qemu/hw/arm/boot.c
<<
>>
Prefs
   1/*
   2 * ARM kernel loader.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu-common.h"
  12#include "qemu/error-report.h"
  13#include "qapi/error.h"
  14#include <libfdt.h>
  15#include "hw/arm/boot.h"
  16#include "hw/arm/linux-boot-if.h"
  17#include "sysemu/kvm.h"
  18#include "sysemu/sysemu.h"
  19#include "sysemu/numa.h"
  20#include "hw/boards.h"
  21#include "sysemu/reset.h"
  22#include "hw/loader.h"
  23#include "elf.h"
  24#include "sysemu/device_tree.h"
  25#include "qemu/config-file.h"
  26#include "qemu/option.h"
  27#include "exec/address-spaces.h"
  28#include "qemu/units.h"
  29
  30/* Kernel boot protocol is specified in the kernel docs
  31 * Documentation/arm/Booting and Documentation/arm64/booting.txt
  32 * They have different preferred image load offsets from system RAM base.
  33 */
  34#define KERNEL_ARGS_ADDR   0x100
  35#define KERNEL_NOLOAD_ADDR 0x02000000
  36#define KERNEL_LOAD_ADDR   0x00010000
  37#define KERNEL64_LOAD_ADDR 0x00080000
  38
  39#define ARM64_TEXT_OFFSET_OFFSET    8
  40#define ARM64_MAGIC_OFFSET          56
  41
  42#define BOOTLOADER_MAX_SIZE         (4 * KiB)
  43
  44AddressSpace *arm_boot_address_space(ARMCPU *cpu,
  45                                     const struct arm_boot_info *info)
  46{
  47    /* Return the address space to use for bootloader reads and writes.
  48     * We prefer the secure address space if the CPU has it and we're
  49     * going to boot the guest into it.
  50     */
  51    int asidx;
  52    CPUState *cs = CPU(cpu);
  53
  54    if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
  55        asidx = ARMASIdx_S;
  56    } else {
  57        asidx = ARMASIdx_NS;
  58    }
  59
  60    return cpu_get_address_space(cs, asidx);
  61}
  62
  63typedef enum {
  64    FIXUP_NONE = 0,     /* do nothing */
  65    FIXUP_TERMINATOR,   /* end of insns */
  66    FIXUP_BOARDID,      /* overwrite with board ID number */
  67    FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
  68    FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
  69    FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
  70    FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
  71    FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
  72    FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
  73    FIXUP_BOOTREG,      /* overwrite with boot register address */
  74    FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
  75    FIXUP_MAX,
  76} FixupType;
  77
  78typedef struct ARMInsnFixup {
  79    uint32_t insn;
  80    FixupType fixup;
  81} ARMInsnFixup;
  82
  83static const ARMInsnFixup bootloader_aarch64[] = {
  84    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
  85    { 0xaa1f03e1 }, /* mov x1, xzr */
  86    { 0xaa1f03e2 }, /* mov x2, xzr */
  87    { 0xaa1f03e3 }, /* mov x3, xzr */
  88    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
  89    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
  90    { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
  91    { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
  92    { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
  93    { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
  94    { 0, FIXUP_TERMINATOR }
  95};
  96
  97/* A very small bootloader: call the board-setup code (if needed),
  98 * set r0-r2, then jump to the kernel.
  99 * If we're not calling boot setup code then we don't copy across
 100 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
 101 */
 102
 103static const ARMInsnFixup bootloader[] = {
 104    { 0xe28fe004 }, /* add     lr, pc, #4 */
 105    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
 106    { 0, FIXUP_BOARD_SETUP },
 107#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
 108    { 0xe3a00000 }, /* mov     r0, #0 */
 109    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
 110    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
 111    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
 112    { 0, FIXUP_BOARDID },
 113    { 0, FIXUP_ARGPTR_LO },
 114    { 0, FIXUP_ENTRYPOINT_LO },
 115    { 0, FIXUP_TERMINATOR }
 116};
 117
 118/* Handling for secondary CPU boot in a multicore system.
 119 * Unlike the uniprocessor/primary CPU boot, this is platform
 120 * dependent. The default code here is based on the secondary
 121 * CPU boot protocol used on realview/vexpress boards, with
 122 * some parameterisation to increase its flexibility.
 123 * QEMU platform models for which this code is not appropriate
 124 * should override write_secondary_boot and secondary_cpu_reset_hook
 125 * instead.
 126 *
 127 * This code enables the interrupt controllers for the secondary
 128 * CPUs and then puts all the secondary CPUs into a loop waiting
 129 * for an interprocessor interrupt and polling a configurable
 130 * location for the kernel secondary CPU entry point.
 131 */
 132#define DSB_INSN 0xf57ff04f
 133#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 134
 135static const ARMInsnFixup smpboot[] = {
 136    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 137    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 138    { 0xe3a01001 }, /* mov r1, #1 */
 139    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 140    { 0xe3a010ff }, /* mov r1, #0xff */
 141    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 142    { 0, FIXUP_DSB },   /* dsb */
 143    { 0xe320f003 }, /* wfi */
 144    { 0xe5901000 }, /* ldr     r1, [r0] */
 145    { 0xe1110001 }, /* tst     r1, r1 */
 146    { 0x0afffffb }, /* beq     <wfi> */
 147    { 0xe12fff11 }, /* bx      r1 */
 148    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 149    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 150    { 0, FIXUP_TERMINATOR }
 151};
 152
 153static void write_bootloader(const char *name, hwaddr addr,
 154                             const ARMInsnFixup *insns, uint32_t *fixupcontext,
 155                             AddressSpace *as)
 156{
 157    /* Fix up the specified bootloader fragment and write it into
 158     * guest memory using rom_add_blob_fixed(). fixupcontext is
 159     * an array giving the values to write in for the fixup types
 160     * which write a value into the code array.
