qemu/hw/arm/mps2-tz.c
<<
>>
Prefs
   1/*
   2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
   3 *
   4 * Copyright (c) 2017 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License version 2 or
   9 *  (at your option) any later version.
  10 */
  11
  12/* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
  13 * FPGA but is otherwise the same as the 2). Since the CPU itself
  14 * and most of the devices are in the FPGA, the details of the board
  15 * as seen by the guest depend significantly on the FPGA image.
  16 * This source file covers the following FPGA images, for TrustZone cores:
  17 *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
  18 *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
  19 *
  20 * Links to the TRM for the board itself and to the various Application
  21 * Notes which document the FPGA images can be found here:
  22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
  23 *
  24 * Board TRM:
  25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
  26 * Application Note AN505:
  27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
  28 * Application Note AN521:
  29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
  30 *
  31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
  32 * (ARM ECM0601256) for the details of some of the device layout:
  33 *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
  34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
  35 * most of the device layout:
  36 *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
  37 *
  38 */
  39
  40#include "qemu/osdep.h"
  41#include "qemu/units.h"
  42#include "qemu/cutils.h"
  43#include "qapi/error.h"
  44#include "qemu/error-report.h"
  45#include "hw/arm/boot.h"
  46#include "hw/arm/armv7m.h"
  47#include "hw/or-irq.h"
  48#include "hw/boards.h"
  49#include "exec/address-spaces.h"
  50#include "sysemu/sysemu.h"
  51#include "hw/misc/unimp.h"
  52#include "hw/char/cmsdk-apb-uart.h"
  53#include "hw/timer/cmsdk-apb-timer.h"
  54#include "hw/misc/mps2-scc.h"
  55#include "hw/misc/mps2-fpgaio.h"
  56#include "hw/misc/tz-mpc.h"
  57#include "hw/misc/tz-msc.h"
  58#include "hw/arm/armsse.h"
  59#include "hw/dma/pl080.h"
  60#include "hw/ssi/pl022.h"
  61#include "hw/net/lan9118.h"
  62#include "net/net.h"
  63#include "hw/core/split-irq.h"
  64
  65#define MPS2TZ_NUMIRQ 92
  66
  67typedef enum MPS2TZFPGAType {
  68    FPGA_AN505,
  69    FPGA_AN521,
  70} MPS2TZFPGAType;
  71
  72typedef struct {
  73    MachineClass parent;
  74    MPS2TZFPGAType fpga_type;
  75    uint32_t scc_id;
  76    const char *armsse_type;
  77} MPS2TZMachineClass;
  78
  79typedef struct {
  80    MachineState parent;
  81
  82    ARMSSE iotkit;
  83    MemoryRegion ssram[3];
  84    MemoryRegion ssram1_m;
  85    MPS2SCC scc;
  86    MPS2FPGAIO fpgaio;
  87    TZPPC ppc[5];
  88    TZMPC ssram_mpc[3];
  89    PL022State spi[5];
  90    UnimplementedDeviceState i2c[4];
  91    UnimplementedDeviceState i2s_audio;
  92    UnimplementedDeviceState gpio[4];
  93    UnimplementedDeviceState gfx;
  94    PL080State dma[4];
  95    TZMSC msc[4];
  96    CMSDKAPBUART uart[5];
  97    SplitIRQ sec_resp_splitter;
  98    qemu_or_irq uart_irq_orgate;
  99    DeviceState *lan9118;
 100    SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
 101} MPS2TZMachineState;
 102
 103#define TYPE_MPS2TZ_MACHINE "mps2tz"
 104#define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
 105#define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
 106
 107#define MPS2TZ_MACHINE(obj) \
 108    OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
 109#define MPS2TZ_MACHINE_GET_CLASS(obj) \
 110    OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
 111#define MPS2TZ_MACHINE_CLASS(klass) \
 112    OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
 113
 114/* Main SYSCLK frequency in Hz */
 115#define SYSCLK_FRQ 20000000
 116
 117/* Create an alias of an entire original MemoryRegion @orig
 118 * located at @base in the memory map.
