1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20#include "qemu/osdep.h"
21#include "cpu.h"
22#include "internal.h"
23#include "qemu/host-utils.h"
24#include "qemu/main-loop.h"
25#include "exec/helper-proto.h"
26#include "crypto/aes.h"
27#include "fpu/softfloat.h"
28#include "qapi/error.h"
29#include "qemu/guest-random.h"
30
31#include "helper_regs.h"
32
33
34
35static inline void helper_update_ov_legacy(CPUPPCState *env, int ov)
36{
37 if (unlikely(ov)) {
38 env->so = env->ov = 1;
39 } else {
40 env->ov = 0;
41 }
42}
43
44target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb,
45 uint32_t oe)
46{
47 uint64_t rt = 0;
48 int overflow = 0;
49
50 uint64_t dividend = (uint64_t)ra << 32;
51 uint64_t divisor = (uint32_t)rb;
52
53 if (unlikely(divisor == 0)) {
54 overflow = 1;
55 } else {
56 rt = dividend / divisor;
57 overflow = rt > UINT32_MAX;
58 }
59
60 if (unlikely(overflow)) {
61 rt = 0;
62 }
63
64 if (oe) {
65 helper_update_ov_legacy(env, overflow);
66 }
67
68 return (target_ulong)rt;
69}
70
71target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb,
72 uint32_t oe)
73{
74 int64_t rt = 0;
75 int overflow = 0;
76
77 int64_t dividend = (int64_t)ra << 32;
78 int64_t divisor = (int64_t)((int32_t)rb);
79
80 if (unlikely((divisor == 0) ||
81 ((divisor == -1ull) && (dividend == INT64_MIN)))) {
82 overflow = 1;
83 } else {
84 rt = dividend / divisor;
85 overflow = rt != (int32_t)rt;
86 }
87
88 if (unlikely(overflow)) {
89 rt = 0;
90 }
91
92 if (oe) {
93 helper_update_ov_legacy(env, overflow);
94 }
95
96 return (target_ulong)rt;
97}
98
99#if defined(TARGET_PPC64)
100
101uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe)
102{
103 uint64_t rt = 0;
104 int overflow = 0;
105
106 overflow = divu128(&rt, &ra, rb);
107
108 if (unlikely(overflow)) {
109 rt = 0;
110 }
111
112 if (oe) {
113 helper_update_ov_legacy(env, overflow);
114 }
115
116 return rt;
117}
118
119uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe)
120{
121 int64_t rt = 0;
122 int64_t ra = (int64_t)rau;
123 int64_t rb = (int64_t)rbu;
124 int overflow = divs128(&rt, &ra, rb);
125
126 if (unlikely(overflow)) {
127 rt = 0;
128 }
129
130 if (oe) {
131 helper_update_ov_legacy(env, overflow);
132 }
133
134 return rt;
135}
136
137#endif
138
139
140#if defined(TARGET_PPC64)
141
142#define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
143
144
145
146
147
148
149
150#define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
151
152
153#define hasvalue(x, n) (haszero((x) ^ pattern(n)))
154
155uint32_t helper_cmpeqb(target_ulong ra, target_ulong rb)
156{
157 return hasvalue(rb, ra) ? CRF_GT : 0;
158}
159
160#undef pattern
161#undef haszero
162#undef hasvalue
163
164
165
166
167uint64_t helper_darn32(void)
168{
169 Error *err = NULL;
170 uint32_t ret;
171
172 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
173 qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
174 error_get_pretty(err));
175 error_free(err);
176 return -1;
177 }
178
179 return ret;
180}
181
182uint64_t helper_darn64(void)
183{
184 Error *err = NULL;
185 uint64_t ret;
186
187 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
188 qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
189 error_get_pretty(err));
190 error_free(err);
191 return -1;
192 }
193
194 return ret;
195}
196
197uint64_t helper_bpermd(uint64_t rs, uint64_t rb)
198{
199 int i;
200 uint64_t ra = 0;
201
202 for (i = 0; i < 8; i++) {
203 int index = (rs >> (i * 8)) & 0xFF;
204 if (index < 64) {
205 if (rb & PPC_BIT(index)) {
206 ra |= 1 << i;
207 }
208 }
209 }
210 return ra;
211}
212
213#endif
214
215target_ulong helper_cmpb(target_ulong rs, target_ulong rb)
216{
217 target_ulong mask = 0xff;
218 target_ulong ra = 0;
219 int i;
220
221 for (i = 0; i < sizeof(target_ulong); i++) {
222 if ((rs & mask) == (rb & mask)) {
223 ra |= mask;
224 }
225 mask <<= 8;
226 }
227 return ra;
228}
229
230
231target_ulong helper_sraw(CPUPPCState *env, target_ulong value,
232 target_ulong shift)
233{
234 int32_t ret;
235
236 if (likely(!(shift & 0x20))) {
237 if (likely((uint32_t)shift != 0)) {
238 shift &= 0x1f;
239 ret = (int32_t)value >> shift;
240 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
241 env->ca32 = env->ca = 0;
242 } else {
243 env->ca32 = env->ca = 1;
244 }
245 } else {
246 ret = (int32_t)value;
247 env->ca32 = env->ca = 0;
248 }
249 } else {
250 ret = (int32_t)value >> 31;
251 env->ca32 = env->ca = (ret != 0);
252 }
253 return (target_long)ret;
254}
255
256#if defined(TARGET_PPC64)
257target_ulong helper_srad(CPUPPCState *env, target_ulong value,
258 target_ulong shift)
259{
260 int64_t ret;
261
262 if (likely(!(shift & 0x40))) {
263 if (likely((uint64_t)shift != 0)) {
264 shift &= 0x3f;
265 ret = (int64_t)value >> shift;
266 if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) {
267 env->ca32 = env->ca = 0;
268 } else {
269 env->ca32 = env->ca = 1;
270 }
271 } else {
272 ret = (int64_t)value;
273 env->ca32 = env->ca = 0;
274 }
275 } else {
276 ret = (int64_t)value >> 63;
277 env->ca32 = env->ca = (ret != 0);
278 }
279 return ret;
280}
281#endif
282
283#if defined(TARGET_PPC64)
284target_ulong helper_popcntb(target_ulong val)
285{
286
287 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
288 0x5555555555555555ULL);
289 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
290 0x3333333333333333ULL);
291 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
292 0x0f0f0f0f0f0f0f0fULL);
293 return val;
294}
295
296target_ulong helper_popcntw(target_ulong val)
297{
298
299 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
300 0x5555555555555555ULL);
301 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
302 0x3333333333333333ULL);
303 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
304 0x0f0f0f0f0f0f0f0fULL);
305 val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
306 0x00ff00ff00ff00ffULL);
307 val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
308 0x0000ffff0000ffffULL);
309 return val;
310}
311#else
312target_ulong helper_popcntb(target_ulong val)
313{
314
315 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
316 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
317 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
318 return val;
319}
320#endif
321
322
323
324target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2)
325{
326 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
327
328 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
329 (int32_t)arg2 == 0) {
330 env->spr[SPR_MQ] = 0;
331 return INT32_MIN;
332 } else {
333 env->spr[SPR_MQ] = tmp % arg2;
334 return tmp / (int32_t)arg2;
335 }
336}
337
338target_ulong helper_divo(CPUPPCState *env, target_ulong arg1,
339 target_ulong arg2)
340{
341 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
342
343 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
344 (int32_t)arg2 == 0) {
345 env->so = env->ov = 1;
346 env->spr[SPR_MQ] = 0;
347 return INT32_MIN;
348 } else {
349 env->spr[SPR_MQ] = tmp % arg2;
350 tmp /= (int32_t)arg2;
351 if ((int32_t)tmp != tmp) {
352 env->so = env->ov = 1;
353 } else {
354 env->ov = 0;
355 }
356 return tmp;
357 }
358}
359
360target_ulong helper_divs(CPUPPCState *env, target_ulong arg1,
361 target_ulong arg2)
362{
363 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
364 (int32_t)arg2 == 0) {
365 env->spr[SPR_MQ] = 0;
366 return INT32_MIN;
367 } else {
368 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
369 return (int32_t)arg1 / (int32_t)arg2;
370 }
371}
372
373target_ulong helper_divso(CPUPPCState *env, target_ulong arg1,
374 target_ulong arg2)
375{
376 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
377 (int32_t)arg2 == 0) {
378 env->so = env->ov = 1;
379 env->spr[SPR_MQ] = 0;
380 return INT32_MIN;
381 } else {
382 env->ov = 0;
383 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
384 return (int32_t)arg1 / (int32_t)arg2;
385 }
386}
387
388
389
390
391
392
393
394
395
396
397#if !defined(CONFIG_USER_ONLY)
398target_ulong helper_602_mfrom(target_ulong arg)
399{
400 if (likely(arg < 602)) {
401#include "mfrom_table.inc.c"
402 return mfrom_ROM_table[arg];
403 } else {
404 return 0;
405 }
406}
407#endif
408
409
410
411#if defined(HOST_WORDS_BIGENDIAN)
412#define VECTOR_FOR_INORDER_I(index, element) \
413 for (index = 0; index < ARRAY_SIZE(r->element); index++)
414#else
415#define VECTOR_FOR_INORDER_I(index, element) \
416 for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--)
417#endif
418
419
420#define SATCVT(from, to, from_type, to_type, min, max) \
421 static inline to_type cvt##from##to(from_type x, int *sat) \
422 { \
423 to_type r; \
424 \
425 if (x < (from_type)min) { \
426 r = min; \
427 *sat = 1; \
428 } else if (x > (from_type)max) { \
429 r = max; \
430 *sat = 1; \
431 } else { \
432 r = x; \
433 } \
434 return r; \
435 }
436#define SATCVTU(from, to, from_type, to_type, min, max) \