 161     */
 162    int i, len;
 163    uint32_t *code;
 164
 165    len = 0;
 166    while (insns[len].fixup != FIXUP_TERMINATOR) {
 167        len++;
 168    }
 169
 170    code = g_new0(uint32_t, len);
 171
 172    for (i = 0; i < len; i++) {
 173        uint32_t insn = insns[i].insn;
 174        FixupType fixup = insns[i].fixup;
 175
 176        switch (fixup) {
 177        case FIXUP_NONE:
 178            break;
 179        case FIXUP_BOARDID:
 180        case FIXUP_BOARD_SETUP:
 181        case FIXUP_ARGPTR_LO:
 182        case FIXUP_ARGPTR_HI:
 183        case FIXUP_ENTRYPOINT_LO:
 184        case FIXUP_ENTRYPOINT_HI:
 185        case FIXUP_GIC_CPU_IF:
 186        case FIXUP_BOOTREG:
 187        case FIXUP_DSB:
 188            insn = fixupcontext[fixup];
 189            break;
 190        default:
 191            abort();
 192        }
 193        code[i] = tswap32(insn);
 194    }
 195
 196    assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
 197
 198    rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
 199
 200    g_free(code);
 201}
 202
 203static void default_write_secondary(ARMCPU *cpu,
 204                                    const struct arm_boot_info *info)
 205{
 206    uint32_t fixupcontext[FIXUP_MAX];
 207    AddressSpace *as = arm_boot_address_space(cpu, info);
 208
 209    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 210    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 211    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 212        fixupcontext[FIXUP_DSB] = DSB_INSN;
 213    } else {
 214        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 215    }
 216
 217    write_bootloader("smpboot", info->smp_loader_start,
 218                     smpboot, fixupcontext, as);
 219}
 220
 221void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 222                                            const struct arm_boot_info *info,
 223                                            hwaddr mvbar_addr)
 224{
 225    AddressSpace *as = arm_boot_address_space(cpu, info);
 226    int n;
 227    uint32_t mvbar_blob[] = {
 228        /* mvbar_addr: secure monitor vectors
 229         * Default unimplemented and unused vectors to spin. Makes it
 230         * easier to debug (as opposed to the CPU running away).
 231         */
 232        0xeafffffe, /* (spin) */
 233        0xeafffffe, /* (spin) */
 234        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 235        0xeafffffe, /* (spin) */
 236        0xeafffffe, /* (spin) */
 237        0xeafffffe, /* (spin) */
 238        0xeafffffe, /* (spin) */
 239        0xeafffffe, /* (spin) */
 240    };
 241    uint32_t board_setup_blob[] = {
 242        /* board setup addr */
 243        0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
 244        0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
 245        0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
 246        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 247        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 248        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 249        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 250        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 251        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 252        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 253        0xe1a0f001, /* mov     pc, r1                 ;return */
 254    };
 255
 256    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 257    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 258
 259    /* check that these blobs don't overlap */
 260    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 261          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 262
 263    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 264        mvbar_blob[n] = tswap32(mvbar_blob[n]);
 265    }
 266    rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 267                          mvbar_addr, as);
 268
 269    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 270        board_setup_blob[n] = tswap32(board_setup_blob[n]);
 271    }
 272    rom_add_blob_fixed_as("board-setup", board_setup_blob,
 273                          sizeof(board_setup_blob), info->board_setup_addr, as);
 274}
 275
 276static void default_reset_secondary(ARMCPU *cpu,
 277                                    const struct arm_boot_info *info)
 278{
 279    AddressSpace *as = arm_boot_address_space(cpu, info);
 280    CPUState *cs = CPU(cpu);
 281
 282    address_space_stl_notdirty(as, info->smp_bootreg_addr,
 283                               0, MEMTXATTRS_UNSPECIFIED, NULL);
 284    cpu_set_pc(cs, info->smp_loader_start);
 285}
 286
 287static inline bool have_dtb(const struct arm_boot_info *info)
 288{
 289    return info->dtb_filename || info->get_dtb;
 290}
 291
 292#define WRITE_WORD(p, value) do { \
 293    address_space_stl_notdirty(as, p, value, \
 294                               MEMTXATTRS_UNSPECIFIED, NULL);  \
 295    p += 4;                       \
 296} while (0)
 297
 298static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
 299{
 300    int initrd_size = info->initrd_size;
 301    hwaddr base = info->loader_start;
 302    hwaddr p;
 303
 304    p = base + KERNEL_ARGS_ADDR;
 305    /* ATAG_CORE */
 306    WRITE_WORD(p, 5);
 307    WRITE_WORD(p, 0x54410001);
 308    WRITE_WORD(p, 1);
 309    WRITE_WORD(p, 0x1000);
 310    WRITE_WORD(p, 0);
 311    /* ATAG_MEM */
 312    /* TODO: handle multiple chips on one ATAG list */
 313    WRITE_WORD(p, 4);
 314    WRITE_WORD(p, 0x54410002);
 315    WRITE_WORD(p, info->ram_size);
 316    WRITE_WORD(p, info->loader_start);
 317    if (initrd_size) {
 318        /* ATAG_INITRD2 */
 319        WRITE_WORD(p, 4);
 320        WRITE_WORD(p, 0x54420005);
 321        WRITE_WORD(p, info->initrd_start);
 322        WRITE_WORD(p, initrd_size);
 323    }
 324    if (info->kernel_cmdline && *info->kernel_cmdline) {
 325        /* ATAG_CMDLINE */
 326        int cmdline_size;
 327
 328        cmdline_size = strlen(info->kernel_cmdline);
 329        address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
 330                            info->kernel_cmdline, cmdline_size + 1);
