qemu/linux-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4#include "hostdep.h"
   5#include "cpu.h"
   6#include "exec/exec-all.h"
   7#include "exec/cpu_ldst.h"
   8
   9#undef DEBUG_REMAP
  10#ifdef DEBUG_REMAP
  11#endif /* DEBUG_REMAP */
  12
  13#include "exec/user/abitypes.h"
  14
  15#include "exec/user/thunk.h"
  16#include "syscall_defs.h"
  17#include "target_syscall.h"
  18#include "exec/gdbstub.h"
  19
  20/* This is the size of the host kernel's sigset_t, needed where we make
  21 * direct system calls that take a sigset_t pointer and a size.
  22 */
  23#define SIGSET_T_SIZE (_NSIG / 8)
  24
  25/* This struct is used to hold certain information about the image.
  26 * Basically, it replicates in user space what would be certain
  27 * task_struct fields in the kernel
  28 */
  29struct image_info {
  30        abi_ulong       load_bias;
  31        abi_ulong       load_addr;
  32        abi_ulong       start_code;
  33        abi_ulong       end_code;
  34        abi_ulong       start_data;
  35        abi_ulong       end_data;
  36        abi_ulong       start_brk;
  37        abi_ulong       brk;
  38        abi_ulong       reserve_brk;
  39        abi_ulong       start_mmap;
  40        abi_ulong       start_stack;
  41        abi_ulong       stack_limit;
  42        abi_ulong       entry;
  43        abi_ulong       code_offset;
  44        abi_ulong       data_offset;
  45        abi_ulong       saved_auxv;
  46        abi_ulong       auxv_len;
  47        abi_ulong       arg_start;
  48        abi_ulong       arg_end;
  49        abi_ulong       arg_strings;
  50        abi_ulong       env_strings;
  51        abi_ulong       file_string;
  52        uint32_t        elf_flags;
  53        int             personality;
  54        abi_ulong       alignment;
  55
  56        /* The fields below are used in FDPIC mode.  */
  57        abi_ulong       loadmap_addr;
  58        uint16_t        nsegs;
  59        void           *loadsegs;
  60        abi_ulong       pt_dynamic_addr;
  61        abi_ulong       interpreter_loadmap_addr;
  62        abi_ulong       interpreter_pt_dynamic_addr;
  63        struct image_info *other_info;
  64#ifdef TARGET_MIPS
  65        int             fp_abi;
  66        int             interp_fp_abi;
  67#endif
  68};
  69
  70#ifdef TARGET_I386
  71/* Information about the current linux thread */
  72struct vm86_saved_state {
  73    uint32_t eax; /* return code */
  74    uint32_t ebx;
  75    uint32_t ecx;
  76    uint32_t edx;
  77    uint32_t esi;
  78    uint32_t edi;
  79    uint32_t ebp;
  80    uint32_t esp;
  81    uint32_t eflags;
  82    uint32_t eip;
  83    uint16_t cs, ss, ds, es, fs, gs;
  84};
  85#endif
  86
  87#if defined(TARGET_ARM) && defined(TARGET_ABI32)
  88/* FPU emulator */
  89#include "nwfpe/fpa11.h"
  90#endif
  91
  92#define MAX_SIGQUEUE_SIZE 1024
  93
  94struct emulated_sigtable {
  95    int pending; /* true if signal is pending */
  96    target_siginfo_t info;
  97};
  98
  99/* NOTE: we force a big alignment so that the stack stored after is
 100   aligned too */
 101typedef struct TaskState {
 102    pid_t ts_tid;     /* tid (or pid) of this task */
 103#ifdef TARGET_ARM
 104# ifdef TARGET_ABI32
 105    /* FPA state */
 106    FPA11 fpa;
 107# endif
 108    int swi_errno;
 109#endif
 110#if defined(TARGET_I386) && !defined(TARGET_X86_64)
 111    abi_ulong target_v86;
 112    struct vm86_saved_state vm86_saved_regs;
 113    struct target_vm86plus_struct vm86plus;
 114    uint32_t v86flags;
 115    uint32_t v86mask;
 116#endif
 117    abi_ulong child_tidptr;
 118#ifdef TARGET_M68K
 119    abi_ulong tp_value;
 120#endif
 121#if defined(TARGET_ARM) || defined(TARGET_M68K)
 122    /* Extra fields for semihosted binaries.  */
 123    abi_ulong heap_base;
 124    abi_ulong heap_limit;
 125#endif
 126    abi_ulong stack_base;
 127    int used; /* non zero if used */
 128    struct image_info *info;
 129    struct linux_binprm *bprm;
 130
 131    struct emulated_sigtable sync_signal;
 132    struct emulated_sigtable sigtab[TARGET_NSIG];
 133    /* This thread's signal mask, as requested by the guest program.
