qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qemu-common.h"
  33#include "qemu/units.h"
  34#include "qemu/option.h"
  35#include "monitor/qdev.h"
  36#include "qapi/error.h"
  37#include "hw/sysbus.h"
  38#include "hw/boards.h"
  39#include "hw/arm/boot.h"
  40#include "hw/arm/primecell.h"
  41#include "hw/arm/virt.h"
  42#include "hw/block/flash.h"
  43#include "hw/vfio/vfio-calxeda-xgmac.h"
  44#include "hw/vfio/vfio-amd-xgbe.h"
  45#include "hw/display/ramfb.h"
  46#include "net/net.h"
  47#include "sysemu/device_tree.h"
  48#include "sysemu/numa.h"
  49#include "sysemu/runstate.h"
  50#include "sysemu/sysemu.h"
  51#include "sysemu/tpm.h"
  52#include "sysemu/kvm.h"
  53#include "hw/loader.h"
  54#include "exec/address-spaces.h"
  55#include "qemu/bitops.h"
  56#include "qemu/error-report.h"
  57#include "qemu/module.h"
  58#include "hw/pci-host/gpex.h"
  59#include "hw/virtio/virtio-pci.h"
  60#include "hw/arm/sysbus-fdt.h"
  61#include "hw/platform-bus.h"
  62#include "hw/qdev-properties.h"
  63#include "hw/arm/fdt.h"
  64#include "hw/intc/arm_gic.h"
  65#include "hw/intc/arm_gicv3_common.h"
  66#include "hw/irq.h"
  67#include "kvm_arm.h"
  68#include "hw/firmware/smbios.h"
  69#include "qapi/visitor.h"
  70#include "qapi/qapi-visit-common.h"
  71#include "standard-headers/linux/input.h"
  72#include "hw/arm/smmuv3.h"
  73#include "hw/acpi/acpi.h"
  74#include "target/arm/internals.h"
  75#include "hw/mem/pc-dimm.h"
  76#include "hw/mem/nvdimm.h"
  77#include "hw/acpi/generic_event_device.h"
  78#include "hw/virtio/virtio-iommu.h"
  79#include "hw/char/pl011.h"
  80#include "qemu/guest-random.h"
  81
  82#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
  83    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
  84                                                    void *data) \
  85    { \
  86        MachineClass *mc = MACHINE_CLASS(oc); \
  87        virt_machine_##major##_##minor##_options(mc); \
  88        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
  89        if (latest) { \
  90            mc->alias = "virt"; \
  91        } \
  92    } \
  93    static const TypeInfo machvirt_##major##_##minor##_info = { \
  94        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
  95        .parent = TYPE_VIRT_MACHINE, \
  96        .class_init = virt_##major##_##minor##_class_init, \
  97    }; \
  98    static void machvirt_machine_##major##_##minor##_init(void) \
  99    { \
 100        type_register_static(&machvirt_##major##_##minor##_info); \
 101    } \
 102    type_init(machvirt_machine_##major##_##minor##_init);
 103
 104#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
 105    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
 106#define DEFINE_VIRT_MACHINE(major, minor) \
 107    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
 108
 109
 110/* Number of external interrupt lines to configure the GIC with */
 111#define NUM_IRQS 256
 112
 113#define PLATFORM_BUS_NUM_IRQS 64
 114
 115/* Legacy RAM limit in GB (< version 4.0) */
 116#define LEGACY_RAMLIMIT_GB 255
 117#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
 118
 119/* Addresses and sizes of our components.
 120 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 121 * 128MB..256MB is used for miscellaneous device I/O.
 122 * 256MB..1GB is reserved for possible future PCI support (ie where the
 123 * PCI memory window will go if we add a PCI host controller).
 124 * 1GB and up is RAM (which may happily spill over into the
 125 * high memory region beyond 4GB).
 126 * This represents a compromise between how much RAM can be given to
 127 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 128 * Note that devices should generally be placed at multiples of 0x10000,
 129 * to accommodate guests using 64K pages.
 130 */
 131static const MemMapEntry base_memmap[] = {
 132    /* Space up to 0x8000000 is reserved for a boot ROM */
 133    [VIRT_FLASH] =              {          0, 0x08000000 },
 134    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 135    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 136    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 137    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 138    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 139    [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
 140    [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
 141    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 142    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 143    /* This redistributor space allows up to 2*64kB*123 CPUs */
 144    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 145    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 146    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 147    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 148    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 149    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 150    [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
 151    [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
 152    [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
 153    [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
 154    [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
 155    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 156    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 157    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 158    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 159    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 160    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 161    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 162    /* Actual RAM size depends on initial RAM and device memory settings */
 163    [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
 164};
 165
 166/*
 167 * Highmem IO Regions: This memory map is floating, located after the RAM.
 168 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
 169 * top of the RAM, so that its base get the same alignment as the size,
 170 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
 171 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
 172 * Note the extended_memmap is sized so that it eventually also includes the
 173 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
 174 * index of base_memmap).
 175 */
 176static MemMapEntry extended_memmap[] = {
 177    /* Additional 64 MB redist region (can contain up to 512 redistributors) */
 178    [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
 179    [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
 180    /* Second PCIe window */
 181    [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
 182};
 183
 184static const int a15irqmap[] = {
 185    [VIRT_UART] = 1,
 186    [VIRT_RTC] = 2,
 187    [VIRT_PCIE] = 3, /* ... to 6 */
 188    [VIRT_GPIO] = 7,
 189    [VIRT_SECURE_UART] = 8,
 190    [VIRT_ACPI_GED] = 9,
 191    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 192    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 193    [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
 194    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 195};
 196
 197static const char *valid_cpus[] = {
 198    ARM_CPU_TYPE_NAME("cortex-a7"),
 199    ARM_CPU_TYPE_NAME("cortex-a15"),
 200    ARM_CPU_TYPE_NAME("cortex-a53"),
 201    ARM_CPU_TYPE_NAME("cortex-a57"),
 202    ARM_CPU_TYPE_NAME("cortex-a72"),
 203    ARM_CPU_TYPE_NAME("host"),
 204    ARM_CPU_TYPE_NAME("max"),
 205};
 206
 207static bool cpu_type_valid(const char *cpu)
 208{
 209    int i;
 210
 211    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 212        if (strcmp(cpu, valid_cpus[i]) == 0) {
 213            return true;
 214        }
 215    }
 216    return false;
 217}
 218
 219static void create_kaslr_seed(VirtMachineState *vms, const char *node)
 220{
 221    uint64_t seed;
 222
 223    if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
 224        return;
 225    }
 226    qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed);
 227}
 228
 229static void create_fdt(VirtMachineState *vms)
 230{
 231    MachineState *ms = MACHINE(vms);
 232    int nb_numa_nodes = ms->numa_state->num_nodes;
 233    void *fdt = create_device_tree(&vms->fdt_size);
 234
 235    if (!fdt) {
 236        error_report("create_device_tree() failed");
 237        exit(1);
 238    }
 239
 240    vms->fdt = fdt;
 241
 242    /* Header */
 243    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 244    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 245    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 246
 247    /* /chosen must exist for load_dtb to fill in necessary properties later */
 248    qemu_fdt_add_subnode(fdt, "/chosen");
 249    create_kaslr_seed(vms, "/chosen");
 250
 251    if (vms->secure) {
 252        qemu_fdt_add_subnode(fdt, "/secure-chosen");
 253        create_kaslr_seed(vms, "/secure-chosen");
 254    }
 255
 256    /* Clock node, for the benefit of the UART. The kernel device tree
 257     * binding documentation claims the PL011 node clock properties are
 258     * optional but in practice if you omit them the kernel refuses to
 259     * probe for the device.
 260     */
 261    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 262    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 263    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 264    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 265    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 266    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 267                                "clk24mhz");
 268    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 269
 270    if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
 271        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 272        uint32_t *matrix = g_malloc0(size);
 273        int idx, i, j;
 274
 275        for (i = 0; i < nb_numa_nodes; i++) {
 276            for (j = 0; j < nb_numa_nodes; j++) {
 277                idx = (i * nb_numa_nodes + j) * 3;
 278                matrix[idx + 0] = cpu_to_be32(i);
 279                matrix[idx + 1] = cpu_to_be32(j);
 280                matrix[idx + 2] =
 281                    cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
 282            }
 283        }
 284
 285        qemu_fdt_add_subnode(fdt, "/distance-map");
 286        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 287                                "numa-distance-map-v1");
 288        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 289                         matrix, size);
 290        g_free(matrix);
 291    }
 292}
 293
 294static void fdt_add_timer_nodes(const VirtMachineState *vms)
 295{
 296    /* On real hardware these interrupts are level-triggered.
 297     * On KVM they were edge-triggered before host kernel version 4.4,
 298     * and level-triggered afterwards.
 299     * On emulated QEMU they are level-triggered.
 300     *
 301     * Getting the DTB info about them wrong is awkward for some
 302     * guest kernels:
 303     *  pre-4.8 ignore the DT and leave the interrupt configured
 304     *   with whatever the GIC reset value (or the bootloader) left it at
 305     *  4.8 before rc6 honour the incorrect data by programming it back
 306     *   into the GIC, causing problems
 307     *  4.8rc6 and later ignore the DT and always write "level triggered"
 308     *   into the GIC
 309     *
 310     * For backwards-compatibility, virt-2.8 and earlier will continue
 311     * to say these are edge-triggered, but later machines will report
 312     * the correct information.
 313     */
 314    ARMCPU *armcpu;
 315    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 316    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 317
 318    if (vmc->claim_edge_triggered_timers) {
 319        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 320    }
 321
 322    if (vms->gic_version == VIRT_GIC_VERSION_2) {
 323        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 324                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 325                             (1 << vms->smp_cpus) - 1);
 326    }
 327
 328    qemu_fdt_add_subnode(vms->fdt, "/timer");
 329
 330    armcpu = ARM_CPU(qemu_get_cpu(0));
 331    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 332        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 333        qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
 334                         compat, sizeof(compat));
 335    } else {
 336        qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
 337                                "arm,armv7-timer");
 338    }
 339    qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
 340    qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
 341                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 342                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 343                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 344                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 345}
 346
 347static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 348{
 349    int cpu;
 350    int addr_cells = 1;
 351    const MachineState *ms = MACHINE(vms);
 352
 353    /*
 354     * From Documentation/devicetree/bindings/arm/cpus.txt
 355     *  On ARM v8 64-bit systems value should be set to 2,
 356     *  that corresponds to the MPIDR_EL1 register size.
