qemu/hw/arm/musca.c
<<
>>
Prefs
   1/*
   2 * Arm Musca-B1 test chip board emulation
   3 *
   4 * Copyright (c) 2019 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License version 2 or
   9 *  (at your option) any later version.
  10 */
  11
  12/*
  13 * The Musca boards are a reference implementation of a system using
  14 * the SSE-200 subsystem for embedded:
  15 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
  16 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
  17 * We model the A and B1 variants of this board, as described in the TRMs:
  18 * http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
  19 * http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qapi/error.h"
  25#include "exec/address-spaces.h"
  26#include "sysemu/sysemu.h"
  27#include "hw/arm/boot.h"
  28#include "hw/arm/armsse.h"
  29#include "hw/boards.h"
  30#include "hw/char/pl011.h"
  31#include "hw/core/split-irq.h"
  32#include "hw/misc/tz-mpc.h"
  33#include "hw/misc/tz-ppc.h"
  34#include "hw/misc/unimp.h"
  35#include "hw/rtc/pl031.h"
  36#include "qom/object.h"
  37
  38#define MUSCA_NUMIRQ_MAX 96
  39#define MUSCA_PPC_MAX 3
  40#define MUSCA_MPC_MAX 5
  41
  42typedef struct MPCInfo MPCInfo;
  43
  44typedef enum MuscaType {
  45    MUSCA_A,
  46    MUSCA_B1,
  47} MuscaType;
  48
  49struct MuscaMachineClass {
  50    MachineClass parent;
  51    MuscaType type;
  52    uint32_t init_svtor;
  53    int sram_addr_width;
  54    int num_irqs;
  55    const MPCInfo *mpc_info;
  56    int num_mpcs;
  57};
  58
  59struct MuscaMachineState {
  60    MachineState parent;
  61
  62    ARMSSE sse;
  63    /* RAM and flash */
  64    MemoryRegion ram[MUSCA_MPC_MAX];
  65    SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
  66    SplitIRQ sec_resp_splitter;
  67    TZPPC ppc[MUSCA_PPC_MAX];
  68    MemoryRegion container;
  69    UnimplementedDeviceState eflash[2];
  70    UnimplementedDeviceState qspi;
  71    TZMPC mpc[MUSCA_MPC_MAX];
  72    UnimplementedDeviceState mhu[2];
  73    UnimplementedDeviceState pwm[3];
  74    UnimplementedDeviceState i2s;
  75    PL011State uart[2];
  76    UnimplementedDeviceState i2c[2];
  77    UnimplementedDeviceState spi;
  78    UnimplementedDeviceState scc;
  79    UnimplementedDeviceState timer;
  80    PL031State rtc;
  81    UnimplementedDeviceState pvt;
  82    UnimplementedDeviceState sdio;
  83    UnimplementedDeviceState gpio;
  84    UnimplementedDeviceState cryptoisland;
  85};
  86
  87#define TYPE_MUSCA_MACHINE "musca"
  88#define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
  89#define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
  90
  91OBJECT_DECLARE_TYPE(MuscaMachineState, MuscaMachineClass, MUSCA_MACHINE)
  92
  93/*
  94 * Main SYSCLK frequency in Hz
  95 * TODO this should really be different for the two cores, but we
  96 * don't model that in our SSE-200 model yet.
  97 */
  98#define SYSCLK_FRQ 40000000
  99
 100static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
 101{
 102    /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
 103    assert(irqno < MUSCA_NUMIRQ_MAX);
 104
 105    return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
 106}
 107
 108/*
 109 * Most of the devices in the Musca board sit behind Peripheral Protection
 110 * Controllers. These data structures define the layout of which devices
 111 * sit behind which PPCs.
 112 * The devfn for each port is a function which creates, configures
 113 * and initializes the device, returning the MemoryRegion which
 114 * needs to be plugged into the downstream end of the PPC port.
 115 */
 116typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
 117                                const char *name, hwaddr size);
 118
 119typedef struct PPCPortInfo {
 120    const char *name;
 121    MakeDevFn *devfn;
 122    void *opaque;
 123    hwaddr addr;
 124    hwaddr size;
 125} PPCPortInfo;
 126
 127typedef struct PPCInfo {
 128    const char *name;
 129    PPCPortInfo ports[TZ_NUM_PORTS];
 130} PPCInfo;
 131
 132static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
 133                                    void *opaque, const char *name, hwaddr size)
 134{
 135    /*
 136     * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
 137     * and return a pointer to its MemoryRegion.