 134     * The actual signal mask of this thread may differ:
 135     *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
 136     *  + sometimes we block all signals to avoid races
 137     */
 138    sigset_t signal_mask;
 139    /* The signal mask imposed by a guest sigsuspend syscall, if we are
 140     * currently in the middle of such a syscall
 141     */
 142    sigset_t sigsuspend_mask;
 143    /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
 144    int in_sigsuspend;
 145
 146    /* Nonzero if process_pending_signals() needs to do something (either
 147     * handle a pending signal or unblock signals).
 148     * This flag is written from a signal handler so should be accessed via
 149     * the atomic_read() and atomic_set() functions. (It is not accessed
 150     * from multiple threads.)
 151     */
 152    int signal_pending;
 153
 154    /* This thread's sigaltstack, if it has one */
 155    struct target_sigaltstack sigaltstack_used;
 156} __attribute__((aligned(16))) TaskState;
 157
 158extern char *exec_path;
 159void init_task_state(TaskState *ts);
 160void task_settid(TaskState *);
 161void stop_all_tasks(void);
 162extern const char *qemu_uname_release;
 163extern unsigned long mmap_min_addr;
 164
 165/* ??? See if we can avoid exposing so much of the loader internals.  */
 166
 167/* Read a good amount of data initially, to hopefully get all the
 168   program headers loaded.  */
 169#define BPRM_BUF_SIZE  1024
 170
 171/*
 172 * This structure is used to hold the arguments that are
 173 * used when loading binaries.
 174 */
 175struct linux_binprm {
 176        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 177        abi_ulong p;
 178        int fd;
 179        int e_uid, e_gid;
 180        int argc, envc;
 181        char **argv;
 182        char **envp;
 183        char * filename;        /* Name of binary */
 184        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 185};
 186
 187typedef struct IOCTLEntry IOCTLEntry;
 188
 189typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
 190                             int fd, int cmd, abi_long arg);
 191
 192struct IOCTLEntry {
 193    int target_cmd;
 194    unsigned int host_cmd;
 195    const char *name;
 196    int access;
 197    do_ioctl_fn *do_ioctl;
 198    const argtype arg_type[5];
 199};
 200
 201extern IOCTLEntry ioctl_entries[];
 202
 203#define IOC_R 0x0001
 204#define IOC_W 0x0002
 205#define IOC_RW (IOC_R | IOC_W)
 206
 207void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 208abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 209                              abi_ulong stringp, int push_ptr);
 210int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 211             struct target_pt_regs * regs, struct image_info *infop,
 212             struct linux_binprm *);
 213
 214/* Returns true if the image uses the FDPIC ABI. If this is the case,
 215 * we have to provide some information (loadmap, pt_dynamic_info) such
 216 * that the program can be relocated adequately. This is also useful
 217 * when handling signals.
 218 */
 219int info_is_fdpic(struct image_info *info);
 220
 221uint32_t get_elf_eflags(int fd);
 222int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 223int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 224
 225abi_long memcpy_to_target(abi_ulong dest, const void *src,
 226                          unsigned long len);
 227void target_set_brk(abi_ulong new_brk);
 228abi_long do_brk(abi_ulong new_brk);
 229void syscall_init(void);
 230abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 231                    abi_long arg2, abi_long arg3, abi_long arg4,
 232                    abi_long arg5, abi_long arg6, abi_long arg7,
 233                    abi_long arg8);
 234extern __thread CPUState *thread_cpu;
 235void cpu_loop(CPUArchState *env);
 236const char *target_strerror(int err);
 237int get_osversion(void);
 238void init_qemu_uname_release(void);
 239void fork_start(void);
 240void fork_end(int child);
 241
 242/**
 243 * probe_guest_base:
 244 * @image_name: the executable being loaded
 245 * @loaddr: the lowest fixed address in the executable
 246 * @hiaddr: the highest fixed address in the executable
 247 *
 248 * Creates the initial guest address space in the host memory space.