437 static inline to_type cvt##from##to(from_type x, int *sat) \
438 { \
439 to_type r; \
440 \
441 if (x > (from_type)max) { \
442 r = max; \
443 *sat = 1; \
444 } else { \
445 r = x; \
446 } \
447 return r; \
448 }
449SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
450SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
451SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
452
453SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
454SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
455SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
456SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
457SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
458SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
459#undef SATCVT
460#undef SATCVTU
461
462void helper_mtvscr(CPUPPCState *env, uint32_t vscr)
463{
464 env->vscr = vscr & ~(1u << VSCR_SAT);
465
466 env->vscr_sat.u64[0] = vscr & (1u << VSCR_SAT);
467 env->vscr_sat.u64[1] = 0;
468 set_flush_to_zero((vscr >> VSCR_NJ) & 1, &env->vec_status);
469}
470
471uint32_t helper_mfvscr(CPUPPCState *env)
472{
473 uint32_t sat = (env->vscr_sat.u64[0] | env->vscr_sat.u64[1]) != 0;
474 return env->vscr | (sat << VSCR_SAT);
475}
476
477static inline void set_vscr_sat(CPUPPCState *env)
478{
479
480 env->vscr_sat.u32[0] = 1;
481}
482
483void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
484{
485 int i;
486
487 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
488 r->u32[i] = ~a->u32[i] < b->u32[i];
489 }
490}
491
492
493void helper_vprtybw(ppc_avr_t *r, ppc_avr_t *b)
494{
495 int i;
496 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
497 uint64_t res = b->u32[i] ^ (b->u32[i] >> 16);
498 res ^= res >> 8;
499 r->u32[i] = res & 1;
500 }
501}
502
503
504void helper_vprtybd(ppc_avr_t *r, ppc_avr_t *b)
505{
506 int i;
507 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
508 uint64_t res = b->u64[i] ^ (b->u64[i] >> 32);
509 res ^= res >> 16;
510 res ^= res >> 8;
511 r->u64[i] = res & 1;
512 }
513}
514
515
516void helper_vprtybq(ppc_avr_t *r, ppc_avr_t *b)
517{
518 uint64_t res = b->u64[0] ^ b->u64[1];
519 res ^= res >> 32;
520 res ^= res >> 16;
521 res ^= res >> 8;
522 r->VsrD(1) = res & 1;
523 r->VsrD(0) = 0;
524}
525
526#define VARITH_DO(name, op, element) \
527 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
528 { \
529 int i; \
530 \
531 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
532 r->element[i] = a->element[i] op b->element[i]; \
533 } \
534 }
535VARITH_DO(muluwm, *, u32)
536#undef VARITH_DO
537#undef VARITH
538
539#define VARITHFP(suffix, func) \
540 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
541 ppc_avr_t *b) \
542 { \
543 int i; \
544 \
545 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
546 r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status); \
547 } \
548 }
549VARITHFP(addfp, float32_add)
550VARITHFP(subfp, float32_sub)
551VARITHFP(minfp, float32_min)
552VARITHFP(maxfp, float32_max)
553#undef VARITHFP
554
555#define VARITHFPFMA(suffix, type) \
556 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
557 ppc_avr_t *b, ppc_avr_t *c) \
558 { \
559 int i; \
560 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
561 r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \
562 type, &env->vec_status); \
563 } \
564 }
565VARITHFPFMA(maddfp, 0);
566VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c);
567#undef VARITHFPFMA
568
569#define VARITHSAT_CASE(type, op, cvt, element) \
570 { \
571 type result = (type)a->element[i] op (type)b->element[i]; \
572 r->element[i] = cvt(result, &sat); \
573 }
574
575#define VARITHSAT_DO(name, op, optype, cvt, element) \
576 void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat, \
577 ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \
578 { \
579 int sat = 0; \
580 int i; \
581 \
582 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
583 VARITHSAT_CASE(optype, op, cvt, element); \
584 } \
585 if (sat) { \
586 vscr_sat->u32[0] = 1; \
587 } \
588 }
589#define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
590 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
591 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
592#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
593 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
594 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
595VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
596VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
597VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
598VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
599VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
600VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
601#undef VARITHSAT_CASE
602#undef VARITHSAT_DO
603#undef VARITHSAT_SIGNED
604#undef VARITHSAT_UNSIGNED
605
606#define VAVG_DO(name, element, etype) \
607 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
608 { \
609 int i; \
610 \
611 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
612 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
613 r->element[i] = x >> 1; \
614 } \
615 }
616
617#define VAVG(type, signed_element, signed_type, unsigned_element, \
618 unsigned_type) \
619 VAVG_DO(avgs##type, signed_element, signed_type) \
620 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
621VAVG(b, s8, int16_t, u8, uint16_t)
622VAVG(h, s16, int32_t, u16, uint32_t)
623VAVG(w, s32, int64_t, u32, uint64_t)
624#undef VAVG_DO
625#undef VAVG
626
627#define VABSDU_DO(name, element) \
628void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
629{ \
630 int i; \
631 \
632 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
633 r->element[i] = (a->element[i] > b->element[i]) ? \
634 (a->element[i] - b->element[i]) : \
635 (b->element[i] - a->element[i]); \
636 } \
637}
638
639
640
641
642
643
644#define VABSDU(type, element) \
645 VABSDU_DO(absdu##type, element)
646VABSDU(b, u8)
647VABSDU(h, u16)
648VABSDU(w, u32)
649#undef VABSDU_DO
650#undef VABSDU
651
652#define VCF(suffix, cvt, element) \
653 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
654 ppc_avr_t *b, uint32_t uim) \
655 { \
656 int i; \
657 \
658 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
659 float32 t = cvt(b->element[i], &env->vec_status); \
660 r->f32[i] = float32_scalbn(t, -uim, &env->vec_status); \
661 } \
662 }
663VCF(ux, uint32_to_float32, u32)
664VCF(sx, int32_to_float32, s32)
665#undef VCF
666
667#define VCMP_DO(suffix, compare, element, record) \
668 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
669 ppc_avr_t *a, ppc_avr_t *b) \
670 { \
671 uint64_t ones = (uint64_t)-1; \
672 uint64_t all = ones; \
673 uint64_t none = 0; \
674 int i; \
675 \
676 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
677 uint64_t result = (a->element[i] compare b->element[i] ? \
678 ones : 0x0); \
679 switch (sizeof(a->element[0])) { \
680 case 8: \
681 r->u64[i] = result; \
682 break; \
683 case 4: \
684 r->u32[i] = result; \
685 break; \
686 case 2: \
687 r->u16[i] = result; \
688 break; \
689 case 1: \
690 r->u8[i] = result; \
691 break; \
692 } \
693 all &= result; \
694 none |= result; \
695 } \
696 if (record) { \
697 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
698 } \
699 }
700#define VCMP(suffix, compare, element) \
701 VCMP_DO(suffix, compare, element, 0) \
702 VCMP_DO(suffix##_dot, compare, element, 1)
703VCMP(equb, ==, u8)
704VCMP(equh, ==, u16)
705VCMP(equw, ==, u32)
706VCMP(equd, ==, u64)
707VCMP(gtub, >, u8)
708VCMP(gtuh, >, u16)
709VCMP(gtuw, >, u32)
710VCMP(gtud, >, u64)
711VCMP(gtsb, >, s8)
712VCMP(gtsh, >, s16)
713VCMP(gtsw, >, s32)
714VCMP(gtsd, >, s64)
715#undef VCMP_DO
716#undef VCMP
717
718#define VCMPNE_DO(suffix, element, etype, cmpzero, record) \
719void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \
720 ppc_avr_t *a, ppc_avr_t *b) \
721{ \
722 etype ones = (etype)-1; \
723 etype all = ones; \
724 etype result, none = 0; \
725 int i; \
726 \
727 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
728 if (cmpzero) { \
729 result = ((a->element[i] == 0) \
730 || (b->element[i] == 0) \
731 || (a->element[i] != b->element[i]) ? \
732 ones : 0x0); \
733 } else { \
734 result = (a->element[i] != b->element[i]) ? ones : 0x0; \
735 } \
736 r->element[i] = result; \
737 all &= result; \
738 none |= result; \
739 } \
740 if (record) { \
741 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
742 } \
743}
744
745
746
747
748
749
750#define VCMPNE(suffix, element, etype, cmpzero) \
751 VCMPNE_DO(suffix, element, etype, cmpzero, 0) \
752 VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1)
753VCMPNE(zb, u8, uint8_t, 1)
754VCMPNE(zh, u16, uint16_t, 1)
755VCMPNE(zw, u32, uint32_t, 1)
756VCMPNE(b, u8, uint8_t, 0)
757VCMPNE(h, u16, uint16_t, 0)
758VCMPNE(w, u32, uint32_t, 0)
759#undef VCMPNE_DO
760#undef VCMPNE
761
762#define VCMPFP_DO(suffix, compare, order, record) \