 357     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 358     *  in the system, #address-cells can be set to 1, since
 359     *  MPIDR_EL1[63:32] bits are not used for CPUs
 360     *  identification.
 361     *
 362     *  Here we actually don't know whether our system is 32- or 64-bit one.
 363     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 364     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 365     */
 366    for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
 367        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 368
 369        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 370            addr_cells = 2;
 371            break;
 372        }
 373    }
 374
 375    qemu_fdt_add_subnode(vms->fdt, "/cpus");
 376    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
 377    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
 378
 379    for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
 380        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 381        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 382        CPUState *cs = CPU(armcpu);
 383
 384        qemu_fdt_add_subnode(vms->fdt, nodename);
 385        qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
 386        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 387                                    armcpu->dtb_compatible);
 388
 389        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
 390            && vms->smp_cpus > 1) {
 391            qemu_fdt_setprop_string(vms->fdt, nodename,
 392                                        "enable-method", "psci");
 393        }
 394
 395        if (addr_cells == 2) {
 396            qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
 397                                 armcpu->mp_affinity);
 398        } else {
 399            qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
 400                                  armcpu->mp_affinity);
 401        }
 402
 403        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 404            qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
 405                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 406        }
 407
 408        g_free(nodename);
 409    }
 410}
 411
 412static void fdt_add_its_gic_node(VirtMachineState *vms)
 413{
 414    char *nodename;
 415
 416    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 417    nodename = g_strdup_printf("/intc/its@%" PRIx64,
 418                               vms->memmap[VIRT_GIC_ITS].base);
 419    qemu_fdt_add_subnode(vms->fdt, nodename);
 420    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 421                            "arm,gic-v3-its");
 422    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 423    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 424                                 2, vms->memmap[VIRT_GIC_ITS].base,
 425                                 2, vms->memmap[VIRT_GIC_ITS].size);
 426    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 427    g_free(nodename);
 428}
 429
 430static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 431{
 432    char *nodename;
 433
 434    nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
 435                               vms->memmap[VIRT_GIC_V2M].base);
 436    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 437    qemu_fdt_add_subnode(vms->fdt, nodename);
 438    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 439                            "arm,gic-v2m-frame");
 440    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 441    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 442                                 2, vms->memmap[VIRT_GIC_V2M].base,
 443                                 2, vms->memmap[VIRT_GIC_V2M].size);
 444    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 445    g_free(nodename);
 446}
 447
 448static void fdt_add_gic_node(VirtMachineState *vms)
 449{
 450    char *nodename;
 451
 452    vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 453    qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 454
 455    nodename = g_strdup_printf("/intc@%" PRIx64,
 456                               vms->memmap[VIRT_GIC_DIST].base);
 457    qemu_fdt_add_subnode(vms->fdt, nodename);
 458    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
 459    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
 460    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
 461    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
 462    qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
 463    if (vms->gic_version == VIRT_GIC_VERSION_3) {
 464        int nb_redist_regions = virt_gicv3_redist_region_count(vms);
 465
 466        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 467                                "arm,gic-v3");
 468
 469        qemu_fdt_setprop_cell(vms->fdt, nodename,
 470                              "#redistributor-regions", nb_redist_regions);
 471
 472        if (nb_redist_regions == 1) {
 473            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 474                                         2, vms->memmap[VIRT_GIC_DIST].base,
 475                                         2, vms->memmap[VIRT_GIC_DIST].size,
 476                                         2, vms->memmap[VIRT_GIC_REDIST].base,
 477                                         2, vms->memmap[VIRT_GIC_REDIST].size);
 478        } else {
 479            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 480                                 2, vms->memmap[VIRT_GIC_DIST].base,
 481                                 2, vms->memmap[VIRT_GIC_DIST].size,
 482                                 2, vms->memmap[VIRT_GIC_REDIST].base,
 483                                 2, vms->memmap[VIRT_GIC_REDIST].size,
 484                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
 485                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
 486        }
 487
 488        if (vms->virt) {
 489            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 490                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 491                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 492        }
 493    } else {
 494        /* 'cortex-a15-gic' means 'GIC v2' */
 495        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 496                                "arm,cortex-a15-gic");
 497        if (!vms->virt) {
 498            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 499                                         2, vms->memmap[VIRT_GIC_DIST].base,
 500                                         2, vms->memmap[VIRT_GIC_DIST].size,
 501                                         2, vms->memmap[VIRT_GIC_CPU].base,
 502                                         2, vms->memmap[VIRT_GIC_CPU].size);
 503        } else {
 504            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 505                                         2, vms->memmap[VIRT_GIC_DIST].base,
 506                                         2, vms->memmap[VIRT_GIC_DIST].size,
 507                                         2, vms->memmap[VIRT_GIC_CPU].base,
 508                                         2, vms->memmap[VIRT_GIC_CPU].size,
 509                                         2, vms->memmap[VIRT_GIC_HYP].base,
 510                                         2, vms->memmap[VIRT_GIC_HYP].size,
 511                                         2, vms->memmap[VIRT_GIC_VCPU].base,
 512                                         2, vms->memmap[VIRT_GIC_VCPU].size);
 513            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 514                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 515                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 516        }
 517    }
 518
 519    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
 520    g_free(nodename);
 521}
 522
 523static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 524{
 525    ARMCPU *armcpu = ARM_CPU(first_cpu);
 526    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 527
 528    if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
 529        assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
 530        return;
 531    }
 532
 533    if (vms->gic_version == VIRT_GIC_VERSION_2) {
 534        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 535                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 536                             (1 << vms->smp_cpus) - 1);
 537    }
 538
 539    qemu_fdt_add_subnode(vms->fdt, "/pmu");
 540    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 541        const char compat[] = "arm,armv8-pmuv3";
 542        qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
 543                         compat, sizeof(compat));
 544        qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
 545                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 546    }
 547}
 548
 549static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
 550{
 551    DeviceState *dev;
 552    MachineState *ms = MACHINE(vms);
 553    int irq = vms->irqmap[VIRT_ACPI_GED];
 554    uint32_t event = ACPI_GED_PWR_DOWN_EVT;
 555
 556    if (ms->ram_slots) {
 557        event |= ACPI_GED_MEM_HOTPLUG_EVT;
 558    }
 559
 560    if (ms->nvdimms_state->is_enabled) {
 561        event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
 562    }
 563
 564    dev = qdev_new(TYPE_ACPI_GED);
 565    qdev_prop_set_uint32(dev, "ged-event", event);
 566
 567    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
 568    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
 569    sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
 570
 571    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 572
 573    return dev;
 574}
 575
 576static void create_its(VirtMachineState *vms)
 577{
 578    const char *itsclass = its_class_name();
 579    DeviceState *dev;
 580
 581    if (!itsclass) {
 582        /* Do nothing if not supported */
 583        return;
 584    }
 585
 586    dev = qdev_new(itsclass);
 587
 588    object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
 589                             &error_abort);
 590    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 591    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 592
 593    fdt_add_its_gic_node(vms);
 594    vms->msi_controller = VIRT_MSI_CTRL_ITS;
 595}
 596
 597static void create_v2m(VirtMachineState *vms)
 598{
 599    int i;
 600    int irq = vms->irqmap[VIRT_GIC_V2M];
 601    DeviceState *dev;
 602
 603    dev = qdev_new("arm-gicv2m");
 604    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 605    qdev_prop_set_uint32(dev, "base-spi", irq);
 606    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 607    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 608
 609    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 610        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
 611                           qdev_get_gpio_in(vms->gic, irq + i));
 612    }
 613
 614    fdt_add_v2m_gic_node(vms);
 615    vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
 616}
 617
 618static void create_gic(VirtMachineState *vms)
 619{
 620    MachineState *ms = MACHINE(vms);
 621    /* We create a standalone GIC */
 622    SysBusDevice *gicbusdev;
 623    const char *gictype;
 624    int type = vms->gic_version, i;
 625    unsigned int smp_cpus = ms->smp.cpus;
 626    uint32_t nb_redist_regions = 0;
 627
 628    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 629
 630    vms->gic = qdev_new(gictype);
 631    qdev_prop_set_uint32(vms->gic, "revision", type);
 632    qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
 633    /* Note that the num-irq property counts both internal and external
 634     * interrupts; there are always 32 of the former (mandated by GIC spec).
 635     */
 636    qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
 637    if (!kvm_irqchip_in_kernel()) {
 638        qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
 639    }
 640
 641    if (type == 3) {
 642        uint32_t redist0_capacity =
 643                    vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
 644        uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
 645
 646        nb_redist_regions = virt_gicv3_redist_region_count(vms);
 647
 648        qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
 649                             nb_redist_regions);
 650        qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
 651
 652        if (nb_redist_regions == 2) {
 653            uint32_t redist1_capacity =
 654                    vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
 655
 656            qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
 657                MIN(smp_cpus - redist0_count, redist1_capacity));
 658        }
 659    } else {
 660        if (!kvm_irqchip_in_kernel()) {
 661            qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
 662                              vms->virt);
 663        }
 664    }
 665    gicbusdev = SYS_BUS_DEVICE(vms->gic);
 666    sysbus_realize_and_unref(gicbusdev, &error_fatal);
 667    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 668    if (type == 3) {
 669        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 670        if (nb_redist_regions == 2) {
 671            sysbus_mmio_map(gicbusdev, 2,
 672                            vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
 673        }
 674    } else {
 675        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 676        if (vms->virt) {
 677            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
 678            sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
 679        }
 680    }
 681
 682    /* Wire the outputs from each CPU's generic timer and the GICv3
 683     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 684     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 685     */
 686    for (i = 0; i < smp_cpus; i++) {
 687        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 688        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 689        int irq;
 690        /* Mapping from the output timer irq lines from the CPU to the
 691         * GIC PPI inputs we use for the virt board.