 138     */
 139    UnimplementedDeviceState *uds = opaque;
 140
 141    object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
 142    qdev_prop_set_string(DEVICE(uds), "name", name);
 143    qdev_prop_set_uint64(DEVICE(uds), "size", size);
 144    sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
 145    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
 146}
 147
 148typedef enum MPCInfoType {
 149    MPC_RAM,
 150    MPC_ROM,
 151    MPC_CRYPTOISLAND,
 152} MPCInfoType;
 153
 154struct MPCInfo {
 155    const char *name;
 156    hwaddr addr;
 157    hwaddr size;
 158    MPCInfoType type;
 159};
 160
 161/* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
 162static const MPCInfo a_mpc_info[] = { {
 163        .name = "qspi",
 164        .type = MPC_ROM,
 165        .addr = 0x00200000,
 166        .size = 0x00800000,
 167    }, {
 168        .name = "sram",
 169        .type = MPC_RAM,
 170        .addr = 0x00000000,
 171        .size = 0x00200000,
 172    }
 173};
 174
 175static const MPCInfo b1_mpc_info[] = { {
 176        .name = "qspi",
 177        .type = MPC_ROM,
 178        .addr = 0x00000000,
 179        .size = 0x02000000,
 180    }, {
 181        .name = "sram",
 182        .type = MPC_RAM,
 183        .addr = 0x0a400000,
 184        .size = 0x00080000,
 185    }, {
 186        .name = "eflash0",
 187        .type = MPC_ROM,
 188        .addr = 0x0a000000,
 189        .size = 0x00200000,
 190    }, {
 191        .name = "eflash1",
 192        .type = MPC_ROM,
 193        .addr = 0x0a200000,
 194        .size = 0x00200000,
 195    }, {
 196        .name = "cryptoisland",
 197        .type = MPC_CRYPTOISLAND,
 198        .addr = 0x0a000000,
 199        .size = 0x00200000,
 200    }
 201};
 202
 203static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
 204                              const char *name, hwaddr size)
 205{
 206    /*
 207     * Create an MPC and the RAM or flash behind it.
 208     * MPC 0: eFlash 0
 209     * MPC 1: eFlash 1
 210     * MPC 2: SRAM
 211     * MPC 3: QSPI flash
 212     * MPC 4: CryptoIsland
 213     * For now we implement the flash regions as ROM (ie not programmable)
 214     * (with their control interface memory regions being unimplemented
 215     * stubs behind the PPCs).
 216     * The whole CryptoIsland region behind its MPC is an unimplemented stub.
 217     */
 218    MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
 219    TZMPC *mpc = opaque;
 220    int i = mpc - &mms->mpc[0];
 221    MemoryRegion *downstream;
 222    MemoryRegion *upstream;
 223    UnimplementedDeviceState *uds;
 224    char *mpcname;
 225    const MPCInfo *mpcinfo = mmc->mpc_info;
 226
 227    mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
 228
 229    switch (mpcinfo[i].type) {
 230    case MPC_ROM:
 231        downstream = &mms->ram[i];
 232        memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
 233                               mpcinfo[i].size, &error_fatal);
 234        break;
 235    case MPC_RAM:
 236        downstream = &mms->ram[i];
 237        memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
 238                               mpcinfo[i].size, &error_fatal);
 239        break;
 240    case MPC_CRYPTOISLAND:
 241        /* We don't implement the CryptoIsland yet */
 242        uds = &mms->cryptoisland;
 243        object_initialize_child(OBJECT(mms), name, uds,
 244                                TYPE_UNIMPLEMENTED_DEVICE);
 245        qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
 246        qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
 247        sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
 248        downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
 249        break;
 250    default:
 251        g_assert_not_reached();
 252    }
 253
 254    object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
 255    object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream),
 256                             &error_fatal);
 257    sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
 258    /* Map the upstream end of the MPC into system memory */
 259    upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
 260    memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
 261    /* and connect its interrupt to the SSE-200 */
 262    qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
 263                                qdev_get_gpio_in_named(DEVICE(&mms->sse),
 264                                                       "mpcexp_status", i));
 265
 266    g_free(mpcname);
 267    /* Return the register interface MR for our caller to map behind the PPC */
 268    return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
 269}
 270
 271static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
 272                              const char *name, hwaddr size)
 273{
 274    PL031State *rtc = opaque;
 275
 276    object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031);
 277    sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal);
 278    sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
 279    return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
 280}
 281
 282static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
 283                               const char *name, hwaddr size)
 284{
 285    PL011State *uart = opaque;
 286    int i = uart - &mms->uart[0];
 287    int irqbase = 7 + i * 6;
 288    SysBusDevice *s;
 289
 290    object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011);
 291    qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
 292    sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
 293    s = SYS_BUS_DEVICE(uart);
 294    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
 295    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
 296    sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
 297    sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
 298    sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
 299    sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
 300    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
 301}
 302
 303static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
 304                                       const char *name, hwaddr size)
 305{
 306    /*
 307     * Create the container MemoryRegion for all the devices that live
 308     * behind the Musca-A PPC's single port. These devices don't have a PPC
 309     * port each, but we use the PPCPortInfo struct as a convenient way
 310     * to describe them. Note that addresses here are relative to the base
 311     * address of the PPC port region: 0x40100000, and devices appear both
 312     * at the 0x4... NS region and the 0x5... S region.