 331        cmdline_size = (cmdline_size >> 2) + 1;
 332        WRITE_WORD(p, cmdline_size + 2);
 333        WRITE_WORD(p, 0x54410009);
 334        p += cmdline_size * 4;
 335    }
 336    if (info->atag_board) {
 337        /* ATAG_BOARD */
 338        int atag_board_len;
 339        uint8_t atag_board_buf[0x1000];
 340
 341        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 342        WRITE_WORD(p, (atag_board_len + 8) >> 2);
 343        WRITE_WORD(p, 0x414f4d50);
 344        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 345                            atag_board_buf, atag_board_len);
 346        p += atag_board_len;
 347    }
 348    /* ATAG_END */
 349    WRITE_WORD(p, 0);
 350    WRITE_WORD(p, 0);
 351}
 352
 353static void set_kernel_args_old(const struct arm_boot_info *info,
 354                                AddressSpace *as)
 355{
 356    hwaddr p;
 357    const char *s;
 358    int initrd_size = info->initrd_size;
 359    hwaddr base = info->loader_start;
 360
 361    /* see linux/include/asm-arm/setup.h */
 362    p = base + KERNEL_ARGS_ADDR;
 363    /* page_size */
 364    WRITE_WORD(p, 4096);
 365    /* nr_pages */
 366    WRITE_WORD(p, info->ram_size / 4096);
 367    /* ramdisk_size */
 368    WRITE_WORD(p, 0);
 369#define FLAG_READONLY   1
 370#define FLAG_RDLOAD     4
 371#define FLAG_RDPROMPT   8
 372    /* flags */
 373    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 374    /* rootdev */
 375    WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
 376    /* video_num_cols */
 377    WRITE_WORD(p, 0);
 378    /* video_num_rows */
 379    WRITE_WORD(p, 0);
 380    /* video_x */
 381    WRITE_WORD(p, 0);
 382    /* video_y */
 383    WRITE_WORD(p, 0);
 384    /* memc_control_reg */
 385    WRITE_WORD(p, 0);
 386    /* unsigned char sounddefault */
 387    /* unsigned char adfsdrives */
 388    /* unsigned char bytes_per_char_h */
 389    /* unsigned char bytes_per_char_v */
 390    WRITE_WORD(p, 0);
 391    /* pages_in_bank[4] */
 392    WRITE_WORD(p, 0);
 393    WRITE_WORD(p, 0);
 394    WRITE_WORD(p, 0);
 395    WRITE_WORD(p, 0);
 396    /* pages_in_vram */
 397    WRITE_WORD(p, 0);
 398    /* initrd_start */
 399    if (initrd_size) {
 400        WRITE_WORD(p, info->initrd_start);
 401    } else {
 402        WRITE_WORD(p, 0);
 403    }
 404    /* initrd_size */
 405    WRITE_WORD(p, initrd_size);
 406    /* rd_start */
 407    WRITE_WORD(p, 0);
 408    /* system_rev */
 409    WRITE_WORD(p, 0);
 410    /* system_serial_low */
 411    WRITE_WORD(p, 0);
 412    /* system_serial_high */
 413    WRITE_WORD(p, 0);
 414    /* mem_fclk_21285 */
 415    WRITE_WORD(p, 0);
 416    /* zero unused fields */
 417    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 418        WRITE_WORD(p, 0);
 419    }
 420    s = info->kernel_cmdline;
 421    if (s) {
 422        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
 423    } else {
 424        WRITE_WORD(p, 0);
 425    }
 426}
 427
 428static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
 429                               uint32_t scells, hwaddr mem_len,
 430                               int numa_node_id)
 431{
 432    char *nodename;
 433    int ret;
 434
 435    nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 436    qemu_fdt_add_subnode(fdt, nodename);
 437    qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 438    ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
 439                                       scells, mem_len);
 440    if (ret < 0) {
 441        goto out;
 442    }
 443
 444    /* only set the NUMA ID if it is specified */
 445    if (numa_node_id >= 0) {
 446        ret = qemu_fdt_setprop_cell(fdt, nodename,
 447                                    "numa-node-id", numa_node_id);
 448    }
 449out:
 450    g_free(nodename);
 451    return ret;
 452}
 453
 454static void fdt_add_psci_node(void *fdt)
 455{
 456    uint32_t cpu_suspend_fn;
 457    uint32_t cpu_off_fn;
 458    uint32_t cpu_on_fn;
 459    uint32_t migrate_fn;
 460    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 461    const char *psci_method;
 462    int64_t psci_conduit;
 463    int rc;
 464
 465    psci_conduit = object_property_get_int(OBJECT(armcpu),
 466                                           "psci-conduit",
 467                                           &error_abort);
 468    switch (psci_conduit) {
 469    case QEMU_PSCI_CONDUIT_DISABLED:
 470        return;
 471    case QEMU_PSCI_CONDUIT_HVC:
 472        psci_method = "hvc";
 473        break;
 474    case QEMU_PSCI_CONDUIT_SMC:
 475        psci_method = "smc";
 476        break;
 477    default:
 478        g_assert_not_reached();
 479    }
 480
 481    /*
 482     * If /psci node is present in provided DTB, assume that no fixup
 483     * is necessary and all PSCI configuration should be taken as-is
 484     */
 485    rc = fdt_path_offset(fdt, "/psci");
 486    if (rc >= 0) {
 487        return;
 488    }
 489
 490    qemu_fdt_add_subnode(fdt, "/psci");
 491    if (armcpu->psci_version == 2) {
 492        const char comp[] = "arm,psci-0.2\0arm,psci";
 493        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 494
 495        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 496        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 497            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 498            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 499            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 500        } else {
 501            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 502            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 503            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 504        }
 505    } else {
 506        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 507
 508        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 509        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 510        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 511        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 512    }
 513
 514    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 515     * to the instruction that should be used to invoke PSCI functions.
