qemu/hw/block/nvme.c
<<
>>
Prefs
   1/*
   2 * QEMU NVM Express Controller
   3 *
   4 * Copyright (c) 2012, Intel Corporation
   5 *
   6 * Written by Keith Busch <keith.busch@intel.com>
   7 *
   8 * This code is licensed under the GNU GPL v2 or later.
   9 */
  10
  11/**
  12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
  13 *
  14 *  https://nvmexpress.org/developers/nvme-specification/
  15 */
  16
  17/**
  18 * Usage: add options:
  19 *      -drive file=<file>,if=none,id=<drive_id>
  20 *      -device nvme,serial=<serial>,id=<bus_name>, \
  21 *              cmb_size_mb=<cmb_size_mb[optional]>, \
  22 *              [pmrdev=<mem_backend_file_id>,] \
  23 *              max_ioqpairs=<N[optional]>, \
  24 *              aerl=<N[optional]>, aer_max_queued=<N[optional]>, \
  25 *              mdts=<N[optional]>
  26 *      -device nvme-ns,drive=<drive_id>,bus=bus_name,nsid=<nsid>
  27 *
  28 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
  29 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
  30 *
  31 * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
  32 * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
  33 * both provided.
  34 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
  35 * For example:
  36 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
  37 *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
  38 *
  39 *
  40 * nvme device parameters
  41 * ~~~~~~~~~~~~~~~~~~~~~~
  42 * - `aerl`
  43 *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
  44 *   of concurrently outstanding Asynchronous Event Request commands suppoert
  45 *   by the controller. This is a 0's based value.
  46 *
  47 * - `aer_max_queued`
  48 *   This is the maximum number of events that the device will enqueue for
  49 *   completion when there are no oustanding AERs. When the maximum number of
  50 *   enqueued events are reached, subsequent events will be dropped.
  51 *
  52 */
  53
  54#include "qemu/osdep.h"
  55#include "qemu/units.h"
  56#include "qemu/error-report.h"
  57#include "hw/block/block.h"
  58#include "hw/pci/msix.h"
  59#include "hw/pci/pci.h"
  60#include "hw/qdev-properties.h"
  61#include "migration/vmstate.h"
  62#include "sysemu/sysemu.h"
  63#include "qapi/error.h"
  64#include "qapi/visitor.h"
  65#include "sysemu/hostmem.h"
  66#include "sysemu/block-backend.h"
  67#include "exec/memory.h"
  68#include "qemu/log.h"
  69#include "qemu/module.h"
  70#include "qemu/cutils.h"
  71#include "trace.h"
  72#include "nvme.h"
  73#include "nvme-ns.h"
  74
  75#define NVME_MAX_IOQPAIRS 0xffff
  76#define NVME_DB_SIZE  4
  77#define NVME_SPEC_VER 0x00010300
  78#define NVME_CMB_BIR 2
  79#define NVME_PMR_BIR 2
  80#define NVME_TEMPERATURE 0x143
  81#define NVME_TEMPERATURE_WARNING 0x157
  82#define NVME_TEMPERATURE_CRITICAL 0x175
  83#define NVME_NUM_FW_SLOTS 1
  84
  85#define NVME_GUEST_ERR(trace, fmt, ...) \
  86    do { \
  87        (trace_##trace)(__VA_ARGS__); \
  88        qemu_log_mask(LOG_GUEST_ERROR, #trace \
  89            " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
  90    } while (0)
  91
  92static const bool nvme_feature_support[NVME_FID_MAX] = {
  93    [NVME_ARBITRATION]              = true,
  94    [NVME_POWER_MANAGEMENT]         = true,
  95    [NVME_TEMPERATURE_THRESHOLD]    = true,
  96    [NVME_ERROR_RECOVERY]           = true,
  97    [NVME_VOLATILE_WRITE_CACHE]     = true,
  98    [NVME_NUMBER_OF_QUEUES]         = true,
  99    [NVME_INTERRUPT_COALESCING]     = true,
 100    [NVME_INTERRUPT_VECTOR_CONF]    = true,
 101    [NVME_WRITE_ATOMICITY]          = true,
 102    [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
 103    [NVME_TIMESTAMP]                = true,
 104};
 105
 106static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
 107    [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
 108    [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
 109    [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
 110    [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
 111    [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
 112};
 113
 114static void nvme_process_sq(void *opaque);
 115
 116static uint16_t nvme_cid(NvmeRequest *req)
 117{
 118    if (!req) {
 119        return 0xffff;
 120    }
 121
 122    return le16_to_cpu(req->cqe.cid);
 123}
 124
 125static uint16_t nvme_sqid(NvmeRequest *req)
 126{
 127    return le16_to_cpu(req->sq->sqid);
 128}
 129
 130static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
 131{
 132    hwaddr low = n->ctrl_mem.addr;
 133    hwaddr hi  = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size);
 134
 135    return addr >= low && addr < hi;
 136}
 137
 138static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
 139{
 140    assert(nvme_addr_is_cmb(n, addr));
 141
 142    return &n->cmbuf[addr - n->ctrl_mem.addr];
 143}
 144
 145static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
 146{
 147    hwaddr hi = addr + size - 1;
 148    if (hi < addr) {
 149        return 1;
 150    }
 151
 152    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 153        memcpy(buf, nvme_addr_to_cmb(n, addr), size);
 154        return 0;
 155    }
 156
 157    return pci_dma_read(&n->parent_obj, addr, buf, size);
 158}
 159
 160static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
 161{
 162    return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces);
 163}
 164
 165static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
 166{
 167    return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
 168}
 169
 170static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
 171{
 172    return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
 173}
 174
 175static void nvme_inc_cq_tail(NvmeCQueue *cq)
 176{
 177    cq->tail++;
 178    if (cq->tail >= cq->size) {
 179        cq->tail = 0;
 180        cq->phase = !cq->phase;
 181    }
 182}
 183
 184static void nvme_inc_sq_head(NvmeSQueue *sq)
 185{
 186    sq->head = (sq->head + 1) % sq->size;
 187}
 188
 189static uint8_t nvme_cq_full(NvmeCQueue *cq)
 190{
 191    return (cq->tail + 1) % cq->size == cq->head;
 192}
 193
 194static uint8_t nvme_sq_empty(NvmeSQueue *sq)
 195{
 196    return sq->head == sq->tail;
 197}
 198
 199static void nvme_irq_check(NvmeCtrl *n)
 200{
 201    if (msix_enabled(&(n->parent_obj))) {
 202        return;
 203    }
 204    if (~n->bar.intms & n->irq_status) {
 205        pci_irq_assert(&n->parent_obj);
 206    } else {
 207        pci_irq_deassert(&n->parent_obj);
 208    }
 209}
 210
 211static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
 212{
 213    if (cq->irq_enabled) {
 214        if (msix_enabled(&(n->parent_obj))) {
 215            trace_pci_nvme_irq_msix(cq->vector);
 216            msix_notify(&(n->parent_obj), cq->vector);
 217        } else {
 218            trace_pci_nvme_irq_pin();
 219            assert(cq->vector < 32);
 220            n->irq_status |= 1 << cq->vector;
 221            nvme_irq_check(n);
 222        }
 223    } else {
 224        trace_pci_nvme_irq_masked();
 225    }
 226}
 227
 228static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
 229{
 230    if (cq->irq_enabled) {
 231        if (msix_enabled(&(n->parent_obj))) {
 232            return;
 233        } else {
 234            assert(cq->vector < 32);
 235            n->irq_status &= ~(1 << cq->vector);
 236            nvme_irq_check(n);
 237        }
 238    }
 239}
 240
 241static void nvme_req_clear(NvmeRequest *req)
 242{
 243    req->ns = NULL;
 244    memset(&req->cqe, 0x0, sizeof(req->cqe));
 245    req->status = NVME_SUCCESS;
 246}
 247
 248static void nvme_req_exit(NvmeRequest *req)
 249{
 250    if (req->qsg.sg) {
 251        qemu_sglist_destroy(&req->qsg);
 252    }
 253
 254    if (req->iov.iov) {
 255        qemu_iovec_destroy(&req->iov);
 256    }
 257}
 258
 259static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 260                                  size_t len)
 261{
 262    if (!len) {
 263        return NVME_SUCCESS;
 264    }
 265
 266    trace_pci_nvme_map_addr_cmb(addr, len);
 267
 268    if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
 269        return NVME_DATA_TRAS_ERROR;
 270    }
 271
 272    qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
 273
 274    return NVME_SUCCESS;
 275}
 276
 277static uint16_t nvme_map_addr(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov,
 278                              hwaddr addr, size_t len)
 279{
 280    if (!len) {
 281        return NVME_SUCCESS;
 282    }
 283
 284    trace_pci_nvme_map_addr(addr, len);
 285
 286    if (nvme_addr_is_cmb(n, addr)) {
 287        if (qsg && qsg->sg) {
 288            return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 289        }
 290
 291        assert(iov);
 292
 293        if (!iov->iov) {
 294            qemu_iovec_init(iov, 1);
 295        }
 296
 297        return nvme_map_addr_cmb(n, iov, addr, len);
 298    }
 299
 300    if (iov && iov->iov) {
 301        return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 302    }
 303
 304    assert(qsg);
 305
 306    if (!qsg->sg) {
 307        pci_dma_sglist_init(qsg, &n->parent_obj, 1);
 308    }
 309
 310    qemu_sglist_add(qsg, addr, len);
 311
 312    return NVME_SUCCESS;
 313}
 314
 315static uint16_t nvme_map_prp(NvmeCtrl *n, uint64_t prp1, uint64_t prp2,
 316                             uint32_t len, NvmeRequest *req)
 317{
 318    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
 319    trans_len = MIN(len, trans_len);
 320    int num_prps = (len >> n->page_bits) + 1;
 321    uint16_t status;
 322    bool prp_list_in_cmb = false;
 323    int ret;
 324
 325    QEMUSGList *qsg = &req->qsg;
 326    QEMUIOVector *iov = &req->iov;
 327
 328    trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
 329
 330    if (nvme_addr_is_cmb(n, prp1)) {
 331        qemu_iovec_init(iov, num_prps);
 332    } else {
 333        pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
 334    }
 335
 336    status = nvme_map_addr(n, qsg, iov, prp1, trans_len);
 337    if (status) {
 338        return status;
 339    }
 340
 341    len -= trans_len;
 342    if (len) {
 343        if (len > n->page_size) {
 344            uint64_t prp_list[n->max_prp_ents];
 345            uint32_t nents, prp_trans;
 346            int i = 0;
 347
 348            if (nvme_addr_is_cmb(n, prp2)) {
 349                prp_list_in_cmb = true;
 350            }
 351
 352            nents = (len + n->page_size - 1) >> n->page_bits;
 353            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 354            ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
 355            if (ret) {
 356                trace_pci_nvme_err_addr_read(prp2);
 357                return NVME_DATA_TRAS_ERROR;
 358            }
 359            while (len != 0) {
 360                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 361
 362                if (i == n->max_prp_ents - 1 && len > n->page_size) {
 363                    if (unlikely(prp_ent & (n->page_size - 1))) {
 364                        trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 365                        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
 366                    }
 367
 368                    if (prp_list_in_cmb != nvme_addr_is_cmb(n, prp_ent)) {
 369                        return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 370                    }
 371
 372                    i = 0;
 373                    nents = (len + n->page_size - 1) >> n->page_bits;
 374                    prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 375                    ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
 376                                         prp_trans);
 377                    if (ret) {
 378                        trace_pci_nvme_err_addr_read(prp_ent);
 379                        return NVME_DATA_TRAS_ERROR;
 380                    }
 381                    prp_ent = le64_to_cpu(prp_list[i]);
 382                }
 383
 384                if (unlikely(prp_ent & (n->page_size - 1))) {
 385                    trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 386                    return NVME_INVALID_PRP_OFFSET | NVME_DNR;
 387                }
 388
 389                trans_len = MIN(len, n->page_size);
 390                status = nvme_map_addr(n, qsg, iov, prp_ent, trans_len);
 391                if (status) {
 392                    return status;
 393                }
 394
 395                len -= trans_len;
 396                i++;
 397            }
 398        } else {
 399            if (unlikely(prp2 & (n->page_size - 1))) {
 400                trace_pci_nvme_err_invalid_prp2_align(prp2);
 401                return NVME_INVALID_PRP_OFFSET | NVME_DNR;
 402            }
 403            status = nvme_map_addr(n, qsg, iov, prp2, len);
 404            if (status) {
 405                return status;
 406            }
 407        }
 408    }
 409
 410    return NVME_SUCCESS;
 411}
 412
 413/*
 414 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
 415 * number of bytes mapped in len.