 119 */
 120static void make_ram_alias(MemoryRegion *mr, const char *name,
 121                           MemoryRegion *orig, hwaddr base)
 122{
 123    memory_region_init_alias(mr, NULL, name, orig, 0,
 124                             memory_region_size(orig));
 125    memory_region_add_subregion(get_system_memory(), base, mr);
 126}
 127
 128static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
 129{
 130    /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
 131    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 132
 133    assert(irqno < MPS2TZ_NUMIRQ);
 134
 135    switch (mmc->fpga_type) {
 136    case FPGA_AN505:
 137        return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
 138    case FPGA_AN521:
 139        return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
 140    default:
 141        g_assert_not_reached();
 142    }
 143}
 144
 145/* Most of the devices in the AN505 FPGA image sit behind
 146 * Peripheral Protection Controllers. These data structures
 147 * define the layout of which devices sit behind which PPCs.
 148 * The devfn for each port is a function which creates, configures
 149 * and initializes the device, returning the MemoryRegion which
 150 * needs to be plugged into the downstream end of the PPC port.
 151 */
 152typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
 153                                const char *name, hwaddr size);
 154
 155typedef struct PPCPortInfo {
 156    const char *name;
 157    MakeDevFn *devfn;
 158    void *opaque;
 159    hwaddr addr;
 160    hwaddr size;
 161} PPCPortInfo;
 162
 163typedef struct PPCInfo {
 164    const char *name;
 165    PPCPortInfo ports[TZ_NUM_PORTS];
 166} PPCInfo;
 167
 168static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
 169                                       void *opaque,
 170                                       const char *name, hwaddr size)
 171{
 172    /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
 173     * and return a pointer to its MemoryRegion.
 174     */
 175    UnimplementedDeviceState *uds = opaque;
 176
 177    sysbus_init_child_obj(OBJECT(mms), name, uds,
 178                          sizeof(UnimplementedDeviceState),
 179                          TYPE_UNIMPLEMENTED_DEVICE);
 180    qdev_prop_set_string(DEVICE(uds), "name", name);
 181    qdev_prop_set_uint64(DEVICE(uds), "size", size);
 182    object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
 183    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
 184}
 185
 186static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
 187                               const char *name, hwaddr size)
 188{
 189    CMSDKAPBUART *uart = opaque;
 190    int i = uart - &mms->uart[0];
 191    int rxirqno = i * 2;
 192    int txirqno = i * 2 + 1;
 193    int combirqno = i + 10;
 194    SysBusDevice *s;
 195    DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
 196
 197    sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
 198                          TYPE_CMSDK_APB_UART);
 199    qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
 200    qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
 201    object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
 202    s = SYS_BUS_DEVICE(uart);
 203    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
 204    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
 205    sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
 206    sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
 207    sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
 208    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
 209}
 210
 211static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
 212                              const char *name, hwaddr size)
 213{
 214    MPS2SCC *scc = opaque;
 215    DeviceState *sccdev;
 216    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 217
 218    sysbus_init_child_obj(OBJECT(mms), "scc", scc,
 219                          sizeof(mms->scc), TYPE_MPS2_SCC);
 220    sccdev = DEVICE(scc);
 221    qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
 222    qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
 223    qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
 224    object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
 225    return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
 226}
 227
 228static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
 229                                 const char *name, hwaddr size)
 230{
 231    MPS2FPGAIO *fpgaio = opaque;
 232
 233    sysbus_init_child_obj(OBJECT(mms), "fpgaio", fpgaio,
 234                          sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
 235    object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
 236    return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
 237}
 238
 239static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
 240                                  const char *name, hwaddr size)
 241{
 242    SysBusDevice *s;
 243    NICInfo *nd = &nd_table[0];
 244
 245    /* In hardware this is a LAN9220; the LAN9118 is software compatible
 246     * except that it doesn't support the checksum-offload feature.