 249 *
 250 * If @loaddr == 0, then no address in the executable is fixed,
 251 * i.e. it is fully relocatable.  In that case @hiaddr is the size
 252 * of the executable.
 253 *
 254 * This function will not return if a valid value for guest_base
 255 * cannot be chosen.  On return, the executable loader can expect
 256 *
 257 *    target_mmap(loaddr, hiaddr - loaddr, ...)
 258 *
 259 * to succeed.
 260 */
 261void probe_guest_base(const char *image_name,
 262                      abi_ulong loaddr, abi_ulong hiaddr);
 263
 264#include "qemu/log.h"
 265
 266/* safe_syscall.S */
 267
 268/**
 269 * safe_syscall:
 270 * @int number: number of system call to make
 271 * ...: arguments to the system call
 272 *
 273 * Call a system call if guest signal not pending.
 274 * This has the same API as the libc syscall() function, except that it
 275 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
 276 *
 277 * Returns: the system call result, or -1 with an error code in errno
 278 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
 279 * with any of the host errno values.)
 280 */
 281
 282/* A guide to using safe_syscall() to handle interactions between guest
 283 * syscalls and guest signals:
 284 *
 285 * Guest syscalls come in two flavours:
 286 *
 287 * (1) Non-interruptible syscalls
 288 *
 289 * These are guest syscalls that never get interrupted by signals and
 290 * so never return EINTR. They can be implemented straightforwardly in
 291 * QEMU: just make sure that if the implementation code has to make any
 292 * blocking calls that those calls are retried if they return EINTR.
 293 * It's also OK to implement these with safe_syscall, though it will be
 294 * a little less efficient if a signal is delivered at the 'wrong' moment.
 295 *
 296 * Some non-interruptible syscalls need to be handled using block_signals()
 297 * to block signals for the duration of the syscall. This mainly applies
 298 * to code which needs to modify the data structures used by the
 299 * host_signal_handler() function and the functions it calls, including
 300 * all syscalls which change the thread's signal mask.
 301 *
 302 * (2) Interruptible syscalls
 303 *
 304 * These are guest syscalls that can be interrupted by signals and
 305 * for which we need to either return EINTR or arrange for the guest
 306 * syscall to be restarted. This category includes both syscalls which
 307 * always restart (and in the kernel return -ERESTARTNOINTR), ones
 308 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
 309 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
 310 * if the handler was registered with SA_RESTART (kernel returns
 311 * -ERESTARTSYS). System calls which are only interruptible in some
 312 * situations (like 'open') also need to be handled this way.
 313 *
 314 * Here it is important that the host syscall is made
 315 * via this safe_syscall() function, and *not* via the host libc.
 316 * If the host libc is used then the implementation will appear to work
 317 * most of the time, but there will be a race condition where a
 318 * signal could arrive just before we make the host syscall inside libc,
 319 * and then then guest syscall will not correctly be interrupted.
 320 * Instead the implementation of the guest syscall can use the safe_syscall
 321 * function but otherwise just return the result or errno in the usual
 322 * way; the main loop code will take care of restarting the syscall
 323 * if appropriate.
 324 *
 325 * (If the implementation needs to make multiple host syscalls this is
 326 * OK; any which might really block must be via safe_syscall(); for those
 327 * which are only technically blocking (ie which we know in practice won't
 328 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
 329 * You must be able to cope with backing out correctly if some safe_syscall
 330 * you make in the implementation returns either -TARGET_ERESTARTSYS or
 331 * EINTR though.)
 332 *
 333 * block_signals() cannot be used for interruptible syscalls.
 334 *
 335 *
 336 * How and why the safe_syscall implementation works:
 337 *
 338 * The basic setup is that we make the host syscall via a known
 339 * section of host native assembly. If a signal occurs, our signal
 340 * handler checks the interrupted host PC against the addresse of that
 341 * known section. If the PC is before or at the address of the syscall
 342 * instruction then we change the PC to point at a "return
 343 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
 344 * (causing the safe_syscall() call to immediately return that value).
 345 * Then in the main.c loop if we see this magic return value we adjust
 346 * the guest PC to wind it back to before the system call, and invoke
 347 * the guest signal handler as usual.