 416 */
 417static uint16_t nvme_map_sgl_data(NvmeCtrl *n, QEMUSGList *qsg,
 418                                  QEMUIOVector *iov,
 419                                  NvmeSglDescriptor *segment, uint64_t nsgld,
 420                                  size_t *len, NvmeRequest *req)
 421{
 422    dma_addr_t addr, trans_len;
 423    uint32_t dlen;
 424    uint16_t status;
 425
 426    for (int i = 0; i < nsgld; i++) {
 427        uint8_t type = NVME_SGL_TYPE(segment[i].type);
 428
 429        switch (type) {
 430        case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
 431            if (req->cmd.opcode == NVME_CMD_WRITE) {
 432                continue;
 433            }
 434        case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
 435            break;
 436        case NVME_SGL_DESCR_TYPE_SEGMENT:
 437        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 438            return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
 439        default:
 440            return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
 441        }
 442
 443        dlen = le32_to_cpu(segment[i].len);
 444
 445        if (!dlen) {
 446            continue;
 447        }
 448
 449        if (*len == 0) {
 450            /*
 451             * All data has been mapped, but the SGL contains additional
 452             * segments and/or descriptors. The controller might accept
 453             * ignoring the rest of the SGL.
 454             */
 455            uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
 456            if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
 457                break;
 458            }
 459
 460            trace_pci_nvme_err_invalid_sgl_excess_length(nvme_cid(req));
 461            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 462        }
 463
 464        trans_len = MIN(*len, dlen);
 465
 466        if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
 467            goto next;
 468        }
 469
 470        addr = le64_to_cpu(segment[i].addr);
 471
 472        if (UINT64_MAX - addr < dlen) {
 473            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 474        }
 475
 476        status = nvme_map_addr(n, qsg, iov, addr, trans_len);
 477        if (status) {
 478            return status;
 479        }
 480
 481next:
 482        *len -= trans_len;
 483    }
 484
 485    return NVME_SUCCESS;
 486}
 487
 488static uint16_t nvme_map_sgl(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov,
 489                             NvmeSglDescriptor sgl, size_t len,
 490                             NvmeRequest *req)
 491{
 492    /*
 493     * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
 494     * dynamically allocating a potentially huge SGL. The spec allows the SGL
 495     * to be larger (as in number of bytes required to describe the SGL
 496     * descriptors and segment chain) than the command transfer size, so it is
 497     * not bounded by MDTS.
 498     */
 499    const int SEG_CHUNK_SIZE = 256;
 500
 501    NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
 502    uint64_t nsgld;
 503    uint32_t seg_len;
 504    uint16_t status;
 505    bool sgl_in_cmb = false;
 506    hwaddr addr;
 507    int ret;
 508
 509    sgld = &sgl;
 510    addr = le64_to_cpu(sgl.addr);
 511
 512    trace_pci_nvme_map_sgl(nvme_cid(req), NVME_SGL_TYPE(sgl.type), len);
 513
 514    /*
 515     * If the entire transfer can be described with a single data block it can
 516     * be mapped directly.
 517     */
 518    if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
 519        status = nvme_map_sgl_data(n, qsg, iov, sgld, 1, &len, req);
 520        if (status) {
 521            goto unmap;
 522        }
 523
 524        goto out;
 525    }
 526
 527    /*
 528     * If the segment is located in the CMB, the submission queue of the
 529     * request must also reside there.
 530     */
 531    if (nvme_addr_is_cmb(n, addr)) {
 532        if (!nvme_addr_is_cmb(n, req->sq->dma_addr)) {
 533            return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 534        }
 535
 536        sgl_in_cmb = true;
 537    }
 538
 539    for (;;) {
 540        switch (NVME_SGL_TYPE(sgld->type)) {
 541        case NVME_SGL_DESCR_TYPE_SEGMENT:
 542        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 543            break;
 544        default:
 545            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 546        }
 547
 548        seg_len = le32_to_cpu(sgld->len);
 549
 550        /* check the length of the (Last) Segment descriptor */
 551        if ((!seg_len || seg_len & 0xf) &&
 552            (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
 553            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 554        }
 555
 556        if (UINT64_MAX - addr < seg_len) {
 557            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 558        }
 559
 560        nsgld = seg_len / sizeof(NvmeSglDescriptor);
 561
 562        while (nsgld > SEG_CHUNK_SIZE) {
 563            if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
 564                trace_pci_nvme_err_addr_read(addr);
 565                status = NVME_DATA_TRAS_ERROR;
 566                goto unmap;
 567            }
 568
 569            status = nvme_map_sgl_data(n, qsg, iov, segment, SEG_CHUNK_SIZE,
 570                                       &len, req);
 571            if (status) {
 572                goto unmap;
 573            }
 574
 575            nsgld -= SEG_CHUNK_SIZE;
 576            addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
 577        }
 578
 579        ret = nvme_addr_read(n, addr, segment, nsgld *
 580                             sizeof(NvmeSglDescriptor));
 581        if (ret) {
 582            trace_pci_nvme_err_addr_read(addr);
 583            status = NVME_DATA_TRAS_ERROR;
 584            goto unmap;
 585        }
 586
 587        last_sgld = &segment[nsgld - 1];
 588
 589        /*
 590         * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
 591         * then we are done.
 592         */
 593        switch (NVME_SGL_TYPE(last_sgld->type)) {
 594        case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
 595        case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
 596            status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld, &len, req);
 597            if (status) {
 598                goto unmap;
 599            }
 600
 601            goto out;
 602
 603        default:
 604            break;
 605        }
 606
 607        /*
 608         * If the last descriptor was not a Data Block or Bit Bucket, then the
 609         * current segment must not be a Last Segment.
 610         */
 611        if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
 612            status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 613            goto unmap;
 614        }
 615
 616        sgld = last_sgld;
 617        addr = le64_to_cpu(sgld->addr);
 618
 619        /*
 620         * Do not map the last descriptor; it will be a Segment or Last Segment
 621         * descriptor and is handled by the next iteration.
 622         */
 623        status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld - 1, &len, req);
 624        if (status) {
 625            goto unmap;
 626        }
 627
 628        /*
 629         * If the next segment is in the CMB, make sure that the sgl was
 630         * already located there.
 631         */
 632        if (sgl_in_cmb != nvme_addr_is_cmb(n, addr)) {
 633            status = NVME_INVALID_USE_OF_CMB | NVME_DNR;
 634            goto unmap;
 635        }
 636    }
 637
 638out:
 639    /* if there is any residual left in len, the SGL was too short */
 640    if (len) {
 641        status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 642        goto unmap;
 643    }
 644
 645    return NVME_SUCCESS;
 646
 647unmap:
 648    if (iov->iov) {
 649        qemu_iovec_destroy(iov);
 650    }
 651
 652    if (qsg->sg) {
 653        qemu_sglist_destroy(qsg);
 654    }
 655
 656    return status;
 657}
 658
 659static uint16_t nvme_map_dptr(NvmeCtrl *n, size_t len, NvmeRequest *req)
 660{
 661    uint64_t prp1, prp2;
 662
 663    switch (NVME_CMD_FLAGS_PSDT(req->cmd.flags)) {
 664    case NVME_PSDT_PRP:
 665        prp1 = le64_to_cpu(req->cmd.dptr.prp1);
 666        prp2 = le64_to_cpu(req->cmd.dptr.prp2);
 667
 668        return nvme_map_prp(n, prp1, prp2, len, req);
 669    case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
 670    case NVME_PSDT_SGL_MPTR_SGL:
 671        /* SGLs shall not be used for Admin commands in NVMe over PCIe */
 672        if (!req->sq->sqid) {
 673            return NVME_INVALID_FIELD | NVME_DNR;
 674        }
 675
 676        return nvme_map_sgl(n, &req->qsg, &req->iov, req->cmd.dptr.sgl, len,
 677                            req);
 678    default:
 679        return NVME_INVALID_FIELD;
 680    }
 681}
 682
 683static uint16_t nvme_dma(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
 684                         DMADirection dir, NvmeRequest *req)
 685{
 686    uint16_t status = NVME_SUCCESS;
 687
 688    status = nvme_map_dptr(n, len, req);
 689    if (status) {
 690        return status;
 691    }
 692
 693    /* assert that only one of qsg and iov carries data */
 694    assert((req->qsg.nsg > 0) != (req->iov.niov > 0));
 695
 696    if (req->qsg.nsg > 0) {
 697        uint64_t residual;
 698
 699        if (dir == DMA_DIRECTION_TO_DEVICE) {
 700            residual = dma_buf_write(ptr, len, &req->qsg);
 701        } else {
 702            residual = dma_buf_read(ptr, len, &req->qsg);
 703        }
 704
 705        if (unlikely(residual)) {
 706            trace_pci_nvme_err_invalid_dma();
 707            status = NVME_INVALID_FIELD | NVME_DNR;
 708        }
 709    } else {
 710        size_t bytes;
 711
 712        if (dir == DMA_DIRECTION_TO_DEVICE) {
 713            bytes = qemu_iovec_to_buf(&req->iov, 0, ptr, len);
 714        } else {
 715            bytes = qemu_iovec_from_buf(&req->iov, 0, ptr, len);
 716        }
 717
 718        if (unlikely(bytes != len)) {
 719            trace_pci_nvme_err_invalid_dma();
 720            status = NVME_INVALID_FIELD | NVME_DNR;
 721        }
 722    }
 723
 724    return status;
 725}
 726
 727static void nvme_post_cqes(void *opaque)
 728{
 729    NvmeCQueue *cq = opaque;
 730    NvmeCtrl *n = cq->ctrl;
 731    NvmeRequest *req, *next;
 732    int ret;
 733
 734    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 735        NvmeSQueue *sq;
 736        hwaddr addr;
 737
 738        if (nvme_cq_full(cq)) {
 739            break;
 740        }
 741
 742        sq = req->sq;
 743        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
 744        req->cqe.sq_id = cpu_to_le16(sq->sqid);
 745        req->cqe.sq_head = cpu_to_le16(sq->head);
 746        addr = cq->dma_addr + cq->tail * n->cqe_size;
 747        ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
 748                            sizeof(req->cqe));
 749        if (ret) {
 750            trace_pci_nvme_err_addr_write(addr);
 751            trace_pci_nvme_err_cfs();
 752            n->bar.csts = NVME_CSTS_FAILED;
 753            break;
 754        }
 755        QTAILQ_REMOVE(&cq->req_list, req, entry);
 756        nvme_inc_cq_tail(cq);
 757        nvme_req_exit(req);
 758        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 759    }