763 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
764 ppc_avr_t *a, ppc_avr_t *b) \
765 { \
766 uint32_t ones = (uint32_t)-1; \
767 uint32_t all = ones; \
768 uint32_t none = 0; \
769 int i; \
770 \
771 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
772 uint32_t result; \
773 int rel = float32_compare_quiet(a->f32[i], b->f32[i], \
774 &env->vec_status); \
775 if (rel == float_relation_unordered) { \
776 result = 0; \
777 } else if (rel compare order) { \
778 result = ones; \
779 } else { \
780 result = 0; \
781 } \
782 r->u32[i] = result; \
783 all &= result; \
784 none |= result; \
785 } \
786 if (record) { \
787 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
788 } \
789 }
790#define VCMPFP(suffix, compare, order) \
791 VCMPFP_DO(suffix, compare, order, 0) \
792 VCMPFP_DO(suffix##_dot, compare, order, 1)
793VCMPFP(eqfp, ==, float_relation_equal)
794VCMPFP(gefp, !=, float_relation_less)
795VCMPFP(gtfp, ==, float_relation_greater)
796#undef VCMPFP_DO
797#undef VCMPFP
798
799static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r,
800 ppc_avr_t *a, ppc_avr_t *b, int record)
801{
802 int i;
803 int all_in = 0;
804
805 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
806 int le_rel = float32_compare_quiet(a->f32[i], b->f32[i],
807 &env->vec_status);
808 if (le_rel == float_relation_unordered) {
809 r->u32[i] = 0xc0000000;
810 all_in = 1;
811 } else {
812 float32 bneg = float32_chs(b->f32[i]);
813 int ge_rel = float32_compare_quiet(a->f32[i], bneg,
814 &env->vec_status);
815 int le = le_rel != float_relation_greater;
816 int ge = ge_rel != float_relation_less;
817
818 r->u32[i] = ((!le) << 31) | ((!ge) << 30);
819 all_in |= (!le | !ge);
820 }
821 }
822 if (record) {
823 env->crf[6] = (all_in == 0) << 1;
824 }
825}
826
827void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
828{
829 vcmpbfp_internal(env, r, a, b, 0);
830}
831
832void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
833 ppc_avr_t *b)
834{
835 vcmpbfp_internal(env, r, a, b, 1);
836}
837
838#define VCT(suffix, satcvt, element) \
839 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
840 ppc_avr_t *b, uint32_t uim) \
841 { \
842 int i; \
843 int sat = 0; \
844 float_status s = env->vec_status; \
845 \
846 set_float_rounding_mode(float_round_to_zero, &s); \
847 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
848 if (float32_is_any_nan(b->f32[i])) { \
849 r->element[i] = 0; \
850 } else { \
851 float64 t = float32_to_float64(b->f32[i], &s); \
852 int64_t j; \
853 \
854 t = float64_scalbn(t, uim, &s); \
855 j = float64_to_int64(t, &s); \
856 r->element[i] = satcvt(j, &sat); \
857 } \
858 } \
859 if (sat) { \
860 set_vscr_sat(env); \
861 } \
862 }
863VCT(uxs, cvtsduw, u32)
864VCT(sxs, cvtsdsw, s32)
865#undef VCT
866
867target_ulong helper_vclzlsbb(ppc_avr_t *r)
868{
869 target_ulong count = 0;
870 int i;
871 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
872 if (r->VsrB(i) & 0x01) {
873 break;
874 }
875 count++;
876 }
877 return count;
878}
879
880target_ulong helper_vctzlsbb(ppc_avr_t *r)
881{
882 target_ulong count = 0;
883 int i;
884 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
885 if (r->VsrB(i) & 0x01) {
886 break;
887 }
888 count++;
889 }
890 return count;
891}
892
893void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
894 ppc_avr_t *b, ppc_avr_t *c)
895{
896 int sat = 0;
897 int i;
898
899 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
900 int32_t prod = a->s16[i] * b->s16[i];
901 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
902
903 r->s16[i] = cvtswsh(t, &sat);
904 }
905
906 if (sat) {
907 set_vscr_sat(env);
908 }
909}
910
911void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
912 ppc_avr_t *b, ppc_avr_t *c)
913{
914 int sat = 0;
915 int i;
916
917 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
918 int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
919 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
920 r->s16[i] = cvtswsh(t, &sat);
921 }
922
923 if (sat) {
924 set_vscr_sat(env);
925 }
926}
927
928void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
929{
930 int i;
931
932 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
933 int32_t prod = a->s16[i] * b->s16[i];
934 r->s16[i] = (int16_t) (prod + c->s16[i]);
935 }
936}
937
938#define VMRG_DO(name, element, access, ofs) \
939 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
940 { \
941 ppc_avr_t result; \
942 int i, half = ARRAY_SIZE(r->element) / 2; \
943 \
944 for (i = 0; i < half; i++) { \
945 result.access(i * 2 + 0) = a->access(i + ofs); \
946 result.access(i * 2 + 1) = b->access(i + ofs); \
947 } \
948 *r = result; \
949 }
950
951#define VMRG(suffix, element, access) \
952 VMRG_DO(mrgl##suffix, element, access, half) \
953 VMRG_DO(mrgh##suffix, element, access, 0)
954VMRG(b, u8, VsrB)
955VMRG(h, u16, VsrH)
956VMRG(w, u32, VsrW)
957#undef VMRG_DO
958#undef VMRG
959
960void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
961 ppc_avr_t *b, ppc_avr_t *c)
962{
963 int32_t prod[16];
964 int i;
965
966 for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
967 prod[i] = (int32_t)a->s8[i] * b->u8[i];
968 }
969
970 VECTOR_FOR_INORDER_I(i, s32) {
971 r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
972 prod[4 * i + 2] + prod[4 * i + 3];
973 }
974}
975
976void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
977 ppc_avr_t *b, ppc_avr_t *c)
978{
979 int32_t prod[8];
980 int i;
981
982 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
983 prod[i] = a->s16[i] * b->s16[i];
984 }
985
986 VECTOR_FOR_INORDER_I(i, s32) {
987 r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
988 }
989}
990
991void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
992 ppc_avr_t *b, ppc_avr_t *c)
993{
994 int32_t prod[8];
995 int i;
996 int sat = 0;
997
998 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
999 prod[i] = (int32_t)a->s16[i] * b->s16[i];
1000 }
1001
1002 VECTOR_FOR_INORDER_I(i, s32) {
1003 int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
1004
1005 r->u32[i] = cvtsdsw(t, &sat);
1006 }
1007
1008 if (sat) {
1009 set_vscr_sat(env);
1010 }
1011}
1012
1013void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1014 ppc_avr_t *b, ppc_avr_t *c)
1015{
1016 uint16_t prod[16];
1017 int i;
1018
1019 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1020 prod[i] = a->u8[i] * b->u8[i];
1021 }
1022
1023 VECTOR_FOR_INORDER_I(i, u32) {
1024 r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
1025 prod[4 * i + 2] + prod[4 * i + 3];
1026 }
1027}
1028
1029void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1030 ppc_avr_t *b, ppc_avr_t *c)
1031{
1032 uint32_t prod[8];
1033 int i;
1034
1035 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1036 prod[i] = a->u16[i] * b->u16[i];
1037 }
1038
1039 VECTOR_FOR_INORDER_I(i, u32) {
1040 r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1041 }
1042}
1043
1044void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1045 ppc_avr_t *b, ppc_avr_t *c)
1046{
1047 uint32_t prod[8];
1048 int i;
1049 int sat = 0;
1050
1051 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1052 prod[i] = a->u16[i] * b->u16[i];
1053 }
1054
1055 VECTOR_FOR_INORDER_I(i, s32) {
1056 uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1057
1058 r->u32[i] = cvtuduw(t, &sat);
1059 }
1060
1061 if (sat) {
1062 set_vscr_sat(env);
1063 }
1064}
1065
1066#define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast) \
1067 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1068 { \
1069 int i; \
1070 \
1071 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1072 r->prod_access(i >> 1) = (cast)a->mul_access(i) * \
1073 (cast)b->mul_access(i); \
1074 } \
1075 }
1076
1077#define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast) \
1078 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1079 { \
1080 int i; \
1081 \
1082 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1083 r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) * \
1084 (cast)b->mul_access(i + 1); \
1085 } \
1086 }
1087
1088#define VMUL(suffix, mul_element, mul_access, prod_access, cast) \
1089 VMUL_DO_EVN(mule##suffix, mul_element, mul_access, prod_access, cast) \
1090 VMUL_DO_ODD(mulo##suffix, mul_element, mul_access, prod_access, cast)
1091VMUL(sb, s8, VsrSB, VsrSH, int16_t)
1092VMUL(sh, s16, VsrSH, VsrSW, int32_t)
1093VMUL(sw, s32, VsrSW, VsrSD, int64_t)
1094VMUL(ub, u8, VsrB, VsrH, uint16_t)
1095VMUL(uh, u16, VsrH, VsrW, uint32_t)
1096VMUL(uw, u32, VsrW, VsrD, uint64_t)
1097#undef VMUL_DO_EVN
1098#undef VMUL_DO_ODD
1099#undef VMUL
1100
1101void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1102 ppc_avr_t *c)
1103{
1104 ppc_avr_t result;
1105 int i;
1106
1107 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1108 int s = c->VsrB(i) & 0x1f;
1109 int index = s & 0xf;
1110
1111 if (s & 0x10) {
1112 result.VsrB(i) = b->VsrB(index);
1113 } else {
1114 result.VsrB(i) = a->VsrB(index);