 247     */
 248    qemu_check_nic_model(nd, "lan9118");
 249    mms->lan9118 = qdev_create(NULL, TYPE_LAN9118);
 250    qdev_set_nic_properties(mms->lan9118, nd);
 251    qdev_init_nofail(mms->lan9118);
 252
 253    s = SYS_BUS_DEVICE(mms->lan9118);
 254    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
 255    return sysbus_mmio_get_region(s, 0);
 256}
 257
 258static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
 259                              const char *name, hwaddr size)
 260{
 261    TZMPC *mpc = opaque;
 262    int i = mpc - &mms->ssram_mpc[0];
 263    MemoryRegion *ssram = &mms->ssram[i];
 264    MemoryRegion *upstream;
 265    char *mpcname = g_strdup_printf("%s-mpc", name);
 266    static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
 267    static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
 268
 269    memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
 270
 271    sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
 272                          TYPE_TZ_MPC);
 273    object_property_set_link(OBJECT(mpc), OBJECT(ssram),
 274                             "downstream", &error_fatal);
 275    object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
 276    /* Map the upstream end of the MPC into system memory */
 277    upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
 278    memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
 279    /* and connect its interrupt to the IoTKit */
 280    qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
 281                                qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 282                                                       "mpcexp_status", i));
 283
 284    /* The first SSRAM is a special case as it has an alias; accesses to
 285     * the alias region at 0x00400000 must also go to the MPC upstream.
 286     */
 287    if (i == 0) {
 288        make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
 289    }
 290
 291    g_free(mpcname);
 292    /* Return the register interface MR for our caller to map behind the PPC */
 293    return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
 294}
 295
 296static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
 297                              const char *name, hwaddr size)
 298{
 299    PL080State *dma = opaque;
 300    int i = dma - &mms->dma[0];
 301    SysBusDevice *s;
 302    char *mscname = g_strdup_printf("%s-msc", name);
 303    TZMSC *msc = &mms->msc[i];
 304    DeviceState *iotkitdev = DEVICE(&mms->iotkit);
 305    MemoryRegion *msc_upstream;
 306    MemoryRegion *msc_downstream;
 307
 308    /*
 309     * Each DMA device is a PL081 whose transaction master interface
 310     * is guarded by a Master Security Controller. The downstream end of
 311     * the MSC connects to the IoTKit AHB Slave Expansion port, so the
 312     * DMA devices can see all devices and memory that the CPU does.
 313     */
 314    sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
 315    msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
 316    object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
 317                             "downstream", &error_fatal);
 318    object_property_set_link(OBJECT(msc), OBJECT(mms),
 319                             "idau", &error_fatal);
 320    object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
 321
 322    qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
 323                                qdev_get_gpio_in_named(iotkitdev,
 324                                                       "mscexp_status", i));
 325    qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
 326                                qdev_get_gpio_in_named(DEVICE(msc),
 327                                                       "irq_clear", 0));
 328    qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
 329                                qdev_get_gpio_in_named(DEVICE(msc),
 330                                                       "cfg_nonsec", 0));
 331    qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
 332                          ARRAY_SIZE(mms->ppc) + i,
 333                          qdev_get_gpio_in_named(DEVICE(msc),
 334                                                 "cfg_sec_resp", 0));
 335    msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
 336
 337    sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
 338    object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
 339                             "downstream", &error_fatal);
 340    object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
 341
 342    s = SYS_BUS_DEVICE(dma);
 343    /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
 344    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
 345    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
 346    sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
 347
 348    g_free(mscname);
 349    return sysbus_mmio_get_region(s, 0);
 350}
 351
 352static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
 353                              const char *name, hwaddr size)
 354{
 355    /*
 356     * The AN505 has five PL022 SPI controllers.
 357     * One of these should have the LCD controller behind it; the others
 358     * are connected only to the FPGA's "general purpose SPI connector"
 359     * or "shield" expansion connectors.
