu->isar.id_mmfr3;
2680            t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2681            cpu->isar.id_mmfr3 = t;
2682
2683            t = cpu->isar.id_mmfr4;
2684            t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2685            t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2686            t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2687            cpu->isar.id_mmfr4 = t;
2688        }
2689#endif
2690    }
2691}
2692#endif
2693
2694#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2695
2696struct ARMCPUInfo {
2697    const char *name;
2698    void (*initfn)(Object *obj);
2699    void (*class_init)(ObjectClass *oc, void *data);
2700};
2701
2702static const ARMCPUInfo arm_cpus[] = {
2703#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2704    { .name = "arm926",      .initfn = arm926_initfn },
2705    { .name = "arm946",      .initfn = arm946_initfn },
2706    { .name = "arm1026",     .initfn = arm1026_initfn },
2707    /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2708     * older core than plain "arm1136". In particular this does not
2709     * have the v6K features.
2710     */
2711    { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2712    { .name = "arm1136",     .initfn = arm1136_initfn },
2713    { .name = "arm1176",     .initfn = arm1176_initfn },
2714    { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2715    { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2716                             .class_init = arm_v7m_class_init },
2717    { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2718                             .class_init = arm_v7m_class_init },
2719    { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2720                             .class_init = arm_v7m_class_init },
2721    { .name = "cortex-m7",   .initfn = cortex_m7_initfn,
2722                             .class_init = arm_v7m_class_init },
2723    { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2724                             .class_init = arm_v7m_class_init },
2725    { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2726    { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2727    { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2728    { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2729    { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2730    { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2731    { .name = "ti925t",      .initfn = ti925t_initfn },
2732    { .name = "sa1100",      .initfn = sa1100_initfn },
2733    { .name = "sa1110",      .initfn = sa1110_initfn },
2734    { .name = "pxa250",      .initfn = pxa250_initfn },
2735    { .name = "pxa255",      .initfn = pxa255_initfn },
2736    { .name = "pxa260",      .initfn = pxa260_initfn },
2737    { .name = "pxa261",      .initfn = pxa261_initfn },
2738    { .name = "pxa262",      .initfn = pxa262_initfn },
2739    /* "pxa270" is an alias for "pxa270-a0" */
2740    { .name = "pxa270",      .initfn = pxa270a0_initfn },
2741    { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2742    { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2743    { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2744    { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2745    { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2746    { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2747#ifndef TARGET_AARCH64
2748    { .name = "max",         .initfn = arm_max_initfn },
2749#endif
2750#ifdef CONFIG_USER_ONLY
2751    { .name = "any",         .initfn = arm_max_initfn },
2752#endif
2753#endif
2754    { .name = NULL }
2755};
2756
2757static Property arm_cpu_properties[] = {
2758    DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2759    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2760    DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2761    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2762                        mp_affinity, ARM64_AFFINITY_INVALID),
2763    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2764    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2765    DEFINE_PROP_END_OF_LIST()
2766};
2767
2768static gchar *arm_gdb_arch_name(CPUState *cs)
2769{
2770    ARMCPU *cpu = ARM_CPU(cs);
2771    CPUARMState *env = &cpu->env;
2772
2773    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2774        return g_strdup("iwmmxt");
2775    }
2776    return g_strdup("arm");
2777}
2778
2779static void arm_cpu_class_init(ObjectClass *oc, void *data)
2780{