 760    if (cq->tail != cq->head) {
 761        nvme_irq_assert(n, cq);
 762    }
 763}
 764
 765static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
 766{
 767    assert(cq->cqid == req->sq->cqid);
 768    trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
 769                                          req->status);
 770
 771    if (req->status) {
 772        trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
 773                                      req->status, req->cmd.opcode);
 774    }
 775
 776    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
 777    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
 778    timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 779}
 780
 781static void nvme_process_aers(void *opaque)
 782{
 783    NvmeCtrl *n = opaque;
 784    NvmeAsyncEvent *event, *next;
 785
 786    trace_pci_nvme_process_aers(n->aer_queued);
 787
 788    QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
 789        NvmeRequest *req;
 790        NvmeAerResult *result;
 791
 792        /* can't post cqe if there is nothing to complete */
 793        if (!n->outstanding_aers) {
 794            trace_pci_nvme_no_outstanding_aers();
 795            break;
 796        }
 797
 798        /* ignore if masked (cqe posted, but event not cleared) */
 799        if (n->aer_mask & (1 << event->result.event_type)) {
 800            trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
 801            continue;
 802        }
 803
 804        QTAILQ_REMOVE(&n->aer_queue, event, entry);
 805        n->aer_queued--;
 806
 807        n->aer_mask |= 1 << event->result.event_type;
 808        n->outstanding_aers--;
 809
 810        req = n->aer_reqs[n->outstanding_aers];
 811
 812        result = (NvmeAerResult *) &req->cqe.result;
 813        result->event_type = event->result.event_type;
 814        result->event_info = event->result.event_info;
 815        result->log_page = event->result.log_page;
 816        g_free(event);
 817
 818        trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
 819                                    result->log_page);
 820
 821        nvme_enqueue_req_completion(&n->admin_cq, req);
 822    }
 823}
 824
 825static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
 826                               uint8_t event_info, uint8_t log_page)
 827{
 828    NvmeAsyncEvent *event;
 829
 830    trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
 831
 832    if (n->aer_queued == n->params.aer_max_queued) {
 833        trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
 834        return;
 835    }
 836
 837    event = g_new(NvmeAsyncEvent, 1);
 838    event->result = (NvmeAerResult) {
 839        .event_type = event_type,
 840        .event_info = event_info,
 841        .log_page   = log_page,
 842    };
 843
 844    QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
 845    n->aer_queued++;
 846
 847    nvme_process_aers(n);
 848}
 849
 850static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
 851{
 852    n->aer_mask &= ~(1 << event_type);
 853    if (!QTAILQ_EMPTY(&n->aer_queue)) {
 854        nvme_process_aers(n);
 855    }
 856}
 857
 858static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
 859{
 860    uint8_t mdts = n->params.mdts;
 861
 862    if (mdts && len > n->page_size << mdts) {
 863        return NVME_INVALID_FIELD | NVME_DNR;
 864    }
 865
 866    return NVME_SUCCESS;
 867}
 868
 869static inline uint16_t nvme_check_bounds(NvmeCtrl *n, NvmeNamespace *ns,
 870                                         uint64_t slba, uint32_t nlb)
 871{
 872    uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
 873
 874    if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
 875        return NVME_LBA_RANGE | NVME_DNR;
 876    }
 877
 878    return NVME_SUCCESS;
 879}
 880
 881static void nvme_rw_cb(void *opaque, int ret)
 882{
 883    NvmeRequest *req = opaque;
 884    NvmeNamespace *ns = req->ns;
 885
 886    BlockBackend *blk = ns->blkconf.blk;
 887    BlockAcctCookie *acct = &req->acct;
 888    BlockAcctStats *stats = blk_get_stats(blk);
 889
 890    Error *local_err = NULL;
 891
 892    trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
 893
 894    if (!ret) {
 895        block_acct_done(stats, acct);
 896    } else {
 897        uint16_t status;
 898
 899        block_acct_failed(stats, acct);
 900
 901        switch (req->cmd.opcode) {
 902        case NVME_CMD_READ:
 903            status = NVME_UNRECOVERED_READ;
 904            break;
 905        case NVME_CMD_FLUSH:
 906        case NVME_CMD_WRITE:
 907        case NVME_CMD_WRITE_ZEROES:
 908            status = NVME_WRITE_FAULT;
 909            break;
 910        default:
 911            status = NVME_INTERNAL_DEV_ERROR;
 912            break;
 913        }
 914
 915        trace_pci_nvme_err_aio(nvme_cid(req), strerror(ret), status);
 916
 917        error_setg_errno(&local_err, -ret, "aio failed");
 918        error_report_err(local_err);
 919
 920        req->status = status;
 921    }
 922
 923    nvme_enqueue_req_completion(nvme_cq(req), req);
 924}
 925
 926static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
 927{
 928    block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
 929                     BLOCK_ACCT_FLUSH);
 930    req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_rw_cb, req);
 931    return NVME_NO_COMPLETE;
 932}
 933
 934static uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
 935{
 936    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 937    NvmeNamespace *ns = req->ns;
 938    uint64_t slba = le64_to_cpu(rw->slba);
 939    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
 940    uint64_t offset = nvme_l2b(ns, slba);
 941    uint32_t count = nvme_l2b(ns, nlb);
 942    uint16_t status;
 943
 944    trace_pci_nvme_write_zeroes(nvme_cid(req), nvme_nsid(ns), slba, nlb);
 945
 946    status = nvme_check_bounds(n, ns, slba, nlb);
 947    if (status) {
 948        trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
 949        return status;
 950    }
 951
 952    block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
 953                     BLOCK_ACCT_WRITE);
 954    req->aiocb = blk_aio_pwrite_zeroes(req->ns->blkconf.blk, offset, count,
 955                                       BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
 956    return NVME_NO_COMPLETE;
 957}
 958
 959static uint16_t nvme_rw(NvmeCtrl *n, NvmeRequest *req)
 960{
 961    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 962    NvmeNamespace *ns = req->ns;
 963    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
 964    uint64_t slba = le64_to_cpu(rw->slba);
 965
 966    uint64_t data_size = nvme_l2b(ns, nlb);
 967    uint64_t data_offset = nvme_l2b(ns, slba);
 968    enum BlockAcctType acct = req->cmd.opcode == NVME_CMD_WRITE ?
 969        BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
 970    BlockBackend *blk = ns->blkconf.blk;
 971    uint16_t status;
 972
 973    trace_pci_nvme_rw(nvme_cid(req), nvme_io_opc_str(rw->opcode),
 974                      nvme_nsid(ns), nlb, data_size, slba);
 975
 976    status = nvme_check_mdts(n, data_size);
 977    if (status) {
 978        trace_pci_nvme_err_mdts(nvme_cid(req), data_size);
 979        goto invalid;
 980    }
 981
 982    status = nvme_check_bounds(n, ns, slba, nlb);
 983    if (status) {
 984        trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
 985        goto invalid;
 986    }
 987
 988    status = nvme_map_dptr(n, data_size, req);
 989    if (status) {
 990        goto invalid;
 991    }
 992
 993    block_acct_start(blk_get_stats(blk), &req->acct, data_size, acct);
 994    if (req->qsg.sg) {
 995        if (acct == BLOCK_ACCT_WRITE) {
 996            req->aiocb = dma_blk_write(blk, &req->qsg, data_offset,
 997                                       BDRV_SECTOR_SIZE, nvme_rw_cb, req);
 998        } else {
 999            req->aiocb = dma_blk_read(blk, &req->qsg, data_offset,
1000                                      BDRV_SECTOR_SIZE, nvme_rw_cb, req);
1001        }
1002    } else {
1003        if (acct == BLOCK_ACCT_WRITE) {
1004            req->aiocb = blk_aio_pwritev(blk, data_offset, &req->iov, 0,
1005                                         nvme_rw_cb, req);
1006        } else {
1007            req->aiocb = blk_aio_preadv(blk, data_offset, &req->iov, 0,
1008                                        nvme_rw_cb, req);
1009        }
1010    }
1011    return NVME_NO_COMPLETE;
1012
1013invalid:
1014    block_acct_invalid(blk_get_stats(ns->blkconf.blk), acct);
1015    return status;
1016}
1017
1018static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
1019{
1020    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
1021
1022    trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
1023                          req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
1024
1025    if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_ADMIN_ONLY) {
1026        return NVME_INVALID_OPCODE | NVME_DNR;
1027    }
1028
1029    if (!nvme_nsid_valid(n, nsid)) {
1030        return NVME_INVALID_NSID | NVME_DNR;
1031    }
1032
1033    req->ns = nvme_ns(n, nsid);
1034    if (unlikely(!req->ns)) {
1035        return NVME_INVALID_FIELD | NVME_DNR;
1036    }
1037
1038    switch (req->cmd.opcode) {
1039    case NVME_CMD_FLUSH:
1040        return nvme_flush(n, req);
1041    case NVME_CMD_WRITE_ZEROES:
1042        return nvme_write_zeroes(n, req);
1043    case NVME_CMD_WRITE:
1044    case NVME_CMD_READ:
1045        return nvme_rw(n, req);
1046    default:
1047        trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
1048        return NVME_INVALID_OPCODE | NVME_DNR;
1049    }
1050}
1051
1052static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
1053{
1054    n->sq[sq->sqid] = NULL;
1055    timer_del(sq->timer);
1056    timer_free(sq->timer);
1057    g_free(sq->io_req);
1058    if (sq->sqid) {
1059        g_free(sq);
1060    }
1061}
1062
1063static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
1064{
1065    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
1066    NvmeRequest *r, *next;
1067    NvmeSQueue *sq;
1068    NvmeCQueue *cq;
1069    uint16_t qid = le16_to_cpu(c->qid);
1070
1071    if (unlikely(!qid || nvme_check_sqid(n, qid))) {
1072        trace_pci_nvme_err_invalid_del_sq(qid);
1073        return NVME_INVALID_QID | NVME_DNR;
1074    }
1075
1076    trace_pci_nvme_del_sq(qid);
1077
1078    sq = n->sq[qid];
1079    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
1080        r = QTAILQ_FIRST(&sq->out_req_list);
1081        assert(r->aiocb);
1082        blk_aio_cancel(r->aiocb);
1083    }
1084    if (!nvme_check_cqid(n, sq->cqid)) {
1085        cq = n->cq[sq->cqid];
1086        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
1087
1088        nvme_post_cqes(cq);
1089        QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
1090            if (r->sq == sq) {
1091                QTAILQ_REMOVE(&cq->req_list, r, entry);
1092                QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
1093            }
1094        }
1095    }
1096
1097    nvme_free_sq(sq, n);
1098    return NVME_SUCCESS;
1099}
1100
1101static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
1102                         uint16_t sqid, uint16_t cqid, uint16_t size)
1103{
1104    int i;
1105    NvmeCQueue *cq;
1106
1107    sq->ctrl = n;
1108    sq->dma_addr = dma_addr;
