qemu/hw/i386/kvmvapic.c
<<
>>
Prefs
   1/*
   2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
   3 *
   4 * Copyright (C) 2007-2008 Qumranet Technologies
   5 * Copyright (C) 2012      Jan Kiszka, Siemens AG
   6 *
   7 * This work is licensed under the terms of the GNU GPL version 2, or
   8 * (at your option) any later version. See the COPYING file in the
   9 * top-level directory.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/module.h"
  14#include "cpu.h"
  15#include "sysemu/sysemu.h"
  16#include "sysemu/cpus.h"
  17#include "sysemu/hw_accel.h"
  18#include "sysemu/kvm.h"
  19#include "sysemu/runstate.h"
  20#include "hw/i386/apic_internal.h"
  21#include "hw/sysbus.h"
  22#include "hw/boards.h"
  23#include "migration/vmstate.h"
  24#include "tcg/tcg.h"
  25#include "qom/object.h"
  26
  27#define VAPIC_IO_PORT           0x7e
  28
  29#define VAPIC_CPU_SHIFT         7
  30
  31#define ROM_BLOCK_SIZE          512
  32#define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
  33
  34typedef enum VAPICMode {
  35    VAPIC_INACTIVE = 0,
  36    VAPIC_ACTIVE   = 1,
  37    VAPIC_STANDBY  = 2,
  38} VAPICMode;
  39
  40typedef struct VAPICHandlers {
  41    uint32_t set_tpr;
  42    uint32_t set_tpr_eax;
  43    uint32_t get_tpr[8];
  44    uint32_t get_tpr_stack;
  45} QEMU_PACKED VAPICHandlers;
  46
  47typedef struct GuestROMState {
  48    char signature[8];
  49    uint32_t vaddr;
  50    uint32_t fixup_start;
  51    uint32_t fixup_end;
  52    uint32_t vapic_vaddr;
  53    uint32_t vapic_size;
  54    uint32_t vcpu_shift;
  55    uint32_t real_tpr_addr;
  56    VAPICHandlers up;
  57    VAPICHandlers mp;
  58} QEMU_PACKED GuestROMState;
  59
  60struct VAPICROMState {
  61    SysBusDevice busdev;
  62    MemoryRegion io;
  63    MemoryRegion rom;
  64    uint32_t state;
  65    uint32_t rom_state_paddr;
  66    uint32_t rom_state_vaddr;
  67    uint32_t vapic_paddr;
  68    uint32_t real_tpr_addr;
  69    GuestROMState rom_state;
  70    size_t rom_size;
  71    bool rom_mapped_writable;
  72    VMChangeStateEntry *vmsentry;
  73};
  74
  75#define TYPE_VAPIC "kvmvapic"
  76OBJECT_DECLARE_SIMPLE_TYPE(VAPICROMState, VAPIC)
  77
  78#define TPR_INSTR_ABS_MODRM             0x1
  79#define TPR_INSTR_MATCH_MODRM_REG       0x2
  80
  81typedef struct TPRInstruction {
  82    uint8_t opcode;
  83    uint8_t modrm_reg;
  84    unsigned int flags;
  85    TPRAccess access;
  86    size_t length;
  87    off_t addr_offset;
  88} TPRInstruction;
  89
  90/* must be sorted by length, shortest first */
  91static const TPRInstruction tpr_instr[] = {
  92    { /* mov abs to eax */
  93        .opcode = 0xa1,
  94        .access = TPR_ACCESS_READ,
  95        .length = 5,
  96        .addr_offset = 1,
  97    },
  98    { /* mov eax to abs */
  99        .opcode = 0xa3,
 100        .access = TPR_ACCESS_WRITE,
 101        .length = 5,
 102        .addr_offset = 1,
 103    },
 104    { /* mov r32 to r/m32 */
 105        .opcode = 0x89,
 106        .flags = TPR_INSTR_ABS_MODRM,
 107        .access = TPR_ACCESS_WRITE,
 108        .length = 6,
 109        .addr_offset = 2,
 110    },
 111    { /* mov r/m32 to r32 */
 112        .opcode = 0x8b,
 113        .flags = TPR_INSTR_ABS_MODRM,
 114        .access = TPR_ACCESS_READ,
 115        .length = 6,
 116        .addr_offset = 2,
 117    },
 118    { /* push r/m32 */
 119        .opcode = 0xff,
 120        .modrm_reg = 6,
 121        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
 122        .access = TPR_ACCESS_READ,