 692         */
 693        const int timer_irq[] = {
 694            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 695            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 696            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 697            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 698        };
 699
 700        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 701            qdev_connect_gpio_out(cpudev, irq,
 702                                  qdev_get_gpio_in(vms->gic,
 703                                                   ppibase + timer_irq[irq]));
 704        }
 705
 706        if (type == 3) {
 707            qemu_irq irq = qdev_get_gpio_in(vms->gic,
 708                                            ppibase + ARCH_GIC_MAINT_IRQ);
 709            qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
 710                                        0, irq);
 711        } else if (vms->virt) {
 712            qemu_irq irq = qdev_get_gpio_in(vms->gic,
 713                                            ppibase + ARCH_GIC_MAINT_IRQ);
 714            sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
 715        }
 716
 717        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 718                                    qdev_get_gpio_in(vms->gic, ppibase
 719                                                     + VIRTUAL_PMU_IRQ));
 720
 721        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 722        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 723                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 724        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 725                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 726        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 727                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 728    }
 729
 730    fdt_add_gic_node(vms);
 731
 732    if (type == 3 && vms->its) {
 733        create_its(vms);
 734    } else if (type == 2) {
 735        create_v2m(vms);
 736    }
 737}
 738
 739static void create_uart(const VirtMachineState *vms, int uart,
 740                        MemoryRegion *mem, Chardev *chr)
 741{
 742    char *nodename;
 743    hwaddr base = vms->memmap[uart].base;
 744    hwaddr size = vms->memmap[uart].size;
 745    int irq = vms->irqmap[uart];
 746    const char compat[] = "arm,pl011\0arm,primecell";
 747    const char clocknames[] = "uartclk\0apb_pclk";
 748    DeviceState *dev = qdev_new(TYPE_PL011);
 749    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 750
 751    qdev_prop_set_chr(dev, "chardev", chr);
 752    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 753    memory_region_add_subregion(mem, base,
 754                                sysbus_mmio_get_region(s, 0));
 755    sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
 756
 757    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 758    qemu_fdt_add_subnode(vms->fdt, nodename);
 759    /* Note that we can't use setprop_string because of the embedded NUL */
 760    qemu_fdt_setprop(vms->fdt, nodename, "compatible",
 761                         compat, sizeof(compat));
 762    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 763                                     2, base, 2, size);
 764    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 765                               GIC_FDT_IRQ_TYPE_SPI, irq,
 766                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 767    qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
 768                               vms->clock_phandle, vms->clock_phandle);
 769    qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
 770                         clocknames, sizeof(clocknames));
 771
 772    if (uart == VIRT_UART) {
 773        qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
 774    } else {
 775        /* Mark as not usable by the normal world */
 776        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 777        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 778
 779        qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
 780                                nodename);
 781    }
 782
 783    g_free(nodename);
 784}
 785
 786static void create_rtc(const VirtMachineState *vms)
 787{
 788    char *nodename;
 789    hwaddr base = vms->memmap[VIRT_RTC].base;
 790    hwaddr size = vms->memmap[VIRT_RTC].size;
 791    int irq = vms->irqmap[VIRT_RTC];
 792    const char compat[] = "arm,pl031\0arm,primecell";
 793
 794    sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
 795
 796    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 797    qemu_fdt_add_subnode(vms->fdt, nodename);
 798    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 799    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 800                                 2, base, 2, size);
 801    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 802                           GIC_FDT_IRQ_TYPE_SPI, irq,
 803                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 804    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 805    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 806    g_free(nodename);
 807}
 808
 809static DeviceState *gpio_key_dev;
 810static void virt_powerdown_req(Notifier *n, void *opaque)
 811{
 812    VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
 813
 814    if (s->acpi_dev) {
 815        acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
 816    } else {
 817        /* use gpio Pin 3 for power button event */
 818        qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 819    }
 820}
 821
 822static void create_gpio(const VirtMachineState *vms)
 823{
 824    char *nodename;
 825    DeviceState *pl061_dev;
 826    hwaddr base = vms->memmap[VIRT_GPIO].base;
 827    hwaddr size = vms->memmap[VIRT_GPIO].size;
 828    int irq = vms->irqmap[VIRT_GPIO];
 829    const char compat[] = "arm,pl061\0arm,primecell";
 830
 831    pl061_dev = sysbus_create_simple("pl061", base,
 832                                     qdev_get_gpio_in(vms->gic, irq));
 833
 834    uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
 835    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 836    qemu_fdt_add_subnode(vms->fdt, nodename);
 837    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 838                                 2, base, 2, size);
 839    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 840    qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
 841    qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
 842    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 843                           GIC_FDT_IRQ_TYPE_SPI, irq,
 844                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 845    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 846    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 847    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
 848
 849    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 850                                        qdev_get_gpio_in(pl061_dev, 3));
 851    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
 852    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
 853    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
 854    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
 855
 856    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
 857    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
 858                            "label", "GPIO Key Poweroff");
 859    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
 860                          KEY_POWER);
 861    qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
 862                           "gpios", phandle, 3, 0);
 863    g_free(nodename);
 864}
 865
 866static void create_virtio_devices(const VirtMachineState *vms)
 867{
 868    int i;
 869    hwaddr size = vms->memmap[VIRT_MMIO].size;
 870
 871    /* We create the transports in forwards order. Since qbus_realize()
 872     * prepends (not appends) new child buses, the incrementing loop below will
 873     * create a list of virtio-mmio buses with decreasing base addresses.
 874     *
 875     * When a -device option is processed from the command line,
 876     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 877     * order. The upshot is that -device options in increasing command line
 878     * order are mapped to virtio-mmio buses with decreasing base addresses.
 879     *
 880     * When this code was originally written, that arrangement ensured that the
 881     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 882     * the first -device on the command line. (The end-to-end order is a
 883     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 884     * guest kernel's name-to-address assignment strategy.)
 885     *
 886     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 887     * the message, if not necessarily the code, of commit 70161ff336.
 888     * Therefore the loop now establishes the inverse of the original intent.
 889     *
 890     * Unfortunately, we can't counteract the kernel change by reversing the
 891     * loop; it would break existing command lines.
 892     *
 893     * In any case, the kernel makes no guarantee about the stability of
 894     * enumeration order of virtio devices (as demonstrated by it changing
 895     * between kernel versions). For reliable and stable identification
 896     * of disks users must use UUIDs or similar mechanisms.
 897     */
 898    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 899        int irq = vms->irqmap[VIRT_MMIO] + i;
 900        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 901
 902        sysbus_create_simple("virtio-mmio", base,
 903                             qdev_get_gpio_in(vms->gic, irq));
 904    }
 905
 906    /* We add dtb nodes in reverse order so that they appear in the finished
 907     * device tree lowest address first.
 908     *
 909     * Note that this mapping is independent of the loop above. The previous
 910     * loop influences virtio device to virtio transport assignment, whereas
 911     * this loop controls how virtio transports are laid out in the dtb.
 912     */
 913    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 914        char *nodename;
 915        int irq = vms->irqmap[VIRT_MMIO] + i;
 916        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 917
 918        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 919        qemu_fdt_add_subnode(vms->fdt, nodename);
 920        qemu_fdt_setprop_string(vms->fdt, nodename,
 921                                "compatible", "virtio,mmio");
 922        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 923                                     2, base, 2, size);
 924        qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 925                               GIC_FDT_IRQ_TYPE_SPI, irq,
 926                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 927        qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 928        g_free(nodename);
 929    }
 930}
 931
 932#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
 933
 934static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
 935                                        const char *name,
 936                                        const char *alias_prop_name)
 937{
 938    /*
 939     * Create a single flash device.  We use the same parameters as
 940     * the flash devices on the Versatile Express board.
 941     */
 942    DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
 943
 944    qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
 945    qdev_prop_set_uint8(dev, "width", 4);
 946    qdev_prop_set_uint8(dev, "device-width", 2);
 947    qdev_prop_set_bit(dev, "big-endian", false);
 948    qdev_prop_set_uint16(dev, "id0", 0x89);
 949    qdev_prop_set_uint16(dev, "id1", 0x18);
 950    qdev_prop_set_uint16(dev, "id2", 0x00);
 951    qdev_prop_set_uint16(dev, "id3", 0x00);
 952    qdev_prop_set_string(dev, "name", name);
 953    object_property_add_child(OBJECT(vms), name, OBJECT(dev));
 954    object_property_add_alias(OBJECT(vms), alias_prop_name,
 955                              OBJECT(dev), "drive");
 956    return PFLASH_CFI01(dev);
 957}
 958
 959static void virt_flash_create(VirtMachineState *vms)
 960{
 961    vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
 962    vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
 963}
 964
 965static void virt_flash_map1(PFlashCFI01 *flash,
 966                            hwaddr base, hwaddr size,
 967                            MemoryRegion *sysmem)
 968{
 969    DeviceState *dev = DEVICE(flash);
 970
 971    assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
 972    assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
 973    qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
 974    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 975
 976    memory_region_add_subregion(sysmem, base,
 977                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
 978                                                       0));
 979}
 980
 981static void virt_flash_map(VirtMachineState *vms,
 982                           MemoryRegion *sysmem,
 983                           MemoryRegion *secure_sysmem)
 984{
 985    /*
 986     * Map two flash devices to fill the VIRT_FLASH space in the memmap.
 987     * sysmem is the system memory space. secure_sysmem is the secure view
 988     * of the system, and the first flash device should be made visible only
 989     * there. The second flash device is visible to both secure and nonsecure.
 990     * If sysmem == secure_sysmem this means there is no separate Secure
 991     * address space and both flash devices are generally visible.
 992     */
 993    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 994    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 995
 996    virt_flash_map1(vms->flash[0], flashbase, flashsize,
 997                    secure_sysmem);
 998    virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
 999                    sysmem);
1000}
1001
1002static void virt_flash_fdt(VirtMachineState *vms,
1003                           MemoryRegion *sysmem,
1004                           MemoryRegion *secure_sysmem)
1005{
1006    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1007    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1008    char *nodename;
1009
1010    if (sysmem == secure_sysmem) {
1011        /* Report both flash devices as a single node in the DT */
1012        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1013        qemu_fdt_add_subnode(vms->fdt, nodename);
1014        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1015        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1016                                     2, flashbase, 2, flashsize,
1017                                     2, flashbase + flashsize, 2, flashsize);
1018        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1019        g_free(nodename);
1020    } else {
1021        /*
1022         * Report the devices as separate nodes so we can mark one as
1023         * only visible to the secure world.