 348 *
 349 * This winding-back will happen in two cases:
 350 * (1) signal came in just before we took the host syscall (a race);
 351 *   in this case we'll take the guest signal and have another go
 352 *   at the syscall afterwards, and this is indistinguishable for the
 353 *   guest from the timing having been different such that the guest
 354 *   signal really did win the race
 355 * (2) signal came in while the host syscall was blocking, and the
 356 *   host kernel decided the syscall should be restarted;
 357 *   in this case we want to restart the guest syscall also, and so
 358 *   rewinding is the right thing. (Note that "restart" semantics mean
 359 *   "first call the signal handler, then reattempt the syscall".)
 360 * The other situation to consider is when a signal came in while the
 361 * host syscall was blocking, and the host kernel decided that the syscall
 362 * should not be restarted; in this case QEMU's host signal handler will
 363 * be invoked with the PC pointing just after the syscall instruction,
 364 * with registers indicating an EINTR return; the special code in the
 365 * handler will not kick in, and we will return EINTR to the guest as
 366 * we should.
 367 *
 368 * Notice that we can leave the host kernel to make the decision for
 369 * us about whether to do a restart of the syscall or not; we do not
 370 * need to check SA_RESTART flags in QEMU or distinguish the various
 371 * kinds of restartability.
 372 */
 373#ifdef HAVE_SAFE_SYSCALL
 374/* The core part of this function is implemented in assembly */
 375extern long safe_syscall_base(int *pending, long number, ...);
 376
 377#define safe_syscall(...)                                               \
 378    ({                                                                  \
 379        long ret_;                                                      \
 380        int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
 381        ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
 382        if (is_error(ret_)) {                                           \
 383            errno = -ret_;                                              \
 384            ret_ = -1;                                                  \
 385        }                                                               \
 386        ret_;                                                           \
 387    })
 388
 389#else
 390
 391/* Fallback for architectures which don't yet provide a safe-syscall assembly
 392 * fragment; note that this is racy!
 393 * This should go away when all host architectures have been updated.
 394 */
 395#define safe_syscall syscall
 396
 397#endif
 398
 399/* syscall.c */
 400int host_to_target_waitstatus(int status);
 401
 402/* strace.c */
 403void print_syscall(int num,
 404                   abi_long arg1, abi_long arg2, abi_long arg3,
 405                   abi_long arg4, abi_long arg5, abi_long arg6);
 406void print_syscall_ret(int num, abi_long ret,
 407                       abi_long arg1, abi_long arg2, abi_long arg3,
 408                       abi_long arg4, abi_long arg5, abi_long arg6);
 409/**
 410 * print_taken_signal:
 411 * @target_signum: target signal being taken
 412 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
 413 *
 414 * Print strace output indicating that this signal is being taken by the guest,
 415 * in a format similar to:
 416 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
 417 */
 418void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
 419
 420/* signal.c */
 421void process_pending_signals(CPUArchState *cpu_env);
 422void signal_init(void);
 423int queue_signal(CPUArchState *env, int sig, int si_type,
 424                 target_siginfo_t *info);
 425void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 426void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 427int target_to_host_signal(int sig);
 428int host_to_target_signal(int sig);
 429long do_sigreturn(CPUArchState *env);
 430long do_rt_sigreturn(CPUArchState *env);
 431abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 432int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 433abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
 434                        abi_ulong unew_ctx, abi_long ctx_size);
 435/**
 436 * block_signals: block all signals while handling this guest syscall
 437 *
 438 * Block all signals, and arrange that the signal mask is returned to
 439 * its correct value for the guest before we resume execution of guest code.
 440 * If this function returns non-zero, then the caller should immediately
 441 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
 442 * signal and restart execution of the syscall.
 443 * If block_signals() returns zero, then the caller can continue with
 444 * emulation of the system call knowing that no signals can be taken
 445 * (and therefore that no race conditions will result).
 446 * This should only be called once, because if it is called a second time
 447 * it will always return non-zero. (Think of it like a mutex that can't
 448 * be recursively locked.)
 449 * Signals will be unblocked again by process_pending_signals().
 450 *
 451 * Return value: non-zero if there was a pending signal, zero if not.