 123        .length = 6,
 124        .addr_offset = 2,
 125    },
 126    { /* mov imm32, r/m32 (c7/0) */
 127        .opcode = 0xc7,
 128        .modrm_reg = 0,
 129        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
 130        .access = TPR_ACCESS_WRITE,
 131        .length = 10,
 132        .addr_offset = 2,
 133    },
 134};
 135
 136static void read_guest_rom_state(VAPICROMState *s)
 137{
 138    cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
 139                             sizeof(GuestROMState));
 140}
 141
 142static void write_guest_rom_state(VAPICROMState *s)
 143{
 144    cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
 145                              sizeof(GuestROMState));
 146}
 147
 148static void update_guest_rom_state(VAPICROMState *s)
 149{
 150    read_guest_rom_state(s);
 151
 152    s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
 153    s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
 154
 155    write_guest_rom_state(s);
 156}
 157
 158static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
 159{
 160    CPUState *cs = env_cpu(env);
 161    hwaddr paddr;
 162    target_ulong addr;
 163
 164    if (s->state == VAPIC_ACTIVE) {
 165        return 0;
 166    }
 167    /*
 168     * If there is no prior TPR access instruction we could analyze (which is
 169     * the case after resume from hibernation), we need to scan the possible
 170     * virtual address space for the APIC mapping.
 171     */
 172    for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
 173        paddr = cpu_get_phys_page_debug(cs, addr);
 174        if (paddr != APIC_DEFAULT_ADDRESS) {
 175            continue;
 176        }
 177        s->real_tpr_addr = addr + 0x80;
 178        update_guest_rom_state(s);
 179        return 0;
 180    }
 181    return -1;
 182}
 183
 184static uint8_t modrm_reg(uint8_t modrm)
 185{
 186    return (modrm >> 3) & 7;
 187}
 188
 189static bool is_abs_modrm(uint8_t modrm)
 190{
 191    return (modrm & 0xc7) == 0x05;
 192}
 193
 194static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
 195{
 196    return opcode[0] == instr->opcode &&
 197        (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
 198        (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
 199         modrm_reg(opcode[1]) == instr->modrm_reg);
 200}
 201
 202static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
 203                                    target_ulong *pip, TPRAccess access)
 204{
 205    CPUState *cs = CPU(cpu);
 206    const TPRInstruction *instr;
 207    target_ulong ip = *pip;
 208    uint8_t opcode[2];
 209    uint32_t real_tpr_addr;
 210    int i;
 211
 212    if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
 213        (ip & 0xf0000000ULL) != 0xe0000000ULL) {
 214        return -1;
 215    }
 216
 217    /*
 218     * Early Windows 2003 SMP initialization contains a
 219     *
 220     *   mov imm32, r/m32
 221     *
 222     * instruction that is patched by TPR optimization. The problem is that
 223     * RSP, used by the patched instruction, is zero, so the guest gets a
 224     * double fault and dies.
 225     */
 226    if (cpu->env.regs[R_ESP] == 0) {
 227        return -1;
 228    }
 229
 230    if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
 231        /*
 232         * KVM without kernel-based TPR access reporting will pass an IP that
 233         * points after the accessing instruction. So we need to look backward
 234         * to find the reason.