1024         */
1025        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1026        qemu_fdt_add_subnode(vms->fdt, nodename);
1027        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1028        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1029                                     2, flashbase, 2, flashsize);
1030        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1031        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1032        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1033        g_free(nodename);
1034
1035        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1036        qemu_fdt_add_subnode(vms->fdt, nodename);
1037        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1038        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1039                                     2, flashbase + flashsize, 2, flashsize);
1040        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1041        g_free(nodename);
1042    }
1043}
1044
1045static bool virt_firmware_init(VirtMachineState *vms,
1046                               MemoryRegion *sysmem,
1047                               MemoryRegion *secure_sysmem)
1048{
1049    int i;
1050    BlockBackend *pflash_blk0;
1051
1052    /* Map legacy -drive if=pflash to machine properties */
1053    for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1054        pflash_cfi01_legacy_drive(vms->flash[i],
1055                                  drive_get(IF_PFLASH, 0, i));
1056    }
1057
1058    virt_flash_map(vms, sysmem, secure_sysmem);
1059
1060    pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1061
1062    if (bios_name) {
1063        char *fname;
1064        MemoryRegion *mr;
1065        int image_size;
1066
1067        if (pflash_blk0) {
1068            error_report("The contents of the first flash device may be "
1069                         "specified with -bios or with -drive if=pflash... "
1070                         "but you cannot use both options at once");
1071            exit(1);
1072        }
1073
1074        /* Fall back to -bios */
1075
1076        fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1077        if (!fname) {
1078            error_report("Could not find ROM image '%s'", bios_name);
1079            exit(1);
1080        }
1081        mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1082        image_size = load_image_mr(fname, mr);
1083        g_free(fname);
1084        if (image_size < 0) {
1085            error_report("Could not load ROM image '%s'", bios_name);
1086            exit(1);
1087        }
1088    }
1089
1090    return pflash_blk0 || bios_name;
1091}
1092
1093static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1094{
1095    MachineState *ms = MACHINE(vms);
1096    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1097    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1098    FWCfgState *fw_cfg;
1099    char *nodename;
1100
1101    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1102    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1103
1104    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1105    qemu_fdt_add_subnode(vms->fdt, nodename);
1106    qemu_fdt_setprop_string(vms->fdt, nodename,
1107                            "compatible", "qemu,fw-cfg-mmio");
1108    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1109                                 2, base, 2, size);
1110    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1111    g_free(nodename);
1112    return fw_cfg;
1113}
1114
1115static void create_pcie_irq_map(const VirtMachineState *vms,
1116                                uint32_t gic_phandle,
1117                                int first_irq, const char *nodename)
1118{
1119    int devfn, pin;
1120    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1121    uint32_t *irq_map = full_irq_map;
1122
1123    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1124        for (pin = 0; pin < 4; pin++) {
1125            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1126            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1127            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1128            int i;
1129
1130            uint32_t map[] = {
1131                devfn << 8, 0, 0,                           /* devfn */
1132                pin + 1,                                    /* PCI pin */
1133                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1134
1135            /* Convert map to big endian */
1136            for (i = 0; i < 10; i++) {
1137                irq_map[i] = cpu_to_be32(map[i]);
1138            }
1139            irq_map += 10;
1140        }
1141    }
1142
1143    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1144                     full_irq_map, sizeof(full_irq_map));
1145
1146    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1147                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1148                           0x7           /* PCI irq */);
1149}
1150
1151static void create_smmu(const VirtMachineState *vms,
1152                        PCIBus *bus)
1153{
1154    char *node;
1155    const char compat[] = "arm,smmu-v3";
1156    int irq =  vms->irqmap[VIRT_SMMU];
1157    int i;
1158    hwaddr base = vms->memmap[VIRT_SMMU].base;
1159    hwaddr size = vms->memmap[VIRT_SMMU].size;
1160    const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1161    DeviceState *dev;
1162
1163    if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1164        return;
1165    }
1166
1167    dev = qdev_new("arm-smmuv3");
1168
1169    object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1170                             &error_abort);
1171    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1172    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1173    for (i = 0; i < NUM_SMMU_IRQS; i++) {
1174        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1175                           qdev_get_gpio_in(vms->gic, irq + i));
1176    }
1177
1178    node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1179    qemu_fdt_add_subnode(vms->fdt, node);
1180    qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1181    qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1182
1183    qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1184            GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1185            GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1186            GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1187            GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1188
1189    qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1190                     sizeof(irq_names));
1191
1192    qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1193    qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1194    qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1195
1196    qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1197
1198    qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1199    g_free(node);
1200}
1201
1202static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1203{
1204    const char compat[] = "virtio,pci-iommu";
1205    uint16_t bdf = vms->virtio_iommu_bdf;
1206    char *node;
1207
1208    vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1209
1210    node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1211    qemu_fdt_add_subnode(vms->fdt, node);
1212    qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1213    qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg",
1214                                 1, bdf << 8, 1, 0, 1, 0,
1215                                 1, 0, 1, 0);
1216
1217    qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1218    qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1219    g_free(node);
1220
1221    qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map",
1222                           0x0, vms->iommu_phandle, 0x0, bdf,
1223                           bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1224}
1225
1226static void create_pcie(VirtMachineState *vms)
1227{
1228    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1229    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1230    hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1231    hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1232    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1233    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1234    hwaddr base_ecam, size_ecam;
1235    hwaddr base = base_mmio;
1236    int nr_pcie_buses;
1237    int irq = vms->irqmap[VIRT_PCIE];
1238    MemoryRegion *mmio_alias;
1239    MemoryRegion *mmio_reg;
1240    MemoryRegion *ecam_alias;
1241    MemoryRegion *ecam_reg;
1242    DeviceState *dev;
1243    char *nodename;
1244    int i, ecam_id;
1245    PCIHostState *pci;
1246
1247    dev = qdev_new(TYPE_GPEX_HOST);
1248    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1249
1250    ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1251    base_ecam = vms->memmap[ecam_id].base;
1252    size_ecam = vms->memmap[ecam_id].size;
1253    nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1254    /* Map only the first size_ecam bytes of ECAM space */
1255    ecam_alias = g_new0(MemoryRegion, 1);
1256    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1257    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1258                             ecam_reg, 0, size_ecam);
1259    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1260
1261    /* Map the MMIO window into system address space so as to expose
1262     * the section of PCI MMIO space which starts at the same base address
1263     * (ie 1:1 mapping for that part of PCI MMIO space visible through
1264     * the window).
1265     */
1266    mmio_alias = g_new0(MemoryRegion, 1);
1267    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1268    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1269                             mmio_reg, base_mmio, size_mmio);
1270    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1271
1272    if (vms->highmem) {
1273        /* Map high MMIO space */
1274        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1275
1276        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1277                                 mmio_reg, base_mmio_high, size_mmio_high);
1278        memory_region_add_subregion(get_system_memory(), base_mmio_high,
1279                                    high_mmio_alias);
1280    }
1281
1282    /* Map IO port space */
1283    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1284
1285    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1286        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1287                           qdev_get_gpio_in(vms->gic, irq + i));
1288        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1289    }
1290
1291    pci = PCI_HOST_BRIDGE(dev);
1292    if (pci->bus) {
1293        for (i = 0; i < nb_nics; i++) {
1294            NICInfo *nd = &nd_table[i];
1295
1296            if (!nd->model) {
1297                nd->model = g_strdup("virtio");
1298            }
1299
1300            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1301        }
1302    }
1303
1304    nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1305    qemu_fdt_add_subnode(vms->fdt, nodename);
1306    qemu_fdt_setprop_string(vms->fdt, nodename,
1307                            "compatible", "pci-host-ecam-generic");
1308    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1309    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1310    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1311    qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1312    qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1313                           nr_pcie_buses - 1);
1314    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1315
1316    if (vms->msi_phandle) {
1317        qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1318                               vms->msi_phandle);
1319    }
1320
1321    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1322                                 2, base_ecam, 2, size_ecam);
1323
1324    if (vms->highmem) {
1325        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1326                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1327                                     2, base_pio, 2, size_pio,
1328                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1329                                     2, base_mmio, 2, size_mmio,
1330                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1331                                     2, base_mmio_high,
1332                                     2, base_mmio_high, 2, size_mmio_high);
1333    } else {
1334        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1335                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1336                                     2, base_pio, 2, size_pio,
1337                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1338                                     2, base_mmio, 2, size_mmio);
1339    }
1340
1341    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1342    create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1343
1344    if (vms->iommu) {
1345        vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1346
1347        switch (vms->iommu) {
1348        case VIRT_IOMMU_SMMUV3:
1349            create_smmu(vms, pci->bus);
1350            qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1351                                   0x0, vms->iommu_phandle, 0x0, 0x10000);
1352            break;
1353        default:
1354            g_assert_not_reached();
1355        }
1356    }
1357}
1358
1359static void create_platform_bus(VirtMachineState *vms)
1360{
1361    DeviceState *dev;
1362    SysBusDevice *s;
1363    int i;
1364    MemoryRegion *sysmem = get_system_memory();
1365
1366    dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1367    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1368    qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1369    qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1370    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1371    vms->platform_bus_dev = dev;
1372
1373    s = SYS_BUS_DEVICE(dev);
1374    for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1375        int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1376        sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1377    }
1378
1379    memory_region_add_subregion(sysmem,
1380                                vms->memmap[VIRT_PLATFORM_BUS].base,
1381                                sysbus_mmio_get_region(s, 0));
1382}
1383
1384static void create_tag_ram(MemoryRegion *tag_sysmem,
1385                           hwaddr base, hwaddr size,
1386                           const char *name)
1387{
1388    MemoryRegion *tagram = g_new(MemoryRegion, 1);
1389
1390    memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1391    memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1392}
1393
1394static void create_secure_ram(VirtMachineState *vms,
1395                              MemoryRegion *secure_sysmem,
1396                              MemoryRegion *secure_tag_sysmem)
1397{
1398    MemoryRegion *secram = g_new(MemoryRegion, 1);
1399    char *nodename;
1400    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1401    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1402
1403    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1404                           &error_fatal);
1405    memory_region_add_subregion(secure_sysmem, base, secram);
1406
1407    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1408    qemu_fdt_add_subnode(vms->fdt, nodename);
1409    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1410    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1411    qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1412    qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1413
1414    if (secure_tag_sysmem) {
1415        create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1416    }
1417
1418    g_free(nodename);
1419}
1420
1421static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1422{
1423    const VirtMachineState *board = container_of(binfo, VirtMachineState,
1424                                                 bootinfo);
1425
1426    *fdt_size = board->fdt_size;
1427    return board->fdt;
1428}
1429
1430static void virt_build_smbios(VirtMachineState *vms)
1431{
1432    MachineClass *mc = MACHINE_GET_CLASS(vms);
1433    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1434    uint8_t *smbios_tables, *smbios_anchor;
1435    size_t smbios_tables_len, smbios_anchor_len;
1436    const char *product = "QEMU Virtual Machine";
1437
1438    if (kvm_enabled()) {
1439        product = "KVM Virtual Machine";
1440    }
1441
1442    smbios_set_defaults("QEMU", product,
1443                        vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1444                        true, SMBIOS_ENTRY_POINT_30);
1445
1446    smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1447                      &smbios_anchor, &smbios_anchor_len);
1448
1449    if (smbios_anchor) {
1450        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1451                        smbios_tables, smbios_tables_len);
1452        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1453                        smbios_anchor, smbios_anchor_len);
1454    }
1455}
1456
1457static
1458void virt_machine_done(Notifier *notifier, void *data)
1459{
1460    VirtMachineState *vms = container_of(notifier, VirtMachineState,
1461                                         machine_done);
1462    MachineState *ms = MACHINE(vms);
1463    ARMCPU *cpu = ARM_CPU(first_cpu);
1464    struct arm_boot_info *info = &vms->bootinfo;
1465    AddressSpace *as = arm_boot_address_space(cpu, info);
1466
1467    /*
1468     * If the user provided a dtb, we assume the dynamic sysbus nodes
1469     * already are integrated there. This corresponds to a use case where
1470     * the dynamic sysbus nodes are complex and their generation is not yet
1471     * supported. In that case the user can take charge of the guest dt
1472     * while qemu takes charge of the qom stuff.