 452 */
 453int block_signals(void); /* Returns non zero if signal pending */
 454
 455#ifdef TARGET_I386
 456/* vm86.c */
 457void save_v86_state(CPUX86State *env);
 458void handle_vm86_trap(CPUX86State *env, int trapno);
 459void handle_vm86_fault(CPUX86State *env);
 460int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 461#elif defined(TARGET_SPARC64)
 462void sparc64_set_context(CPUSPARCState *env);
 463void sparc64_get_context(CPUSPARCState *env);
 464#endif
 465
 466/* mmap.c */
 467int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 468abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 469                     int flags, int fd, abi_ulong offset);
 470int target_munmap(abi_ulong start, abi_ulong len);
 471abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 472                       abi_ulong new_size, unsigned long flags,
 473                       abi_ulong new_addr);
 474extern unsigned long last_brk;
 475extern abi_ulong mmap_next_start;
 476abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
 477void mmap_fork_start(void);
 478void mmap_fork_end(int child);
 479
 480/* main.c */
 481extern unsigned long guest_stack_size;
 482
 483/* user access */
 484
 485#define VERIFY_READ 0
 486#define VERIFY_WRITE 1 /* implies read access */
 487
 488static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 489{
 490    return guest_addr_valid(addr) &&
 491           (size == 0 || guest_addr_valid(addr + size - 1)) &&
 492           page_check_range((target_ulong)addr, size,
 493                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 494}
 495
 496/* NOTE __get_user and __put_user use host pointers and don't check access.
 497   These are usually used to access struct data members once the struct has
 498   been locked - usually with lock_user_struct.  */
 499
 500/*
 501 * Tricky points:
 502 * - Use __builtin_choose_expr to avoid type promotion from ?:,
 503 * - Invalid sizes result in a compile time error stemming from
 504 *   the fact that abort has no parameters.
 505 * - It's easier to use the endian-specific unaligned load/store
 506 *   functions than host-endian unaligned load/store plus tswapN.
 507 * - The pragmas are necessary only to silence a clang false-positive
 508 *   warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
 509 * - gcc has bugs in its _Pragma() support in some versions, eg
 510 *   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
 511 *   include the warning-suppression pragmas for clang
 512 */
 513#if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
 514#define PRAGMA_DISABLE_PACKED_WARNING                                   \
 515    _Pragma("GCC diagnostic push");                                     \
 516    _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
 517
 518#define PRAGMA_REENABLE_PACKED_WARNING          \
 519    _Pragma("GCC diagnostic pop")
 520
 521#else
 522#define PRAGMA_DISABLE_PACKED_WARNING
 523#define PRAGMA_REENABLE_PACKED_WARNING
 524#endif
 525
 526#define __put_user_e(x, hptr, e)                                            \
 527    do {                                                                    \
 528        PRAGMA_DISABLE_PACKED_WARNING;                                      \
 529        (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                 \
 530        __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,            \
 531        __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,            \
 532        __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))  \
 533            ((hptr), (x)), (void)0);                                        \
 534        PRAGMA_REENABLE_PACKED_WARNING;                                     \
 535    } while (0)
 536
 537#define __get_user_e(x, hptr, e)                                            \
 538    do {                                                                    \
 539        PRAGMA_DISABLE_PACKED_WARNING;                                      \
 540        ((x) = (typeof(*hptr))(                                             \
 541        __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                 \
 542        __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,           \
 543        __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,            \
 544        __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))  \
 545            (hptr)), (void)0);                                              \
 546        PRAGMA_REENABLE_PACKED_WARNING;                                     \
 547    } while (0)
 548
 549
 550#ifdef TARGET_WORDS_BIGENDIAN
 551# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 552# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 553#else
 554# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 555# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 556#endif
 557
 558/* put_user()/get_user() take a guest address and check access */
 559/* These are usually used to access an atomic data type, such as an int,
 560 * that has been passed by address.  These internally perform locking
 561 * and unlocking on the data type.