 235         */
 236        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
 237            instr = &tpr_instr[i];
 238            if (instr->access != access) {
 239                continue;
 240            }
 241            if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
 242                                    sizeof(opcode), 0) < 0) {
 243                return -1;
 244            }
 245            if (opcode_matches(opcode, instr)) {
 246                ip -= instr->length;
 247                goto instruction_ok;
 248            }
 249        }
 250        return -1;
 251    } else {
 252        if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
 253            return -1;
 254        }
 255        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
 256            instr = &tpr_instr[i];
 257            if (opcode_matches(opcode, instr)) {
 258                goto instruction_ok;
 259            }
 260        }
 261        return -1;
 262    }
 263
 264instruction_ok:
 265    /*
 266     * Grab the virtual TPR address from the instruction
 267     * and update the cached values.
 268     */
 269    if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
 270                            (void *)&real_tpr_addr,
 271                            sizeof(real_tpr_addr), 0) < 0) {
 272        return -1;
 273    }
 274    real_tpr_addr = le32_to_cpu(real_tpr_addr);
 275    if ((real_tpr_addr & 0xfff) != 0x80) {
 276        return -1;
 277    }
 278    s->real_tpr_addr = real_tpr_addr;
 279    update_guest_rom_state(s);
 280
 281    *pip = ip;
 282    return 0;
 283}
 284
 285static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
 286{
 287    CPUState *cs = env_cpu(env);
 288    hwaddr paddr;
 289    uint32_t rom_state_vaddr;
 290    uint32_t pos, patch, offset;
 291
 292    /* nothing to do if already activated */
 293    if (s->state == VAPIC_ACTIVE) {
 294        return 0;
 295    }
 296
 297    /* bail out if ROM init code was not executed (missing ROM?) */
 298    if (s->state == VAPIC_INACTIVE) {
 299        return -1;
 300    }
 301
 302    /* find out virtual address of the ROM */
 303    rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
 304    paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
 305    if (paddr == -1) {
 306        return -1;
 307    }
 308    paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
 309    if (paddr != s->rom_state_paddr) {
 310        return -1;
 311    }
 312    read_guest_rom_state(s);
 313    if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
 314        return -1;
 315    }
 316    s->rom_state_vaddr = rom_state_vaddr;
 317
 318    /* fixup addresses in ROM if needed */
 319    if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
 320        return 0;
 321    }
 322    for (pos = le32_to_cpu(s->rom_state.fixup_start);
 323         pos < le32_to_cpu(s->rom_state.fixup_end);
 324         pos += 4) {
 325        cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
 326                                 &offset, sizeof(offset));
 327        offset = le32_to_cpu(offset);
 328        cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
 329        patch = le32_to_cpu(patch);
 330        patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
 331        patch = cpu_to_le32(patch);
 332        cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
 333    }
 334    read_guest_rom_state(s);
 335    s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
 336        le32_to_cpu(s->rom_state.vaddr);
 337
 338    return 0;
 339}
 340
 341/*
 342 * Tries to read the unique processor number from the Kernel Processor Control
 343 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
 344 * cannot be accessed or is considered invalid. This also ensures that we are
 345 * not patching the wrong guest.