1473     */
1474    if (info->dtb_filename == NULL) {
1475        platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1476                                       vms->memmap[VIRT_PLATFORM_BUS].base,
1477                                       vms->memmap[VIRT_PLATFORM_BUS].size,
1478                                       vms->irqmap[VIRT_PLATFORM_BUS]);
1479    }
1480    if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1481        exit(1);
1482    }
1483
1484    virt_acpi_setup(vms);
1485    virt_build_smbios(vms);
1486}
1487
1488static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1489{
1490    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1491    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1492
1493    if (!vmc->disallow_affinity_adjustment) {
1494        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1495         * GIC's target-list limitations. 32-bit KVM hosts currently
1496         * always create clusters of 4 CPUs, but that is expected to
1497         * change when they gain support for gicv3. When KVM is enabled
1498         * it will override the changes we make here, therefore our
1499         * purposes are to make TCG consistent (with 64-bit KVM hosts)
1500         * and to improve SGI efficiency.
1501         */
1502        if (vms->gic_version == VIRT_GIC_VERSION_3) {
1503            clustersz = GICV3_TARGETLIST_BITS;
1504        } else {
1505            clustersz = GIC_TARGETLIST_BITS;
1506        }
1507    }
1508    return arm_cpu_mp_affinity(idx, clustersz);
1509}
1510
1511static void virt_set_memmap(VirtMachineState *vms)
1512{
1513    MachineState *ms = MACHINE(vms);
1514    hwaddr base, device_memory_base, device_memory_size;
1515    int i;
1516
1517    vms->memmap = extended_memmap;
1518
1519    for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1520        vms->memmap[i] = base_memmap[i];
1521    }
1522
1523    if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1524        error_report("unsupported number of memory slots: %"PRIu64,
1525                     ms->ram_slots);
1526        exit(EXIT_FAILURE);
1527    }
1528
1529    /*
1530     * We compute the base of the high IO region depending on the
1531     * amount of initial and device memory. The device memory start/size
1532     * is aligned on 1GiB. We never put the high IO region below 256GiB
1533     * so that if maxram_size is < 255GiB we keep the legacy memory map.
1534     * The device region size assumes 1GiB page max alignment per slot.
1535     */
1536    device_memory_base =
1537        ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1538    device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1539
1540    /* Base address of the high IO region */
1541    base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1542    if (base < device_memory_base) {
1543        error_report("maxmem/slots too huge");
1544        exit(EXIT_FAILURE);
1545    }
1546    if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1547        base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1548    }
1549
1550    for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1551        hwaddr size = extended_memmap[i].size;
1552
1553        base = ROUND_UP(base, size);
1554        vms->memmap[i].base = base;
1555        vms->memmap[i].size = size;
1556        base += size;
1557    }
1558    vms->highest_gpa = base - 1;
1559    if (device_memory_size > 0) {
1560        ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1561        ms->device_memory->base = device_memory_base;
1562        memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1563                           "device-memory", device_memory_size);
1564    }
1565}
1566
1567/*
1568 * finalize_gic_version - Determines the final gic_version
1569 * according to the gic-version property
1570 *
1571 * Default GIC type is v2
1572 */
1573static void finalize_gic_version(VirtMachineState *vms)
1574{
1575    unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1576
1577    if (kvm_enabled()) {
1578        int probe_bitmap;
1579
1580        if (!kvm_irqchip_in_kernel()) {
1581            switch (vms->gic_version) {
1582            case VIRT_GIC_VERSION_HOST:
1583                warn_report(
1584                    "gic-version=host not relevant with kernel-irqchip=off "
1585                     "as only userspace GICv2 is supported. Using v2 ...");
1586                return;
1587            case VIRT_GIC_VERSION_MAX:
1588            case VIRT_GIC_VERSION_NOSEL:
1589                vms->gic_version = VIRT_GIC_VERSION_2;
1590                return;
1591            case VIRT_GIC_VERSION_2:
1592                return;
1593            case VIRT_GIC_VERSION_3:
1594                error_report(
1595                    "gic-version=3 is not supported with kernel-irqchip=off");
1596                exit(1);
1597            }
1598        }
1599
1600        probe_bitmap = kvm_arm_vgic_probe();
1601        if (!probe_bitmap) {
1602            error_report("Unable to determine GIC version supported by host");
1603            exit(1);
1604        }
1605
1606        switch (vms->gic_version) {
1607        case VIRT_GIC_VERSION_HOST:
1608        case VIRT_GIC_VERSION_MAX:
1609            if (probe_bitmap & KVM_ARM_VGIC_V3) {
1610                vms->gic_version = VIRT_GIC_VERSION_3;
1611            } else {
1612                vms->gic_version = VIRT_GIC_VERSION_2;
1613            }
1614            return;
1615        case VIRT_GIC_VERSION_NOSEL:
1616            if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1617                vms->gic_version = VIRT_GIC_VERSION_2;
1618            } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1619                /*
1620                 * in case the host does not support v2 in-kernel emulation or
1621                 * the end-user requested more than 8 VCPUs we now default
1622                 * to v3. In any case defaulting to v2 would be broken.
1623                 */
1624                vms->gic_version = VIRT_GIC_VERSION_3;
1625            } else if (max_cpus > GIC_NCPU) {
1626                error_report("host only supports in-kernel GICv2 emulation "
1627                             "but more than 8 vcpus are requested");
1628                exit(1);
1629            }
1630            break;
1631        case VIRT_GIC_VERSION_2:
1632        case VIRT_GIC_VERSION_3:
1633            break;
1634        }
1635
1636        /* Check chosen version is effectively supported by the host */
1637        if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1638            !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1639            error_report("host does not support in-kernel GICv2 emulation");
1640            exit(1);
1641        } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1642                   !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1643            error_report("host does not support in-kernel GICv3 emulation");
1644            exit(1);
1645        }
1646        return;
1647    }
1648
1649    /* TCG mode */
1650    switch (vms->gic_version) {
1651    case VIRT_GIC_VERSION_NOSEL:
1652        vms->gic_version = VIRT_GIC_VERSION_2;
1653        break;
1654    case VIRT_GIC_VERSION_MAX:
1655        vms->gic_version = VIRT_GIC_VERSION_3;
1656        break;
1657    case VIRT_GIC_VERSION_HOST:
1658        error_report("gic-version=host requires KVM");
1659        exit(1);
1660    case VIRT_GIC_VERSION_2:
1661    case VIRT_GIC_VERSION_3:
1662        break;
1663    }
1664}
1665
1666/*
1667 * virt_cpu_post_init() must be called after the CPUs have
1668 * been realized and the GIC has been created.
1669 */
1670static void virt_cpu_post_init(VirtMachineState *vms, int max_cpus,
1671                               MemoryRegion *sysmem)
1672{
1673    bool aarch64, pmu, steal_time;
1674    CPUState *cpu;
1675
1676    aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1677    pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1678    steal_time = object_property_get_bool(OBJECT(first_cpu),
1679                                          "kvm-steal-time", NULL);
1680
1681    if (kvm_enabled()) {
1682        hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1683        hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1684
1685        if (steal_time) {
1686            MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1687            hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1688
1689            /* The memory region size must be a multiple of host page size. */
1690            pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1691
1692            if (pvtime_size > pvtime_reg_size) {
1693                error_report("pvtime requires a %" HWADDR_PRId
1694                             " byte memory region for %d CPUs,"
1695                             " but only %" HWADDR_PRId " has been reserved",
1696                             pvtime_size, max_cpus, pvtime_reg_size);
1697                exit(1);
1698            }
1699
1700            memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1701            memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1702        }
1703
1704        CPU_FOREACH(cpu) {
1705            if (pmu) {
1706                assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1707                if (kvm_irqchip_in_kernel()) {
1708                    kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1709                }
1710                kvm_arm_pmu_init(cpu);
1711            }
1712            if (steal_time) {
1713                kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1714                                         cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1715            }
1716        }
1717    } else {
1718        if (aarch64 && vms->highmem) {
1719            int requested_pa_size = 64 - clz64(vms->highest_gpa);
1720            int pamax = arm_pamax(ARM_CPU(first_cpu));
1721
1722            if (pamax < requested_pa_size) {
1723                error_report("VCPU supports less PA bits (%d) than "
1724                             "requested by the memory map (%d)",
1725                             pamax, requested_pa_size);
1726                exit(1);
1727            }
1728        }
1729    }
1730}
1731
1732static void machvirt_init(MachineState *machine)
1733{
1734    VirtMachineState *vms = VIRT_MACHINE(machine);
1735    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1736    MachineClass *mc = MACHINE_GET_CLASS(machine);
1737    const CPUArchIdList *possible_cpus;
1738    MemoryRegion *sysmem = get_system_memory();
1739    MemoryRegion *secure_sysmem = NULL;
1740    MemoryRegion *tag_sysmem = NULL;
1741    MemoryRegion *secure_tag_sysmem = NULL;
1742    int n, virt_max_cpus;
1743    bool firmware_loaded;
1744    bool aarch64 = true;
1745    bool has_ged = !vmc->no_ged;
1746    unsigned int smp_cpus = machine->smp.cpus;
1747    unsigned int max_cpus = machine->smp.max_cpus;
1748
1749    /*
1750     * In accelerated mode, the memory map is computed earlier in kvm_type()
1751     * to create a VM with the right number of IPA bits.