 516     * However, the device tree binding uses 'method' instead, so that is
 517     * what we should use here.
 518     */
 519    qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 520
 521    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 522    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 523    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 524    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 525}
 526
 527int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 528                 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
 529{
 530    void *fdt = NULL;
 531    int size, rc, n = 0;
 532    uint32_t acells, scells;
 533    unsigned int i;
 534    hwaddr mem_base, mem_len;
 535    char **node_path;
 536    Error *err = NULL;
 537
 538    if (binfo->dtb_filename) {
 539        char *filename;
 540        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 541        if (!filename) {
 542            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 543            goto fail;
 544        }
 545
 546        fdt = load_device_tree(filename, &size);
 547        if (!fdt) {
 548            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 549            g_free(filename);
 550            goto fail;
 551        }
 552        g_free(filename);
 553    } else {
 554        fdt = binfo->get_dtb(binfo, &size);
 555        if (!fdt) {
 556            fprintf(stderr, "Board was unable to create a dtb blob\n");
 557            goto fail;
 558        }
 559    }
 560
 561    if (addr_limit > addr && size > (addr_limit - addr)) {
 562        /* Installing the device tree blob at addr would exceed addr_limit.
 563         * Whether this constitutes failure is up to the caller to decide,
 564         * so just return 0 as size, i.e., no error.
 565         */
 566        g_free(fdt);
 567        return 0;
 568    }
 569
 570    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 571                                   NULL, &error_fatal);
 572    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 573                                   NULL, &error_fatal);
 574    if (acells == 0 || scells == 0) {
 575        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 576        goto fail;
 577    }
 578
 579    if (scells < 2 && binfo->ram_size >= 4 * GiB) {
 580        /* This is user error so deserves a friendlier error message
 581         * than the failure of setprop_sized_cells would provide
 582         */
 583        fprintf(stderr, "qemu: dtb file not compatible with "
 584                "RAM size > 4GB\n");
 585        goto fail;
 586    }
 587
 588    /* nop all root nodes matching /memory or /memory@unit-address */
 589    node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
 590    if (err) {
 591        error_report_err(err);
 592        goto fail;
 593    }
 594    while (node_path[n]) {
 595        if (g_str_has_prefix(node_path[n], "/memory")) {
 596            qemu_fdt_nop_node(fdt, node_path[n]);
 597        }
 598        n++;
 599    }
 600    g_strfreev(node_path);
 601
 602    if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
 603        mem_base = binfo->loader_start;
 604        for (i = 0; i < ms->numa_state->num_nodes; i++) {
 605            mem_len = ms->numa_state->nodes[i].node_mem;
 606            rc = fdt_add_memory_node(fdt, acells, mem_base,
 607                                     scells, mem_len, i);
 608            if (rc < 0) {
 609                fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 610                        mem_base);
 611                goto fail;
 612            }
 613
 614            mem_base += mem_len;
 615        }
 616    } else {
 617        rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
 618                                 scells, binfo->ram_size, -1);
 619        if (rc < 0) {
 620            fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 621                    binfo->loader_start);
 622            goto fail;
 623        }
 624    }
 625
 626    rc = fdt_path_offset(fdt, "/chosen");
 627    if (rc < 0) {
 628        qemu_fdt_add_subnode(fdt, "/chosen");
 629    }
 630
 631    if (ms->kernel_cmdline && *ms->kernel_cmdline) {
 632        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 633                                     ms->kernel_cmdline);
 634        if (rc < 0) {
 635            fprintf(stderr, "couldn't set /chosen/bootargs\n");
 636            goto fail;
 637        }
 638    }
 639
 640    if (binfo->initrd_size) {
 641        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
 642                                   binfo->initrd_start);
 643        if (rc < 0) {
 644            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 645            goto fail;
 646        }
 647
 648        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 649                                   binfo->initrd_start + binfo->initrd_size);
 650        if (rc < 0) {
 651            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 652            goto fail;
 653        }
 654    }
 655
 656    fdt_add_psci_node(fdt);
 657
 658    if (binfo->modify_dtb) {
 659        binfo->modify_dtb(binfo, fdt);
 660    }
 661
 662    qemu_fdt_dumpdtb(fdt, size);
 663
 664    /* Put the DTB into the memory map as a ROM image: this will ensure
 665     * the DTB is copied again upon reset, even if addr points into RAM.