1109    sq->sqid = sqid;
1110    sq->size = size;
1111    sq->cqid = cqid;
1112    sq->head = sq->tail = 0;
1113    sq->io_req = g_new0(NvmeRequest, sq->size);
1114
1115    QTAILQ_INIT(&sq->req_list);
1116    QTAILQ_INIT(&sq->out_req_list);
1117    for (i = 0; i < sq->size; i++) {
1118        sq->io_req[i].sq = sq;
1119        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
1120    }
1121    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
1122
1123    assert(n->cq[cqid]);
1124    cq = n->cq[cqid];
1125    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
1126    n->sq[sqid] = sq;
1127}
1128
1129static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
1130{
1131    NvmeSQueue *sq;
1132    NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
1133
1134    uint16_t cqid = le16_to_cpu(c->cqid);
1135    uint16_t sqid = le16_to_cpu(c->sqid);
1136    uint16_t qsize = le16_to_cpu(c->qsize);
1137    uint16_t qflags = le16_to_cpu(c->sq_flags);
1138    uint64_t prp1 = le64_to_cpu(c->prp1);
1139
1140    trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
1141
1142    if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
1143        trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
1144        return NVME_INVALID_CQID | NVME_DNR;
1145    }
1146    if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
1147        n->sq[sqid] != NULL)) {
1148        trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
1149        return NVME_INVALID_QID | NVME_DNR;
1150    }
1151    if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
1152        trace_pci_nvme_err_invalid_create_sq_size(qsize);
1153        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
1154    }
1155    if (unlikely(prp1 & (n->page_size - 1))) {
1156        trace_pci_nvme_err_invalid_create_sq_addr(prp1);
1157        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
1158    }
1159    if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
1160        trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
1161        return NVME_INVALID_FIELD | NVME_DNR;
1162    }
1163    sq = g_malloc0(sizeof(*sq));
1164    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
1165    return NVME_SUCCESS;
1166}
1167
1168struct nvme_stats {
1169    uint64_t units_read;
1170    uint64_t units_written;
1171    uint64_t read_commands;
1172    uint64_t write_commands;
1173};
1174
1175static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
1176{
1177    BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
1178
1179    stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
1180    stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
1181    stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
1182    stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
1183}
1184
1185static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
1186                                uint64_t off, NvmeRequest *req)
1187{
1188    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
1189    struct nvme_stats stats = { 0 };
1190    NvmeSmartLog smart = { 0 };
1191    uint32_t trans_len;
1192    NvmeNamespace *ns;
1193    time_t current_ms;
1194
1195    if (off >= sizeof(smart)) {
1196        return NVME_INVALID_FIELD | NVME_DNR;
1197    }
1198
1199    if (nsid != 0xffffffff) {
1200        ns = nvme_ns(n, nsid);
1201        if (!ns) {
1202            return NVME_INVALID_NSID | NVME_DNR;
1203        }
1204        nvme_set_blk_stats(ns, &stats);
1205    } else {
1206        int i;
1207
1208        for (i = 1; i <= n->num_namespaces; i++) {
1209            ns = nvme_ns(n, i);
1210            if (!ns) {
1211                continue;
1212            }
1213            nvme_set_blk_stats(ns, &stats);
1214        }
1215    }
1216
1217    trans_len = MIN(sizeof(smart) - off, buf_len);
1218
1219    smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
1220                                                        1000));
1221    smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
1222                                                           1000));
1223    smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
1224    smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
1225
1226    smart.temperature = cpu_to_le16(n->temperature);
1227
1228    if ((n->temperature >= n->features.temp_thresh_hi) ||
1229        (n->temperature <= n->features.temp_thresh_low)) {
1230        smart.critical_warning |= NVME_SMART_TEMPERATURE;
1231    }
1232
1233    current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1234    smart.power_on_hours[0] =
1235        cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
1236
1237    if (!rae) {
1238        nvme_clear_events(n, NVME_AER_TYPE_SMART);
1239    }
1240
1241    return nvme_dma(n, (uint8_t *) &smart + off, trans_len,
1242                    DMA_DIRECTION_FROM_DEVICE, req);
1243}
1244
1245static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
1246                                 NvmeRequest *req)
1247{
1248    uint32_t trans_len;
1249    NvmeFwSlotInfoLog fw_log = {
1250        .afi = 0x1,
1251    };
1252
1253    if (off >= sizeof(fw_log)) {
1254        return NVME_INVALID_FIELD | NVME_DNR;
1255    }
1256
1257    strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
1258    trans_len = MIN(sizeof(fw_log) - off, buf_len);
1259
1260    return nvme_dma(n, (uint8_t *) &fw_log + off, trans_len,
1261                    DMA_DIRECTION_FROM_DEVICE, req);
1262}
1263
1264static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
1265                                uint64_t off, NvmeRequest *req)
1266{
1267    uint32_t trans_len;
1268    NvmeErrorLog errlog;
1269
1270    if (off >= sizeof(errlog)) {
1271        return NVME_INVALID_FIELD | NVME_DNR;
1272    }
1273
1274    if (!rae) {
1275        nvme_clear_events(n, NVME_AER_TYPE_ERROR);
1276    }
1277
1278    memset(&errlog, 0x0, sizeof(errlog));
1279    trans_len = MIN(sizeof(errlog) - off, buf_len);
1280
1281    return nvme_dma(n, (uint8_t *)&errlog, trans_len,
1282                    DMA_DIRECTION_FROM_DEVICE, req);
1283}
1284
1285static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
1286{
1287    NvmeCmd *cmd = &req->cmd;
1288
1289    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1290    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1291    uint32_t dw12 = le32_to_cpu(cmd->cdw12);
1292    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
1293    uint8_t  lid = dw10 & 0xff;
1294    uint8_t  lsp = (dw10 >> 8) & 0xf;
1295    uint8_t  rae = (dw10 >> 15) & 0x1;
1296    uint32_t numdl, numdu;
1297    uint64_t off, lpol, lpou;
1298    size_t   len;
1299    uint16_t status;
1300
1301    numdl = (dw10 >> 16);
1302    numdu = (dw11 & 0xffff);
1303    lpol = dw12;
1304    lpou = dw13;
1305
1306    len = (((numdu << 16) | numdl) + 1) << 2;
1307    off = (lpou << 32ULL) | lpol;
1308
1309    if (off & 0x3) {
1310        return NVME_INVALID_FIELD | NVME_DNR;
1311    }
1312
1313    trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
1314
1315    status = nvme_check_mdts(n, len);
1316    if (status) {
1317        trace_pci_nvme_err_mdts(nvme_cid(req), len);
1318        return status;
1319    }
1320
1321    switch (lid) {
1322    case NVME_LOG_ERROR_INFO:
1323        return nvme_error_info(n, rae, len, off, req);
1324    case NVME_LOG_SMART_INFO:
1325        return nvme_smart_info(n, rae, len, off, req);
1326    case NVME_LOG_FW_SLOT_INFO:
1327        return nvme_fw_log_info(n, len, off, req);
1328    default:
1329        trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
1330        return NVME_INVALID_FIELD | NVME_DNR;
1331    }
1332}
1333
1334static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
1335{
1336    n->cq[cq->cqid] = NULL;
1337    timer_del(cq->timer);
1338    timer_free(cq->timer);
1339    msix_vector_unuse(&n->parent_obj, cq->vector);
1340    if (cq->cqid) {
1341        g_free(cq);
1342    }
1343}
1344
1345static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
1346{
1347    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
1348    NvmeCQueue *cq;
1349    uint16_t qid = le16_to_cpu(c->qid);
1350
1351    if (unlikely(!qid || nvme_check_cqid(n, qid))) {
1352        trace_pci_nvme_err_invalid_del_cq_cqid(qid);
1353        return NVME_INVALID_CQID | NVME_DNR;
1354    }
1355
1356    cq = n->cq[qid];
1357    if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
1358        trace_pci_nvme_err_invalid_del_cq_notempty(qid);
1359        return NVME_INVALID_QUEUE_DEL;
1360    }
1361    nvme_irq_deassert(n, cq);
1362    trace_pci_nvme_del_cq(qid);
1363    nvme_free_cq(cq, n);
1364    return NVME_SUCCESS;
1365}
1366
1367static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
1368                         uint16_t cqid, uint16_t vector, uint16_t size,
1369                         uint16_t irq_enabled)
1370{
1371    int ret;
1372
1373    ret = msix_vector_use(&n->parent_obj, vector);
1374    assert(ret == 0);
1375    cq->ctrl = n;
1376    cq->cqid = cqid;
1377    cq->size = size;
1378    cq->dma_addr = dma_addr;
1379    cq->phase = 1;
1380    cq->irq_enabled = irq_enabled;
1381    cq->vector = vector;
1382    cq->head = cq->tail = 0;
1383    QTAILQ_INIT(&cq->req_list);
1384    QTAILQ_INIT(&cq->sq_list);
1385    n->cq[cqid] = cq;
1386    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
1387}
1388
1389static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
1390{
1391    NvmeCQueue *cq;
1392    NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
1393    uint16_t cqid = le16_to_cpu(c->cqid);
1394    uint16_t vector = le16_to_cpu(c->irq_vector);
1395    uint16_t qsize = le16_to_cpu(c->qsize);
1396    uint16_t qflags = le16_to_cpu(c->cq_flags);
1397    uint64_t prp1 = le64_to_cpu(c->prp1);
1398
1399    trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
1400                             NVME_CQ_FLAGS_IEN(qflags) != 0);
1401
1402    if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
1403        n->cq[cqid] != NULL)) {
1404        trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
1405        return NVME_INVALID_QID | NVME_DNR;
1406    }
1407    if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
1408        trace_pci_nvme_err_invalid_create_cq_size(qsize);
1409        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
1410    }
1411    if (unlikely(prp1 & (n->page_size - 1))) {
1412        trace_pci_nvme_err_invalid_create_cq_addr(prp1);
1413        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
1414    }
1415    if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
1416        trace_pci_nvme_err_invalid_create_cq_vector(vector);
1417        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
1418    }
1419    if (unlikely(vector >= n->params.msix_qsize)) {
1420        trace_pci_nvme_err_invalid_create_cq_vector(vector);
1421        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
1422    }
1423    if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
1424        trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
1425        return NVME_INVALID_FIELD | NVME_DNR;
1426    }
1427
1428    cq = g_malloc0(sizeof(*cq));
1429    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
1430                 NVME_CQ_FLAGS_IEN(qflags));
1431
1432    /*
1433     * It is only required to set qs_created when creating a completion queue;
1434     * creating a submission queue without a matching completion queue will
1435     * fail.