1752     */
1753    if (!vms->memmap) {
1754        virt_set_memmap(vms);
1755    }
1756
1757    /* We can probe only here because during property set
1758     * KVM is not available yet
1759     */
1760    finalize_gic_version(vms);
1761
1762    if (!cpu_type_valid(machine->cpu_type)) {
1763        error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1764        exit(1);
1765    }
1766
1767    if (vms->secure) {
1768        if (kvm_enabled()) {
1769            error_report("mach-virt: KVM does not support Security extensions");
1770            exit(1);
1771        }
1772
1773        /*
1774         * The Secure view of the world is the same as the NonSecure,
1775         * but with a few extra devices. Create it as a container region
1776         * containing the system memory at low priority; any secure-only
1777         * devices go in at higher priority and take precedence.
1778         */
1779        secure_sysmem = g_new(MemoryRegion, 1);
1780        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1781                           UINT64_MAX);
1782        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1783    }
1784
1785    firmware_loaded = virt_firmware_init(vms, sysmem,
1786                                         secure_sysmem ?: sysmem);
1787
1788    /* If we have an EL3 boot ROM then the assumption is that it will
1789     * implement PSCI itself, so disable QEMU's internal implementation
1790     * so it doesn't get in the way. Instead of starting secondary
1791     * CPUs in PSCI powerdown state we will start them all running and
1792     * let the boot ROM sort them out.
1793     * The usual case is that we do use QEMU's PSCI implementation;
1794     * if the guest has EL2 then we will use SMC as the conduit,
1795     * and otherwise we will use HVC (for backwards compatibility and
1796     * because if we're using KVM then we must use HVC).
1797     */
1798    if (vms->secure && firmware_loaded) {
1799        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1800    } else if (vms->virt) {
1801        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1802    } else {
1803        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1804    }
1805
1806    /* The maximum number of CPUs depends on the GIC version, or on how
1807     * many redistributors we can fit into the memory map.
1808     */
1809    if (vms->gic_version == VIRT_GIC_VERSION_3) {
1810        virt_max_cpus =
1811            vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1812        virt_max_cpus +=
1813            vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1814    } else {
1815        virt_max_cpus = GIC_NCPU;
1816    }
1817
1818    if (max_cpus > virt_max_cpus) {
1819        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1820                     "supported by machine 'mach-virt' (%d)",
1821                     max_cpus, virt_max_cpus);
1822        exit(1);
1823    }
1824
1825    vms->smp_cpus = smp_cpus;
1826
1827    if (vms->virt && kvm_enabled()) {
1828        error_report("mach-virt: KVM does not support providing "
1829                     "Virtualization extensions to the guest CPU");
1830        exit(1);
1831    }
1832
1833    if (vms->mte && kvm_enabled()) {
1834        error_report("mach-virt: KVM does not support providing "
1835                     "MTE to the guest CPU");
1836        exit(1);
1837    }
1838
1839    create_fdt(vms);
1840
1841    possible_cpus = mc->possible_cpu_arch_ids(machine);
1842    for (n = 0; n < possible_cpus->len; n++) {
1843        Object *cpuobj;
1844        CPUState *cs;
1845
1846        if (n >= smp_cpus) {
1847            break;
1848        }
1849
1850        cpuobj = object_new(possible_cpus->cpus[n].type);
1851        object_property_set_int(cpuobj, "mp-affinity",
1852                                possible_cpus->cpus[n].arch_id, NULL);
1853
1854        cs = CPU(cpuobj);
1855        cs->cpu_index = n;
1856
1857        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1858                          &error_fatal);
1859
1860        aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1861
1862        if (!vms->secure) {
1863            object_property_set_bool(cpuobj, "has_el3", false, NULL);
1864        }
1865
1866        if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1867            object_property_set_bool(cpuobj, "has_el2", false, NULL);
1868        }
1869
1870        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1871            object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1872                                    NULL);
1873
1874            /* Secondary CPUs start in PSCI powered-down state */
1875            if (n > 0) {
1876                object_property_set_bool(cpuobj, "start-powered-off", true,
1877                                         NULL);
1878            }
1879        }
1880
1881        if (vmc->kvm_no_adjvtime &&
1882            object_property_find(cpuobj, "kvm-no-adjvtime")) {
1883            object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1884        }
1885
1886        if (vmc->no_kvm_steal_time &&
1887            object_property_find(cpuobj, "kvm-steal-time")) {
1888            object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1889        }
1890
1891        if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1892            object_property_set_bool(cpuobj, "pmu", false, NULL);
1893        }
1894
1895        if (object_property_find(cpuobj, "reset-cbar")) {
1896            object_property_set_int(cpuobj, "reset-cbar",
1897                                    vms->memmap[VIRT_CPUPERIPHS].base,
1898                                    &error_abort);
1899        }
1900
1901        object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1902                                 &error_abort);
1903        if (vms->secure) {
1904            object_property_set_link(cpuobj, "secure-memory",
1905                                     OBJECT(secure_sysmem), &error_abort);
1906        }
1907
1908        if (vms->mte) {
1909            /* Create the memory region only once, but link to all cpus. */
1910            if (!tag_sysmem) {
1911                /*
1912                 * The property exists only if MemTag is supported.
1913                 * If it is, we must allocate the ram to back that up.
1914                 */
1915                if (!object_property_find(cpuobj, "tag-memory")) {
1916                    error_report("MTE requested, but not supported "
1917                                 "by the guest CPU");
1918                    exit(1);
1919                }
1920
1921                tag_sysmem = g_new(MemoryRegion, 1);
1922                memory_region_init(tag_sysmem, OBJECT(machine),
1923                                   "tag-memory", UINT64_MAX / 32);
1924
1925                if (vms->secure) {
1926                    secure_tag_sysmem = g_new(MemoryRegion, 1);
1927                    memory_region_init(secure_tag_sysmem, OBJECT(machine),
1928                                       "secure-tag-memory", UINT64_MAX / 32);
1929
1930                    /* As with ram, secure-tag takes precedence over tag.  */
1931                    memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
1932                                                        tag_sysmem, -1);
1933                }
1934            }
1935
1936            object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
1937                                     &error_abort);
1938            if (vms->secure) {
1939                object_property_set_link(cpuobj, "secure-tag-memory",
1940                                         OBJECT(secure_tag_sysmem),
1941                                         &error_abort);
1942            }
1943        }
1944
1945        qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
1946        object_unref(cpuobj);
1947    }
1948    fdt_add_timer_nodes(vms);
1949    fdt_add_cpu_nodes(vms);
1950
1951    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
1952                                machine->ram);
1953    if (machine->device_memory) {
1954        memory_region_add_subregion(sysmem, machine->device_memory->base,
1955                                    &machine->device_memory->mr);
1956    }
1957
1958    virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1959
1960    create_gic(vms);
1961
1962    virt_cpu_post_init(vms, possible_cpus->len, sysmem);
1963
1964    fdt_add_pmu_nodes(vms);
1965
1966    create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
1967
1968    if (vms->secure) {
1969        create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
1970        create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1971    }
1972
1973    if (tag_sysmem) {
1974        create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
1975                       machine->ram_size, "mach-virt.tag");
1976    }
1977
1978    vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1979
1980    create_rtc(vms);
1981
1982    create_pcie(vms);
1983
1984    if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
1985        vms->acpi_dev = create_acpi_ged(vms);
1986    } else {
1987        create_gpio(vms);
1988    }
1989
1990     /* connect powerdown request */
1991     vms->powerdown_notifier.notify = virt_powerdown_req;
1992     qemu_register_powerdown_notifier(&vms->powerdown_notifier);
1993
1994    /* Create mmio transports, so the user can create virtio backends
1995     * (which will be automatically plugged in to the transports). If
1996     * no backend is created the transport will just sit harmlessly idle.