 360     * Note that if we do implement devices behind SPI, the chip select
 361     * lines are set via the "MISC" register in the MPS2 FPGAIO device.
 362     */
 363    PL022State *spi = opaque;
 364    int i = spi - &mms->spi[0];
 365    SysBusDevice *s;
 366
 367    sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]),
 368                          TYPE_PL022);
 369    object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
 370    s = SYS_BUS_DEVICE(spi);
 371    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
 372    return sysbus_mmio_get_region(s, 0);
 373}
 374
 375static void mps2tz_common_init(MachineState *machine)
 376{
 377    MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
 378    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 379    MachineClass *mc = MACHINE_GET_CLASS(machine);
 380    MemoryRegion *system_memory = get_system_memory();
 381    DeviceState *iotkitdev;
 382    DeviceState *dev_splitter;
 383    int i;
 384
 385    if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
 386        error_report("This board can only be used with CPU %s",
 387                     mc->default_cpu_type);
 388        exit(1);
 389    }
 390
 391    if (machine->ram_size != mc->default_ram_size) {
 392        char *sz = size_to_str(mc->default_ram_size);
 393        error_report("Invalid RAM size, should be %s", sz);
 394        g_free(sz);
 395        exit(EXIT_FAILURE);
 396    }
 397
 398    sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
 399                          sizeof(mms->iotkit), mmc->armsse_type);
 400    iotkitdev = DEVICE(&mms->iotkit);
 401    object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
 402                             "memory", &error_abort);
 403    qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
 404    qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
 405    object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
 406                             &error_fatal);
 407
 408    /*
 409     * The AN521 needs us to create splitters to feed the IRQ inputs
 410     * for each CPU in the SSE-200 from each device in the board.
 411     */
 412    if (mmc->fpga_type == FPGA_AN521) {
 413        for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
 414            char *name = g_strdup_printf("mps2-irq-splitter%d", i);
 415            SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
 416
 417            object_initialize_child(OBJECT(machine), name,
 418                                    splitter, sizeof(*splitter),
 419                                    TYPE_SPLIT_IRQ, &error_fatal, NULL);
 420            g_free(name);
 421
 422            object_property_set_int(OBJECT(splitter), 2, "num-lines",
 423                                    &error_fatal);
 424            object_property_set_bool(OBJECT(splitter), true, "realized",
 425                                     &error_fatal);
 426            qdev_connect_gpio_out(DEVICE(splitter), 0,
 427                                  qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 428                                                         "EXP_IRQ", i));
 429            qdev_connect_gpio_out(DEVICE(splitter), 1,
 430                                  qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 431                                                         "EXP_CPU1_IRQ", i));
 432        }
 433    }
 434
 435    /* The sec_resp_cfg output from the IoTKit must be split into multiple
 436     * lines, one for each of the PPCs we create here, plus one per MSC.
 437     */
 438    object_initialize_child(OBJECT(machine), "sec-resp-splitter",
 439                            &mms->sec_resp_splitter,
 440                            sizeof(mms->sec_resp_splitter),
 441                            TYPE_SPLIT_IRQ, &error_abort, NULL);
 442    object_property_set_int(OBJECT(&mms->sec_resp_splitter),
 443                            ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
 444                            "num-lines", &error_fatal);
 445    object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
 446                             "realized", &error_fatal);
 447    dev_splitter = DEVICE(&mms->sec_resp_splitter);
 448    qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
 449                                qdev_get_gpio_in(dev_splitter, 0));
 450
 451    /* The IoTKit sets up much of the memory layout, including
 452     * the aliases between secure and non-secure regions in the
 453     * address space. The FPGA itself contains:
 454     *
 455     * 0x00000000..0x003fffff  SSRAM1
 456     * 0x00400000..0x007fffff  alias of SSRAM1
 457     * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
 458     * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
 459     * 0x80000000..0x80ffffff  16MB PSRAM
 460     */
 461
 462    /* The FPGA images have an odd combination of different RAMs,
 463     * because in hardware they are different implementations and
 464     * connected to different buses, giving varying performance/size
 465     * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
 466     * call the 16MB our "system memory", as it's the largest lump.
