qemu/hw/block/nand.c
<<
>>
Prefs
   1/*
   2 * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
   3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
   4 * Samsung Electronic.
   5 *
   6 * Copyright (c) 2006 Openedhand Ltd.
   7 * Written by Andrzej Zaborowski <balrog@zabor.org>
   8 *
   9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
  10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
  11 * from ST Microelectronics.
  12 *
  13 * This code is licensed under the GNU GPL v2.
  14 *
  15 * Contributions after 2012-01-13 are licensed under the terms of the
  16 * GNU GPL, version 2 or (at your option) any later version.
  17 */
  18
  19#ifndef NAND_IO
  20
  21#include "qemu/osdep.h"
  22#include "hw/hw.h"
  23#include "hw/qdev-properties.h"
  24#include "hw/block/flash.h"
  25#include "sysemu/block-backend.h"
  26#include "migration/vmstate.h"
  27#include "qapi/error.h"
  28#include "qemu/error-report.h"
  29#include "qemu/module.h"
  30#include "qom/object.h"
  31
  32# define NAND_CMD_READ0         0x00
  33# define NAND_CMD_READ1         0x01
  34# define NAND_CMD_READ2         0x50
  35# define NAND_CMD_LPREAD2       0x30
  36# define NAND_CMD_NOSERIALREAD2 0x35
  37# define NAND_CMD_RANDOMREAD1   0x05
  38# define NAND_CMD_RANDOMREAD2   0xe0
  39# define NAND_CMD_READID        0x90
  40# define NAND_CMD_RESET         0xff
  41# define NAND_CMD_PAGEPROGRAM1  0x80
  42# define NAND_CMD_PAGEPROGRAM2  0x10
  43# define NAND_CMD_CACHEPROGRAM2 0x15
  44# define NAND_CMD_BLOCKERASE1   0x60
  45# define NAND_CMD_BLOCKERASE2   0xd0
  46# define NAND_CMD_READSTATUS    0x70
  47# define NAND_CMD_COPYBACKPRG1  0x85
  48
  49# define NAND_IOSTATUS_ERROR    (1 << 0)
  50# define NAND_IOSTATUS_PLANE0   (1 << 1)
  51# define NAND_IOSTATUS_PLANE1   (1 << 2)
  52# define NAND_IOSTATUS_PLANE2   (1 << 3)
  53# define NAND_IOSTATUS_PLANE3   (1 << 4)
  54# define NAND_IOSTATUS_READY    (1 << 6)
  55# define NAND_IOSTATUS_UNPROTCT (1 << 7)
  56
  57# define MAX_PAGE               0x800
  58# define MAX_OOB                0x40
  59
  60typedef struct NANDFlashState NANDFlashState;
  61struct NANDFlashState {
  62    DeviceState parent_obj;
  63
  64    uint8_t manf_id, chip_id;
  65    uint8_t buswidth; /* in BYTES */
  66    int size, pages;
  67    int page_shift, oob_shift, erase_shift, addr_shift;
  68    uint8_t *storage;
  69    BlockBackend *blk;
  70    int mem_oob;
  71
  72    uint8_t cle, ale, ce, wp, gnd;
  73
  74    uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
  75    uint8_t *ioaddr;
  76    int iolen;
  77
  78    uint32_t cmd;
  79    uint64_t addr;
  80    int addrlen;
  81    int status;
  82    int offset;
  83
  84    void (*blk_write)(NANDFlashState *s);
  85    void (*blk_erase)(NANDFlashState *s);
  86    void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
  87
  88    uint32_t ioaddr_vmstate;
  89};
  90
  91#define TYPE_NAND "nand"
  92
  93OBJECT_DECLARE_SIMPLE_TYPE(NANDFlashState, NAND)
  94
  95static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
  96{
  97    /* Like memcpy() but we logical-AND the data into the destination */
  98    int i;
  99    for (i = 0; i < n; i++) {
 100        dest[i] &= src[i];
 101    }
 102}
 103
 104# define NAND_NO_AUTOINCR       0x00000001