 313     */
 314    int i;
 315    MemoryRegion *container = &mms->container;
 316
 317    const PPCPortInfo devices[] = {
 318        { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
 319        { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
 320        { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
 321        { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
 322        { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
 323        { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
 324        { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
 325        { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
 326        { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
 327        { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
 328        { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
 329        { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
 330        { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
 331        { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
 332        { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
 333        { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
 334    };
 335
 336    memory_region_init(container, OBJECT(mms), "musca-device-container", size);
 337
 338    for (i = 0; i < ARRAY_SIZE(devices); i++) {
 339        const PPCPortInfo *pinfo = &devices[i];
 340        MemoryRegion *mr;
 341
 342        mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
 343        memory_region_add_subregion(container, pinfo->addr, mr);
 344    }
 345
 346    return &mms->container;
 347}
 348
 349static void musca_init(MachineState *machine)
 350{
 351    MuscaMachineState *mms = MUSCA_MACHINE(machine);
 352    MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
 353    MachineClass *mc = MACHINE_GET_CLASS(machine);
 354    MemoryRegion *system_memory = get_system_memory();
 355    DeviceState *ssedev;
 356    DeviceState *dev_splitter;
 357    const PPCInfo *ppcs;
 358    int num_ppcs;
 359    int i;
 360
 361    assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
 362    assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
 363
 364    if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
 365        error_report("This board can only be used with CPU %s",
 366                     mc->default_cpu_type);
 367        exit(1);
 368    }
 369
 370    object_initialize_child(OBJECT(machine), "sse-200", &mms->sse,
 371                            TYPE_SSE200);
 372    ssedev = DEVICE(&mms->sse);
 373    object_property_set_link(OBJECT(&mms->sse), "memory",
 374                             OBJECT(system_memory), &error_fatal);
 375    qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
 376    qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
 377    qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
 378    qdev_prop_set_uint32(ssedev, "MAINCLK", SYSCLK_FRQ);
 379    /*
 380     * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
 381     * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
 382     */
 383    if (mmc->type == MUSCA_B1) {
 384        qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
 385        qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
 386    }
 387    sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal);
 388
 389    /*
 390     * We need to create splitters to feed the IRQ inputs
 391     * for each CPU in the SSE-200 from each device in the board.
 392     */
 393    for (i = 0; i < mmc->num_irqs; i++) {
 394        char *name = g_strdup_printf("musca-irq-splitter%d", i);
 395        SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
 396
 397        object_initialize_child_with_props(OBJECT(machine), name, splitter,
 398                                           sizeof(*splitter), TYPE_SPLIT_IRQ,
 399                                           &error_fatal, NULL);
 400        g_free(name);
 401
 402        object_property_set_int(OBJECT(splitter), "num-lines", 2,
 403                                &error_fatal);
 404        qdev_realize(DEVICE(splitter), NULL, &error_fatal);
 405        qdev_connect_gpio_out(DEVICE(splitter), 0,
 406                              qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
 407        qdev_connect_gpio_out(DEVICE(splitter), 1,
 408                              qdev_get_gpio_in_named(ssedev,
 409                                                     "EXP_CPU1_IRQ", i));
 410    }
 411
 412    /*
 413     * The sec_resp_cfg output from the SSE-200 must be split into multiple
 414     * lines, one for each of the PPCs we create here.