1436     */
1437    n->qs_created = true;
1438    return NVME_SUCCESS;
1439}
1440
1441static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
1442{
1443    trace_pci_nvme_identify_ctrl();
1444
1445    return nvme_dma(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
1446                    DMA_DIRECTION_FROM_DEVICE, req);
1447}
1448
1449static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req)
1450{
1451    NvmeNamespace *ns;
1452    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1453    NvmeIdNs *id_ns, inactive = { 0 };
1454    uint32_t nsid = le32_to_cpu(c->nsid);
1455
1456    trace_pci_nvme_identify_ns(nsid);
1457
1458    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
1459        return NVME_INVALID_NSID | NVME_DNR;
1460    }
1461
1462    ns = nvme_ns(n, nsid);
1463    if (unlikely(!ns)) {
1464        id_ns = &inactive;
1465    } else {
1466        id_ns = &ns->id_ns;
1467    }
1468
1469    return nvme_dma(n, (uint8_t *)id_ns, sizeof(NvmeIdNs),
1470                    DMA_DIRECTION_FROM_DEVICE, req);
1471}
1472
1473static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req)
1474{
1475    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1476    static const int data_len = NVME_IDENTIFY_DATA_SIZE;
1477    uint32_t min_nsid = le32_to_cpu(c->nsid);
1478    uint32_t *list;
1479    uint16_t ret;
1480    int j = 0;
1481
1482    trace_pci_nvme_identify_nslist(min_nsid);
1483
1484    /*
1485     * Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
1486     * since the Active Namespace ID List should return namespaces with ids
1487     * *higher* than the NSID specified in the command. This is also specified
1488     * in the spec (NVM Express v1.3d, Section 5.15.4).
1489     */
1490    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
1491        return NVME_INVALID_NSID | NVME_DNR;
1492    }
1493
1494    list = g_malloc0(data_len);
1495    for (int i = 1; i <= n->num_namespaces; i++) {
1496        if (i <= min_nsid || !nvme_ns(n, i)) {
1497            continue;
1498        }
1499        list[j++] = cpu_to_le32(i);
1500        if (j == data_len / sizeof(uint32_t)) {
1501            break;
1502        }
1503    }
1504    ret = nvme_dma(n, (uint8_t *)list, data_len, DMA_DIRECTION_FROM_DEVICE,
1505                   req);
1506    g_free(list);
1507    return ret;
1508}
1509
1510static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
1511{
1512    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1513    uint32_t nsid = le32_to_cpu(c->nsid);
1514    uint8_t list[NVME_IDENTIFY_DATA_SIZE];
1515
1516    struct data {
1517        struct {
1518            NvmeIdNsDescr hdr;
1519            uint8_t v[16];
1520        } uuid;
1521    };
1522
1523    struct data *ns_descrs = (struct data *)list;
1524
1525    trace_pci_nvme_identify_ns_descr_list(nsid);
1526
1527    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
1528        return NVME_INVALID_NSID | NVME_DNR;
1529    }
1530
1531    if (unlikely(!nvme_ns(n, nsid))) {
1532        return NVME_INVALID_FIELD | NVME_DNR;
1533    }
1534
1535    memset(list, 0x0, sizeof(list));
1536
1537    /*
1538     * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
1539     * structure, a Namespace UUID (nidt = 0x3) must be reported in the
1540     * Namespace Identification Descriptor. Add a very basic Namespace UUID
1541     * here.
1542     */
1543    ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
1544    ns_descrs->uuid.hdr.nidl = NVME_NIDT_UUID_LEN;
1545    stl_be_p(&ns_descrs->uuid.v, nsid);
1546
1547    return nvme_dma(n, list, NVME_IDENTIFY_DATA_SIZE,
1548                    DMA_DIRECTION_FROM_DEVICE, req);
1549}
1550
1551static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
1552{
1553    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1554
1555    switch (le32_to_cpu(c->cns)) {
1556    case NVME_ID_CNS_NS:
1557        return nvme_identify_ns(n, req);
1558    case NVME_ID_CNS_CTRL:
1559        return nvme_identify_ctrl(n, req);
1560    case NVME_ID_CNS_NS_ACTIVE_LIST:
1561        return nvme_identify_nslist(n, req);
1562    case NVME_ID_CNS_NS_DESCR_LIST:
1563        return nvme_identify_ns_descr_list(n, req);
1564    default:
1565        trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
1566        return NVME_INVALID_FIELD | NVME_DNR;
1567    }
1568}
1569
1570static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
1571{
1572    uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
1573
1574    req->cqe.result = 1;
1575    if (nvme_check_sqid(n, sqid)) {
1576        return NVME_INVALID_FIELD | NVME_DNR;
1577    }
1578
1579    return NVME_SUCCESS;
1580}
1581
1582static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
1583{
1584    trace_pci_nvme_setfeat_timestamp(ts);
1585
1586    n->host_timestamp = le64_to_cpu(ts);
1587    n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1588}
1589
1590static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
1591{
1592    uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1593    uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
1594
1595    union nvme_timestamp {
1596        struct {
1597            uint64_t timestamp:48;
1598            uint64_t sync:1;
1599            uint64_t origin:3;
1600            uint64_t rsvd1:12;
1601        };
1602        uint64_t all;
1603    };
1604
1605    union nvme_timestamp ts;
1606    ts.all = 0;
1607    ts.timestamp = n->host_timestamp + elapsed_time;
1608
1609    /* If the host timestamp is non-zero, set the timestamp origin */
1610    ts.origin = n->host_timestamp ? 0x01 : 0x00;
1611
1612    trace_pci_nvme_getfeat_timestamp(ts.all);
1613
1614    return cpu_to_le64(ts.all);
1615}
1616
1617static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
1618{
1619    uint64_t timestamp = nvme_get_timestamp(n);
1620
1621    return nvme_dma(n, (uint8_t *)&timestamp, sizeof(timestamp),
1622                    DMA_DIRECTION_FROM_DEVICE, req);
1623}
1624
1625static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
1626{
1627    NvmeCmd *cmd = &req->cmd;
1628    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1629    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1630    uint32_t nsid = le32_to_cpu(cmd->nsid);
1631    uint32_t result;
1632    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
1633    NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
1634    uint16_t iv;
1635
1636    static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
1637        [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
1638    };
1639
1640    trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
1641
1642    if (!nvme_feature_support[fid]) {
1643        return NVME_INVALID_FIELD | NVME_DNR;
1644    }
1645
1646    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
1647        if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
1648            /*
1649             * The Reservation Notification Mask and Reservation Persistence
1650             * features require a status code of Invalid Field in Command when
1651             * NSID is 0xFFFFFFFF. Since the device does not support those
1652             * features we can always return Invalid Namespace or Format as we
1653             * should do for all other features.
1654             */
1655            return NVME_INVALID_NSID | NVME_DNR;
1656        }
1657
1658        if (!nvme_ns(n, nsid)) {
1659            return NVME_INVALID_FIELD | NVME_DNR;
1660        }
1661    }
1662
1663    switch (sel) {
1664    case NVME_GETFEAT_SELECT_CURRENT:
1665        break;
1666    case NVME_GETFEAT_SELECT_SAVED:
1667        /* no features are saveable by the controller; fallthrough */
1668    case NVME_GETFEAT_SELECT_DEFAULT:
1669        goto defaults;
1670    case NVME_GETFEAT_SELECT_CAP:
1671        result = nvme_feature_cap[fid];
1672        goto out;
1673    }
1674
1675    switch (fid) {
1676    case NVME_TEMPERATURE_THRESHOLD:
1677        result = 0;
1678
1679        /*
1680         * The controller only implements the Composite Temperature sensor, so
1681         * return 0 for all other sensors.
1682         */
1683        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1684            goto out;
1685        }
1686
1687        switch (NVME_TEMP_THSEL(dw11)) {
1688        case NVME_TEMP_THSEL_OVER:
1689            result = n->features.temp_thresh_hi;
1690            goto out;
1691        case NVME_TEMP_THSEL_UNDER:
1692            result = n->features.temp_thresh_low;
1693            goto out;
1694        }
1695
1696        return NVME_INVALID_FIELD | NVME_DNR;
1697    case NVME_VOLATILE_WRITE_CACHE:
1698        result = n->features.vwc;
1699        trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
1700        goto out;
1701    case NVME_ASYNCHRONOUS_EVENT_CONF:
1702        result = n->features.async_config;
1703        goto out;
1704    case NVME_TIMESTAMP:
1705        return nvme_get_feature_timestamp(n, req);
1706    default:
1707        break;
1708    }
1709
1710defaults:
1711    switch (fid) {
1712    case NVME_TEMPERATURE_THRESHOLD:
1713        result = 0;
1714
1715        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1716            break;
1717        }
1718
1719        if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
1720            result = NVME_TEMPERATURE_WARNING;
1721        }
1722
1723        break;
1724    case NVME_NUMBER_OF_QUEUES:
1725        result = (n->params.max_ioqpairs - 1) |
1726            ((n->params.max_ioqpairs - 1) << 16);
1727        trace_pci_nvme_getfeat_numq(result);
1728        break;
1729    case NVME_INTERRUPT_VECTOR_CONF:
1730        iv = dw11 & 0xffff;
1731        if (iv >= n->params.max_ioqpairs + 1) {
1732            return NVME_INVALID_FIELD | NVME_DNR;
1733        }
1734
1735        result = iv;
1736        if (iv == n->admin_cq.vector) {
1737            result |= NVME_INTVC_NOCOALESCING;
1738        }
1739
1740        break;
1741    default:
1742        result = nvme_feature_default[fid];
1743        break;
1744    }
1745
1746out:
1747    req->cqe.result = cpu_to_le32(result);
1748    return NVME_SUCCESS;
1749}
1750
1751static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
1752{
1753    uint16_t ret;
1754    uint64_t timestamp;
1755
1756    ret = nvme_dma(n, (uint8_t *)&timestamp, sizeof(timestamp),
1757                   DMA_DIRECTION_TO_DEVICE, req);
1758    if (ret != NVME_SUCCESS) {
1759        return ret;
1760    }
1761
1762    nvme_set_timestamp(n, timestamp);
1763
1764    return NVME_SUCCESS;
1765}
1766
1767static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
1768{
1769    NvmeNamespace *ns;
1770
1771    NvmeCmd *cmd = &req->cmd;
1772    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1773    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1774    uint32_t nsid = le32_to_cpu(cmd->nsid);
1775    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
1776    uint8_t save = NVME_SETFEAT_SAVE(dw10);
1777
1778    trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
1779
1780    if (save) {
1781        return NVME_FID_NOT_SAVEABLE | NVME_DNR;
1782    }
1783
1784    if (!nvme_feature_support[fid]) {
1785        return NVME_INVALID_FIELD | NVME_DNR;
1786    }
1787
1788    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
1789        if (nsid != NVME_NSID_BROADCAST) {
1790            if (!nvme_nsid_valid(n, nsid)) {
1791                return NVME_INVALID_NSID | NVME_DNR;
1792            }
1793
1794            ns = nvme_ns(n, nsid);
1795            if (unlikely(!ns)) {
1796                return NVME_INVALID_FIELD | NVME_DNR;
1797            }
1798        }
1799    } else if (nsid && nsid != NVME_NSID_BROADCAST) {
1800        if (!nvme_nsid_valid(n, nsid)) {
1801            return NVME_INVALID_NSID | NVME_DNR;
1802        }
1803
1804        return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
1805    }
1806
1807    if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
1808        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
1809    }
1810
1811    switch (fid) {
1812    case NVME_TEMPERATURE_THRESHOLD:
1813        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1814            break;
1815        }
1816
1817        switch (NVME_TEMP_THSEL(dw11)) {
1818        case NVME_TEMP_THSEL_OVER:
1819            n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
1820            break;
1821        case NVME_TEMP_THSEL_UNDER:
1822            n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
1823            break;
1824        default:
1825            return NVME_INVALID_FIELD | NVME_DNR;
1826        }
1827
1828        if (((n->temperature >= n->features.temp_thresh_hi) ||
1829             (n->temperature <= n->features.temp_thresh_low)) &&
1830            NVME_AEC_SMART(n->features.async_config) & NVME_SMART_TEMPERATURE) {
1831            nvme_enqueue_event(n, NVME_AER_TYPE_SMART,
1832                               NVME_AER_INFO_SMART_TEMP_THRESH,
1833                               NVME_LOG_SMART_INFO);
1834        }
1835
1836        break;
1837    case NVME_VOLATILE_WRITE_CACHE:
1838        n->features.vwc = dw11 & 0x1;
1839
1840        for (int i = 1; i <= n->num_namespaces; i++) {
1841            ns = nvme_ns(n, i);
1842            if (!ns) {
1843                continue;
1844            }
1845
1846            if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
1847                blk_flush(ns->blkconf.blk);
1848            }
1849
1850            blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
1851        }
1852
1853        break;
1854
1855    case NVME_NUMBER_OF_QUEUES:
1856        if (n->qs_created) {
1857            return NVME_CMD_SEQ_ERROR | NVME_DNR;
1858        }
1859
1860        /*
1861         * NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
1862         * and NSQR.