 105# define NAND_BUSWIDTH_16       0x00000002
 106# define NAND_NO_PADDING        0x00000004
 107# define NAND_CACHEPRG          0x00000008
 108# define NAND_COPYBACK          0x00000010
 109# define NAND_IS_AND            0x00000020
 110# define NAND_4PAGE_ARRAY       0x00000040
 111# define NAND_NO_READRDY        0x00000100
 112# define NAND_SAMSUNG_LP        (NAND_NO_PADDING | NAND_COPYBACK)
 113
 114# define NAND_IO
 115
 116# define PAGE(addr)             ((addr) >> ADDR_SHIFT)
 117# define PAGE_START(page)       (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
 118# define PAGE_MASK              ((1 << ADDR_SHIFT) - 1)
 119# define OOB_SHIFT              (PAGE_SHIFT - 5)
 120# define OOB_SIZE               (1 << OOB_SHIFT)
 121# define SECTOR(addr)           ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
 122# define SECTOR_OFFSET(addr)    ((addr) & ((511 >> PAGE_SHIFT) << 8))
 123
 124# define PAGE_SIZE              256
 125# define PAGE_SHIFT             8
 126# define PAGE_SECTORS           1
 127# define ADDR_SHIFT             8
 128# include "nand.c"
 129# define PAGE_SIZE              512
 130# define PAGE_SHIFT             9
 131# define PAGE_SECTORS           1
 132# define ADDR_SHIFT             8
 133# include "nand.c"
 134# define PAGE_SIZE              2048
 135# define PAGE_SHIFT             11
 136# define PAGE_SECTORS           4
 137# define ADDR_SHIFT             16
 138# include "nand.c"
 139
 140/* Information based on Linux drivers/mtd/nand/nand_ids.c */
 141static const struct {
 142    int size;
 143    int width;
 144    int page_shift;
 145    int erase_shift;
 146    uint32_t options;
 147} nand_flash_ids[0x100] = {
 148    [0 ... 0xff] = { 0 },
 149
 150    [0x6e] = { 1,       8,      8, 4, 0 },
 151    [0x64] = { 2,       8,      8, 4, 0 },
 152    [0x6b] = { 4,       8,      9, 4, 0 },
 153    [0xe8] = { 1,       8,      8, 4, 0 },
 154    [0xec] = { 1,       8,      8, 4, 0 },
 155    [0xea] = { 2,       8,      8, 4, 0 },
 156    [0xd5] = { 4,       8,      9, 4, 0 },
 157    [0xe3] = { 4,       8,      9, 4, 0 },
 158    [0xe5] = { 4,       8,      9, 4, 0 },
 159    [0xd6] = { 8,       8,      9, 4, 0 },
 160
 161    [0x39] = { 8,       8,      9, 4, 0 },
 162    [0xe6] = { 8,       8,      9, 4, 0 },
 163    [0x49] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
 164    [0x59] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
 165
 166    [0x33] = { 16,      8,      9, 5, 0 },
 167    [0x73] = { 16,      8,      9, 5, 0 },
 168    [0x43] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
 169    [0x53] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
 170
 171    [0x35] = { 32,      8,      9, 5, 0 },
 172    [0x75] = { 32,      8,      9, 5, 0 },
 173    [0x45] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
 174    [0x55] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
 175
 176    [0x36] = { 64,      8,      9, 5, 0 },
 177    [0x76] = { 64,      8,      9, 5, 0 },
 178    [0x46] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
 179    [0x56] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
 180
 181    [0x78] = { 128,     8,      9, 5, 0 },
 182    [0x39] = { 128,     8,      9, 5, 0 },
 183    [0x79] = { 128,     8,      9, 5, 0 },