 666     */
 667    rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
 668
 669    g_free(fdt);
 670
 671    return size;
 672
 673fail:
 674    g_free(fdt);
 675    return -1;
 676}
 677
 678static void do_cpu_reset(void *opaque)
 679{
 680    ARMCPU *cpu = opaque;
 681    CPUState *cs = CPU(cpu);
 682    CPUARMState *env = &cpu->env;
 683    const struct arm_boot_info *info = env->boot_info;
 684
 685    cpu_reset(cs);
 686    if (info) {
 687        if (!info->is_linux) {
 688            int i;
 689            /* Jump to the entry point.  */
 690            uint64_t entry = info->entry;
 691
 692            switch (info->endianness) {
 693            case ARM_ENDIANNESS_LE:
 694                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 695                for (i = 1; i < 4; ++i) {
 696                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 697                }
 698                env->uncached_cpsr &= ~CPSR_E;
 699                break;
 700            case ARM_ENDIANNESS_BE8:
 701                env->cp15.sctlr_el[1] |= SCTLR_E0E;
 702                for (i = 1; i < 4; ++i) {
 703                    env->cp15.sctlr_el[i] |= SCTLR_EE;
 704                }
 705                env->uncached_cpsr |= CPSR_E;
 706                break;
 707            case ARM_ENDIANNESS_BE32:
 708                env->cp15.sctlr_el[1] |= SCTLR_B;
 709                break;
 710            case ARM_ENDIANNESS_UNKNOWN:
 711                break; /* Board's decision */
 712            default:
 713                g_assert_not_reached();
 714            }
 715
 716            cpu_set_pc(cs, entry);
 717        } else {
 718            /* If we are booting Linux then we need to check whether we are
 719             * booting into secure or non-secure state and adjust the state
 720             * accordingly.  Out of reset, ARM is defined to be in secure state
 721             * (SCR.NS = 0), we change that here if non-secure boot has been
 722             * requested.
 723             */
 724            if (arm_feature(env, ARM_FEATURE_EL3)) {
 725                /* AArch64 is defined to come out of reset into EL3 if enabled.
 726                 * If we are booting Linux then we need to adjust our EL as
 727                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 728                 * SVC, which Linux expects, so no privilege/exception level to
 729                 * adjust.
 730                 */
 731                if (env->aarch64) {
 732                    env->cp15.scr_el3 |= SCR_RW;
 733                    if (arm_feature(env, ARM_FEATURE_EL2)) {
 734                        env->cp15.hcr_el2 |= HCR_RW;
 735                        env->pstate = PSTATE_MODE_EL2h;
 736                    } else {
 737                        env->pstate = PSTATE_MODE_EL1h;
 738                    }
 739                    if (cpu_isar_feature(aa64_pauth, cpu)) {
 740                        env->cp15.scr_el3 |= SCR_API | SCR_APK;
 741                    }
 742                    if (cpu_isar_feature(aa64_mte, cpu)) {
 743                        env->cp15.scr_el3 |= SCR_ATA;
 744                    }
 745                    if (cpu_isar_feature(aa64_sve, cpu)) {
 746                        env->cp15.cptr_el[3] |= CPTR_EZ;
 747                    }
 748                    /* AArch64 kernels never boot in secure mode */
 749                    assert(!info->secure_boot);
 750                    /* This hook is only supported for AArch32 currently:
 751                     * bootloader_aarch64[] will not call the hook, and
 752                     * the code above has already dropped us into EL2 or EL1.
 753                     */
 754                    assert(!info->secure_board_setup);
 755                }
 756
 757                if (arm_feature(env, ARM_FEATURE_EL2)) {
 758                    /* If we have EL2 then Linux expects the HVC insn to work */
 759                    env->cp15.scr_el3 |= SCR_HCE;
 760                }
 761
 762                /* Set to non-secure if not a secure boot */
 763                if (!info->secure_boot &&
 764                    (cs != first_cpu || !info->secure_board_setup)) {
 765                    /* Linux expects non-secure state */
 766                    env->cp15.scr_el3 |= SCR_NS;
 767                    /* Set NSACR.{CP11,CP10} so NS can access the FPU */
 768                    env->cp15.nsacr |= 3 << 10;
 769                }
 770            }
 771
 772            if (!env->aarch64 && !info->secure_boot &&
 773                arm_feature(env, ARM_FEATURE_EL2)) {
 774                /*
 775                 * This is an AArch32 boot not to Secure state, and
 776                 * we have Hyp mode available, so boot the kernel into
 777                 * Hyp mode. This is not how the CPU comes out of reset,
 778                 * so we need to manually put it there.
 779                 */
 780                cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
 781            }
 782
 783            if (cs == first_cpu) {
 784                AddressSpace *as = arm_boot_address_space(cpu, info);
 785
 786                cpu_set_pc(cs, info->loader_start);
 787
 788                if (!have_dtb(info)) {
 789                    if (old_param) {
 790                        set_kernel_args_old(info, as);
 791                    } else {
 792                        set_kernel_args(info, as);
 793                    }
 794                }
 795            } else {
 796                info->secondary_cpu_reset_hook(cpu, info);
 797            }
 798        }
 799        arm_rebuild_hflags(env);
 800    }
 801}
 802
 803/**
 804 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
 805 *                          by key.
 806 * @fw_cfg:         The firmware config instance to store the data in.
 807 * @size_key:       The firmware config key to store the size of the loaded
 808 *                  data under, with fw_cfg_add_i32().
 809 * @data_key:       The firmware config key to store the loaded data under,
 810 *                  with fw_cfg_add_bytes().
 811 * @image_name:     The name of the image file to load. If it is NULL, the
 812 *                  function returns without doing anything.
 813 * @try_decompress: Whether the image should be decompressed (gunzipped) before
 814 *                  adding it to fw_cfg. If decompression fails, the image is
 815 *                  loaded as-is.
 816 *
 817 * In case of failure, the function prints an error message to stderr and the
 818 * process exits with status 1.