 346 */
 347static int get_kpcr_number(X86CPU *cpu)
 348{
 349    CPUX86State *env = &cpu->env;
 350    struct kpcr {
 351        uint8_t  fill1[0x1c];
 352        uint32_t self;
 353        uint8_t  fill2[0x31];
 354        uint8_t  number;
 355    } QEMU_PACKED kpcr;
 356
 357    if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
 358                            (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
 359        kpcr.self != env->segs[R_FS].base) {
 360        return -1;
 361    }
 362    return kpcr.number;
 363}
 364
 365static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
 366{
 367    int cpu_number = get_kpcr_number(cpu);
 368    hwaddr vapic_paddr;
 369    static const uint8_t enabled = 1;
 370
 371    if (cpu_number < 0) {
 372        return -1;
 373    }
 374    vapic_paddr = s->vapic_paddr +
 375        (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
 376    cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
 377                              &enabled, sizeof(enabled));
 378    apic_enable_vapic(cpu->apic_state, vapic_paddr);
 379
 380    s->state = VAPIC_ACTIVE;
 381
 382    return 0;
 383}
 384
 385static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
 386{
 387    cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
 388}
 389
 390static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target)
 391{
 392    uint32_t offset;
 393
 394    offset = cpu_to_le32(target - ip - 5);
 395    patch_byte(cpu, ip, 0xe8); /* call near */
 396    cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
 397}
 398
 399typedef struct PatchInfo {
 400    VAPICHandlers *handler;
 401    target_ulong ip;
 402} PatchInfo;
 403
 404static void do_patch_instruction(CPUState *cs, run_on_cpu_data data)
 405{
 406    X86CPU *x86_cpu = X86_CPU(cs);
 407    PatchInfo *info = (PatchInfo *) data.host_ptr;
 408    VAPICHandlers *handlers = info->handler;
 409    target_ulong ip = info->ip;
 410    uint8_t opcode[2];
 411    uint32_t imm32 = 0;
 412
 413    cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
 414
 415    switch (opcode[0]) {
 416    case 0x89: /* mov r32 to r/m32 */
 417        patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
 418        patch_call(x86_cpu, ip + 1, handlers->set_tpr);
 419        break;
 420    case 0x8b: /* mov r/m32 to r32 */
 421        patch_byte(x86_cpu, ip, 0x90);
 422        patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
 423        break;
 424    case 0xa1: /* mov abs to eax */
 425        patch_call(x86_cpu, ip, handlers->get_tpr[0]);
 426        break;
 427    case 0xa3: /* mov eax to abs */
 428        patch_call(x86_cpu, ip, handlers->set_tpr_eax);
 429        break;
 430    case 0xc7: /* mov imm32, r/m32 (c7/0) */
 431        patch_byte(x86_cpu, ip, 0x68);  /* push imm32 */
 432        cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
 433        cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
 434        patch_call(x86_cpu, ip + 5, handlers->set_tpr);
 435        break;
 436    case 0xff: /* push r/m32 */
 437        patch_byte(x86_cpu, ip, 0x50); /* push eax */
 438        patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack);
 439        break;
 440    default:
 441        abort();
 442    }
 443
 444    g_free(info);
 445}
 446
 447static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
 448{
 449    MachineState *ms = MACHINE(qdev_get_machine());
 450    CPUState *cs = CPU(cpu);
 451    VAPICHandlers *handlers;
 452    PatchInfo *info;
 453
 454    if (ms->smp.cpus == 1) {
 455        handlers = &s->rom_state.up;
 456    } else {
 457        handlers = &s->rom_state.mp;
 458    }
 459
 460    info  = g_new(PatchInfo, 1);
 461    info->handler = handlers;
 462    info->ip = ip;
 463
 464    async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info));
 465}
 466
 467void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
 468                             TPRAccess access)
 469{
 470    VAPICROMState *s = VAPIC(dev);
 471    X86CPU *cpu = X86_CPU(cs);
 472    CPUX86State *env = &cpu->env;
 473
 474    cpu_synchronize_state(cs);
 475
 476    if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
 477        if (s->state == VAPIC_ACTIVE) {
 478            vapic_enable(s, cpu);
 479        }
 480        return;
 481    }
 482    if (update_rom_mapping(s, env, ip) < 0) {
 483        return;
 484    }
 485    if (vapic_enable(s, cpu) < 0) {
 486        return;
 487    }
 488    patch_instruction(s, cpu, ip);
 489}
 490
 491typedef struct VAPICEnableTPRReporting {
 492    DeviceState *apic;
 493    bool enable;
 494} VAPICEnableTPRReporting;
 495
 496static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
 497{
 498    VAPICEnableTPRReporting *info = data.host_ptr;
 499    apic_enable_tpr_access_reporting(info->apic, info->enable);
 500}
 501
 502static void vapic_enable_tpr_reporting(bool enable)
 503{
 504    VAPICEnableTPRReporting info = {