1863         */
1864        if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
1865            return NVME_INVALID_FIELD | NVME_DNR;
1866        }
1867
1868        trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
1869                                    ((dw11 >> 16) & 0xFFFF) + 1,
1870                                    n->params.max_ioqpairs,
1871                                    n->params.max_ioqpairs);
1872        req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
1873                                      ((n->params.max_ioqpairs - 1) << 16));
1874        break;
1875    case NVME_ASYNCHRONOUS_EVENT_CONF:
1876        n->features.async_config = dw11;
1877        break;
1878    case NVME_TIMESTAMP:
1879        return nvme_set_feature_timestamp(n, req);
1880    default:
1881        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
1882    }
1883    return NVME_SUCCESS;
1884}
1885
1886static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
1887{
1888    trace_pci_nvme_aer(nvme_cid(req));
1889
1890    if (n->outstanding_aers > n->params.aerl) {
1891        trace_pci_nvme_aer_aerl_exceeded();
1892        return NVME_AER_LIMIT_EXCEEDED;
1893    }
1894
1895    n->aer_reqs[n->outstanding_aers] = req;
1896    n->outstanding_aers++;
1897
1898    if (!QTAILQ_EMPTY(&n->aer_queue)) {
1899        nvme_process_aers(n);
1900    }
1901
1902    return NVME_NO_COMPLETE;
1903}
1904
1905static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
1906{
1907    trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
1908                             nvme_adm_opc_str(req->cmd.opcode));
1909
1910    switch (req->cmd.opcode) {
1911    case NVME_ADM_CMD_DELETE_SQ:
1912        return nvme_del_sq(n, req);
1913    case NVME_ADM_CMD_CREATE_SQ:
1914        return nvme_create_sq(n, req);
1915    case NVME_ADM_CMD_GET_LOG_PAGE:
1916        return nvme_get_log(n, req);
1917    case NVME_ADM_CMD_DELETE_CQ:
1918        return nvme_del_cq(n, req);
1919    case NVME_ADM_CMD_CREATE_CQ:
1920        return nvme_create_cq(n, req);
1921    case NVME_ADM_CMD_IDENTIFY:
1922        return nvme_identify(n, req);
1923    case NVME_ADM_CMD_ABORT:
1924        return nvme_abort(n, req);
1925    case NVME_ADM_CMD_SET_FEATURES:
1926        return nvme_set_feature(n, req);
1927    case NVME_ADM_CMD_GET_FEATURES:
1928        return nvme_get_feature(n, req);
1929    case NVME_ADM_CMD_ASYNC_EV_REQ:
1930        return nvme_aer(n, req);
1931    default:
1932        trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
1933        return NVME_INVALID_OPCODE | NVME_DNR;
1934    }
1935}
1936
1937static void nvme_process_sq(void *opaque)
1938{
1939    NvmeSQueue *sq = opaque;
1940    NvmeCtrl *n = sq->ctrl;
1941    NvmeCQueue *cq = n->cq[sq->cqid];
1942
1943    uint16_t status;
1944    hwaddr addr;
1945    NvmeCmd cmd;
1946    NvmeRequest *req;
1947
1948    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
1949        addr = sq->dma_addr + sq->head * n->sqe_size;
1950        if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
1951            trace_pci_nvme_err_addr_read(addr);
1952            trace_pci_nvme_err_cfs();
1953            n->bar.csts = NVME_CSTS_FAILED;
1954            break;
1955        }
1956        nvme_inc_sq_head(sq);
1957
1958        req = QTAILQ_FIRST(&sq->req_list);
1959        QTAILQ_REMOVE(&sq->req_list, req, entry);
1960        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
1961        nvme_req_clear(req);
1962        req->cqe.cid = cmd.cid;
1963        memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
1964
1965        status = sq->sqid ? nvme_io_cmd(n, req) :
1966            nvme_admin_cmd(n, req);
1967        if (status != NVME_NO_COMPLETE) {
1968            req->status = status;
1969            nvme_enqueue_req_completion(cq, req);
1970        }
1971    }
1972}
1973
1974static void nvme_clear_ctrl(NvmeCtrl *n)
1975{
1976    NvmeNamespace *ns;
1977    int i;
1978
1979    for (i = 1; i <= n->num_namespaces; i++) {
1980        ns = nvme_ns(n, i);
1981        if (!ns) {
1982            continue;
1983        }
1984
1985        nvme_ns_drain(ns);
1986    }
1987
1988    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
1989        if (n->sq[i] != NULL) {
1990            nvme_free_sq(n->sq[i], n);
1991        }
1992    }
1993    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
1994        if (n->cq[i] != NULL) {
1995            nvme_free_cq(n->cq[i], n);
1996        }
1997    }
1998
1999    while (!QTAILQ_EMPTY(&n->aer_queue)) {
2000        NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
2001        QTAILQ_REMOVE(&n->aer_queue, event, entry);
2002        g_free(event);
2003    }
2004
2005    n->aer_queued = 0;
2006    n->outstanding_aers = 0;
2007    n->qs_created = false;
2008
2009    for (i = 1; i <= n->num_namespaces; i++) {
2010        ns = nvme_ns(n, i);
2011        if (!ns) {
2012            continue;
2013        }
2014
2015        nvme_ns_flush(ns);
2016    }
2017
2018    n->bar.cc = 0;
2019}
2020
2021static int nvme_start_ctrl(NvmeCtrl *n)
2022{
2023    uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
2024    uint32_t page_size = 1 << page_bits;
2025
2026    if (unlikely(n->cq[0])) {
2027        trace_pci_nvme_err_startfail_cq();
2028        return -1;
2029    }
2030    if (unlikely(n->sq[0])) {
2031        trace_pci_nvme_err_startfail_sq();
2032        return -1;
2033    }
2034    if (unlikely(!n->bar.asq)) {
2035        trace_pci_nvme_err_startfail_nbarasq();
2036        return -1;
2037    }
2038    if (unlikely(!n->bar.acq)) {
2039        trace_pci_nvme_err_startfail_nbaracq();
2040        return -1;
2041    }
2042    if (unlikely(n->bar.asq & (page_size - 1))) {
2043        trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
2044        return -1;
2045    }
2046    if (unlikely(n->bar.acq & (page_size - 1))) {
2047        trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
2048        return -1;
2049    }
2050    if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) {
2051        trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc));
2052        return -1;
2053    }
2054    if (unlikely(NVME_CC_MPS(n->bar.cc) <
2055                 NVME_CAP_MPSMIN(n->bar.cap))) {
2056        trace_pci_nvme_err_startfail_page_too_small(
2057                    NVME_CC_MPS(n->bar.cc),
2058                    NVME_CAP_MPSMIN(n->bar.cap));
2059        return -1;
2060    }
2061    if (unlikely(NVME_CC_MPS(n->bar.cc) >
2062                 NVME_CAP_MPSMAX(n->bar.cap))) {
2063        trace_pci_nvme_err_startfail_page_too_large(
2064                    NVME_CC_MPS(n->bar.cc),
2065                    NVME_CAP_MPSMAX(n->bar.cap));
2066        return -1;
2067    }
2068    if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
2069                 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
2070        trace_pci_nvme_err_startfail_cqent_too_small(
2071                    NVME_CC_IOCQES(n->bar.cc),
2072                    NVME_CTRL_CQES_MIN(n->bar.cap));
2073        return -1;
2074    }
2075    if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
2076                 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
2077        trace_pci_nvme_err_startfail_cqent_too_large(
2078                    NVME_CC_IOCQES(n->bar.cc),
2079                    NVME_CTRL_CQES_MAX(n->bar.cap));
2080        return -1;
2081    }
2082    if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
2083                 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
2084        trace_pci_nvme_err_startfail_sqent_too_small(
2085                    NVME_CC_IOSQES(n->bar.cc),
2086                    NVME_CTRL_SQES_MIN(n->bar.cap));
2087        return -1;
2088    }
2089    if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
2090                 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
2091        trace_pci_nvme_err_startfail_sqent_too_large(
2092                    NVME_CC_IOSQES(n->bar.cc),
2093                    NVME_CTRL_SQES_MAX(n->bar.cap));
2094        return -1;
2095    }
2096    if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
2097        trace_pci_nvme_err_startfail_asqent_sz_zero();
2098        return -1;
2099    }
2100    if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
2101        trace_pci_nvme_err_startfail_acqent_sz_zero();
2102        return -1;
2103    }
2104
2105    n->page_bits = page_bits;
2106    n->page_size = page_size;
2107    n->max_prp_ents = n->page_size / sizeof(uint64_t);
2108    n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
2109    n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
2110    nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
2111                 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
2112    nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
2113                 NVME_AQA_ASQS(n->bar.aqa) + 1);
2114
2115    nvme_set_timestamp(n, 0ULL);
2116
2117    QTAILQ_INIT(&n->aer_queue);
2118
2119    return 0;
2120}
2121
2122static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
2123                           unsigned size)
2124{
2125    if (unlikely(offset & (sizeof(uint32_t) - 1))) {
2126        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
2127                       "MMIO write not 32-bit aligned,"
2128                       " offset=0x%"PRIx64"", offset);
2129        /* should be ignored, fall through for now */
2130    }
2131
2132    if (unlikely(size < sizeof(uint32_t))) {
2133        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
2134                       "MMIO write smaller than 32-bits,"
2135                       " offset=0x%"PRIx64", size=%u",
2136                       offset, size);
2137        /* should be ignored, fall through for now */
2138    }
2139
2140    switch (offset) {
2141    case 0xc:   /* INTMS */
2142        if (unlikely(msix_enabled(&(n->parent_obj)))) {
2143            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
2144                           "undefined access to interrupt mask set"
2145                           " when MSI-X is enabled");
2146            /* should be ignored, fall through for now */
2147        }
2148        n->bar.intms |= data & 0xffffffff;
2149        n->bar.intmc = n->bar.intms;
2150        trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
2151        nvme_irq_check(n);
2152        break;
2153    case 0x10:  /* INTMC */
2154        if (unlikely(msix_enabled(&(n->parent_obj)))) {
2155            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
2156                           "undefined access to interrupt mask clr"
2157                           " when MSI-X is enabled");
2158            /* should be ignored, fall through for now */
2159        }
2160        n->bar.intms &= ~(data & 0xffffffff);
2161        n->bar.intmc = n->bar.intms;
2162        trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
2163        nvme_irq_check(n);
2164        break;
2165    case 0x14:  /* CC */
2166        trace_pci_nvme_mmio_cfg(data & 0xffffffff);
2167        /* Windows first sends data, then sends enable bit */
2168        if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
2169            !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
2170        {
2171            n->bar.cc = data;
2172        }
2173
2174        if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
2175            n->bar.cc = data;
2176            if (unlikely(nvme_start_ctrl(n))) {
2177                trace_pci_nvme_err_startfail();
2178                n->bar.csts = NVME_CSTS_FAILED;
2179            } else {
2180                trace_pci_nvme_mmio_start_success();
2181                n->bar.csts = NVME_CSTS_READY;
2182            }
2183        } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
2184            trace_pci_nvme_mmio_stopped();
2185            nvme_clear_ctrl(n);
2186            n->bar.csts &= ~NVME_CSTS_READY;
2187        }
2188        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
2189            trace_pci_nvme_mmio_shutdown_set();
2190            nvme_clear_ctrl(n);
2191            n->bar.cc = data;
2192            n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
2193        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
2194            trace_pci_nvme_mmio_shutdown_cleared();
2195            n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
2196            n->bar.cc = data;
2197        }
2198        break;
2199    case 0x1C:  /* CSTS */
2200        if (data & (1 << 4)) {
2201            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
2202                           "attempted to W1C CSTS.NSSRO"
2203                           " but CAP.NSSRS is zero (not supported)");