1115 }
1116 }
1117 *r = result;
1118}
1119
1120void helper_vpermr(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1121 ppc_avr_t *c)
1122{
1123 ppc_avr_t result;
1124 int i;
1125
1126 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1127 int s = c->VsrB(i) & 0x1f;
1128 int index = 15 - (s & 0xf);
1129
1130 if (s & 0x10) {
1131 result.VsrB(i) = a->VsrB(index);
1132 } else {
1133 result.VsrB(i) = b->VsrB(index);
1134 }
1135 }
1136 *r = result;
1137}
1138
1139#if defined(HOST_WORDS_BIGENDIAN)
1140#define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1141#define VBPERMD_INDEX(i) (i)
1142#define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1143#define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
1144#else
1145#define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)])
1146#define VBPERMD_INDEX(i) (1 - i)
1147#define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1148#define EXTRACT_BIT(avr, i, index) \
1149 (extract64((avr)->u64[1 - i], 63 - index, 1))
1150#endif
1151
1152void helper_vbpermd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1153{
1154 int i, j;
1155 ppc_avr_t result = { .u64 = { 0, 0 } };
1156 VECTOR_FOR_INORDER_I(i, u64) {
1157 for (j = 0; j < 8; j++) {
1158 int index = VBPERMQ_INDEX(b, (i * 8) + j);
1159 if (index < 64 && EXTRACT_BIT(a, i, index)) {
1160 result.u64[VBPERMD_INDEX(i)] |= (0x80 >> j);
1161 }
1162 }
1163 }
1164 *r = result;
1165}
1166
1167void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1168{
1169 int i;
1170 uint64_t perm = 0;
1171
1172 VECTOR_FOR_INORDER_I(i, u8) {
1173 int index = VBPERMQ_INDEX(b, i);
1174
1175 if (index < 128) {
1176 uint64_t mask = (1ull << (63 - (index & 0x3F)));
1177 if (a->u64[VBPERMQ_DW(index)] & mask) {
1178 perm |= (0x8000 >> i);
1179 }
1180 }
1181 }
1182
1183 r->VsrD(0) = perm;
1184 r->VsrD(1) = 0;
1185}
1186
1187#undef VBPERMQ_INDEX
1188#undef VBPERMQ_DW
1189
1190#define PMSUM(name, srcfld, trgfld, trgtyp) \
1191void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1192{ \
1193 int i, j; \
1194 trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])]; \
1195 \
1196 VECTOR_FOR_INORDER_I(i, srcfld) { \
1197 prod[i] = 0; \
1198 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1199 if (a->srcfld[i] & (1ull << j)) { \
1200 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1201 } \
1202 } \
1203 } \
1204 \
1205 VECTOR_FOR_INORDER_I(i, trgfld) { \
1206 r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1]; \
1207 } \
1208}
1209
1210PMSUM(vpmsumb, u8, u16, uint16_t)
1211PMSUM(vpmsumh, u16, u32, uint32_t)
1212PMSUM(vpmsumw, u32, u64, uint64_t)
1213
1214void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1215{
1216
1217#ifdef CONFIG_INT128
1218 int i, j;
1219 __uint128_t prod[2];
1220
1221 VECTOR_FOR_INORDER_I(i, u64) {
1222 prod[i] = 0;
1223 for (j = 0; j < 64; j++) {
1224 if (a->u64[i] & (1ull << j)) {
1225 prod[i] ^= (((__uint128_t)b->u64[i]) << j);
1226 }
1227 }
1228 }
1229
1230 r->u128 = prod[0] ^ prod[1];
1231
1232#else
1233 int i, j;
1234 ppc_avr_t prod[2];
1235
1236 VECTOR_FOR_INORDER_I(i, u64) {
1237 prod[i].VsrD(1) = prod[i].VsrD(0) = 0;
1238 for (j = 0; j < 64; j++) {
1239 if (a->u64[i] & (1ull << j)) {
1240 ppc_avr_t bshift;
1241 if (j == 0) {
1242 bshift.VsrD(0) = 0;
1243 bshift.VsrD(1) = b->u64[i];
1244 } else {
1245 bshift.VsrD(0) = b->u64[i] >> (64 - j);
1246 bshift.VsrD(1) = b->u64[i] << j;
1247 }
1248 prod[i].VsrD(1) ^= bshift.VsrD(1);
1249 prod[i].VsrD(0) ^= bshift.VsrD(0);
1250 }
1251 }
1252 }
1253
1254 r->VsrD(1) = prod[0].VsrD(1) ^ prod[1].VsrD(1);
1255 r->VsrD(0) = prod[0].VsrD(0) ^ prod[1].VsrD(0);
1256#endif
1257}
1258
1259
1260#if defined(HOST_WORDS_BIGENDIAN)
1261#define PKBIG 1
1262#else
1263#define PKBIG 0
1264#endif
1265void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1266{
1267 int i, j;
1268 ppc_avr_t result;
1269#if defined(HOST_WORDS_BIGENDIAN)
1270 const ppc_avr_t *x[2] = { a, b };
1271#else
1272 const ppc_avr_t *x[2] = { b, a };
1273#endif
1274
1275 VECTOR_FOR_INORDER_I(i, u64) {
1276 VECTOR_FOR_INORDER_I(j, u32) {
1277 uint32_t e = x[i]->u32[j];
1278
1279 result.u16[4 * i + j] = (((e >> 9) & 0xfc00) |
1280 ((e >> 6) & 0x3e0) |
1281 ((e >> 3) & 0x1f));
1282 }
1283 }
1284 *r = result;
1285}
1286
1287#define VPK(suffix, from, to, cvt, dosat) \
1288 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1289 ppc_avr_t *a, ppc_avr_t *b) \
1290 { \
1291 int i; \
1292 int sat = 0; \
1293 ppc_avr_t result; \
1294 ppc_avr_t *a0 = PKBIG ? a : b; \
1295 ppc_avr_t *a1 = PKBIG ? b : a; \
1296 \
1297 VECTOR_FOR_INORDER_I(i, from) { \
1298 result.to[i] = cvt(a0->from[i], &sat); \
1299 result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\
1300 } \
1301 *r = result; \
1302 if (dosat && sat) { \
1303 set_vscr_sat(env); \
1304 } \
1305 }
1306#define I(x, y) (x)
1307VPK(shss, s16, s8, cvtshsb, 1)
1308VPK(shus, s16, u8, cvtshub, 1)
1309VPK(swss, s32, s16, cvtswsh, 1)
1310VPK(swus, s32, u16, cvtswuh, 1)
1311VPK(sdss, s64, s32, cvtsdsw, 1)
1312VPK(sdus, s64, u32, cvtsduw, 1)
1313VPK(uhus, u16, u8, cvtuhub, 1)
1314VPK(uwus, u32, u16, cvtuwuh, 1)
1315VPK(udus, u64, u32, cvtuduw, 1)
1316VPK(uhum, u16, u8, I, 0)
1317VPK(uwum, u32, u16, I, 0)
1318VPK(udum, u64, u32, I, 0)
1319#undef I
1320#undef VPK
1321#undef PKBIG
1322
1323void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1324{
1325 int i;
1326
1327 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1328 r->f32[i] = float32_div(float32_one, b->f32[i], &env->vec_status);
1329 }
1330}
1331
1332#define VRFI(suffix, rounding) \
1333 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1334 ppc_avr_t *b) \
1335 { \
1336 int i; \
1337 float_status s = env->vec_status; \
1338 \
1339 set_float_rounding_mode(rounding, &s); \
1340 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
1341 r->f32[i] = float32_round_to_int (b->f32[i], &s); \
1342 } \
1343 }
1344VRFI(n, float_round_nearest_even)
1345VRFI(m, float_round_down)
1346VRFI(p, float_round_up)
1347VRFI(z, float_round_to_zero)
1348#undef VRFI
1349
1350#define VROTATE(suffix, element, mask) \
1351 void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1352 { \
1353 int i; \
1354 \
1355 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1356 unsigned int shift = b->element[i] & mask; \
1357 r->element[i] = (a->element[i] << shift) | \
1358 (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
1359 } \
1360 }
1361VROTATE(b, u8, 0x7)
1362VROTATE(h, u16, 0xF)
1363VROTATE(w, u32, 0x1F)
1364VROTATE(d, u64, 0x3F)
1365#undef VROTATE
1366
1367void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1368{
1369 int i;
1370
1371 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1372 float32 t = float32_sqrt(b->f32[i], &env->vec_status);
1373
1374 r->f32[i] = float32_div(float32_one, t, &env->vec_status);
1375 }
1376}
1377
1378#define VRLMI(name, size, element, insert) \
1379void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1380{ \
1381 int i; \
1382 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1383 uint##size##_t src1 = a->element[i]; \
1384 uint##size##_t src2 = b->element[i]; \
1385 uint##size##_t src3 = r->element[i]; \
1386 uint##size##_t begin, end, shift, mask, rot_val; \
1387 \
1388 shift = extract##size(src2, 0, 6); \
1389 end = extract##size(src2, 8, 6); \
1390 begin = extract##size(src2, 16, 6); \
1391 rot_val = rol##size(src1, shift); \
1392 mask = mask_u##size(begin, end); \
1393 if (insert) { \
1394 r->element[i] = (rot_val & mask) | (src3 & ~mask); \
1395 } else { \
1396 r->element[i] = (rot_val & mask); \
1397 } \
1398 } \
1399}
1400
1401VRLMI(vrldmi, 64, u64, 1);
1402VRLMI(vrlwmi, 32, u32, 1);
1403VRLMI(vrldnm, 64, u64, 0);
1404VRLMI(vrlwnm, 32, u32, 0);
1405
1406void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1407 ppc_avr_t *c)
1408{
1409 r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
1410 r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
1411}
1412
1413void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1414{
1415 int i;
1416
1417 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1418 r->f32[i] = float32_exp2(b->f32[i], &env->vec_status);
1419 }
1420}
1421
1422void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1423{
1424 int i;
1425
1426 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1427 r->f32[i] = float32_log2(b->f32[i], &env->vec_status);
1428 }
1429}
1430
1431#if defined(HOST_WORDS_BIGENDIAN)
1432#define VEXTU_X_DO(name, size, left) \
1433 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1434 { \
1435 int index; \
1436 if (left) { \
1437 index = (a & 0xf) * 8; \
1438 } else { \
1439 index = ((15 - (a & 0xf) + 1) * 8) - size; \
1440 } \
1441 return int128_getlo(int128_rshift(b->s128, index)) & \
1442 MAKE_64BIT_MASK(0, size); \
1443 }
1444#else
1445#define VEXTU_X_DO(name, size, left) \
1446 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1447 { \
1448 int index; \