 819 */
 820static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
 821                                 uint16_t data_key, const char *image_name,
 822                                 bool try_decompress)
 823{
 824    size_t size = -1;
 825    uint8_t *data;
 826
 827    if (image_name == NULL) {
 828        return;
 829    }
 830
 831    if (try_decompress) {
 832        size = load_image_gzipped_buffer(image_name,
 833                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
 834    }
 835
 836    if (size == (size_t)-1) {
 837        gchar *contents;
 838        gsize length;
 839
 840        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
 841            error_report("failed to load \"%s\"", image_name);
 842            exit(1);
 843        }
 844        size = length;
 845        data = (uint8_t *)contents;
 846    }
 847
 848    fw_cfg_add_i32(fw_cfg, size_key, size);
 849    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
 850}
 851
 852static int do_arm_linux_init(Object *obj, void *opaque)
 853{
 854    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 855        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 856        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 857        struct arm_boot_info *info = opaque;
 858
 859        if (albifc->arm_linux_init) {
 860            albifc->arm_linux_init(albif, info->secure_boot);
 861        }
 862    }
 863    return 0;
 864}
 865
 866static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 867                            uint64_t *lowaddr, uint64_t *highaddr,
 868                            int elf_machine, AddressSpace *as)
 869{
 870    bool elf_is64;
 871    union {
 872        Elf32_Ehdr h32;
 873        Elf64_Ehdr h64;
 874    } elf_header;
 875    int data_swab = 0;
 876    bool big_endian;
 877    int64_t ret = -1;
 878    Error *err = NULL;
 879
 880
 881    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 882    if (err) {
 883        error_free(err);
 884        return ret;
 885    }
 886
 887    if (elf_is64) {
 888        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 889        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 890                                      : ARM_ENDIANNESS_LE;
 891    } else {
 892        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 893        if (big_endian) {
 894            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 895                info->endianness = ARM_ENDIANNESS_BE8;
 896            } else {
 897                info->endianness = ARM_ENDIANNESS_BE32;
 898                /* In BE32, the CPU has a different view of the per-byte
 899                 * address map than the rest of the system. BE32 ELF files
 900                 * are organised such that they can be programmed through
 901                 * the CPU's per-word byte-reversed view of the world. QEMU
 902                 * however loads ELF files independently of the CPU. So
 903                 * tell the ELF loader to byte reverse the data for us.
 904                 */
 905                data_swab = 2;
 906            }
 907        } else {
 908            info->endianness = ARM_ENDIANNESS_LE;
 909        }
 910    }
 911
 912    ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
 913                      pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
 914                      1, data_swab, as);
 915    if (ret <= 0) {
 916        /* The header loaded but the image didn't */
 917        exit(1);
 918    }
 919
 920    return ret;
 921}
 922
 923static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
 924                                   hwaddr *entry, AddressSpace *as)
 925{
 926    hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
 927    uint64_t kernel_size = 0;
 928    uint8_t *buffer;
 929    int size;
 930
 931    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 932    size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
 933                                     &buffer);
 934
 935    if (size < 0) {
 936        gsize len;
 937
 938        /* Load as raw file otherwise */
 939        if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
 940            return -1;
 941        }
 942        size = len;
 943    }
 944
 945    /* check the arm64 magic header value -- very old kernels may not have it */
 946    if (size > ARM64_MAGIC_OFFSET + 4 &&
 947        memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
 948        uint64_t hdrvals[2];
 949
 950        /* The arm64 Image header has text_offset and image_size fields at 8 and
 951         * 16 bytes into the Image header, respectively. The text_offset field
 952         * is only valid if the image_size is non-zero.
 953         */
 954        memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
 955
 956        kernel_size = le64_to_cpu(hdrvals[1]);
 957
 958        if (kernel_size != 0) {
 959            kernel_load_offset = le64_to_cpu(hdrvals[0]);
 960
 961            /*
 962             * We write our startup "bootloader" at the very bottom of RAM,
 963             * so that bit can't be used for the image. Luckily the Image
 964             * format specification is that the image requests only an offset
 965             * from a 2MB boundary, not an absolute load address. So if the
 966             * image requests an offset that might mean it overlaps with the
 967             * bootloader, we can just load it starting at 2MB+offset rather
 968             * than 0MB + offset.
 969             */
 970            if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
 971                kernel_load_offset += 2 * MiB;
 972            }
 973        }
 974    }
 975
 976    /*
 977     * Kernels before v3.17 don't populate the image_size field, and
 978     * raw images have no header. For those our best guess at the size
 979     * is the size of the Image file itself.