 562 */
 563#define put_user(x, gaddr, target_type)                                 \
 564({                                                                      \
 565    abi_ulong __gaddr = (gaddr);                                        \
 566    target_type *__hptr;                                                \
 567    abi_long __ret = 0;                                                 \
 568    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 569        __put_user((x), __hptr);                                \
 570        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 571    } else                                                              \
 572        __ret = -TARGET_EFAULT;                                         \
 573    __ret;                                                              \
 574})
 575
 576#define get_user(x, gaddr, target_type)                                 \
 577({                                                                      \
 578    abi_ulong __gaddr = (gaddr);                                        \
 579    target_type *__hptr;                                                \
 580    abi_long __ret = 0;                                                 \
 581    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 582        __get_user((x), __hptr);                                \
 583        unlock_user(__hptr, __gaddr, 0);                                \
 584    } else {                                                            \
 585        /* avoid warning */                                             \
 586        (x) = 0;                                                        \
 587        __ret = -TARGET_EFAULT;                                         \
 588    }                                                                   \
 589    __ret;                                                              \
 590})
 591
 592#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 593#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 594#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 595#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 596#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 597#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 598#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 599#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 600#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 601#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 602
 603#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 604#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 605#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 606#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 607#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 608#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 609#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 610#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 611#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 612#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 613
 614/* copy_from_user() and copy_to_user() are usually used to copy data
 615 * buffers between the target and host.  These internally perform
 616 * locking/unlocking of the memory.
 617 */
 618abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 619abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 620
 621/* Functions for accessing guest memory.  The tget and tput functions
 622   read/write single values, byteswapping as necessary.  The lock_user function
 623   gets a pointer to a contiguous area of guest memory, but does not perform
 624   any byteswapping.  lock_user may return either a pointer to the guest
 625   memory, or a temporary buffer.  */
 626
 627/* Lock an area of guest memory into the host.  If copy is true then the
 628   host area will have the same contents as the guest.  */
 629static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 630{
 631    if (!access_ok(type, guest_addr, len))
 632        return NULL;
 633#ifdef DEBUG_REMAP
 634    {
 635        void *addr;
 636        addr = g_malloc(len);
 637        if (copy)
 638            memcpy(addr, g2h(guest_addr), len);
 639        else
 640            memset(addr, 0, len);
 641        return addr;
 642    }
 643#else
 644    return g2h(guest_addr);
 645#endif
 646}
 647
 648/* Unlock an area of guest memory.  The first LEN bytes must be
 649   flushed back to guest memory. host_ptr = NULL is explicitly
 650   allowed and does nothing. */
 651static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 652                               long len)
 653{
 654
 655#ifdef DEBUG_REMAP
 656    if (!host_ptr)
 657        return;
 658    if (host_ptr == g2h(guest_addr))
 659        return;
 660    if (len > 0)
 661        memcpy(g2h(guest_addr), host_ptr, len);
 662    g_free(host_ptr);
 663#endif
 664}
 665
 666/* Return the length of a string in target memory or -TARGET_EFAULT if
 667   access error. */
 668abi_long target_strlen(abi_ulong gaddr);
 669
 670/* Like lock_user but for null terminated strings.  */
 671static inline void *lock_user_string(abi_ulong guest_addr)
 672{
 673    abi_long len;
 674    len = target_strlen(guest_addr);
 675    if (len < 0)
 676        return NULL;
 677    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 678}
 679
 680/* Helper macros for locking/unlocking a target struct.  */
 681#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 682    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 683#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 684    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 685
 686#include <pthread.h>
 687
 688static inline int is_error(abi_long ret)
 689{
 690    return (abi_ulong)ret >= (abi_ulong)(-4096);
 691}
 692
 693#if TARGET_ABI_BITS == 32
 694static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
 695{
 696#ifdef TARGET_WORDS_BIGENDIAN
 697    return ((uint64_t)word0 << 32) | word1;
 698#else
 699    return ((uint64_t)word1 << 32) | word0;
 700#endif
 701}
 702#else /* TARGET_ABI_BITS == 32 */
 703static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
 704{
 705    return word0;
 706}
 707#endif /* TARGET_ABI_BITS != 32 */
 708
 709/**
 710 * preexit_cleanup: housekeeping before the guest exits
 711 *
 712 * env: the CPU state
 713 * code: the exit code
 714 */
 715void preexit_cleanup(CPUArchState *env, int code);
 716
 717/* Include target-specific struct and function definitions;
 718 * they may need access to the target-independent structures
 719 * above, so include them last.
 720 */
 721#include "target_cpu.h"
 722#include "target_structs.h"
 723
 724#endif /* QEMU_H */
 725