1997     */
1998    create_virtio_devices(vms);
1999
2000    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2001    rom_set_fw(vms->fw_cfg);
2002
2003    create_platform_bus(vms);
2004
2005    if (machine->nvdimms_state->is_enabled) {
2006        const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2007            .space_id = AML_AS_SYSTEM_MEMORY,
2008            .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2009            .bit_width = NVDIMM_ACPI_IO_LEN << 3
2010        };
2011
2012        nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2013                               arm_virt_nvdimm_acpi_dsmio,
2014                               vms->fw_cfg, OBJECT(vms));
2015    }
2016
2017    vms->bootinfo.ram_size = machine->ram_size;
2018    vms->bootinfo.nb_cpus = smp_cpus;
2019    vms->bootinfo.board_id = -1;
2020    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2021    vms->bootinfo.get_dtb = machvirt_dtb;
2022    vms->bootinfo.skip_dtb_autoload = true;
2023    vms->bootinfo.firmware_loaded = firmware_loaded;
2024    arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2025
2026    vms->machine_done.notify = virt_machine_done;
2027    qemu_add_machine_init_done_notifier(&vms->machine_done);
2028}
2029
2030static bool virt_get_secure(Object *obj, Error **errp)
2031{
2032    VirtMachineState *vms = VIRT_MACHINE(obj);
2033
2034    return vms->secure;
2035}
2036
2037static void virt_set_secure(Object *obj, bool value, Error **errp)
2038{
2039    VirtMachineState *vms = VIRT_MACHINE(obj);
2040
2041    vms->secure = value;
2042}
2043
2044static bool virt_get_virt(Object *obj, Error **errp)
2045{
2046    VirtMachineState *vms = VIRT_MACHINE(obj);
2047
2048    return vms->virt;
2049}
2050
2051static void virt_set_virt(Object *obj, bool value, Error **errp)
2052{
2053    VirtMachineState *vms = VIRT_MACHINE(obj);
2054
2055    vms->virt = value;
2056}
2057
2058static bool virt_get_highmem(Object *obj, Error **errp)
2059{
2060    VirtMachineState *vms = VIRT_MACHINE(obj);
2061
2062    return vms->highmem;
2063}
2064
2065static void virt_set_highmem(Object *obj, bool value, Error **errp)
2066{
2067    VirtMachineState *vms = VIRT_MACHINE(obj);
2068
2069    vms->highmem = value;
2070}
2071
2072static bool virt_get_its(Object *obj, Error **errp)
2073{
2074    VirtMachineState *vms = VIRT_MACHINE(obj);
2075
2076    return vms->its;
2077}
2078
2079static void virt_set_its(Object *obj, bool value, Error **errp)
2080{
2081    VirtMachineState *vms = VIRT_MACHINE(obj);
2082
2083    vms->its = value;
2084}
2085
2086bool virt_is_acpi_enabled(VirtMachineState *vms)
2087{
2088    if (vms->acpi == ON_OFF_AUTO_OFF) {
2089        return false;
2090    }
2091    return true;
2092}
2093
2094static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2095                          void *opaque, Error **errp)
2096{
2097    VirtMachineState *vms = VIRT_MACHINE(obj);
2098    OnOffAuto acpi = vms->acpi;
2099
2100    visit_type_OnOffAuto(v, name, &acpi, errp);
2101}
2102
2103static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2104                          void *opaque, Error **errp)
2105{
2106    VirtMachineState *vms = VIRT_MACHINE(obj);
2107
2108    visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2109}
2110
2111static bool virt_get_ras(Object *obj, Error **errp)
2112{
2113    VirtMachineState *vms = VIRT_MACHINE(obj);
2114
2115    return vms->ras;
2116}
2117
2118static void virt_set_ras(Object *obj, bool value, Error **errp)
2119{
2120    VirtMachineState *vms = VIRT_MACHINE(obj);
2121
2122    vms->ras = value;
2123}
2124
2125static bool virt_get_mte(Object *obj, Error **errp)
2126{
2127    VirtMachineState *vms = VIRT_MACHINE(obj);
2128
2129    return vms->mte;
2130}
2131
2132static void virt_set_mte(Object *obj, bool value, Error **errp)
2133{
2134    VirtMachineState *vms = VIRT_MACHINE(obj);
2135
2136    vms->mte = value;
2137}
2138
2139static char *virt_get_gic_version(Object *obj, Error **errp)
2140{
2141    VirtMachineState *vms = VIRT_MACHINE(obj);
2142    const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2143
2144    return g_strdup(val);
2145}
2146
2147static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2148{
2149    VirtMachineState *vms = VIRT_MACHINE(obj);
2150
2151    if (!strcmp(value, "3")) {
2152        vms->gic_version = VIRT_GIC_VERSION_3;
2153    } else if (!strcmp(value, "2")) {
2154        vms->gic_version = VIRT_GIC_VERSION_2;
2155    } else if (!strcmp(value, "host")) {
2156        vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2157    } else if (!strcmp(value, "max")) {
2158        vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2159    } else {
2160        error_setg(errp, "Invalid gic-version value");
2161        error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2162    }
2163}
2164
2165static char *virt_get_iommu(Object *obj, Error **errp)
2166{
2167    VirtMachineState *vms = VIRT_MACHINE(obj);
2168
2169    switch (vms->iommu) {
2170    case VIRT_IOMMU_NONE:
2171        return g_strdup("none");
2172    case VIRT_IOMMU_SMMUV3:
2173        return g_strdup("smmuv3");
2174    default:
2175        g_assert_not_reached();
2176    }
2177}
2178
2179static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2180{
2181    VirtMachineState *vms = VIRT_MACHINE(obj);
2182
2183    if (!strcmp(value, "smmuv3")) {
2184        vms->iommu = VIRT_IOMMU_SMMUV3;
2185    } else if (!strcmp(value, "none")) {
2186        vms->iommu = VIRT_IOMMU_NONE;
2187    } else {
2188        error_setg(errp, "Invalid iommu value");
2189        error_append_hint(errp, "Valid values are none, smmuv3.\n");
2190    }
2191}
2192
2193static CpuInstanceProperties
2194virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2195{
2196    MachineClass *mc = MACHINE_GET_CLASS(ms);
2197    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2198
2199    assert(cpu_index < possible_cpus->len);
2200    return possible_cpus->cpus[cpu_index].props;
2201}
2202
2203static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2204{
2205    return idx % ms->numa_state->num_nodes;
2206}
2207
2208static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2209{
2210    int n;
2211    unsigned int max_cpus = ms->smp.max_cpus;
2212    VirtMachineState *vms = VIRT_MACHINE(ms);
2213
2214    if (ms->possible_cpus) {
2215        assert(ms->possible_cpus->len == max_cpus);
2216        return ms->possible_cpus;
2217    }
2218
2219    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2220                                  sizeof(CPUArchId) * max_cpus);
2221    ms->possible_cpus->len = max_cpus;
2222    for (n = 0; n < ms->possible_cpus->len; n++) {
2223        ms->possible_cpus->cpus[n].type = ms->cpu_type;
2224        ms->possible_cpus->cpus[n].arch_id =
2225            virt_cpu_mp_affinity(vms, n);
2226        ms->possible_cpus->cpus[n].props.has_thread_id = true;
2227        ms->possible_cpus->cpus[n].props.thread_id = n;
2228    }
2229    return ms->possible_cpus;
2230}
2231
2232static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2233                                 Error **errp)
2234{
2235    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2236    const MachineState *ms = MACHINE(hotplug_dev);
2237    const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2238
2239    if (!vms->acpi_dev) {
2240        error_setg(errp,
2241                   "memory hotplug is not enabled: missing acpi-ged device");
2242        return;
2243    }
2244
2245    if (vms->mte) {
2246        error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2247        return;
2248    }
2249
2250    if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2251        error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2252        return;
2253    }
2254
2255    pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2256}
2257
2258static void virt_memory_plug(HotplugHandler *hotplug_dev,
2259                             DeviceState *dev, Error **errp)
2260{
2261    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2262    MachineState *ms = MACHINE(hotplug_dev);
2263    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2264
2265    pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2266
2267    if (is_nvdimm) {
2268        nvdimm_plug(ms->nvdimms_state);
2269    }
2270
2271    hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2272                         dev, &error_abort);
2273}
2274
2275static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2276                                            DeviceState *dev, Error **errp)
2277{
2278    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2279
2280    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2281        virt_memory_pre_plug(hotplug_dev, dev, errp);
2282    } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2283        hwaddr db_start = 0, db_end = 0;
2284        char *resv_prop_str;
2285
2286        switch (vms->msi_controller) {
2287        case VIRT_MSI_CTRL_NONE:
2288            return;
2289        case VIRT_MSI_CTRL_ITS:
2290            /* GITS_TRANSLATER page */
2291            db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2292            db_end = base_memmap[VIRT_GIC_ITS].base +
2293                     base_memmap[VIRT_GIC_ITS].size - 1;
2294            break;
2295        case VIRT_MSI_CTRL_GICV2M:
2296            /* MSI_SETSPI_NS page */
2297            db_start = base_memmap[VIRT_GIC_V2M].base;
2298            db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2299            break;
2300        }
2301        resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2302                                        db_start, db_end,
2303                                        VIRTIO_IOMMU_RESV_MEM_T_MSI);
2304
2305        qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2306        qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2307        g_free(resv_prop_str);
2308    }
2309}
2310
2311static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2312                                        DeviceState *dev, Error **errp)
2313{
2314    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2315
2316    if (vms->platform_bus_dev) {
2317        if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
2318            platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2319                                     SYS_BUS_DEVICE(dev));
2320        }
2321    }
2322    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2323        virt_memory_plug(hotplug_dev, dev, errp);
2324    }
2325    if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2326        PCIDevice *pdev = PCI_DEVICE(dev);
2327
2328        vms->iommu = VIRT_IOMMU_VIRTIO;
2329        vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2330        create_virtio_iommu_dt_bindings(vms);
2331    }
2332}
2333
2334static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2335                                     DeviceState *dev, Error **errp)
2336{
2337    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2338    Error *local_err = NULL;
2339
2340    if (!vms->acpi_dev) {
2341        error_setg(&local_err,
2342                   "memory hotplug is not enabled: missing acpi-ged device");
2343        goto out;
2344    }
2345
2346    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2347        error_setg(&local_err,
2348                   "nvdimm device hot unplug is not supported yet.");
2349        goto out;
2350    }
2351
2352    hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2353                                   &local_err);
2354out:
2355    error_propagate(errp, local_err);
2356}
2357
2358static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2359                             DeviceState *dev, Error **errp)
2360{
2361    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2362    Error *local_err = NULL;
2363
2364    hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2365    if (local_err) {
2366        goto out;
2367    }
2368
2369    pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2370    qdev_unrealize(dev);
2371
2372out:
2373    error_propagate(errp, local_err);
2374}
2375
2376static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2377                                          DeviceState *dev, Error **errp)
2378{
2379    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2380        virt_dimm_unplug_request(hotplug_dev, dev, errp);
2381    } else {
2382        error_setg(errp, "device unplug request for unsupported device"
2383                   " type: %s", object_get_typename(OBJECT(dev)));
2384    }
2385}
2386
2387static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2388                                          DeviceState *dev, Error **errp)
2389{
2390    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2391        virt_dimm_unplug(hotplug_dev, dev, errp);
2392    } else {
2393        error_setg(errp, "virt: device unplug for unsupported device"
2394                   " type: %s", object_get_typename(OBJECT(dev)));
2395    }
2396}
2397
2398static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2399                                                        DeviceState *dev)
2400{
2401    if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
2402       (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2403        return HOTPLUG_HANDLER(machine);
2404    }
2405    if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2406        VirtMachineState *vms = VIRT_MACHINE(machine);
2407
2408        if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2409            return HOTPLUG_HANDLER(machine);
2410        }
2411    }
2412    return NULL;
2413}
2414
2415/*
2416 * for arm64 kvm_type [7-0] encodes the requested number of bits
2417 * in the IPA address space
2418 */
2419static int virt_kvm_type(MachineState *ms, const char *type_str)
2420{
2421    VirtMachineState *vms = VIRT_MACHINE(ms);
2422    int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2423    int requested_pa_size;
2424
2425    /* we freeze the memory map to compute the highest gpa */
2426    virt_set_memmap(vms);
2427
2428    requested_pa_size = 64 - clz64(vms->highest_gpa);
2429
2430    if (requested_pa_size > max_vm_pa_size) {
2431        error_report("-m and ,maxmem option values "
2432                     "require an IPA range (%d bits) larger than "
2433                     "the one supported by the host (%d bits)",
2434                     requested_pa_size, max_vm_pa_size);
2435       exit(1);
2436    }
2437    /*
2438     * By default we return 0 which corresponds to an implicit legacy
2439     * 40b IPA setting. Otherwise we return the actual requested PA
2440     * logsize
2441     */
2442    return requested_pa_size > 40 ? requested_pa_size : 0;
2443}
2444
2445static void virt_machine_class_init(ObjectClass *oc, void *data)
2446{
2447    MachineClass *mc = MACHINE_CLASS(oc);
2448    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2449
2450    mc->init = machvirt_init;
2451    /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2452     * The value may be reduced later when we have more information about the
2453     * configuration of the particular instance.