 980     */
 981    if (kernel_size == 0) {
 982        kernel_size = size;
 983    }
 984
 985    *entry = mem_base + kernel_load_offset;
 986    rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
 987
 988    g_free(buffer);
 989
 990    return kernel_size;
 991}
 992
 993static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
 994                                         struct arm_boot_info *info)
 995{
 996    /* Set up for a direct boot of a kernel image file. */
 997    CPUState *cs;
 998    AddressSpace *as = arm_boot_address_space(cpu, info);
 999    int kernel_size;
1000    int initrd_size;
1001    int is_linux = 0;
1002    uint64_t elf_entry;
1003    /* Addresses of first byte used and first byte not used by the image */
1004    uint64_t image_low_addr = 0, image_high_addr = 0;
1005    int elf_machine;
1006    hwaddr entry;
1007    static const ARMInsnFixup *primary_loader;
1008    uint64_t ram_end = info->loader_start + info->ram_size;
1009
1010    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1011        primary_loader = bootloader_aarch64;
1012        elf_machine = EM_AARCH64;
1013    } else {
1014        primary_loader = bootloader;
1015        if (!info->write_board_setup) {
1016            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1017        }
1018        elf_machine = EM_ARM;
1019    }
1020
1021    if (!info->secondary_cpu_reset_hook) {
1022        info->secondary_cpu_reset_hook = default_reset_secondary;
1023    }
1024    if (!info->write_secondary_boot) {
1025        info->write_secondary_boot = default_write_secondary;
1026    }
1027
1028    if (info->nb_cpus == 0)
1029        info->nb_cpus = 1;
1030
1031    /* Assume that raw images are linux kernels, and ELF images are not.  */
1032    kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1033                               &image_high_addr, elf_machine, as);
1034    if (kernel_size > 0 && have_dtb(info)) {
1035        /*
1036         * If there is still some room left at the base of RAM, try and put
1037         * the DTB there like we do for images loaded with -bios or -pflash.
1038         */
1039        if (image_low_addr > info->loader_start
1040            || image_high_addr < info->loader_start) {
1041            /*
1042             * Set image_low_addr as address limit for arm_load_dtb if it may be
1043             * pointing into RAM, otherwise pass '0' (no limit)
1044             */
1045            if (image_low_addr < info->loader_start) {
1046                image_low_addr = 0;
1047            }
1048            info->dtb_start = info->loader_start;
1049            info->dtb_limit = image_low_addr;
1050        }
1051    }
1052    entry = elf_entry;
1053    if (kernel_size < 0) {
1054        uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1055        kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1056                                     &is_linux, NULL, NULL, as);
1057        if (kernel_size >= 0) {
1058            image_low_addr = loadaddr;
1059            image_high_addr = image_low_addr + kernel_size;
1060        }
1061    }
1062    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1063        kernel_size = load_aarch64_image(info->kernel_filename,
1064                                         info->loader_start, &entry, as);
1065        is_linux = 1;
1066        if (kernel_size >= 0) {
1067            image_low_addr = entry;
1068            image_high_addr = image_low_addr + kernel_size;
1069        }
1070    } else if (kernel_size < 0) {
1071        /* 32-bit ARM */
1072        entry = info->loader_start + KERNEL_LOAD_ADDR;
1073        kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1074                                             ram_end - KERNEL_LOAD_ADDR, as);
1075        is_linux = 1;
1076        if (kernel_size >= 0) {
1077            image_low_addr = entry;
1078            image_high_addr = image_low_addr + kernel_size;
1079        }
1080    }
1081    if (kernel_size < 0) {
1082        error_report("could not load kernel '%s'", info->kernel_filename);
1083        exit(1);
1084    }
1085
1086    if (kernel_size > info->ram_size) {
1087        error_report("kernel '%s' is too large to fit in RAM "
1088                     "(kernel size %d, RAM size %" PRId64 ")",
1089                     info->kernel_filename, kernel_size, info->ram_size);
1090        exit(1);
1091    }
1092
1093    info->entry = entry;
1094
1095    /*
1096     * We want to put the initrd far enough into RAM that when the
1097     * kernel is uncompressed it will not clobber the initrd. However
1098     * on boards without much RAM we must ensure that we still leave
1099     * enough room for a decent sized initrd, and on boards with large
1100     * amounts of RAM we must avoid the initrd being so far up in RAM
1101     * that it is outside lowmem and inaccessible to the kernel.
1102     * So for boards with less  than 256MB of RAM we put the initrd
1103     * halfway into RAM, and for boards with 256MB of RAM or more we put
1104     * the initrd at 128MB.
1105     * We also refuse to put the initrd somewhere that will definitely
1106     * overlay the kernel we just loaded, though for kernel formats which
1107     * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1108     * we might still make a bad choice here.
1109     */
1110    info->initrd_start = info->loader_start +
1111        MIN(info->ram_size / 2, 128 * MiB);
1112    if (image_high_addr) {
1113        info->initrd_start = MAX(info->initrd_start, image_high_addr);
1114    }
1115    info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1116
1117    if (is_linux) {
1118        uint32_t fixupcontext[FIXUP_MAX];
1119
1120        if (info->initrd_filename) {
1121
1122            if (info->initrd_start >= ram_end) {
1123                error_report("not enough space after kernel to load initrd");
1124                exit(1);
1125            }
1126
1127            initrd_size = load_ramdisk_as(info->initrd_filename,
1128                                          info->initrd_start,
1129                                          ram_end - info->initrd_start, as);
1130            if (initrd_size < 0) {
1131                initrd_size = load_image_targphys_as(info->initrd_filename,
1132                                                     info->initrd_start,
1133                                                     ram_end -
1134                                                     info->initrd_start,
1135                                                     as);
1136            }
1137            if (initrd_size < 0) {
1138                error_report("could not load initrd '%s'",
1139                             info->initrd_filename);
1140                exit(1);
1141            }
1142            if (info->initrd_start + initrd_size > ram_end) {
1143                error_report("could not load initrd '%s': "
1144                             "too big to fit into RAM after the kernel",
1145                             info->initrd_filename);
1146                exit(1);
1147            }
1148        } else {
1149            initrd_size = 0;
1150        }
1151        info->initrd_size = initrd_size;
1152
1153        fixupcontext[FIXUP_BOARDID] = info->board_id;
1154        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1155
1156        /*
1157         * for device tree boot, we pass the DTB directly in r2. Otherwise
1158         * we point to the kernel args.