 184    [0x72] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 185    [0x49] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 186    [0x74] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 187    [0x59] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 188
 189    [0x71] = { 256,     8,      9, 5, 0 },
 190
 191    /*
 192     * These are the new chips with large page size. The pagesize and the
 193     * erasesize is determined from the extended id bytes
 194     */
 195# define LP_OPTIONS     (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
 196# define LP_OPTIONS16   (LP_OPTIONS | NAND_BUSWIDTH_16)
 197
 198    /* 512 Megabit */
 199    [0xa2] = { 64,      8,      0, 0, LP_OPTIONS },
 200    [0xf2] = { 64,      8,      0, 0, LP_OPTIONS },
 201    [0xb2] = { 64,      16,     0, 0, LP_OPTIONS16 },
 202    [0xc2] = { 64,      16,     0, 0, LP_OPTIONS16 },
 203
 204    /* 1 Gigabit */
 205    [0xa1] = { 128,     8,      0, 0, LP_OPTIONS },
 206    [0xf1] = { 128,     8,      0, 0, LP_OPTIONS },
 207    [0xb1] = { 128,     16,     0, 0, LP_OPTIONS16 },
 208    [0xc1] = { 128,     16,     0, 0, LP_OPTIONS16 },
 209
 210    /* 2 Gigabit */
 211    [0xaa] = { 256,     8,      0, 0, LP_OPTIONS },
 212    [0xda] = { 256,     8,      0, 0, LP_OPTIONS },
 213    [0xba] = { 256,     16,     0, 0, LP_OPTIONS16 },
 214    [0xca] = { 256,     16,     0, 0, LP_OPTIONS16 },
 215
 216    /* 4 Gigabit */
 217    [0xac] = { 512,     8,      0, 0, LP_OPTIONS },
 218    [0xdc] = { 512,     8,      0, 0, LP_OPTIONS },
 219    [0xbc] = { 512,     16,     0, 0, LP_OPTIONS16 },
 220    [0xcc] = { 512,     16,     0, 0, LP_OPTIONS16 },
 221
 222    /* 8 Gigabit */
 223    [0xa3] = { 1024,    8,      0, 0, LP_OPTIONS },
 224    [0xd3] = { 1024,    8,      0, 0, LP_OPTIONS },
 225    [0xb3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
 226    [0xc3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
 227
 228    /* 16 Gigabit */
 229    [0xa5] = { 2048,    8,      0, 0, LP_OPTIONS },
 230    [0xd5] = { 2048,    8,      0, 0, LP_OPTIONS },
 231    [0xb5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
 232    [0xc5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
 233};
 234
 235static void nand_reset(DeviceState *dev)
 236{
 237    NANDFlashState *s = NAND(dev);
 238    s->cmd = NAND_CMD_READ0;
 239    s->addr = 0;
 240    s->addrlen = 0;
 241    s->iolen = 0;
 242    s->offset = 0;
 243    s->status &= NAND_IOSTATUS_UNPROTCT;
 244    s->status |= NAND_IOSTATUS_READY;
 245}
 246
 247static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
 248{
 249    s->ioaddr[s->iolen++] = value;
 250    for (value = s->buswidth; --value;) {
 251        s->ioaddr[s->iolen++] = 0;
 252    }
 253}
 254
 255static void nand_command(NANDFlashState *s)
 256{
 257    unsigned int offset;
 258    switch (s->cmd) {
 259    case NAND_CMD_READ0:
 260        s->iolen = 0;
 261        break;
 262
 263    case NAND_CMD_READID:
 264        s->ioaddr = s->io;
 265        s->iolen = 0;
 266        nand_pushio_byte(s, s->manf_id);
 267        nand_pushio_byte(s, s->chip_id);
 268        nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
 269        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 270            /* Page Size, Block Size, Spare Size; bit 6 indicates
 271             * 8 vs 16 bit width NAND.