 505        .enable = enable,
 506    };
 507    CPUState *cs;
 508    X86CPU *cpu;
 509
 510    CPU_FOREACH(cs) {
 511        cpu = X86_CPU(cs);
 512        info.apic = cpu->apic_state;
 513        run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
 514    }
 515}
 516
 517static void vapic_reset(DeviceState *dev)
 518{
 519    VAPICROMState *s = VAPIC(dev);
 520
 521    s->state = VAPIC_INACTIVE;
 522    s->rom_state_paddr = 0;
 523    vapic_enable_tpr_reporting(false);
 524}
 525
 526/*
 527 * Set the IRQ polling hypercalls to the supported variant:
 528 *  - vmcall if using KVM in-kernel irqchip
 529 *  - 32-bit VAPIC port write otherwise
 530 */
 531static int patch_hypercalls(VAPICROMState *s)
 532{
 533    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
 534    static const uint8_t vmcall_pattern[] = { /* vmcall */
 535        0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
 536    };
 537    static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
 538        0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
 539    };
 540    uint8_t alternates[2];
 541    const uint8_t *pattern;
 542    const uint8_t *patch;
 543    off_t pos;
 544    uint8_t *rom;
 545
 546    rom = g_malloc(s->rom_size);
 547    cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
 548
 549    for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
 550        if (kvm_irqchip_in_kernel()) {
 551            pattern = outl_pattern;
 552            alternates[0] = outl_pattern[7];
 553            alternates[1] = outl_pattern[7];
 554            patch = &vmcall_pattern[5];
 555        } else {
 556            pattern = vmcall_pattern;
 557            alternates[0] = vmcall_pattern[7];
 558            alternates[1] = 0xd9; /* AMD's VMMCALL */
 559            patch = &outl_pattern[5];
 560        }
 561        if (memcmp(rom + pos, pattern, 7) == 0 &&
 562            (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
 563            cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
 564            /*
 565             * Don't flush the tb here. Under ordinary conditions, the patched
 566             * calls are miles away from the current IP. Under malicious
 567             * conditions, the guest could trick us to crash.
 568             */
 569        }
 570    }
 571
 572    g_free(rom);
 573    return 0;
 574}
 575
 576/*
 577 * For TCG mode or the time KVM honors read-only memory regions, we need to
 578 * enable write access to the option ROM so that variables can be updated by
 579 * the guest.
 580 */
 581static int vapic_map_rom_writable(VAPICROMState *s)
 582{
 583    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
 584    MemoryRegionSection section;
 585    MemoryRegion *as;
 586    size_t rom_size;
 587    uint8_t *ram;
 588
 589    as = sysbus_address_space(&s->busdev);
 590
 591    if (s->rom_mapped_writable) {
 592        memory_region_del_subregion(as, &s->rom);
 593        object_unparent(OBJECT(&s->rom));
 594    }
 595
 596    /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
 597    section = memory_region_find(as, 0, 1);
 598
 599    /* read ROM size from RAM region */
 600    if (rom_paddr + 2 >= memory_region_size(section.mr)) {
 601        return -1;
 602    }
 603    ram = memory_region_get_ram_ptr(section.mr);
 604    rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
 605    if (rom_size == 0) {
 606        return -1;
 607    }
 608    s->rom_size = rom_size;
 609
 610    /* We need to round to avoid creating subpages
 611     * from which we cannot run code. */
 612    rom_size += rom_paddr & ~TARGET_PAGE_MASK;
 613    rom_paddr &= TARGET_PAGE_MASK;
 614    rom_size = TARGET_PAGE_ALIGN(rom_size);
 615
 616    memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
 617                             rom_paddr, rom_size);
 618    memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
 619    s->rom_mapped_writable = true;
 620    memory_region_unref(section.mr);
 621
 622    return 0;
 623}
 624
 625static int vapic_prepare(VAPICROMState *s)
 626{
 627    if (vapic_map_rom_writable(s) < 0) {
 628        return -1;
 629    }
 630
 631    if (patch_hypercalls(s) < 0) {
 632        return -1;
 633    }
 634
 635    vapic_enable_tpr_reporting(true);
 636
 637    return 0;
 638}
 639
 640static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
 641                        unsigned int size)
 642{
 643    VAPICROMState *s = opaque;
 644    X86CPU *cpu;
 645    CPUX86State *env;
 646    hwaddr rom_paddr;
 647
 648    if (!current_cpu) {
 649        return;
 650    }
 651
 652    cpu_synchronize_state(current_cpu);
 653    cpu = X86_CPU(current_cpu);
 654    env = &cpu->env;
 655
 656    /*
 657     * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
 658     *  o 16-bit write access:
 659     *    Reports the option ROM initialization to the hypervisor. Written
 660     *    value is the offset of the state structure in the ROM.