1159         */
1160        if (have_dtb(info)) {
1161            hwaddr align;
1162
1163            if (elf_machine == EM_AARCH64) {
1164                /*
1165                 * Some AArch64 kernels on early bootup map the fdt region as
1166                 *
1167                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1168                 *
1169                 * Let's play safe and prealign it to 2MB to give us some space.
1170                 */
1171                align = 2 * MiB;
1172            } else {
1173                /*
1174                 * Some 32bit kernels will trash anything in the 4K page the
1175                 * initrd ends in, so make sure the DTB isn't caught up in that.
1176                 */
1177                align = 4 * KiB;
1178            }
1179
1180            /* Place the DTB after the initrd in memory with alignment. */
1181            info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1182                                           align);
1183            if (info->dtb_start >= ram_end) {
1184                error_report("Not enough space for DTB after kernel/initrd");
1185                exit(1);
1186            }
1187            fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1188            fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1189        } else {
1190            fixupcontext[FIXUP_ARGPTR_LO] =
1191                info->loader_start + KERNEL_ARGS_ADDR;
1192            fixupcontext[FIXUP_ARGPTR_HI] =
1193                (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1194            if (info->ram_size >= 4 * GiB) {
1195                error_report("RAM size must be less than 4GB to boot"
1196                             " Linux kernel using ATAGS (try passing a device tree"
1197                             " using -dtb)");
1198                exit(1);
1199            }
1200        }
1201        fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1202        fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1203
1204        write_bootloader("bootloader", info->loader_start,
1205                         primary_loader, fixupcontext, as);
1206
1207        if (info->nb_cpus > 1) {
1208            info->write_secondary_boot(cpu, info);
1209        }
1210        if (info->write_board_setup) {
1211            info->write_board_setup(cpu, info);
1212        }
1213
1214        /*
1215         * Notify devices which need to fake up firmware initialization
1216         * that we're doing a direct kernel boot.
1217         */
1218        object_child_foreach_recursive(object_get_root(),
1219                                       do_arm_linux_init, info);
1220    }
1221    info->is_linux = is_linux;
1222
1223    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1224        ARM_CPU(cs)->env.boot_info = info;
1225    }
1226}
1227
1228static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1229{
1230    /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1231
1232    if (have_dtb(info)) {
1233        /*
1234         * If we have a device tree blob, but no kernel to supply it to (or
1235         * the kernel is supposed to be loaded by the bootloader), copy the
1236         * DTB to the base of RAM for the bootloader to pick up.
1237         */
1238        info->dtb_start = info->loader_start;
1239    }
1240
1241    if (info->kernel_filename) {
1242        FWCfgState *fw_cfg;
1243        bool try_decompressing_kernel;
1244
1245        fw_cfg = fw_cfg_find();
1246        try_decompressing_kernel = arm_feature(&cpu->env,
1247                                               ARM_FEATURE_AARCH64);
1248
1249        /*
1250         * Expose the kernel, the command line, and the initrd in fw_cfg.
1251         * We don't process them here at all, it's all left to the
1252         * firmware.
1253         */
1254        load_image_to_fw_cfg(fw_cfg,
1255                             FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1256                             info->kernel_filename,
1257                             try_decompressing_kernel);
1258        load_image_to_fw_cfg(fw_cfg,
1259                             FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1260                             info->initrd_filename, false);
1261
1262        if (info->kernel_cmdline) {
1263            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1264                           strlen(info->kernel_cmdline) + 1);
1265            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1266                              info->kernel_cmdline);
1267        }
1268    }
1269
1270    /*
1271     * We will start from address 0 (typically a boot ROM image) in the
1272     * same way as hardware. Leave env->boot_info NULL, so that
1273     * do_cpu_reset() knows it does not need to alter the PC on reset.
1274     */
1275}
1276
1277void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1278{
1279    CPUState *cs;
1280    AddressSpace *as = arm_boot_address_space(cpu, info);
1281
1282    /*
1283     * CPU objects (unlike devices) are not automatically reset on system
1284     * reset, so we must always register a handler to do so. If we're
1285     * actually loading a kernel, the handler is also responsible for
1286     * arranging that we start it correctly.
1287     */
1288    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1289        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1290    }
1291
1292    /*
1293     * The board code is not supposed to set secure_board_setup unless
1294     * running its code in secure mode is actually possible, and KVM
1295     * doesn't support secure.
1296     */
1297    assert(!(info->secure_board_setup && kvm_enabled()));
1298    info->kernel_filename = ms->kernel_filename;
1299    info->kernel_cmdline = ms->kernel_cmdline;
1300    info->initrd_filename = ms->initrd_filename;
1301    info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1302    info->dtb_limit = 0;
1303
1304    /* Load the kernel.  */
1305    if (!info->kernel_filename || info->firmware_loaded) {
1306        arm_setup_firmware_boot(cpu, info);
1307    } else {
1308        arm_setup_direct_kernel_boot(cpu, info);
1309    }
1310
1311    if (!info->skip_dtb_autoload && have_dtb(info)) {
1312        if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1313            exit(1);
1314        }
1315    }
1316}
1317
1318static const TypeInfo arm_linux_boot_if_info = {
1319    .name = TYPE_ARM_LINUX_BOOT_IF,
1320    .parent = TYPE_INTERFACE,
1321    .class_size = sizeof(ARMLinuxBootIfClass),
1322};
1323
1324static void arm_linux_boot_register_types(void)
1325{
1326    type_register_static(&arm_linux_boot_if_info);
1327}
1328
1329type_init(arm_linux_boot_register_types)
1330