1449 if (left) { \
1450 index = ((15 - (a & 0xf) + 1) * 8) - size; \
1451 } else { \
1452 index = (a & 0xf) * 8; \
1453 } \
1454 return int128_getlo(int128_rshift(b->s128, index)) & \
1455 MAKE_64BIT_MASK(0, size); \
1456 }
1457#endif
1458
1459VEXTU_X_DO(vextublx, 8, 1)
1460VEXTU_X_DO(vextuhlx, 16, 1)
1461VEXTU_X_DO(vextuwlx, 32, 1)
1462VEXTU_X_DO(vextubrx, 8, 0)
1463VEXTU_X_DO(vextuhrx, 16, 0)
1464VEXTU_X_DO(vextuwrx, 32, 0)
1465#undef VEXTU_X_DO
1466
1467void helper_vslv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1468{
1469 int i;
1470 unsigned int shift, bytes, size;
1471
1472 size = ARRAY_SIZE(r->u8);
1473 for (i = 0; i < size; i++) {
1474 shift = b->VsrB(i) & 0x7;
1475 bytes = (a->VsrB(i) << 8) +
1476 (((i + 1) < size) ? a->VsrB(i + 1) : 0);
1477 r->VsrB(i) = (bytes << shift) >> 8;
1478 }
1479}
1480
1481void helper_vsrv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1482{
1483 int i;
1484 unsigned int shift, bytes;
1485
1486
1487
1488
1489
1490
1491 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
1492 shift = b->VsrB(i) & 0x7;
1493 bytes = ((i ? a->VsrB(i - 1) : 0) << 8) + a->VsrB(i);
1494
1495 r->VsrB(i) = (bytes >> shift) & 0xFF;
1496 }
1497}
1498
1499void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
1500{
1501 int sh = shift & 0xf;
1502 int i;
1503 ppc_avr_t result;
1504
1505 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1506 int index = sh + i;
1507 if (index > 0xf) {
1508 result.VsrB(i) = b->VsrB(index - 0x10);
1509 } else {
1510 result.VsrB(i) = a->VsrB(index);
1511 }
1512 }
1513 *r = result;
1514}
1515
1516void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1517{
1518 int sh = (b->VsrB(0xf) >> 3) & 0xf;
1519
1520#if defined(HOST_WORDS_BIGENDIAN)
1521 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1522 memset(&r->u8[16 - sh], 0, sh);
1523#else
1524 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1525 memset(&r->u8[0], 0, sh);
1526#endif
1527}
1528
1529#if defined(HOST_WORDS_BIGENDIAN)
1530#define VINSERT(suffix, element) \
1531 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1532 { \
1533 memmove(&r->u8[index], &b->u8[8 - sizeof(r->element[0])], \
1534 sizeof(r->element[0])); \
1535 }
1536#else
1537#define VINSERT(suffix, element) \
1538 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1539 { \
1540 uint32_t d = (16 - index) - sizeof(r->element[0]); \
1541 memmove(&r->u8[d], &b->u8[8], sizeof(r->element[0])); \
1542 }
1543#endif
1544VINSERT(b, u8)
1545VINSERT(h, u16)
1546VINSERT(w, u32)
1547VINSERT(d, u64)
1548#undef VINSERT
1549#if defined(HOST_WORDS_BIGENDIAN)
1550#define VEXTRACT(suffix, element) \
1551 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1552 { \
1553 uint32_t es = sizeof(r->element[0]); \
1554 memmove(&r->u8[8 - es], &b->u8[index], es); \
1555 memset(&r->u8[8], 0, 8); \
1556 memset(&r->u8[0], 0, 8 - es); \
1557 }
1558#else
1559#define VEXTRACT(suffix, element) \
1560 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1561 { \
1562 uint32_t es = sizeof(r->element[0]); \
1563 uint32_t s = (16 - index) - es; \
1564 memmove(&r->u8[8], &b->u8[s], es); \
1565 memset(&r->u8[0], 0, 8); \
1566 memset(&r->u8[8 + es], 0, 8 - es); \
1567 }
1568#endif
1569VEXTRACT(ub, u8)
1570VEXTRACT(uh, u16)
1571VEXTRACT(uw, u32)
1572VEXTRACT(d, u64)
1573#undef VEXTRACT
1574
1575void helper_xxextractuw(CPUPPCState *env, ppc_vsr_t *xt,
1576 ppc_vsr_t *xb, uint32_t index)
1577{
1578 ppc_vsr_t t = { };
1579 size_t es = sizeof(uint32_t);
1580 uint32_t ext_index;
1581 int i;
1582
1583 ext_index = index;
1584 for (i = 0; i < es; i++, ext_index++) {
1585 t.VsrB(8 - es + i) = xb->VsrB(ext_index % 16);
1586 }
1587
1588 *xt = t;
1589}
1590
1591void helper_xxinsertw(CPUPPCState *env, ppc_vsr_t *xt,
1592 ppc_vsr_t *xb, uint32_t index)
1593{
1594 ppc_vsr_t t = *xt;
1595 size_t es = sizeof(uint32_t);
1596 int ins_index, i = 0;
1597
1598 ins_index = index;
1599 for (i = 0; i < es && ins_index < 16; i++, ins_index++) {
1600 t.VsrB(ins_index) = xb->VsrB(8 - es + i);
1601 }
1602
1603 *xt = t;
1604}
1605
1606#define VEXT_SIGNED(name, element, cast) \
1607void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1608{ \
1609 int i; \
1610 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1611 r->element[i] = (cast)b->element[i]; \
1612 } \
1613}
1614VEXT_SIGNED(vextsb2w, s32, int8_t)
1615VEXT_SIGNED(vextsb2d, s64, int8_t)
1616VEXT_SIGNED(vextsh2w, s32, int16_t)
1617VEXT_SIGNED(vextsh2d, s64, int16_t)
1618VEXT_SIGNED(vextsw2d, s64, int32_t)
1619#undef VEXT_SIGNED
1620
1621#define VNEG(name, element) \
1622void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1623{ \
1624 int i; \
1625 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1626 r->element[i] = -b->element[i]; \
1627 } \
1628}
1629VNEG(vnegw, s32)
1630VNEG(vnegd, s64)
1631#undef VNEG
1632
1633void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1634{
1635 int sh = (b->VsrB(0xf) >> 3) & 0xf;
1636
1637#if defined(HOST_WORDS_BIGENDIAN)
1638 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1639 memset(&r->u8[0], 0, sh);
1640#else
1641 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1642 memset(&r->u8[16 - sh], 0, sh);
1643#endif
1644}
1645
1646void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1647{
1648 int i;
1649
1650 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
1651 r->u32[i] = a->u32[i] >= b->u32[i];
1652 }
1653}
1654
1655void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1656{
1657 int64_t t;
1658 int i, upper;
1659 ppc_avr_t result;
1660 int sat = 0;
1661
1662 upper = ARRAY_SIZE(r->s32) - 1;
1663 t = (int64_t)b->VsrSW(upper);
1664 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1665 t += a->VsrSW(i);
1666 result.VsrSW(i) = 0;
1667 }
1668 result.VsrSW(upper) = cvtsdsw(t, &sat);
1669 *r = result;
1670
1671 if (sat) {
1672 set_vscr_sat(env);
1673 }
1674}
1675
1676void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1677{
1678 int i, j, upper;
1679 ppc_avr_t result;
1680 int sat = 0;
1681
1682 upper = 1;
1683 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
1684 int64_t t = (int64_t)b->VsrSW(upper + i * 2);
1685
1686 result.VsrD(i) = 0;
1687 for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
1688 t += a->VsrSW(2 * i + j);
1689 }
1690 result.VsrSW(upper + i * 2) = cvtsdsw(t, &sat);
1691 }
1692
1693 *r = result;
1694 if (sat) {
1695 set_vscr_sat(env);
1696 }
1697}
1698
1699void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1700{
1701 int i, j;
1702 int sat = 0;
1703
1704 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1705 int64_t t = (int64_t)b->s32[i];
1706
1707 for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
1708 t += a->s8[4 * i + j];
1709 }
1710 r->s32[i] = cvtsdsw(t, &sat);
1711 }
1712
1713 if (sat) {
1714 set_vscr_sat(env);
1715 }
1716}
1717
1718void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1719{
1720 int sat = 0;
1721 int i;
1722
1723 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1724 int64_t t = (int64_t)b->s32[i];
1725
1726 t += a->s16[2 * i] + a->s16[2 * i + 1];
1727 r->s32[i] = cvtsdsw(t, &sat);
1728 }
1729
1730 if (sat) {
1731 set_vscr_sat(env);
1732 }
1733}
1734
1735void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1736{
1737 int i, j;
1738 int sat = 0;
1739
1740 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
1741 uint64_t t = (uint64_t)b->u32[i];
1742
1743 for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
1744 t += a->u8[4 * i + j];
1745 }
1746 r->u32[i] = cvtuduw(t, &sat);
1747 }
1748
1749 if (sat) {
1750 set_vscr_sat(env);
1751 }
1752}
1753
1754#if defined(HOST_WORDS_BIGENDIAN)
1755#define UPKHI 1
1756#define UPKLO 0
1757#else
1758#define UPKHI 0
1759#define UPKLO 1
1760#endif
1761#define VUPKPX(suffix, hi) \
1762 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1763 { \
1764 int i; \
1765 ppc_avr_t result; \
1766 \
1767 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
1768 uint16_t e = b->u16[hi ? i : i + 4]; \
1769 uint8_t a = (e >> 15) ? 0xff : 0; \
1770 uint8_t r = (e >> 10) & 0x1f; \
1771 uint8_t g = (e >> 5) & 0x1f; \
1772 uint8_t b = e & 0x1f; \
1773 \
1774 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
1775 } \
1776 *r = result; \
1777 }
1778VUPKPX(lpx, UPKLO)
1779VUPKPX(hpx, UPKHI)
1780#undef VUPKPX
1781
1782#define VUPK(suffix, unpacked, packee, hi) \
1783 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1784 { \
1785 int i; \
1786 ppc_avr_t result; \
1787 \
1788 if (hi) { \
1789 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
1790 result.unpacked[i] = b->packee[i]; \
1791 } \
1792 } else { \
1793 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
1794 i++) { \
1795 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
1796 } \
1797 } \
1798 *r = result; \
1799 }
1800VUPK(hsb, s16, s8, UPKHI)
1801VUPK(hsh, s32, s16, UPKHI)
1802VUPK(hsw, s64, s32, UPKHI)
1803VUPK(lsb, s16, s8, UPKLO)
1804VUPK(lsh, s32, s16, UPKLO)