 272             */
 273            nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
 274        } else {
 275            nand_pushio_byte(s, 0xc0); /* Multi-plane */
 276        }
 277        break;
 278
 279    case NAND_CMD_RANDOMREAD2:
 280    case NAND_CMD_NOSERIALREAD2:
 281        if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
 282            break;
 283        offset = s->addr & ((1 << s->addr_shift) - 1);
 284        s->blk_load(s, s->addr, offset);
 285        if (s->gnd)
 286            s->iolen = (1 << s->page_shift) - offset;
 287        else
 288            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
 289        break;
 290
 291    case NAND_CMD_RESET:
 292        nand_reset(DEVICE(s));
 293        break;
 294
 295    case NAND_CMD_PAGEPROGRAM1:
 296        s->ioaddr = s->io;
 297        s->iolen = 0;
 298        break;
 299
 300    case NAND_CMD_PAGEPROGRAM2:
 301        if (s->wp) {
 302            s->blk_write(s);
 303        }
 304        break;
 305
 306    case NAND_CMD_BLOCKERASE1:
 307        break;
 308
 309    case NAND_CMD_BLOCKERASE2:
 310        s->addr &= (1ull << s->addrlen * 8) - 1;
 311        s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
 312                                                                    16 : 8;
 313
 314        if (s->wp) {
 315            s->blk_erase(s);
 316        }
 317        break;
 318
 319    case NAND_CMD_READSTATUS:
 320        s->ioaddr = s->io;
 321        s->iolen = 0;
 322        nand_pushio_byte(s, s->status);
 323        break;
 324
 325    default:
 326        printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
 327    }
 328}
 329
 330static int nand_pre_save(void *opaque)
 331{
 332    NANDFlashState *s = NAND(opaque);
 333
 334    s->ioaddr_vmstate = s->ioaddr - s->io;
 335
 336    return 0;
 337}
 338
 339static int nand_post_load(void *opaque, int version_id)
 340{
 341    NANDFlashState *s = NAND(opaque);
 342
 343    if (s->ioaddr_vmstate > sizeof(s->io)) {
 344        return -EINVAL;
 345    }
 346    s->ioaddr = s->io + s->ioaddr_vmstate;
 347
 348    return 0;
 349}
 350
 351static const VMStateDescription vmstate_nand = {
 352    .name = "nand",
 353    .version_id = 1,
 354    .minimum_version_id = 1,
 355    .pre_save = nand_pre_save,
 356    .post_load = nand_post_load,
 357    .fields = (VMStateField[]) {
 358        VMSTATE_UINT8(cle, NANDFlashState),
 359        VMSTATE_UINT8(ale, NANDFlashState),
 360        VMSTATE_UINT8(ce, NANDFlashState),
 361        VMSTATE_UINT8(wp, NANDFlashState),
 362        VMSTATE_UINT8(gnd, NANDFlashState),
 363        VMSTATE_BUFFER(io, NANDFlashState),
 364        VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
 365        VMSTATE_INT32(iolen, NANDFlashState),
 366        VMSTATE_UINT32(cmd, NANDFlashState),
 367        VMSTATE_UINT64(addr, NANDFlashState),
 368        VMSTATE_INT32(addrlen, NANDFlashState),
 369        VMSTATE_INT32(status, NANDFlashState),
 370        VMSTATE_INT32(offset, NANDFlashState),
 371        /* XXX: do we want to save s->storage too? */
 372        VMSTATE_END_OF_LIST()
 373    }
 374};
 375
 376static void nand_realize(DeviceState *dev, Error **errp)
 377{
 378    int pagesize;
 379    NANDFlashState *s = NAND(dev);
 380    int ret;
 381
 382
 383    s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
 384    s->size = nand_flash_ids[s->chip_id].size << 20;
 385    if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 386        s->page_shift = 11;
 387        s->erase_shift = 6;
 388    } else {
 389        s->page_shift = nand_flash_ids[s->chip_id].page_shift;
 390        s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
 391    }
 392
 393    switch (1 << s->page_shift) {
 394    case 256:
 395        nand_init_256(s);
 396        break;
 397    case 512:
 398        nand_init_512(s);
 399        break;
 400    case 2048:
 401        nand_init_2048(s);
 402        break;
 403    default:
 404        error_setg(errp, "Unsupported NAND block size %#x",
 405                   1 << s->page_shift);
 406        return;
 407    }
 408
 409    pagesize = 1 << s->oob_shift;
 410    s->mem_oob = 1;
 411    if (s->blk) {
 412        if (blk_is_read_only(s->blk)) {
 413            error_setg(errp, "Can't use a read-only drive");
 414            return;
 415        }
 416        ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
 417                           BLK_PERM_ALL, errp);
 418        if (ret < 0) {
 419            return;
 420        }
 421        if (blk_getlength(s->blk) >=
 422                (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
 423            pagesize = 0;
 424            s->mem_oob = 0;
 425        }
 426    } else {