2454     */
2455    mc->max_cpus = 512;
2456    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2457    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2458    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2459    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2460    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2461    mc->block_default_type = IF_VIRTIO;
2462    mc->no_cdrom = 1;
2463    mc->pci_allow_0_address = true;
2464    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2465    mc->minimum_page_bits = 12;
2466    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2467    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2468    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2469    mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2470    mc->kvm_type = virt_kvm_type;
2471    assert(!mc->get_hotplug_handler);
2472    mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2473    hc->pre_plug = virt_machine_device_pre_plug_cb;
2474    hc->plug = virt_machine_device_plug_cb;
2475    hc->unplug_request = virt_machine_device_unplug_request_cb;
2476    hc->unplug = virt_machine_device_unplug_cb;
2477    mc->nvdimm_supported = true;
2478    mc->auto_enable_numa_with_memhp = true;
2479    mc->auto_enable_numa_with_memdev = true;
2480    mc->default_ram_id = "mach-virt.ram";
2481
2482    object_class_property_add(oc, "acpi", "OnOffAuto",
2483        virt_get_acpi, virt_set_acpi,
2484        NULL, NULL);
2485    object_class_property_set_description(oc, "acpi",
2486        "Enable ACPI");
2487}
2488
2489static void virt_instance_init(Object *obj)
2490{
2491    VirtMachineState *vms = VIRT_MACHINE(obj);
2492    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2493
2494    /* EL3 is disabled by default on virt: this makes us consistent
2495     * between KVM and TCG for this board, and it also allows us to
2496     * boot UEFI blobs which assume no TrustZone support.
2497     */
2498    vms->secure = false;
2499    object_property_add_bool(obj, "secure", virt_get_secure,
2500                             virt_set_secure);
2501    object_property_set_description(obj, "secure",
2502                                    "Set on/off to enable/disable the ARM "
2503                                    "Security Extensions (TrustZone)");
2504
2505    /* EL2 is also disabled by default, for similar reasons */
2506    vms->virt = false;
2507    object_property_add_bool(obj, "virtualization", virt_get_virt,
2508                             virt_set_virt);
2509    object_property_set_description(obj, "virtualization",
2510                                    "Set on/off to enable/disable emulating a "
2511                                    "guest CPU which implements the ARM "
2512                                    "Virtualization Extensions");
2513
2514    /* High memory is enabled by default */
2515    vms->highmem = true;
2516    object_property_add_bool(obj, "highmem", virt_get_highmem,
2517                             virt_set_highmem);
2518    object_property_set_description(obj, "highmem",
2519                                    "Set on/off to enable/disable using "
2520                                    "physical address space above 32 bits");
2521    vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2522    object_property_add_str(obj, "gic-version", virt_get_gic_version,
2523                        virt_set_gic_version);
2524    object_property_set_description(obj, "gic-version",
2525                                    "Set GIC version. "
2526                                    "Valid values are 2, 3, host and max");
2527
2528    vms->highmem_ecam = !vmc->no_highmem_ecam;
2529
2530    if (vmc->no_its) {
2531        vms->its = false;
2532    } else {
2533        /* Default allows ITS instantiation */
2534        vms->its = true;
2535        object_property_add_bool(obj, "its", virt_get_its,
2536                                 virt_set_its);
2537        object_property_set_description(obj, "its",
2538                                        "Set on/off to enable/disable "
2539                                        "ITS instantiation");
2540    }
2541
2542    /* Default disallows iommu instantiation */
2543    vms->iommu = VIRT_IOMMU_NONE;
2544    object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu);
2545    object_property_set_description(obj, "iommu",
2546                                    "Set the IOMMU type. "
2547                                    "Valid values are none and smmuv3");
2548
2549    /* Default disallows RAS instantiation */
2550    vms->ras = false;
2551    object_property_add_bool(obj, "ras", virt_get_ras,
2552                             virt_set_ras);
2553    object_property_set_description(obj, "ras",
2554                                    "Set on/off to enable/disable reporting host memory errors "
2555                                    "to a KVM guest using ACPI and guest external abort exceptions");
2556
2557    /* MTE is disabled by default.  */
2558    vms->mte = false;
2559    object_property_add_bool(obj, "mte", virt_get_mte, virt_set_mte);
2560    object_property_set_description(obj, "mte",
2561                                    "Set on/off to enable/disable emulating a "
2562                                    "guest CPU which implements the ARM "
2563                                    "Memory Tagging Extension");
2564
2565    vms->irqmap = a15irqmap;
2566
2567    virt_flash_create(vms);
2568}
2569
2570static const TypeInfo virt_machine_info = {
2571    .name          = TYPE_VIRT_MACHINE,
2572    .parent        = TYPE_MACHINE,
2573    .abstract      = true,
2574    .instance_size = sizeof(VirtMachineState),
2575    .class_size    = sizeof(VirtMachineClass),
2576    .class_init    = virt_machine_class_init,
2577    .instance_init = virt_instance_init,
2578    .interfaces = (InterfaceInfo[]) {
2579         { TYPE_HOTPLUG_HANDLER },
2580         { }
2581    },
2582};
2583
2584static void machvirt_machine_init(void)
2585{
2586    type_register_static(&virt_machine_info);
2587}
2588type_init(machvirt_machine_init);
2589
2590static void virt_machine_5_2_options(MachineClass *mc)
2591{
2592}
2593DEFINE_VIRT_MACHINE_AS_LATEST(5, 2)
2594
2595static void virt_machine_5_1_options(MachineClass *mc)
2596{
2597    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2598
2599    virt_machine_5_2_options(mc);
2600    compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2601    vmc->no_kvm_steal_time = true;
2602}
2603DEFINE_VIRT_MACHINE(5, 1)
2604
2605static void virt_machine_5_0_options(MachineClass *mc)
2606{
2607    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2608
2609    virt_machine_5_1_options(mc);
2610    compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2611    mc->numa_mem_supported = true;
2612    vmc->acpi_expose_flash = true;
2613    mc->auto_enable_numa_with_memdev = false;
2614}
2615DEFINE_VIRT_MACHINE(5, 0)
2616
2617static void virt_machine_4_2_options(MachineClass *mc)
2618{
2619    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2620
2621    virt_machine_5_0_options(mc);
2622    compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2623    vmc->kvm_no_adjvtime = true;
2624}
2625DEFINE_VIRT_MACHINE(4, 2)
2626
2627static void virt_machine_4_1_options(MachineClass *mc)
2628{
2629    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2630
2631    virt_machine_4_2_options(mc);
2632    compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2633    vmc->no_ged = true;
2634    mc->auto_enable_numa_with_memhp = false;
2635}
2636DEFINE_VIRT_MACHINE(4, 1)
2637
2638static void virt_machine_4_0_options(MachineClass *mc)
2639{
2640    virt_machine_4_1_options(mc);
2641    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2642}
2643DEFINE_VIRT_MACHINE(4, 0)
2644
2645static void virt_machine_3_1_options(MachineClass *mc)
2646{
2647    virt_machine_4_0_options(mc);
2648    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2649}
2650DEFINE_VIRT_MACHINE(3, 1)
2651
2652static void virt_machine_3_0_options(MachineClass *mc)
2653{
2654    virt_machine_3_1_options(mc);
2655    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2656}
2657DEFINE_VIRT_MACHINE(3, 0)
2658
2659static void virt_machine_2_12_options(MachineClass *mc)
2660{
2661    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2662
2663    virt_machine_3_0_options(mc);
2664    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2665    vmc->no_highmem_ecam = true;
2666    mc->max_cpus = 255;
2667}
2668DEFINE_VIRT_MACHINE(2, 12)
2669
2670static void virt_machine_2_11_options(MachineClass *mc)
2671{
2672    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2673
2674    virt_machine_2_12_options(mc);
2675    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2676    vmc->smbios_old_sys_ver = true;
2677}
2678DEFINE_VIRT_MACHINE(2, 11)
2679
2680static void virt_machine_2_10_options(MachineClass *mc)
2681{
2682    virt_machine_2_11_options(mc);
2683    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2684    /* before 2.11 we never faulted accesses to bad addresses */
2685    mc->ignore_memory_transaction_failures = true;
2686}
2687DEFINE_VIRT_MACHINE(2, 10)
2688
2689static void virt_machine_2_9_options(MachineClass *mc)
2690{
2691    virt_machine_2_10_options(mc);
2692    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2693}
2694DEFINE_VIRT_MACHINE(2, 9)
2695
2696static void virt_machine_2_8_options(MachineClass *mc)
2697{
2698    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2699
2700    virt_machine_2_9_options(mc);
2701    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2702    /* For 2.8 and earlier we falsely claimed in the DT that
2703     * our timers were edge-triggered, not level-triggered.
2704     */
2705    vmc->claim_edge_triggered_timers = true;
2706}
2707DEFINE_VIRT_MACHINE(2, 8)
2708
2709static void virt_machine_2_7_options(MachineClass *mc)
2710{
2711    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2712
2713    virt_machine_2_8_options(mc);
2714    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2715    /* ITS was introduced with 2.8 */
2716    vmc->no_its = true;
2717    /* Stick with 1K pages for migration compatibility */
2718    mc->minimum_page_bits = 0;
2719}
2720DEFINE_VIRT_MACHINE(2, 7)
2721
2722static void virt_machine_2_6_options(MachineClass *mc)
2723{
2724    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2725
2726    virt_machine_2_7_options(mc);
2727    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2728    vmc->disallow_affinity_adjustment = true;
2729    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2730    vmc->no_pmu = true;
2731}
2732DEFINE_VIRT_MACHINE(2, 6)
2733