1805VUPK(lsw, s64, s32, UPKLO)
1806#undef VUPK
1807#undef UPKHI
1808#undef UPKLO
1809
1810#define VGENERIC_DO(name, element) \
1811 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
1812 { \
1813 int i; \
1814 \
1815 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1816 r->element[i] = name(b->element[i]); \
1817 } \
1818 }
1819
1820#define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
1821#define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
1822
1823VGENERIC_DO(clzb, u8)
1824VGENERIC_DO(clzh, u16)
1825
1826#undef clzb
1827#undef clzh
1828
1829#define ctzb(v) ((v) ? ctz32(v) : 8)
1830#define ctzh(v) ((v) ? ctz32(v) : 16)
1831#define ctzw(v) ctz32((v))
1832#define ctzd(v) ctz64((v))
1833
1834VGENERIC_DO(ctzb, u8)
1835VGENERIC_DO(ctzh, u16)
1836VGENERIC_DO(ctzw, u32)
1837VGENERIC_DO(ctzd, u64)
1838
1839#undef ctzb
1840#undef ctzh
1841#undef ctzw
1842#undef ctzd
1843
1844#define popcntb(v) ctpop8(v)
1845#define popcnth(v) ctpop16(v)
1846#define popcntw(v) ctpop32(v)
1847#define popcntd(v) ctpop64(v)
1848
1849VGENERIC_DO(popcntb, u8)
1850VGENERIC_DO(popcnth, u16)
1851VGENERIC_DO(popcntw, u32)
1852VGENERIC_DO(popcntd, u64)
1853
1854#undef popcntb
1855#undef popcnth
1856#undef popcntw
1857#undef popcntd
1858
1859#undef VGENERIC_DO
1860
1861#if defined(HOST_WORDS_BIGENDIAN)
1862#define QW_ONE { .u64 = { 0, 1 } }
1863#else
1864#define QW_ONE { .u64 = { 1, 0 } }
1865#endif
1866
1867#ifndef CONFIG_INT128
1868
1869static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a)
1870{
1871 t->u64[0] = ~a.u64[0];
1872 t->u64[1] = ~a.u64[1];
1873}
1874
1875static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b)
1876{
1877 if (a.VsrD(0) < b.VsrD(0)) {
1878 return -1;
1879 } else if (a.VsrD(0) > b.VsrD(0)) {
1880 return 1;
1881 } else if (a.VsrD(1) < b.VsrD(1)) {
1882 return -1;
1883 } else if (a.VsrD(1) > b.VsrD(1)) {
1884 return 1;
1885 } else {
1886 return 0;
1887 }
1888}
1889
1890static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
1891{
1892 t->VsrD(1) = a.VsrD(1) + b.VsrD(1);
1893 t->VsrD(0) = a.VsrD(0) + b.VsrD(0) +
1894 (~a.VsrD(1) < b.VsrD(1));
1895}
1896
1897static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
1898{
1899 ppc_avr_t not_a;
1900 t->VsrD(1) = a.VsrD(1) + b.VsrD(1);
1901 t->VsrD(0) = a.VsrD(0) + b.VsrD(0) +
1902 (~a.VsrD(1) < b.VsrD(1));
1903 avr_qw_not(¬_a, a);
1904 return avr_qw_cmpu(not_a, b) < 0;
1905}
1906
1907#endif
1908
1909void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1910{
1911#ifdef CONFIG_INT128
1912 r->u128 = a->u128 + b->u128;
1913#else
1914 avr_qw_add(r, *a, *b);
1915#endif
1916}
1917
1918void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1919{
1920#ifdef CONFIG_INT128
1921 r->u128 = a->u128 + b->u128 + (c->u128 & 1);
1922#else
1923
1924 if (c->VsrD(1) & 1) {
1925 ppc_avr_t tmp;
1926
1927 tmp.VsrD(0) = 0;
1928 tmp.VsrD(1) = c->VsrD(1) & 1;
1929 avr_qw_add(&tmp, *a, tmp);
1930 avr_qw_add(r, tmp, *b);
1931 } else {
1932 avr_qw_add(r, *a, *b);
1933 }
1934#endif
1935}
1936
1937void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1938{
1939#ifdef CONFIG_INT128
1940 r->u128 = (~a->u128 < b->u128);
1941#else
1942 ppc_avr_t not_a;
1943
1944 avr_qw_not(¬_a, *a);
1945
1946 r->VsrD(0) = 0;
1947 r->VsrD(1) = (avr_qw_cmpu(not_a, *b) < 0);
1948#endif
1949}
1950
1951void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1952{
1953#ifdef CONFIG_INT128
1954 int carry_out = (~a->u128 < b->u128);
1955 if (!carry_out && (c->u128 & 1)) {
1956 carry_out = ((a->u128 + b->u128 + 1) == 0) &&
1957 ((a->u128 != 0) || (b->u128 != 0));
1958 }
1959 r->u128 = carry_out;
1960#else
1961
1962 int carry_in = c->VsrD(1) & 1;
1963 int carry_out = 0;
1964 ppc_avr_t tmp;
1965
1966 carry_out = avr_qw_addc(&tmp, *a, *b);
1967
1968 if (!carry_out && carry_in) {
1969 ppc_avr_t one = QW_ONE;
1970 carry_out = avr_qw_addc(&tmp, tmp, one);
1971 }
1972 r->VsrD(0) = 0;
1973 r->VsrD(1) = carry_out;
1974#endif
1975}
1976
1977void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1978{
1979#ifdef CONFIG_INT128
1980 r->u128 = a->u128 - b->u128;
1981#else
1982 ppc_avr_t tmp;
1983 ppc_avr_t one = QW_ONE;
1984
1985 avr_qw_not(&tmp, *b);
1986 avr_qw_add(&tmp, *a, tmp);
1987 avr_qw_add(r, tmp, one);
1988#endif
1989}
1990
1991void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1992{
1993#ifdef CONFIG_INT128
1994 r->u128 = a->u128 + ~b->u128 + (c->u128 & 1);
1995#else
1996 ppc_avr_t tmp, sum;
1997
1998 avr_qw_not(&tmp, *b);
1999 avr_qw_add(&sum, *a, tmp);
2000
2001 tmp.VsrD(0) = 0;
2002 tmp.VsrD(1) = c->VsrD(1) & 1;
2003 avr_qw_add(r, sum, tmp);
2004#endif
2005}
2006
2007void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2008{
2009#ifdef CONFIG_INT128
2010 r->u128 = (~a->u128 < ~b->u128) ||
2011 (a->u128 + ~b->u128 == (__uint128_t)-1);
2012#else
2013 int carry = (avr_qw_cmpu(*a, *b) > 0);
2014 if (!carry) {
2015 ppc_avr_t tmp;
2016 avr_qw_not(&tmp, *b);
2017 avr_qw_add(&tmp, *a, tmp);
2018 carry = ((tmp.VsrSD(0) == -1ull) && (tmp.VsrSD(1) == -1ull));
2019 }
2020 r->VsrD(0) = 0;
2021 r->VsrD(1) = carry;
2022#endif
2023}
2024
2025void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2026{
2027#ifdef CONFIG_INT128
2028 r->u128 =
2029 (~a->u128 < ~b->u128) ||
2030 ((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1));
2031#else
2032 int carry_in = c->VsrD(1) & 1;
2033 int carry_out = (avr_qw_cmpu(*a, *b) > 0);
2034 if (!carry_out && carry_in) {
2035 ppc_avr_t tmp;
2036 avr_qw_not(&tmp, *b);
2037 avr_qw_add(&tmp, *a, tmp);
2038 carry_out = ((tmp.VsrD(0) == -1ull) && (tmp.VsrD(1) == -1ull));
2039 }
2040
2041 r->VsrD(0) = 0;
2042 r->VsrD(1) = carry_out;
2043#endif
2044}
2045
2046#define BCD_PLUS_PREF_1 0xC
2047#define BCD_PLUS_PREF_2 0xF
2048#define BCD_PLUS_ALT_1 0xA
2049#define BCD_NEG_PREF 0xD
2050#define BCD_NEG_ALT 0xB
2051#define BCD_PLUS_ALT_2 0xE
2052#define NATIONAL_PLUS 0x2B
2053#define NATIONAL_NEG 0x2D
2054
2055#define BCD_DIG_BYTE(n) (15 - ((n) / 2))
2056
2057static int bcd_get_sgn(ppc_avr_t *bcd)
2058{
2059 switch (bcd->VsrB(BCD_DIG_BYTE(0)) & 0xF) {
2060 case BCD_PLUS_PREF_1:
2061 case BCD_PLUS_PREF_2:
2062 case BCD_PLUS_ALT_1:
2063 case BCD_PLUS_ALT_2:
2064 {
2065 return 1;
2066 }
2067
2068 case BCD_NEG_PREF:
2069 case BCD_NEG_ALT:
2070 {
2071 return -1;
2072 }
2073
2074 default:
2075 {
2076 return 0;
2077 }
2078 }
2079}
2080
2081static int bcd_preferred_sgn(int sgn, int ps)
2082{
2083 if (sgn >= 0) {
2084 return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2;
2085 } else {
2086 return BCD_NEG_PREF;
2087 }
2088}
2089
2090static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid)
2091{
2092 uint8_t result;
2093 if (n & 1) {
2094 result = bcd->VsrB(BCD_DIG_BYTE(n)) >> 4;
2095 } else {
2096 result = bcd->VsrB(BCD_DIG_BYTE(n)) & 0xF;
2097 }
2098
2099 if (unlikely(result > 9)) {
2100 *invalid = true;
2101 }
2102 return result;
2103}
2104
2105static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n)
2106{
2107 if (n & 1) {
2108 bcd->VsrB(BCD_DIG_BYTE(n)) &= 0x0F;
2109 bcd->VsrB(BCD_DIG_BYTE(n)) |= (digit << 4);
2110 } else {
2111 bcd->VsrB(BCD_DIG_BYTE(n)) &= 0xF0;
2112 bcd->VsrB(BCD_DIG_BYTE(n)) |= digit;
2113 }
2114}
2115
2116static bool bcd_is_valid(ppc_avr_t *bcd)
2117{
2118 int i;
2119 int invalid = 0;
2120
2121 if (bcd_get_sgn(bcd) == 0) {
2122 return false;
2123 }
2124
2125 for (i = 1; i < 32; i++) {
2126 bcd_get_digit(bcd, i, &invalid);
2127 if (unlikely(invalid)) {
2128 return false;
2129 }
2130 }
2131 return true;
2132}
2133
2134static int bcd_cmp_zero(ppc_avr_t *bcd)
2135{
2136 if (bcd->VsrD(0) == 0 && (bcd->VsrD(1) >> 4) == 0) {
2137 return CRF_EQ;
2138 } else {
2139 return (bcd_get_sgn(bcd) == 1) ? CRF_GT : CRF_LT;
2140 }
2141}
2142
2143static uint16_t get_national_digit(ppc_avr_t *reg, int n)
2144{
2145 return reg->VsrH(7 - n);
2146}
2147
2148static void set_national_digit(ppc_avr_t *reg, uint8_t val, int n)
2149{
2150 reg->VsrH(7 - n) = val;
2151}
2152
2153static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b)
2154{
2155 int i;
2156 int invalid = 0;
2157 for (i = 31; i > 0; i--) {
2158 uint8_t dig_a = bcd_get_digit(a, i, &invalid);
2159 uint8_t dig_b = bcd_get_digit(b, i, &invalid);
2160 if (unlikely(invalid)) {
2161 return 0;
2162 } else if (dig_a > dig_b) {
2163 return 1;
2164 } else if (dig_a < dig_b) {
2165 return -1;
2166 }
2167 }
2168
2169 return 0;
2170}
2171
2172static void bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2173 int *overflow)
2174{
2175 int carry = 0;
2176 int i;
2177 for (i = 1; i <= 31; i++) {
2178 uint8_t digit = bcd_get_digit(a, i, invalid) +
2179 bcd_get_digit(b, i, invalid) + carry;
2180 if (digit > 9) {
2181 carry = 1;
2182 digit -= 10;
2183 } else {
2184 carry = 0;
2185 }
2186
2187 bcd_put_digit(t, digit, i);
2188 }
2189
2190 *overflow = carry;
2191}
2192
2193static void bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2194 int *overflow)
2195{
2196 int carry = 0;