2204        } else if (data != 0) {
2205            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
2206                           "attempted to set a read only bit"
2207                           " of controller status");
2208        }
2209        break;
2210    case 0x20:  /* NSSR */
2211        if (data == 0x4E564D65) {
2212            trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
2213        } else {
2214            /* The spec says that writes of other values have no effect */
2215            return;
2216        }
2217        break;
2218    case 0x24:  /* AQA */
2219        n->bar.aqa = data & 0xffffffff;
2220        trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
2221        break;
2222    case 0x28:  /* ASQ */
2223        n->bar.asq = data;
2224        trace_pci_nvme_mmio_asqaddr(data);
2225        break;
2226    case 0x2c:  /* ASQ hi */
2227        n->bar.asq |= data << 32;
2228        trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
2229        break;
2230    case 0x30:  /* ACQ */
2231        trace_pci_nvme_mmio_acqaddr(data);
2232        n->bar.acq = data;
2233        break;
2234    case 0x34:  /* ACQ hi */
2235        n->bar.acq |= data << 32;
2236        trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
2237        break;
2238    case 0x38:  /* CMBLOC */
2239        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
2240                       "invalid write to reserved CMBLOC"
2241                       " when CMBSZ is zero, ignored");
2242        return;
2243    case 0x3C:  /* CMBSZ */
2244        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
2245                       "invalid write to read only CMBSZ, ignored");
2246        return;
2247    case 0xE00: /* PMRCAP */
2248        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
2249                       "invalid write to PMRCAP register, ignored");
2250        return;
2251    case 0xE04: /* TODO PMRCTL */
2252        break;
2253    case 0xE08: /* PMRSTS */
2254        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
2255                       "invalid write to PMRSTS register, ignored");
2256        return;
2257    case 0xE0C: /* PMREBS */
2258        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
2259                       "invalid write to PMREBS register, ignored");
2260        return;
2261    case 0xE10: /* PMRSWTP */
2262        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
2263                       "invalid write to PMRSWTP register, ignored");
2264        return;
2265    case 0xE14: /* TODO PMRMSC */
2266        break;
2267    default:
2268        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
2269                       "invalid MMIO write,"
2270                       " offset=0x%"PRIx64", data=%"PRIx64"",
2271                       offset, data);
2272        break;
2273    }
2274}
2275
2276static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
2277{
2278    NvmeCtrl *n = (NvmeCtrl *)opaque;
2279    uint8_t *ptr = (uint8_t *)&n->bar;
2280    uint64_t val = 0;
2281
2282    trace_pci_nvme_mmio_read(addr);
2283
2284    if (unlikely(addr & (sizeof(uint32_t) - 1))) {
2285        NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
2286                       "MMIO read not 32-bit aligned,"
2287                       " offset=0x%"PRIx64"", addr);
2288        /* should RAZ, fall through for now */
2289    } else if (unlikely(size < sizeof(uint32_t))) {
2290        NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
2291                       "MMIO read smaller than 32-bits,"
2292                       " offset=0x%"PRIx64"", addr);
2293        /* should RAZ, fall through for now */
2294    }
2295
2296    if (addr < sizeof(n->bar)) {
2297        /*
2298         * When PMRWBM bit 1 is set then read from
2299         * from PMRSTS should ensure prior writes
2300         * made it to persistent media
2301         */
2302        if (addr == 0xE08 &&
2303            (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
2304            memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
2305        }
2306        memcpy(&val, ptr + addr, size);
2307    } else {
2308        NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
2309                       "MMIO read beyond last register,"
2310                       " offset=0x%"PRIx64", returning 0", addr);
2311    }
2312
2313    return val;
2314}
2315
2316static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
2317{
2318    uint32_t qid;
2319
2320    if (unlikely(addr & ((1 << 2) - 1))) {
2321        NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
2322                       "doorbell write not 32-bit aligned,"
2323                       " offset=0x%"PRIx64", ignoring", addr);
2324        return;
2325    }
2326
2327    if (((addr - 0x1000) >> 2) & 1) {
2328        /* Completion queue doorbell write */
2329
2330        uint16_t new_head = val & 0xffff;
2331        int start_sqs;
2332        NvmeCQueue *cq;
2333
2334        qid = (addr - (0x1000 + (1 << 2))) >> 3;
2335        if (unlikely(nvme_check_cqid(n, qid))) {
2336            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
2337                           "completion queue doorbell write"
2338                           " for nonexistent queue,"
2339                           " sqid=%"PRIu32", ignoring", qid);
2340
2341            /*
2342             * NVM Express v1.3d, Section 4.1 state: "If host software writes
2343             * an invalid value to the Submission Queue Tail Doorbell or
2344             * Completion Queue Head Doorbell regiter and an Asynchronous Event
2345             * Request command is outstanding, then an asynchronous event is
2346             * posted to the Admin Completion Queue with a status code of
2347             * Invalid Doorbell Write Value."
2348             *
2349             * Also note that the spec includes the "Invalid Doorbell Register"
2350             * status code, but nowhere does it specify when to use it.
2351             * However, it seems reasonable to use it here in a similar
2352             * fashion.
2353             */
2354            if (n->outstanding_aers) {
2355                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2356                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
2357                                   NVME_LOG_ERROR_INFO);
2358            }
2359
2360            return;
2361        }
2362
2363        cq = n->cq[qid];
2364        if (unlikely(new_head >= cq->size)) {
2365            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
2366                           "completion queue doorbell write value"
2367                           " beyond queue size, sqid=%"PRIu32","
2368                           " new_head=%"PRIu16", ignoring",
2369                           qid, new_head);
2370
2371            if (n->outstanding_aers) {
2372                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2373                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
2374                                   NVME_LOG_ERROR_INFO);
2375            }
2376
2377            return;
2378        }
2379
2380        trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
2381
2382        start_sqs = nvme_cq_full(cq) ? 1 : 0;
2383        cq->head = new_head;
2384        if (start_sqs) {
2385            NvmeSQueue *sq;
2386            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
2387                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2388            }
2389            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2390        }
2391
2392        if (cq->tail == cq->head) {
2393            nvme_irq_deassert(n, cq);
2394        }
2395    } else {
2396        /* Submission queue doorbell write */
2397
2398        uint16_t new_tail = val & 0xffff;
2399        NvmeSQueue *sq;
2400
2401        qid = (addr - 0x1000) >> 3;
2402        if (unlikely(nvme_check_sqid(n, qid))) {
2403            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
2404                           "submission queue doorbell write"
2405                           " for nonexistent queue,"
2406                           " sqid=%"PRIu32", ignoring", qid);
2407
2408            if (n->outstanding_aers) {
2409                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2410                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
2411                                   NVME_LOG_ERROR_INFO);
2412            }
2413
2414            return;
2415        }
2416
2417        sq = n->sq[qid];
2418        if (unlikely(new_tail >= sq->size)) {
2419            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
2420                           "submission queue doorbell write value"
2421                           " beyond queue size, sqid=%"PRIu32","
2422                           " new_tail=%"PRIu16", ignoring",
2423                           qid, new_tail);
2424
2425            if (n->outstanding_aers) {
2426                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2427                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
2428                                   NVME_LOG_ERROR_INFO);
2429            }
2430
2431            return;
2432        }
2433
2434        trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
2435
2436        sq->tail = new_tail;
2437        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2438    }
2439}
2440
2441static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
2442                            unsigned size)
2443{
2444    NvmeCtrl *n = (NvmeCtrl *)opaque;
2445
2446    trace_pci_nvme_mmio_write(addr, data);
2447
2448    if (addr < sizeof(n->bar)) {
2449        nvme_write_bar(n, addr, data, size);
2450    } else {
2451        nvme_process_db(n, addr, data);
2452    }
2453}
2454
2455static const MemoryRegionOps nvme_mmio_ops = {
2456    .read = nvme_mmio_read,
2457    .write = nvme_mmio_write,
2458    .endianness = DEVICE_LITTLE_ENDIAN,
2459    .impl = {
2460        .min_access_size = 2,
2461        .max_access_size = 8,
2462    },
2463};
2464
2465static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
2466                           unsigned size)
2467{
2468    NvmeCtrl *n = (NvmeCtrl *)opaque;
2469    stn_le_p(&n->cmbuf[addr], size, data);
2470}
2471
2472static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
2473{
2474    NvmeCtrl *n = (NvmeCtrl *)opaque;
2475    return ldn_le_p(&n->cmbuf[addr], size);
2476}
2477
2478static const MemoryRegionOps nvme_cmb_ops = {
2479    .read = nvme_cmb_read,
2480    .write = nvme_cmb_write,
2481    .endianness = DEVICE_LITTLE_ENDIAN,
2482    .impl = {
2483        .min_access_size = 1,
2484        .max_access_size = 8,
2485    },
2486};
2487
2488static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
2489{
2490    NvmeParams *params = &n->params;
2491
2492    if (params->num_queues) {
2493        warn_report("num_queues is deprecated; please use max_ioqpairs "
2494                    "instead");
2495
2496        params->max_ioqpairs = params->num_queues - 1;
2497    }
2498
2499    if (n->conf.blk) {
2500        warn_report("drive property is deprecated; "
2501                    "please use an nvme-ns device instead");
2502    }
2503
2504    if (params->max_ioqpairs < 1 ||
2505        params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
2506        error_setg(errp, "max_ioqpairs must be between 1 and %d",
2507                   NVME_MAX_IOQPAIRS);
2508        return;
2509    }
2510
2511    if (params->msix_qsize < 1 ||
2512        params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
2513        error_setg(errp, "msix_qsize must be between 1 and %d",
2514                   PCI_MSIX_FLAGS_QSIZE + 1);
2515        return;
2516    }
2517
2518    if (!params->serial) {
2519        error_setg(errp, "serial property not set");
2520        return;
2521    }
2522
2523    if (!n->params.cmb_size_mb && n->pmrdev) {
2524        if (host_memory_backend_is_mapped(n->pmrdev)) {
2525            error_setg(errp, "can't use already busy memdev: %s",
2526                       object_get_canonical_path_component(OBJECT(n->pmrdev)));
2527            return;
2528        }
2529
2530        if (!is_power_of_2(n->pmrdev->size)) {
2531            error_setg(errp, "pmr backend size needs to be power of 2 in size");
2532            return;
2533        }
2534
2535        host_memory_backend_set_mapped(n->pmrdev, true);
2536    }
2537}
2538
2539static void nvme_init_state(NvmeCtrl *n)
2540{
2541    n->num_namespaces = NVME_MAX_NAMESPACES;
2542    /* add one to max_ioqpairs to account for the admin queue pair */
2543    n->reg_size = pow2ceil(sizeof(NvmeBar) +