 427        pagesize += 1 << s->page_shift;
 428    }
 429    if (pagesize) {
 430        s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
 431                        0xff, s->pages * pagesize);
 432    }
 433    /* Give s->ioaddr a sane value in case we save state before it is used. */
 434    s->ioaddr = s->io;
 435}
 436
 437static Property nand_properties[] = {
 438    DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
 439    DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
 440    DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
 441    DEFINE_PROP_END_OF_LIST(),
 442};
 443
 444static void nand_class_init(ObjectClass *klass, void *data)
 445{
 446    DeviceClass *dc = DEVICE_CLASS(klass);
 447
 448    dc->realize = nand_realize;
 449    dc->reset = nand_reset;
 450    dc->vmsd = &vmstate_nand;
 451    device_class_set_props(dc, nand_properties);
 452    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
 453}
 454
 455static const TypeInfo nand_info = {
 456    .name          = TYPE_NAND,
 457    .parent        = TYPE_DEVICE,
 458    .instance_size = sizeof(NANDFlashState),
 459    .class_init    = nand_class_init,
 460};
 461
 462static void nand_register_types(void)
 463{
 464    type_register_static(&nand_info);
 465}
 466
 467/*
 468 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
 469 * outputs are R/B and eight I/O pins.
 470 *
 471 * CE, WP and R/B are active low.
 472 */
 473void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
 474                  uint8_t ce, uint8_t wp, uint8_t gnd)
 475{
 476    NANDFlashState *s = NAND(dev);
 477
 478    s->cle = cle;
 479    s->ale = ale;
 480    s->ce = ce;
 481    s->wp = wp;
 482    s->gnd = gnd;
 483    if (wp) {
 484        s->status |= NAND_IOSTATUS_UNPROTCT;
 485    } else {
 486        s->status &= ~NAND_IOSTATUS_UNPROTCT;
 487    }
 488}
 489
 490void nand_getpins(DeviceState *dev, int *rb)
 491{
 492    *rb = 1;
 493}
 494
 495void nand_setio(DeviceState *dev, uint32_t value)
 496{
 497    int i;
 498    NANDFlashState *s = NAND(dev);
 499
 500    if (!s->ce && s->cle) {
 501        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 502            if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
 503                return;
 504            if (value == NAND_CMD_RANDOMREAD1) {
 505                s->addr &= ~((1 << s->addr_shift) - 1);
 506                s->addrlen = 0;
 507                return;
 508            }
 509        }
 510        if (value == NAND_CMD_READ0) {
 511            s->offset = 0;
 512        } else if (value == NAND_CMD_READ1) {
 513            s->offset = 0x100;
 514            value = NAND_CMD_READ0;
 515        } else if (value == NAND_CMD_READ2) {
 516            s->offset = 1 << s->page_shift;
 517            value = NAND_CMD_READ0;
 518        }
 519
 520        s->cmd = value;
 521
 522        if (s->cmd == NAND_CMD_READSTATUS ||
 523                s->cmd == NAND_CMD_PAGEPROGRAM2 ||
 524                s->cmd == NAND_CMD_BLOCKERASE1 ||
 525                s->cmd == NAND_CMD_BLOCKERASE2 ||
 526                s->cmd == NAND_CMD_NOSERIALREAD2 ||
 527                s->cmd == NAND_CMD_RANDOMREAD2 ||
 528                s->cmd == NAND_CMD_RESET) {
 529            nand_command(s);
 530        }
 531
 532        if (s->cmd != NAND_CMD_RANDOMREAD2) {
 533            s->addrlen = 0;
 534        }
 535    }
 536
 537    if (s->ale) {
 538        unsigned int shift = s->addrlen * 8;
 539        uint64_t mask = ~(0xffull << shift);
 540        uint64_t v = (uint64_t)value << shift;
 541
 542        s->addr = (s->addr & mask) | v;
 543        s->addrlen ++;
 544
 545        switch (s->addrlen) {
 546        case 1:
 547            if (s->cmd == NAND_CMD_READID) {
 548                nand_command(s);
 549            }
 550            break;
 551        case 2: /* fix cache address as a byte address */
 552            s->addr <<= (s->buswidth - 1);
 553            break;
 554        case 3:
 555            if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 556                    (s->cmd == NAND_CMD_READ0 ||
 557                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 558                nand_command(s);
 559            }
 560            break;
 561        case 4:
 562            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 563                    nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
 564                    (s->cmd == NAND_CMD_READ0 ||
 565                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 566                nand_command(s);
 567            }
 568            break;
 569        case 5:
 570            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 571                    nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