 661     *  o 8-bit write access:
 662     *    Reactivates the VAPIC after a guest hibernation, i.e. after the
 663     *    option ROM content has been re-initialized by a guest power cycle.
 664     *  o 32-bit write access:
 665     *    Poll for pending IRQs, considering the current VAPIC state.
 666     */
 667    switch (size) {
 668    case 2:
 669        if (s->state == VAPIC_INACTIVE) {
 670            rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
 671            s->rom_state_paddr = rom_paddr + data;
 672
 673            s->state = VAPIC_STANDBY;
 674        }
 675        if (vapic_prepare(s) < 0) {
 676            s->state = VAPIC_INACTIVE;
 677            s->rom_state_paddr = 0;
 678            break;
 679        }
 680        break;
 681    case 1:
 682        if (kvm_enabled()) {
 683            /*
 684             * Disable triggering instruction in ROM by writing a NOP.
 685             *
 686             * We cannot do this in TCG mode as the reported IP is not
 687             * accurate.
 688             */
 689            pause_all_vcpus();
 690            patch_byte(cpu, env->eip - 2, 0x66);
 691            patch_byte(cpu, env->eip - 1, 0x90);
 692            resume_all_vcpus();
 693        }
 694
 695        if (s->state == VAPIC_ACTIVE) {
 696            break;
 697        }
 698        if (update_rom_mapping(s, env, env->eip) < 0) {
 699            break;
 700        }
 701        if (find_real_tpr_addr(s, env) < 0) {
 702            break;
 703        }
 704        vapic_enable(s, cpu);
 705        break;
 706    default:
 707    case 4:
 708        if (!kvm_irqchip_in_kernel()) {
 709            apic_poll_irq(cpu->apic_state);
 710        }
 711        break;
 712    }
 713}
 714
 715static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
 716{
 717    return 0xffffffff;
 718}
 719
 720static const MemoryRegionOps vapic_ops = {
 721    .write = vapic_write,
 722    .read = vapic_read,
 723    .endianness = DEVICE_NATIVE_ENDIAN,
 724};
 725
 726static void vapic_realize(DeviceState *dev, Error **errp)
 727{
 728    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 729    VAPICROMState *s = VAPIC(dev);
 730
 731    memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
 732    sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
 733    sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
 734
 735    option_rom[nb_option_roms].name = "kvmvapic.bin";
 736    option_rom[nb_option_roms].bootindex = -1;
 737    nb_option_roms++;
 738}
 739
 740static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
 741{
 742    VAPICROMState *s = data.host_ptr;
 743    X86CPU *cpu = X86_CPU(cs);
 744
 745    static const uint8_t enabled = 1;
 746    cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
 747                              &enabled, sizeof(enabled));
 748    apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
 749    s->state = VAPIC_ACTIVE;
 750}
 751
 752static void kvmvapic_vm_state_change(void *opaque, int running,
 753                                     RunState state)
 754{
 755    MachineState *ms = MACHINE(qdev_get_machine());
 756    VAPICROMState *s = opaque;
 757    uint8_t *zero;
 758
 759    if (!running) {
 760        return;
 761    }
 762
 763    if (s->state == VAPIC_ACTIVE) {
 764        if (ms->smp.cpus == 1) {
 765            run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
 766        } else {
 767            zero = g_malloc0(s->rom_state.vapic_size);
 768            cpu_physical_memory_write(s->vapic_paddr, zero,
 769                                      s->rom_state.vapic_size);
 770            g_free(zero);
 771        }
 772    }
 773
 774    qemu_del_vm_change_state_handler(s->vmsentry);
 775    s->vmsentry = NULL;
 776}
 777
 778static int vapic_post_load(void *opaque, int version_id)
 779{
 780    VAPICROMState *s = opaque;
 781
 782    /*
 783     * The old implementation of qemu-kvm did not provide the state
 784     * VAPIC_STANDBY. Reconstruct it.