2544                           2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
2545    n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
2546    n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
2547    n->temperature = NVME_TEMPERATURE;
2548    n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
2549    n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
2550    n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
2551}
2552
2553int nvme_register_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
2554{
2555    uint32_t nsid = nvme_nsid(ns);
2556
2557    if (nsid > NVME_MAX_NAMESPACES) {
2558        error_setg(errp, "invalid namespace id (must be between 0 and %d)",
2559                   NVME_MAX_NAMESPACES);
2560        return -1;
2561    }
2562
2563    if (!nsid) {
2564        for (int i = 1; i <= n->num_namespaces; i++) {
2565            if (!nvme_ns(n, i)) {
2566                nsid = ns->params.nsid = i;
2567                break;
2568            }
2569        }
2570
2571        if (!nsid) {
2572            error_setg(errp, "no free namespace id");
2573            return -1;
2574        }
2575    } else {
2576        if (n->namespaces[nsid - 1]) {
2577            error_setg(errp, "namespace id '%d' is already in use", nsid);
2578            return -1;
2579        }
2580    }
2581
2582    trace_pci_nvme_register_namespace(nsid);
2583
2584    n->namespaces[nsid - 1] = ns;
2585
2586    return 0;
2587}
2588
2589static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
2590{
2591    NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
2592    NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
2593
2594    NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
2595    NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
2596    NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
2597    NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
2598    NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
2599    NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
2600    NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
2601
2602    n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
2603    memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
2604                          "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
2605    pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
2606                     PCI_BASE_ADDRESS_SPACE_MEMORY |
2607                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
2608                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
2609}
2610
2611static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
2612{
2613    /* Controller Capabilities register */
2614    NVME_CAP_SET_PMRS(n->bar.cap, 1);
2615
2616    /* PMR Capabities register */
2617    n->bar.pmrcap = 0;
2618    NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
2619    NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
2620    NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
2621    NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
2622    /* Turn on bit 1 support */
2623    NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
2624    NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
2625    NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
2626
2627    /* PMR Control register */
2628    n->bar.pmrctl = 0;
2629    NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
2630
2631    /* PMR Status register */
2632    n->bar.pmrsts = 0;
2633    NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
2634    NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
2635    NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
2636    NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
2637
2638    /* PMR Elasticity Buffer Size register */
2639    n->bar.pmrebs = 0;
2640    NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
2641    NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
2642    NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
2643
2644    /* PMR Sustained Write Throughput register */
2645    n->bar.pmrswtp = 0;
2646    NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
2647    NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
2648
2649    /* PMR Memory Space Control register */
2650    n->bar.pmrmsc = 0;
2651    NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
2652    NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
2653
2654    pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
2655                     PCI_BASE_ADDRESS_SPACE_MEMORY |
2656                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
2657                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
2658}
2659
2660static void nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
2661{
2662    uint8_t *pci_conf = pci_dev->config;
2663
2664    pci_conf[PCI_INTERRUPT_PIN] = 1;
2665    pci_config_set_prog_interface(pci_conf, 0x2);
2666
2667    if (n->params.use_intel_id) {
2668        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
2669        pci_config_set_device_id(pci_conf, 0x5845);
2670    } else {
2671        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
2672        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
2673    }
2674
2675    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
2676    pcie_endpoint_cap_init(pci_dev, 0x80);
2677
2678    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
2679                          n->reg_size);
2680    pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
2681                     PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
2682    if (msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp)) {
2683        return;
2684    }
2685
2686    if (n->params.cmb_size_mb) {
2687        nvme_init_cmb(n, pci_dev);
2688    } else if (n->pmrdev) {
2689        nvme_init_pmr(n, pci_dev);
2690    }
2691}
2692
2693static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
2694{
2695    NvmeIdCtrl *id = &n->id_ctrl;
2696    uint8_t *pci_conf = pci_dev->config;
2697    char *subnqn;
2698
2699    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
2700    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
2701    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
2702    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
2703    strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
2704    id->rab = 6;
2705    id->ieee[0] = 0x00;
2706    id->ieee[1] = 0x02;
2707    id->ieee[2] = 0xb3;
2708    id->mdts = n->params.mdts;
2709    id->ver = cpu_to_le32(NVME_SPEC_VER);
2710    id->oacs = cpu_to_le16(0);
2711
2712    /*
2713     * Because the controller always completes the Abort command immediately,
2714     * there can never be more than one concurrently executing Abort command,
2715     * so this value is never used for anything. Note that there can easily be
2716     * many Abort commands in the queues, but they are not considered
2717     * "executing" until processed by nvme_abort.
2718     *
2719     * The specification recommends a value of 3 for Abort Command Limit (four
2720     * concurrently outstanding Abort commands), so lets use that though it is
2721     * inconsequential.
2722     */
2723    id->acl = 3;
2724    id->aerl = n->params.aerl;
2725    id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
2726    id->lpa = NVME_LPA_NS_SMART | NVME_LPA_EXTENDED;
2727
2728    /* recommended default value (~70 C) */
2729    id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
2730    id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
2731
2732    id->sqes = (0x6 << 4) | 0x6;
2733    id->cqes = (0x4 << 4) | 0x4;
2734    id->nn = cpu_to_le32(n->num_namespaces);
2735    id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
2736                           NVME_ONCS_FEATURES);
2737
2738    id->vwc = 0x1;
2739    id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
2740                           NVME_CTRL_SGLS_BITBUCKET);
2741
2742    subnqn = g_strdup_printf("nqn.2019-08.org.qemu:%s", n->params.serial);
2743    strpadcpy((char *)id->subnqn, sizeof(id->subnqn), subnqn, '\0');
2744    g_free(subnqn);
2745
2746    id->psd[0].mp = cpu_to_le16(0x9c4);
2747    id->psd[0].enlat = cpu_to_le32(0x10);
2748    id->psd[0].exlat = cpu_to_le32(0x4);
2749
2750    n->bar.cap = 0;
2751    NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
2752    NVME_CAP_SET_CQR(n->bar.cap, 1);
2753    NVME_CAP_SET_TO(n->bar.cap, 0xf);
2754    NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM);
2755    NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY);
2756    NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
2757
2758    n->bar.vs = NVME_SPEC_VER;
2759    n->bar.intmc = n->bar.intms = 0;
2760}
2761
2762static void nvme_realize(PCIDevice *pci_dev, Error **errp)
2763{
2764    NvmeCtrl *n = NVME(pci_dev);
2765    NvmeNamespace *ns;
2766    Error *local_err = NULL;
2767
2768    nvme_check_constraints(n, &local_err);
2769    if (local_err) {
2770        error_propagate(errp, local_err);
2771        return;
2772    }
2773
2774    qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
2775                        &pci_dev->qdev, n->parent_obj.qdev.id);
2776
2777    nvme_init_state(n);
2778    nvme_init_pci(n, pci_dev, &local_err);
2779    if (local_err) {
2780        error_propagate(errp, local_err);
2781        return;
2782    }
2783
2784    nvme_init_ctrl(n, pci_dev);
2785
2786    /* setup a namespace if the controller drive property was given */
2787    if (n->namespace.blkconf.blk) {
2788        ns = &n->namespace;
2789        ns->params.nsid = 1;
2790
2791        if (nvme_ns_setup(n, ns, errp)) {
2792            return;
2793        }
2794    }
2795}
2796
2797static void nvme_exit(PCIDevice *pci_dev)
2798{
2799    NvmeCtrl *n = NVME(pci_dev);
2800
2801    nvme_clear_ctrl(n);
2802    g_free(n->cq);
2803    g_free(n->sq);
2804    g_free(n->aer_reqs);
2805
2806    if (n->params.cmb_size_mb) {
2807        g_free(n->cmbuf);
2808    }
2809
2810    if (n->pmrdev) {
2811        host_memory_backend_set_mapped(n->pmrdev, false);
2812    }
2813    msix_uninit_exclusive_bar(pci_dev);
2814}
2815
2816static Property nvme_props[] = {
2817    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
2818    DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
2819                     HostMemoryBackend *),
2820    DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
2821    DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
2822    DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
2823    DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
2824    DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
2825    DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
2826    DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
2827    DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
2828    DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
2829    DEFINE_PROP_END_OF_LIST(),
2830};
2831
2832static const VMStateDescription nvme_vmstate = {
2833    .name = "nvme",
2834    .unmigratable = 1,
2835};
2836
2837static void nvme_class_init(ObjectClass *oc, void *data)
2838{
2839    DeviceClass *dc = DEVICE_CLASS(oc);
2840    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
2841
2842    pc->realize = nvme_realize;
2843    pc->exit = nvme_exit;
2844    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
2845    pc->revision = 2;
2846
2847    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2848    dc->desc = "Non-Volatile Memory Express";
2849    device_class_set_props(dc, nvme_props);
2850    dc->vmsd = &nvme_vmstate;
2851}
2852
2853static void nvme_instance_init(Object *obj)
2854{
2855    NvmeCtrl *s = NVME(obj);
2856
2857    if (s->namespace.blkconf.blk) {
2858        device_add_bootindex_property(obj, &s->namespace.blkconf.bootindex,
2859                                      "bootindex", "/namespace@1,0",
2860                                      DEVICE(obj));
2861    }
2862}
2863
2864static const TypeInfo nvme_info = {
2865    .name          = TYPE_NVME,
2866    .parent        = TYPE_PCI_DEVICE,
2867    .instance_size = sizeof(NvmeCtrl),
2868    .instance_init = nvme_instance_init,
2869    .class_init    = nvme_class_init,
2870    .interfaces = (InterfaceInfo[]) {
2871        { INTERFACE_PCIE_DEVICE },
2872        { }
2873    },
2874};
2875
2876static const TypeInfo nvme_bus_info = {
2877    .name = TYPE_NVME_BUS,
2878    .parent = TYPE_BUS,
2879    .instance_size = sizeof(NvmeBus),
2880};
2881
2882static void nvme_register_types(void)
2883{
2884    type_register_static(&nvme_info);
2885    type_register_static(&nvme_bus_info);
2886}
2887
2888type_init(nvme_register_types)
2889