2197 int i;
2198
2199 for (i = 1; i <= 31; i++) {
2200 uint8_t digit = bcd_get_digit(a, i, invalid) -
2201 bcd_get_digit(b, i, invalid) + carry;
2202 if (digit & 0x80) {
2203 carry = -1;
2204 digit += 10;
2205 } else {
2206 carry = 0;
2207 }
2208
2209 bcd_put_digit(t, digit, i);
2210 }
2211
2212 *overflow = carry;
2213}
2214
2215uint32_t helper_bcdadd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2216{
2217
2218 int sgna = bcd_get_sgn(a);
2219 int sgnb = bcd_get_sgn(b);
2220 int invalid = (sgna == 0) || (sgnb == 0);
2221 int overflow = 0;
2222 uint32_t cr = 0;
2223 ppc_avr_t result = { .u64 = { 0, 0 } };
2224
2225 if (!invalid) {
2226 if (sgna == sgnb) {
2227 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
2228 bcd_add_mag(&result, a, b, &invalid, &overflow);
2229 cr = bcd_cmp_zero(&result);
2230 } else {
2231 int magnitude = bcd_cmp_mag(a, b);
2232 if (magnitude > 0) {
2233 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
2234 bcd_sub_mag(&result, a, b, &invalid, &overflow);
2235 cr = (sgna > 0) ? CRF_GT : CRF_LT;
2236 } else if (magnitude < 0) {
2237 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgnb, ps);
2238 bcd_sub_mag(&result, b, a, &invalid, &overflow);
2239 cr = (sgnb > 0) ? CRF_GT : CRF_LT;
2240 } else {
2241 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(0, ps);
2242 cr = CRF_EQ;
2243 }
2244 }
2245 }
2246
2247 if (unlikely(invalid)) {
2248 result.VsrD(0) = result.VsrD(1) = -1;
2249 cr = CRF_SO;
2250 } else if (overflow) {
2251 cr |= CRF_SO;
2252 }
2253
2254 *r = result;
2255
2256 return cr;
2257}
2258
2259uint32_t helper_bcdsub(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2260{
2261 ppc_avr_t bcopy = *b;
2262 int sgnb = bcd_get_sgn(b);
2263 if (sgnb < 0) {
2264 bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0);
2265 } else if (sgnb > 0) {
2266 bcd_put_digit(&bcopy, BCD_NEG_PREF, 0);
2267 }
2268
2269
2270 return helper_bcdadd(r, a, &bcopy, ps);
2271}
2272
2273uint32_t helper_bcdcfn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2274{
2275 int i;
2276 int cr = 0;
2277 uint16_t national = 0;
2278 uint16_t sgnb = get_national_digit(b, 0);
2279 ppc_avr_t ret = { .u64 = { 0, 0 } };
2280 int invalid = (sgnb != NATIONAL_PLUS && sgnb != NATIONAL_NEG);
2281
2282 for (i = 1; i < 8; i++) {
2283 national = get_national_digit(b, i);
2284 if (unlikely(national < 0x30 || national > 0x39)) {
2285 invalid = 1;
2286 break;
2287 }
2288
2289 bcd_put_digit(&ret, national & 0xf, i);
2290 }
2291
2292 if (sgnb == NATIONAL_PLUS) {
2293 bcd_put_digit(&ret, (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2, 0);
2294 } else {
2295 bcd_put_digit(&ret, BCD_NEG_PREF, 0);
2296 }
2297
2298 cr = bcd_cmp_zero(&ret);
2299
2300 if (unlikely(invalid)) {
2301 cr = CRF_SO;
2302 }
2303
2304 *r = ret;
2305
2306 return cr;
2307}
2308
2309uint32_t helper_bcdctn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2310{
2311 int i;
2312 int cr = 0;
2313 int sgnb = bcd_get_sgn(b);
2314 int invalid = (sgnb == 0);
2315 ppc_avr_t ret = { .u64 = { 0, 0 } };
2316
2317 int ox_flag = (b->VsrD(0) != 0) || ((b->VsrD(1) >> 32) != 0);
2318
2319 for (i = 1; i < 8; i++) {
2320 set_national_digit(&ret, 0x30 + bcd_get_digit(b, i, &invalid), i);
2321
2322 if (unlikely(invalid)) {
2323 break;
2324 }
2325 }
2326 set_national_digit(&ret, (sgnb == -1) ? NATIONAL_NEG : NATIONAL_PLUS, 0);
2327
2328 cr = bcd_cmp_zero(b);
2329
2330 if (ox_flag) {
2331 cr |= CRF_SO;
2332 }
2333
2334 if (unlikely(invalid)) {
2335 cr = CRF_SO;
2336 }
2337
2338 *r = ret;
2339
2340 return cr;
2341}
2342
2343uint32_t helper_bcdcfz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2344{
2345 int i;
2346 int cr = 0;
2347 int invalid = 0;
2348 int zone_digit = 0;
2349 int zone_lead = ps ? 0xF : 0x3;
2350 int digit = 0;
2351 ppc_avr_t ret = { .u64 = { 0, 0 } };
2352 int sgnb = b->VsrB(BCD_DIG_BYTE(0)) >> 4;
2353
2354 if (unlikely((sgnb < 0xA) && ps)) {
2355 invalid = 1;
2356 }
2357
2358 for (i = 0; i < 16; i++) {
2359 zone_digit = i ? b->VsrB(BCD_DIG_BYTE(i * 2)) >> 4 : zone_lead;
2360 digit = b->VsrB(BCD_DIG_BYTE(i * 2)) & 0xF;
2361 if (unlikely(zone_digit != zone_lead || digit > 0x9)) {
2362 invalid = 1;
2363 break;
2364 }
2365
2366 bcd_put_digit(&ret, digit, i + 1);
2367 }
2368
2369 if ((ps && (sgnb == 0xB || sgnb == 0xD)) ||
2370 (!ps && (sgnb & 0x4))) {
2371 bcd_put_digit(&ret, BCD_NEG_PREF, 0);
2372 } else {
2373 bcd_put_digit(&ret, BCD_PLUS_PREF_1, 0);
2374 }
2375
2376 cr = bcd_cmp_zero(&ret);
2377
2378 if (unlikely(invalid)) {
2379 cr = CRF_SO;
2380 }
2381
2382 *r = ret;
2383
2384 return cr;
2385}
2386
2387uint32_t helper_bcdctz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2388{
2389 int i;
2390 int cr = 0;
2391 uint8_t digit = 0;
2392 int sgnb = bcd_get_sgn(b);
2393 int zone_lead = (ps) ? 0xF0 : 0x30;
2394 int invalid = (sgnb == 0);
2395 ppc_avr_t ret = { .u64 = { 0, 0 } };
2396
2397 int ox_flag = ((b->VsrD(0) >> 4) != 0);
2398
2399 for (i = 0; i < 16; i++) {
2400 digit = bcd_get_digit(b, i + 1, &invalid);
2401
2402 if (unlikely(invalid)) {
2403 break;
2404 }
2405
2406 ret.VsrB(BCD_DIG_BYTE(i * 2)) = zone_lead + digit;
2407 }
2408
2409 if (ps) {
2410 bcd_put_digit(&ret, (sgnb == 1) ? 0xC : 0xD, 1);
2411 } else {
2412 bcd_put_digit(&ret, (sgnb == 1) ? 0x3 : 0x7, 1);
2413 }
2414
2415 cr = bcd_cmp_zero(b);
2416
2417 if (ox_flag) {
2418 cr |= CRF_SO;
2419 }
2420
2421 if (unlikely(invalid)) {
2422 cr = CRF_SO;
2423 }
2424
2425 *r = ret;
2426
2427 return cr;
2428}
2429
2430uint32_t helper_bcdcfsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2431{
2432 int i;
2433 int cr = 0;
2434 uint64_t lo_value;
2435 uint64_t hi_value;
2436 ppc_avr_t ret = { .u64 = { 0, 0 } };
2437
2438 if (b->VsrSD(0) < 0) {
2439 lo_value = -b->VsrSD(1);
2440 hi_value = ~b->VsrD(0) + !lo_value;
2441 bcd_put_digit(&ret, 0xD, 0);
2442 } else {
2443 lo_value = b->VsrD(1);
2444 hi_value = b->VsrD(0);
2445 bcd_put_digit(&ret, bcd_preferred_sgn(0, ps), 0);
2446 }
2447
2448 if (divu128(&lo_value, &hi_value, 1000000000000000ULL) ||
2449 lo_value > 9999999999999999ULL) {
2450 cr = CRF_SO;
2451 }
2452
2453 for (i = 1; i < 16; hi_value /= 10, i++) {
2454 bcd_put_digit(&ret, hi_value % 10, i);
2455 }
2456
2457 for (; i < 32; lo_value /= 10, i++) {
2458 bcd_put_digit(&ret, lo_value % 10, i);
2459 }
2460
2461 cr |= bcd_cmp_zero(&ret);
2462
2463 *r = ret;
2464
2465 return cr;
2466}
2467
2468uint32_t helper_bcdctsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2469{
2470 uint8_t i;
2471 int cr;
2472 uint64_t carry;
2473 uint64_t unused;
2474 uint64_t lo_value;
2475 uint64_t hi_value = 0;
2476 int sgnb = bcd_get_sgn(b);
2477 int invalid = (sgnb == 0);
2478
2479 lo_value = bcd_get_digit(b, 31, &invalid);
2480 for (i = 30; i > 0; i--) {
2481 mulu64(&lo_value, &carry, lo_value, 10ULL);
2482 mulu64(&hi_value, &unused, hi_value, 10ULL);
2483 lo_value += bcd_get_digit(b, i, &invalid);
2484 hi_value += carry;
2485
2486 if (unlikely(invalid)) {
2487 break;
2488 }
2489 }
2490
2491 if (sgnb == -1) {
2492 r->VsrSD(1) = -lo_value;
2493 r->VsrSD(0) = ~hi_value + !r->VsrSD(1);
2494 } else {
2495 r->VsrSD(1) = lo_value;
2496 r->VsrSD(0) = hi_value;
2497 }
2498
2499 cr = bcd_cmp_zero(b);
2500
2501 if (unlikely(invalid)) {
2502 cr = CRF_SO;
2503 }
2504
2505 return cr;
2506}
2507
2508uint32_t helper_bcdcpsgn(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2509{
2510 int i;
2511 int invalid = 0;
2512
2513 if (bcd_get_sgn(a) == 0 || bcd_get_sgn(b) == 0) {
2514 return CRF_SO;
2515 }
2516
2517 *r = *a;
2518 bcd_put_digit(r, b->VsrB(BCD_DIG_BYTE(0)) & 0xF, 0);
2519
2520 for (i = 1; i < 32; i++) {
2521 bcd_get_digit(a, i, &invalid);
2522 bcd_get_digit(b, i, &invalid);
2523 if (unlikely(invalid)) {
2524 return CRF_SO;
2525 }
2526 }
2527
2528 return bcd_cmp_zero(r);
2529}
2530
2531uint32_t helper_bcdsetsgn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2532{
2533 int sgnb = bcd_get_sgn(b);
2534
2535 *r = *b;
2536 bcd_put_digit(r, bcd_preferred_sgn(sgnb, ps), 0);
2537
2538 if (bcd_is_valid(b) == false) {
2539 return CRF_SO;
2540 }
2541
2542 return bcd_cmp_zero(r);
2543}
2544
2545uint32_t helper_bcds(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2546{
2547 int cr;
2548 int i = a->VsrSB(7);
2549 bool ox_flag = false;
2550 int sgnb = bcd_get_sgn(b);
2551 ppc_avr_t ret = *b;
2552 ret.VsrD(1) &= ~0xf;
2553
2554 if (bcd_is_valid(b) == false) {
2555 return CRF_SO;
2556 }
2557
2558 if (unlikely(i > 31)) {
2559 i = 31;
2560 } else if (unlikely(i < -31)) {
2561 i = -31;
2562 }
2563
2564 if (i > 0) {
2565 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2566 } else {
2567 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2568 }
2569 bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
2570
2571 *r = ret;
2572
2573 cr = bcd_cmp_zero(r);
2574 if (ox_flag) {
2575 cr |= CRF_SO;
2576 }
2577
2578 return cr;
2579}
2580
2581uint32_t helper_bcdus(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2582{