 572                    (s->cmd == NAND_CMD_READ0 ||
 573                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 574                nand_command(s);
 575            }
 576            break;
 577        default:
 578            break;
 579        }
 580    }
 581
 582    if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
 583        if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
 584            for (i = s->buswidth; i--; value >>= 8) {
 585                s->io[s->iolen ++] = (uint8_t) (value & 0xff);
 586            }
 587        }
 588    } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
 589        if ((s->addr & ((1 << s->addr_shift) - 1)) <
 590                (1 << s->page_shift) + (1 << s->oob_shift)) {
 591            for (i = s->buswidth; i--; s->addr++, value >>= 8) {
 592                s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
 593                    (uint8_t) (value & 0xff);
 594            }
 595        }
 596    }
 597}
 598
 599uint32_t nand_getio(DeviceState *dev)
 600{
 601    int offset;
 602    uint32_t x = 0;
 603    NANDFlashState *s = NAND(dev);
 604
 605    /* Allow sequential reading */
 606    if (!s->iolen && s->cmd == NAND_CMD_READ0) {
 607        offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
 608        s->offset = 0;
 609
 610        s->blk_load(s, s->addr, offset);
 611        if (s->gnd)
 612            s->iolen = (1 << s->page_shift) - offset;
 613        else
 614            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
 615    }
 616
 617    if (s->ce || s->iolen <= 0) {
 618        return 0;
 619    }
 620
 621    for (offset = s->buswidth; offset--;) {
 622        x |= s->ioaddr[offset] << (offset << 3);
 623    }
 624    /* after receiving READ STATUS command all subsequent reads will
 625     * return the status register value until another command is issued
 626     */
 627    if (s->cmd != NAND_CMD_READSTATUS) {
 628        s->addr   += s->buswidth;
 629        s->ioaddr += s->buswidth;
 630        s->iolen  -= s->buswidth;
 631    }
 632    return x;
 633}
 634
 635uint32_t nand_getbuswidth(DeviceState *dev)
 636{
 637    NANDFlashState *s = (NANDFlashState *) dev;
 638    return s->buswidth << 3;
 639}
 640
 641DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
 642{
 643    DeviceState *dev;
 644
 645    if (nand_flash_ids[chip_id].size == 0) {
 646        hw_error("%s: Unsupported NAND chip ID.\n", __func__);
 647    }
 648    dev = qdev_new(TYPE_NAND);
 649    qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
 650    qdev_prop_set_uint8(dev, "chip_id", chip_id);
 651    if (blk) {
 652        qdev_prop_set_drive_err(dev, "drive", blk, &error_fatal);
 653    }
 654
 655    qdev_realize(dev, NULL, &error_fatal);
 656    return dev;
 657}
 658
 659type_init(nand_register_types)
 660
 661#else
 662
 663/* Program a single page */
 664static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
 665{
 666    uint64_t off, page, sector, soff;
 667    uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
 668    if (PAGE(s->addr) >= s->pages)
 669        return;
 670
 671    if (!s->blk) {
 672        mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
 673                        s->offset, s->io, s->iolen);
 674    } else if (s->mem_oob) {
 675        sector = SECTOR(s->addr);
 676        off = (s->addr & PAGE_MASK) + s->offset;
 677        soff = SECTOR_OFFSET(s->addr);
 678        if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 679                      PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
 680            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
 681            return;
 682        }
 683
 684        mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
 685        if (off + s->iolen > PAGE_SIZE) {
 686            page = PAGE(s->addr);
 687            mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
 688                            MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
 689        }
 690
 691        if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 692                       PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
 693            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
 694        }
 695    } else {
 696        off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
 697        sector = off >> 9;
 698        soff = off & 0x1ff;
 699        if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 700                      (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
 701            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
 702            return;
 703        }
 704
 705        mem_and(iobuf + soff, s->io, s->iolen);