 415     */
 416    object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter",
 417                                       &mms->sec_resp_splitter,
 418                                       sizeof(mms->sec_resp_splitter),
 419                                       TYPE_SPLIT_IRQ, &error_fatal, NULL);
 420
 421    object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
 422                            ARRAY_SIZE(mms->ppc), &error_fatal);
 423    qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
 424    dev_splitter = DEVICE(&mms->sec_resp_splitter);
 425    qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
 426                                qdev_get_gpio_in(dev_splitter, 0));
 427
 428    /*
 429     * Most of the devices in the board are behind Peripheral Protection
 430     * Controllers. The required order for initializing things is:
 431     *  + initialize the PPC
 432     *  + initialize, configure and realize downstream devices
 433     *  + connect downstream device MemoryRegions to the PPC
 434     *  + realize the PPC
 435     *  + map the PPC's MemoryRegions to the places in the address map
 436     *    where the downstream devices should appear
 437     *  + wire up the PPC's control lines to the SSE object
 438     *
 439     * The PPC mapping differs for the -A and -B1 variants; the -A version
 440     * is much simpler, using only a single port of a single PPC and putting
 441     * all the devices behind that.
 442     */
 443    const PPCInfo a_ppcs[] = { {
 444            .name = "ahb_ppcexp0",
 445            .ports = {
 446                { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
 447            },
 448        },
 449    };
 450
 451    /*
 452     * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
 453     * and the 0x5.. S region. Devices listed with an 0x5.. address appear
 454     * only in the S region.
 455     */
 456    const PPCInfo b1_ppcs[] = { {
 457            .name = "apb_ppcexp0",
 458            .ports = {
 459                { "eflash0", make_unimp_dev, &mms->eflash[0],
 460                  0x52400000, 0x1000 },
 461                { "eflash1", make_unimp_dev, &mms->eflash[1],
 462                  0x52500000, 0x1000 },
 463                { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
 464                { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
 465                { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
 466                { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
 467                { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
 468                { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
 469                { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
 470                { }, /* port 9: unused */
 471                { }, /* port 10: unused */
 472                { }, /* port 11: unused */
 473                { }, /* port 12: unused */
 474                { }, /* port 13: unused */
 475                { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
 476            },
 477        }, {
 478            .name = "apb_ppcexp1",
 479            .ports = {
 480                { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
 481                { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
 482                { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
 483                { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
 484                { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
 485                { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
 486                { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
 487                { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
 488                { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
 489                { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
 490                { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
 491                { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
 492                { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
 493                { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
 494            },
 495        }, {
 496            .name = "ahb_ppcexp0",
 497            .ports = {
 498                { }, /* port 0: unused */
 499                { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
 500            },
 501        },
 502    };
 503
 504    switch (mmc->type) {
 505    case MUSCA_A:
 506        ppcs = a_ppcs;
 507        num_ppcs = ARRAY_SIZE(a_ppcs);
 508        break;
 509    case MUSCA_B1:
 510        ppcs = b1_ppcs;
 511        num_ppcs = ARRAY_SIZE(b1_ppcs);
 512        break;
 513    default:
 514        g_assert_not_reached();
 515    }
 516    assert(num_ppcs <= MUSCA_PPC_MAX);
 517
 518    for (i = 0; i < num_ppcs; i++) {
 519        const PPCInfo *ppcinfo = &ppcs[i];
 520        TZPPC *ppc = &mms->ppc[i];
 521        DeviceState *ppcdev;
 522        int port;
 523        char *gpioname;
 524
 525        object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
 526                                TYPE_TZ_PPC);
 527        ppcdev = DEVICE(ppc);
 528
 529        for (port = 0; port < TZ_NUM_PORTS; port++) {
 530            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