2583 int cr;
2584 int i;
2585 int invalid = 0;
2586 bool ox_flag = false;
2587 ppc_avr_t ret = *b;
2588
2589 for (i = 0; i < 32; i++) {
2590 bcd_get_digit(b, i, &invalid);
2591
2592 if (unlikely(invalid)) {
2593 return CRF_SO;
2594 }
2595 }
2596
2597 i = a->VsrSB(7);
2598 if (i >= 32) {
2599 ox_flag = true;
2600 ret.VsrD(1) = ret.VsrD(0) = 0;
2601 } else if (i <= -32) {
2602 ret.VsrD(1) = ret.VsrD(0) = 0;
2603 } else if (i > 0) {
2604 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2605 } else {
2606 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2607 }
2608 *r = ret;
2609
2610 cr = bcd_cmp_zero(r);
2611 if (ox_flag) {
2612 cr |= CRF_SO;
2613 }
2614
2615 return cr;
2616}
2617
2618uint32_t helper_bcdsr(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2619{
2620 int cr;
2621 int unused = 0;
2622 int invalid = 0;
2623 bool ox_flag = false;
2624 int sgnb = bcd_get_sgn(b);
2625 ppc_avr_t ret = *b;
2626 ret.VsrD(1) &= ~0xf;
2627
2628 int i = a->VsrSB(7);
2629 ppc_avr_t bcd_one;
2630
2631 bcd_one.VsrD(0) = 0;
2632 bcd_one.VsrD(1) = 0x10;
2633
2634 if (bcd_is_valid(b) == false) {
2635 return CRF_SO;
2636 }
2637
2638 if (unlikely(i > 31)) {
2639 i = 31;
2640 } else if (unlikely(i < -31)) {
2641 i = -31;
2642 }
2643
2644 if (i > 0) {
2645 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2646 } else {
2647 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2648
2649 if (bcd_get_digit(&ret, 0, &invalid) >= 5) {
2650 bcd_add_mag(&ret, &ret, &bcd_one, &invalid, &unused);
2651 }
2652 }
2653 bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
2654
2655 cr = bcd_cmp_zero(&ret);
2656 if (ox_flag) {
2657 cr |= CRF_SO;
2658 }
2659 *r = ret;
2660
2661 return cr;
2662}
2663
2664uint32_t helper_bcdtrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2665{
2666 uint64_t mask;
2667 uint32_t ox_flag = 0;
2668 int i = a->VsrSH(3) + 1;
2669 ppc_avr_t ret = *b;
2670
2671 if (bcd_is_valid(b) == false) {
2672 return CRF_SO;
2673 }
2674
2675 if (i > 16 && i < 32) {
2676 mask = (uint64_t)-1 >> (128 - i * 4);
2677 if (ret.VsrD(0) & ~mask) {
2678 ox_flag = CRF_SO;
2679 }
2680
2681 ret.VsrD(0) &= mask;
2682 } else if (i >= 0 && i <= 16) {
2683 mask = (uint64_t)-1 >> (64 - i * 4);
2684 if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
2685 ox_flag = CRF_SO;
2686 }
2687
2688 ret.VsrD(1) &= mask;
2689 ret.VsrD(0) = 0;
2690 }
2691 bcd_put_digit(&ret, bcd_preferred_sgn(bcd_get_sgn(b), ps), 0);
2692 *r = ret;
2693
2694 return bcd_cmp_zero(&ret) | ox_flag;
2695}
2696
2697uint32_t helper_bcdutrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2698{
2699 int i;
2700 uint64_t mask;
2701 uint32_t ox_flag = 0;
2702 int invalid = 0;
2703 ppc_avr_t ret = *b;
2704
2705 for (i = 0; i < 32; i++) {
2706 bcd_get_digit(b, i, &invalid);
2707
2708 if (unlikely(invalid)) {
2709 return CRF_SO;
2710 }
2711 }
2712
2713 i = a->VsrSH(3);
2714 if (i > 16 && i < 33) {
2715 mask = (uint64_t)-1 >> (128 - i * 4);
2716 if (ret.VsrD(0) & ~mask) {
2717 ox_flag = CRF_SO;
2718 }
2719
2720 ret.VsrD(0) &= mask;
2721 } else if (i > 0 && i <= 16) {
2722 mask = (uint64_t)-1 >> (64 - i * 4);
2723 if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
2724 ox_flag = CRF_SO;
2725 }
2726
2727 ret.VsrD(1) &= mask;
2728 ret.VsrD(0) = 0;
2729 } else if (i == 0) {
2730 if (ret.VsrD(0) || ret.VsrD(1)) {
2731 ox_flag = CRF_SO;
2732 }
2733 ret.VsrD(0) = ret.VsrD(1) = 0;
2734 }
2735
2736 *r = ret;
2737 if (r->VsrD(0) == 0 && r->VsrD(1) == 0) {
2738 return ox_flag | CRF_EQ;
2739 }
2740
2741 return ox_flag | CRF_GT;
2742}
2743
2744void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a)
2745{
2746 int i;
2747 VECTOR_FOR_INORDER_I(i, u8) {
2748 r->u8[i] = AES_sbox[a->u8[i]];
2749 }
2750}
2751
2752void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2753{
2754 ppc_avr_t result;
2755 int i;
2756
2757 VECTOR_FOR_INORDER_I(i, u32) {
2758 result.VsrW(i) = b->VsrW(i) ^
2759 (AES_Te0[a->VsrB(AES_shifts[4 * i + 0])] ^
2760 AES_Te1[a->VsrB(AES_shifts[4 * i + 1])] ^
2761 AES_Te2[a->VsrB(AES_shifts[4 * i + 2])] ^
2762 AES_Te3[a->VsrB(AES_shifts[4 * i + 3])]);
2763 }
2764 *r = result;
2765}
2766
2767void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2768{
2769 ppc_avr_t result;
2770 int i;
2771
2772 VECTOR_FOR_INORDER_I(i, u8) {
2773 result.VsrB(i) = b->VsrB(i) ^ (AES_sbox[a->VsrB(AES_shifts[i])]);
2774 }
2775 *r = result;
2776}
2777
2778void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2779{
2780
2781
2782 int i;
2783 ppc_avr_t tmp;
2784
2785 VECTOR_FOR_INORDER_I(i, u8) {
2786 tmp.VsrB(i) = b->VsrB(i) ^ AES_isbox[a->VsrB(AES_ishifts[i])];
2787 }
2788
2789 VECTOR_FOR_INORDER_I(i, u32) {
2790 r->VsrW(i) =
2791 AES_imc[tmp.VsrB(4 * i + 0)][0] ^
2792 AES_imc[tmp.VsrB(4 * i + 1)][1] ^
2793 AES_imc[tmp.VsrB(4 * i + 2)][2] ^
2794 AES_imc[tmp.VsrB(4 * i + 3)][3];
2795 }
2796}
2797
2798void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2799{
2800 ppc_avr_t result;
2801 int i;
2802
2803 VECTOR_FOR_INORDER_I(i, u8) {
2804 result.VsrB(i) = b->VsrB(i) ^ (AES_isbox[a->VsrB(AES_ishifts[i])]);
2805 }
2806 *r = result;
2807}
2808
2809void helper_vshasigmaw(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
2810{
2811 int st = (st_six & 0x10) != 0;
2812 int six = st_six & 0xF;
2813 int i;
2814
2815 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2816 if (st == 0) {
2817 if ((six & (0x8 >> i)) == 0) {
2818 r->VsrW(i) = ror32(a->VsrW(i), 7) ^
2819 ror32(a->VsrW(i), 18) ^
2820 (a->VsrW(i) >> 3);
2821 } else {
2822 r->VsrW(i) = ror32(a->VsrW(i), 17) ^
2823 ror32(a->VsrW(i), 19) ^
2824 (a->VsrW(i) >> 10);
2825 }
2826 } else {
2827 if ((six & (0x8 >> i)) == 0) {
2828 r->VsrW(i) = ror32(a->VsrW(i), 2) ^
2829 ror32(a->VsrW(i), 13) ^
2830 ror32(a->VsrW(i), 22);
2831 } else {
2832 r->VsrW(i) = ror32(a->VsrW(i), 6) ^
2833 ror32(a->VsrW(i), 11) ^
2834 ror32(a->VsrW(i), 25);
2835 }
2836 }
2837 }
2838}
2839
2840void helper_vshasigmad(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
2841{
2842 int st = (st_six & 0x10) != 0;
2843 int six = st_six & 0xF;
2844 int i;
2845
2846 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
2847 if (st == 0) {
2848 if ((six & (0x8 >> (2 * i))) == 0) {
2849 r->VsrD(i) = ror64(a->VsrD(i), 1) ^
2850 ror64(a->VsrD(i), 8) ^
2851 (a->VsrD(i) >> 7);
2852 } else {
2853 r->VsrD(i) = ror64(a->VsrD(i), 19) ^
2854 ror64(a->VsrD(i), 61) ^
2855 (a->VsrD(i) >> 6);
2856 }
2857 } else {
2858 if ((six & (0x8 >> (2 * i))) == 0) {
2859 r->VsrD(i) = ror64(a->VsrD(i), 28) ^
2860 ror64(a->VsrD(i), 34) ^
2861 ror64(a->VsrD(i), 39);
2862 } else {
2863 r->VsrD(i) = ror64(a->VsrD(i), 14) ^
2864 ror64(a->VsrD(i), 18) ^
2865 ror64(a->VsrD(i), 41);
2866 }
2867 }
2868 }
2869}
2870
2871void helper_vpermxor(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2872{
2873 ppc_avr_t result;
2874 int i;
2875
2876 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2877 int indexA = c->VsrB(i) >> 4;
2878 int indexB = c->VsrB(i) & 0xF;
2879
2880 result.VsrB(i) = a->VsrB(indexA) ^ b->VsrB(indexB);
2881 }
2882 *r = result;
2883}
2884
2885#undef VECTOR_FOR_INORDER_I
2886
2887
2888
2889
2890static const uint8_t hbrev[16] = {
2891 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2892 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2893};
2894
2895static inline uint8_t byte_reverse(uint8_t val)
2896{
2897 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2898}
2899
2900static inline uint32_t word_reverse(uint32_t val)
2901{
2902 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2903 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2904}
2905
2906#define MASKBITS 16
2907target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
2908{
2909 uint32_t a, b, d, mask;
2910
2911 mask = UINT32_MAX >> (32 - MASKBITS);
2912 a = arg1 & mask;
2913 b = arg2 & mask;
2914 d = word_reverse(1 + word_reverse(a | ~b));
2915 return (arg1 & ~mask) | (d & b);
2916}
2917
2918uint32_t helper_cntlsw32(uint32_t val)
2919{
2920 if (val & 0x80000000) {
2921 return clz32(~val);
2922 } else {
2923 return clz32(val);
2924 }
2925}
2926
2927uint32_t helper_cntlzw32(uint32_t val)
2928{
2929 return clz32(val);
2930}
2931
2932
2933target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high,
2934 target_ulong low, uint32_t update_Rc)
2935{
2936 target_ulong mask;
2937 int i;
2938
2939 i = 1;
2940 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
2941 if ((high & mask) == 0) {
2942 if (update_Rc) {
2943 env->crf[0] = 0x4;
2944 }
2945 goto done;
2946 }
2947 i++;
2948 }
2949 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
2950 if ((low & mask) == 0) {
2951 if (update_Rc) {
2952 env->crf[0] = 0x8;
2953 }
2954 goto done;
2955 }
2956 i++;
2957 }
2958 i = 8;
2959 if (update_Rc) {
2960 env->crf[0] = 0x2;
2961 }
2962 done:
2963 env->xer = (env->xer & ~0x7F) | i;
2964 if (update_Rc) {
2965 env->crf[0] |= xer_so;
2966 }
2967 return i;
2968}
2969