 785     */
 786    if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
 787        s->state = VAPIC_STANDBY;
 788    }
 789
 790    if (s->state != VAPIC_INACTIVE) {
 791        if (vapic_prepare(s) < 0) {
 792            return -1;
 793        }
 794    }
 795
 796    if (!s->vmsentry) {
 797        s->vmsentry =
 798            qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
 799    }
 800    return 0;
 801}
 802
 803static const VMStateDescription vmstate_handlers = {
 804    .name = "kvmvapic-handlers",
 805    .version_id = 1,
 806    .minimum_version_id = 1,
 807    .fields = (VMStateField[]) {
 808        VMSTATE_UINT32(set_tpr, VAPICHandlers),
 809        VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
 810        VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
 811        VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
 812        VMSTATE_END_OF_LIST()
 813    }
 814};
 815
 816static const VMStateDescription vmstate_guest_rom = {
 817    .name = "kvmvapic-guest-rom",
 818    .version_id = 1,
 819    .minimum_version_id = 1,
 820    .fields = (VMStateField[]) {
 821        VMSTATE_UNUSED(8),     /* signature */
 822        VMSTATE_UINT32(vaddr, GuestROMState),
 823        VMSTATE_UINT32(fixup_start, GuestROMState),
 824        VMSTATE_UINT32(fixup_end, GuestROMState),
 825        VMSTATE_UINT32(vapic_vaddr, GuestROMState),
 826        VMSTATE_UINT32(vapic_size, GuestROMState),
 827        VMSTATE_UINT32(vcpu_shift, GuestROMState),
 828        VMSTATE_UINT32(real_tpr_addr, GuestROMState),
 829        VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
 830        VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
 831        VMSTATE_END_OF_LIST()
 832    }
 833};
 834
 835static const VMStateDescription vmstate_vapic = {
 836    .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
 837    .version_id = 1,
 838    .minimum_version_id = 1,
 839    .post_load = vapic_post_load,
 840    .fields = (VMStateField[]) {
 841        VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
 842                       GuestROMState),
 843        VMSTATE_UINT32(state, VAPICROMState),
 844        VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
 845        VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
 846        VMSTATE_UINT32(vapic_paddr, VAPICROMState),
 847        VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
 848        VMSTATE_END_OF_LIST()
 849    }
 850};
 851
 852static void vapic_class_init(ObjectClass *klass, void *data)
 853{
 854    DeviceClass *dc = DEVICE_CLASS(klass);
 855
 856    dc->reset   = vapic_reset;
 857    dc->vmsd    = &vmstate_vapic;
 858    dc->realize = vapic_realize;
 859}
 860
 861static const TypeInfo vapic_type = {
 862    .name          = TYPE_VAPIC,
 863    .parent        = TYPE_SYS_BUS_DEVICE,
 864    .instance_size = sizeof(VAPICROMState),
 865    .class_init    = vapic_class_init,
 866};
 867
 868static void vapic_register(void)
 869{
 870    type_register_static(&vapic_type);
 871}
 872
 873type_init(vapic_register);
 874