 467     */
 468    memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
 469
 470    /* The overflow IRQs for all UARTs are ORed together.
 471     * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
 472     * Create the OR gate for this.
 473     */
 474    object_initialize_child(OBJECT(mms), "uart-irq-orgate",
 475                            &mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
 476                            TYPE_OR_IRQ, &error_abort, NULL);
 477    object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
 478                            &error_fatal);
 479    object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
 480                             "realized", &error_fatal);
 481    qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
 482                          get_sse_irq_in(mms, 15));
 483
 484    /* Most of the devices in the FPGA are behind Peripheral Protection
 485     * Controllers. The required order for initializing things is:
 486     *  + initialize the PPC
 487     *  + initialize, configure and realize downstream devices
 488     *  + connect downstream device MemoryRegions to the PPC
 489     *  + realize the PPC
 490     *  + map the PPC's MemoryRegions to the places in the address map
 491     *    where the downstream devices should appear
 492     *  + wire up the PPC's control lines to the IoTKit object
 493     */
 494
 495    const PPCInfo ppcs[] = { {
 496            .name = "apb_ppcexp0",
 497            .ports = {
 498                { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
 499                { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
 500                { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
 501            },
 502        }, {
 503            .name = "apb_ppcexp1",
 504            .ports = {
 505                { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
 506                { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
 507                { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
 508                { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
 509                { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
 510                { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
 511                { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
 512                { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
 513                { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
 514                { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
 515                { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
 516                { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
 517                { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
 518                { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
 519            },
 520        }, {
 521            .name = "apb_ppcexp2",
 522            .ports = {
 523                { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
 524                { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
 525                  0x40301000, 0x1000 },
 526                { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
 527            },
 528        }, {
 529            .name = "ahb_ppcexp0",
 530            .ports = {
 531                { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
 532                { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
 533                { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
 534                { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
 535                { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
 536                { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
 537            },
 538        }, {
 539            .name = "ahb_ppcexp1",
 540            .ports = {
 541                { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
 542                { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
 543                { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
 544                { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
 545            },
 546        },
 547    };
 548
 549    for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
 550        const PPCInfo *ppcinfo = &ppcs[i];
 551        TZPPC *ppc = &mms->ppc[i];
 552        DeviceState *ppcdev;
 553        int port;
 554        char *gpioname;
 555
 556        sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
 557                              sizeof(TZPPC), TYPE_TZ_PPC);
 558        ppcdev = DEVICE(ppc);
 559
 560        for (port = 0; port < TZ_NUM_PORTS; port++) {
 561            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
 562            MemoryRegion *mr;
 563            char *portname;
 564
 565            if (!pinfo->devfn) {
 566                continue;
 567            }
 568
 569            mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
 570            portname = g_strdup_printf("port[%d]", port);
 571            object_property_set_link(OBJECT(ppc), OBJECT(mr),
 572                                     portname, &error_fatal);
 573            g_free(portname);
 574        }
 575
 576        object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
 577
 578        for (port = 0; port < TZ_NUM_PORTS; port++) {
 579            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
 580
 581            if (!pinfo->devfn) {
 582                continue;
 583            }
 584            sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
 585
 586            gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
 587            qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
 588                                        qdev_get_gpio_in_named(ppcdev,
 589                                                               "cfg_nonsec",
 590                                                               port));
 591            g_free(gpioname);
 592            gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
 593            qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
 594                                        qdev_get_gpio_in_named(ppcdev,
 595                                                               "cfg_ap", port));
 596            g_free(gpioname);
 597        }
 598
 599        gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
 600        qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
 601                                    qdev_get_gpio_in_named(ppcdev,
 602                                                           "irq_enable", 0));
 603        g_free(gpioname);
 604        gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
 605        qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
 606                                    qdev_get_gpio_in_named(ppcdev,
 607                                                           "irq_clear", 0));
 608        g_free(gpioname);
 609        gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
 610        qdev_connect_gpio_out_named(ppcdev, "irq", 0,
 611                                    qdev_get_gpio_in_named(iotkitdev,
 612                                                           gpioname, 0));
 613        g_free(gpioname);
 614
 615        qdev_connect_gpio_out(dev_splitter, i,
 616                              qdev_get_gpio_in_named(ppcdev,
 617                                                     "cfg_sec_resp", 0));
 618    }
 619
 620    create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
 621
 622    armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
 623}
 624
 625static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
 626                               int *iregion, bool *exempt, bool *ns, bool *nsc)
 627{
 628    /*
 629     * The MPS2 TZ FPGA images have IDAUs in them which are connected to
 630     * the Master Security Controllers. Thes have the same logic as
 631     * is used by the IoTKit for the IDAU connected to the CPU, except
 632     * that MSCs don't care about the NSC attribute.