 531            MemoryRegion *mr;
 532            char *portname;
 533
 534            if (!pinfo->devfn) {
 535                continue;
 536            }
 537
 538            mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
 539            portname = g_strdup_printf("port[%d]", port);
 540            object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
 541                                     &error_fatal);
 542            g_free(portname);
 543        }
 544
 545        sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
 546
 547        for (port = 0; port < TZ_NUM_PORTS; port++) {
 548            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
 549
 550            if (!pinfo->devfn) {
 551                continue;
 552            }
 553            sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
 554
 555            gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
 556            qdev_connect_gpio_out_named(ssedev, gpioname, port,
 557                                        qdev_get_gpio_in_named(ppcdev,
 558                                                               "cfg_nonsec",
 559                                                               port));
 560            g_free(gpioname);
 561            gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
 562            qdev_connect_gpio_out_named(ssedev, gpioname, port,
 563                                        qdev_get_gpio_in_named(ppcdev,
 564                                                               "cfg_ap", port));
 565            g_free(gpioname);
 566        }
 567
 568        gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
 569        qdev_connect_gpio_out_named(ssedev, gpioname, 0,
 570                                    qdev_get_gpio_in_named(ppcdev,
 571                                                           "irq_enable", 0));
 572        g_free(gpioname);
 573        gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
 574        qdev_connect_gpio_out_named(ssedev, gpioname, 0,
 575                                    qdev_get_gpio_in_named(ppcdev,
 576                                                           "irq_clear", 0));
 577        g_free(gpioname);
 578        gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
 579        qdev_connect_gpio_out_named(ppcdev, "irq", 0,
 580                                    qdev_get_gpio_in_named(ssedev,
 581                                                           gpioname, 0));
 582        g_free(gpioname);
 583
 584        qdev_connect_gpio_out(dev_splitter, i,
 585                              qdev_get_gpio_in_named(ppcdev,
 586                                                     "cfg_sec_resp", 0));
 587    }
 588
 589    armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
 590}
 591
 592static void musca_class_init(ObjectClass *oc, void *data)
 593{
 594    MachineClass *mc = MACHINE_CLASS(oc);
 595
 596    mc->default_cpus = 2;
 597    mc->min_cpus = mc->default_cpus;
 598    mc->max_cpus = mc->default_cpus;
 599    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
 600    mc->init = musca_init;
 601}
 602
 603static void musca_a_class_init(ObjectClass *oc, void *data)
 604{
 605    MachineClass *mc = MACHINE_CLASS(oc);
 606    MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
 607
 608    mc->desc = "ARM Musca-A board (dual Cortex-M33)";
 609    mmc->type = MUSCA_A;
 610    mmc->init_svtor = 0x10200000;
 611    mmc->sram_addr_width = 15;
 612    mmc->num_irqs = 64;
 613    mmc->mpc_info = a_mpc_info;
 614    mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
 615}
 616
 617static void musca_b1_class_init(ObjectClass *oc, void *data)
 618{
 619    MachineClass *mc = MACHINE_CLASS(oc);
 620    MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
 621
 622    mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
 623    mmc->type = MUSCA_B1;
 624    /*
 625     * This matches the DAPlink firmware which boots from QSPI. There
 626     * is also a firmware blob which boots from the eFlash, which
 627     * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
 628     * though we could in theory expose a machine property on the command
 629     * line to allow the user to request eFlash boot.
 630     */
 631    mmc->init_svtor = 0x10000000;
 632    mmc->sram_addr_width = 17;
 633    mmc->num_irqs = 96;
 634    mmc->mpc_info = b1_mpc_info;
 635    mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
 636}
 637
 638static const TypeInfo musca_info = {
 639    .name = TYPE_MUSCA_MACHINE,
 640    .parent = TYPE_MACHINE,
 641    .abstract = true,
 642    .instance_size = sizeof(MuscaMachineState),
 643    .class_size = sizeof(MuscaMachineClass),
 644    .class_init = musca_class_init,
 645};
 646
 647static const TypeInfo musca_a_info = {
 648    .name = TYPE_MUSCA_A_MACHINE,
 649    .parent = TYPE_MUSCA_MACHINE,
 650    .class_init = musca_a_class_init,
 651};
 652
 653static const TypeInfo musca_b1_info = {
 654    .name = TYPE_MUSCA_B1_MACHINE,
 655    .parent = TYPE_MUSCA_MACHINE,
 656    .class_init = musca_b1_class_init,
 657};
 658
 659static void musca_machine_init(void)
 660{
 661    type_register_static(&musca_info);
 662    type_register_static(&musca_a_info);
 663    type_register_static(&musca_b1_info);
 664}
 665
 666type_init(musca_machine_init);
 667