2781    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2782    CPUClass *cc = CPU_CLASS(acc);
2783    DeviceClass *dc = DEVICE_CLASS(oc);
2784
2785    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2786                                    &acc->parent_realize);
2787
2788    device_class_set_props(dc, arm_cpu_properties);
2789    device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2790
2791    cc->class_by_name = arm_cpu_class_by_name;
2792    cc->has_work = arm_cpu_has_work;
2793    cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2794    cc->dump_state = arm_cpu_dump_state;
2795    cc->set_pc = arm_cpu_set_pc;
2796    cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2797    cc->gdb_read_register = arm_cpu_gdb_read_register;
2798    cc->gdb_write_register = arm_cpu_gdb_write_register;
2799#ifndef CONFIG_USER_ONLY
2800    cc->do_interrupt = arm_cpu_do_interrupt;
2801    cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2802    cc->asidx_from_attrs = arm_asidx_from_attrs;
2803    cc->vmsd = &vmstate_arm_cpu;
2804    cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2805    cc->write_elf64_note = arm_cpu_write_elf64_note;
2806    cc->write_elf32_note = arm_cpu_write_elf32_note;
2807#endif
2808    cc->gdb_num_core_regs = 26;
2809    cc->gdb_core_xml_file = "arm-core.xml";
2810    cc->gdb_arch_name = arm_gdb_arch_name;
2811    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2812    cc->gdb_stop_before_watchpoint = true;
2813    cc->disas_set_info = arm_disas_set_info;
2814#ifdef CONFIG_TCG
2815    cc->tcg_initialize = arm_translate_init;
2816    cc->tlb_fill = arm_cpu_tlb_fill;
2817    cc->debug_excp_handler = arm_debug_excp_handler;
2818    cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2819#if !defined(CONFIG_USER_ONLY)
2820    cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2821    cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2822    cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2823#endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2824#endif
2825}
2826
2827#ifdef CONFIG_KVM
2828static void arm_host_initfn(Object *obj)
2829{
2830    ARMCPU *cpu = ARM_CPU(obj);
2831
2832    kvm_arm_set_cpu_features_from_host(cpu);
2833    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2834        aarch64_add_sve_properties(obj);
2835    }
2836    kvm_arm_add_vcpu_properties(obj);
2837    arm_cpu_post_init(obj);
2838}
2839
2840static const TypeInfo host_arm_cpu_type_info = {
2841    .name = TYPE_ARM_HOST_CPU,
2842#ifdef TARGET_AARCH64
2843    .parent = TYPE_AARCH64_CPU,
2844#else
2845    .parent = TYPE_ARM_CPU,
2846#endif
2847    .instance_init = arm_host_initfn,
2848};
2849
2850#endif
2851
2852static void arm_cpu_instance_init(Object *obj)
2853{
2854    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2855
2856    acc->info->initfn(obj);
2857    arm_cpu_post_init(obj);
2858}
2859
2860static void cpu_register_class_init(ObjectClass *oc, void *data)
2861{
2862    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2863
2864    acc->info = data;
2865}
2866
2867static void cpu_register(const ARMCPUInfo *info)
2868{
2869    TypeInfo type_info = {
2870        .parent = TYPE_ARM_CPU,
2871        .instance_size = sizeof(ARMCPU),
2872        .instance_init = arm_cpu_instance_init,
2873        .class_size = sizeof(ARMCPUClass),
2874        .class_init = info->class_init ?: cpu_register_class_init,
2875        .class_data = (void *)info,
2876    };
2877
2878    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2879    type_register(&type_info);
2880    g_free((void *)type_info.name);
2881}
2882
2883static const TypeInfo arm_cpu_type_info = {
2884    .name = TYPE_ARM_CPU,
2885    .parent = TYPE_CPU,
2886    .instance_size = sizeof(ARMCPU),
2887    .instance_init = arm_cpu_initfn,
2888    .instance_finalize = arm_cpu_finalizefn,
2889    .abstract = true,
2890    .class_size = sizeof(ARMCPUClass),
2891    .class_init = arm_cpu_class_init,
2892};
2893
2894static const TypeInfo idau_interface_type_info = {
2895    .name = TYPE_IDAU_INTERFACE,
2896    .parent = TYPE_INTERFACE,
2897    .class_size = sizeof(IDAUInterfaceClass),
2898};
2899
2900static void arm_cpu_register_types(void)
2901{
2902    const ARMCPUInfo *info = arm_cpus;
2903
2904    type_register_static(&arm_cpu_type_info);
2905    type_register_static(&idau_interface_type_info);
2906
2907    while (info->name) {
2908        cpu_register(info);
2909        info++;
2910    }
2911
2912#ifdef CONFIG_KVM
2913    type_register_static(&host_arm_cpu_type_info);
2914#endif
2915}
2916
2917type_init(arm_cpu_register_types)
2918