 706
 707        if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 708                       (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
 709            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
 710        }
 711    }
 712    s->offset = 0;
 713}
 714
 715/* Erase a single block */
 716static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
 717{
 718    uint64_t i, page, addr;
 719    uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
 720    addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
 721
 722    if (PAGE(addr) >= s->pages) {
 723        return;
 724    }
 725
 726    if (!s->blk) {
 727        memset(s->storage + PAGE_START(addr),
 728                        0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
 729    } else if (s->mem_oob) {
 730        memset(s->storage + (PAGE(addr) << OOB_SHIFT),
 731                        0xff, OOB_SIZE << s->erase_shift);
 732        i = SECTOR(addr);
 733        page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
 734        for (; i < page; i ++)
 735            if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
 736                           BDRV_SECTOR_SIZE, 0) < 0) {
 737                printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
 738            }
 739    } else {
 740        addr = PAGE_START(addr);
 741        page = addr >> 9;
 742        if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 743                      BDRV_SECTOR_SIZE) < 0) {
 744            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
 745        }
 746        memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
 747        if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 748                       BDRV_SECTOR_SIZE, 0) < 0) {
 749            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
 750        }
 751
 752        memset(iobuf, 0xff, 0x200);
 753        i = (addr & ~0x1ff) + 0x200;
 754        for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
 755                        i < addr; i += 0x200) {
 756            if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
 757                printf("%s: write error in sector %" PRIu64 "\n",
 758                       __func__, i >> 9);
 759            }
 760        }
 761
 762        page = i >> 9;
 763        if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 764                      BDRV_SECTOR_SIZE) < 0) {
 765            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
 766        }
 767        memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
 768        if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 769                       BDRV_SECTOR_SIZE, 0) < 0) {
 770            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
 771        }
 772    }
 773}
 774
 775static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
 776                uint64_t addr, int offset)
 777{
 778    if (PAGE(addr) >= s->pages) {
 779        return;
 780    }
 781
 782    if (s->blk) {
 783        if (s->mem_oob) {
 784            if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
 785                          PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
 786                printf("%s: read error in sector %" PRIu64 "\n",
 787                                __func__, SECTOR(addr));
 788            }
 789            memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
 790                            s->storage + (PAGE(s->addr) << OOB_SHIFT),
 791                            OOB_SIZE);
 792            s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
 793        } else {
 794            if (blk_pread(s->blk, PAGE_START(addr), s->io,
 795                          (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
 796                printf("%s: read error in sector %" PRIu64 "\n",
 797                                __func__, PAGE_START(addr) >> 9);
 798            }
 799            s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
 800        }
 801    } else {
 802        memcpy(s->io, s->storage + PAGE_START(s->addr) +
 803                        offset, PAGE_SIZE + OOB_SIZE - offset);
 804        s->ioaddr = s->io;
 805    }
 806}
 807
 808static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
 809{
 810    s->oob_shift = PAGE_SHIFT - 5;
 811    s->pages = s->size >> PAGE_SHIFT;
 812    s->addr_shift = ADDR_SHIFT;
 813
 814    s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
 815    s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
 816    s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
 817}
 818
 819# undef PAGE_SIZE
 820# undef PAGE_SHIFT
 821# undef PAGE_SECTORS
 822# undef ADDR_SHIFT
 823#endif  /* NAND_IO */
 824