 633     */
 634    int region = extract32(address, 28, 4);
 635
 636    *ns = !(region & 1);
 637    *nsc = false;
 638    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
 639    *exempt = (address & 0xeff00000) == 0xe0000000;
 640    *iregion = region;
 641}
 642
 643static void mps2tz_class_init(ObjectClass *oc, void *data)
 644{
 645    MachineClass *mc = MACHINE_CLASS(oc);
 646    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
 647
 648    mc->init = mps2tz_common_init;
 649    iic->check = mps2_tz_idau_check;
 650    mc->default_ram_size = 16 * MiB;
 651    mc->default_ram_id = "mps.ram";
 652}
 653
 654static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
 655{
 656    MachineClass *mc = MACHINE_CLASS(oc);
 657    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
 658
 659    mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
 660    mc->default_cpus = 1;
 661    mc->min_cpus = mc->default_cpus;
 662    mc->max_cpus = mc->default_cpus;
 663    mmc->fpga_type = FPGA_AN505;
 664    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
 665    mmc->scc_id = 0x41045050;
 666    mmc->armsse_type = TYPE_IOTKIT;
 667}
 668
 669static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
 670{
 671    MachineClass *mc = MACHINE_CLASS(oc);
 672    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
 673
 674    mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
 675    mc->default_cpus = 2;
 676    mc->min_cpus = mc->default_cpus;
 677    mc->max_cpus = mc->default_cpus;
 678    mmc->fpga_type = FPGA_AN521;
 679    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
 680    mmc->scc_id = 0x41045210;
 681    mmc->armsse_type = TYPE_SSE200;
 682}
 683
 684static const TypeInfo mps2tz_info = {
 685    .name = TYPE_MPS2TZ_MACHINE,
 686    .parent = TYPE_MACHINE,
 687    .abstract = true,
 688    .instance_size = sizeof(MPS2TZMachineState),
 689    .class_size = sizeof(MPS2TZMachineClass),
 690    .class_init = mps2tz_class_init,
 691    .interfaces = (InterfaceInfo[]) {
 692        { TYPE_IDAU_INTERFACE },
 693        { }
 694    },
 695};
 696
 697static const TypeInfo mps2tz_an505_info = {
 698    .name = TYPE_MPS2TZ_AN505_MACHINE,
 699    .parent = TYPE_MPS2TZ_MACHINE,
 700    .class_init = mps2tz_an505_class_init,
 701};
 702
 703static const TypeInfo mps2tz_an521_info = {
 704    .name = TYPE_MPS2TZ_AN521_MACHINE,
 705    .parent = TYPE_MPS2TZ_MACHINE,
 706    .class_init = mps2tz_an521_class_init,
 707};
 708
 709static void mps2tz_machine_init(void)
 710{
 711    type_register_static(&mps2tz_info);
 712    type_register_static(&mps2tz_an505_info);
 713    type_register_static(&mps2tz_an521_info);
 714}
 715
 716type_init(mps2tz_machine_init);
 717