qemu/hw/nvram/fw_cfg.c
<<
>>
Prefs
   1/*
   2 * QEMU Firmware configuration device emulation
   3 *
   4 * Copyright (c) 2008 Gleb Natapov
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu-common.h"
  27#include "sysemu/sysemu.h"
  28#include "sysemu/dma.h"
  29#include "sysemu/reset.h"
  30#include "hw/boards.h"
  31#include "hw/nvram/fw_cfg.h"
  32#include "hw/qdev-properties.h"
  33#include "hw/sysbus.h"
  34#include "migration/qemu-file-types.h"
  35#include "migration/vmstate.h"
  36#include "trace.h"
  37#include "qemu/error-report.h"
  38#include "qemu/option.h"
  39#include "qemu/config-file.h"
  40#include "qemu/cutils.h"
  41#include "qapi/error.h"
  42#include "hw/acpi/aml-build.h"
  43
  44#define FW_CFG_FILE_SLOTS_DFLT 0x20
  45
  46/* FW_CFG_VERSION bits */
  47#define FW_CFG_VERSION      0x01
  48#define FW_CFG_VERSION_DMA  0x02
  49
  50/* FW_CFG_DMA_CONTROL bits */
  51#define FW_CFG_DMA_CTL_ERROR   0x01
  52#define FW_CFG_DMA_CTL_READ    0x02
  53#define FW_CFG_DMA_CTL_SKIP    0x04
  54#define FW_CFG_DMA_CTL_SELECT  0x08
  55#define FW_CFG_DMA_CTL_WRITE   0x10
  56
  57#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
  58
  59struct FWCfgEntry {
  60    uint32_t len;
  61    bool allow_write;
  62    uint8_t *data;
  63    void *callback_opaque;
  64    FWCfgCallback select_cb;
  65    FWCfgWriteCallback write_cb;
  66};
  67
  68/**
  69 * key_name:
  70 *
  71 * @key: The uint16 selector key.
  72 *
  73 * Returns: The stringified name if the selector refers to a well-known
  74 *          numerically defined item, or NULL on key lookup failure.
  75 */
  76static const char *key_name(uint16_t key)
  77{
  78    static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
  79        [FW_CFG_SIGNATURE] = "signature",
  80        [FW_CFG_ID] = "id",
  81        [FW_CFG_UUID] = "uuid",
  82        [FW_CFG_RAM_SIZE] = "ram_size",
  83        [FW_CFG_NOGRAPHIC] = "nographic",
  84        [FW_CFG_NB_CPUS] = "nb_cpus",
  85        [FW_CFG_MACHINE_ID] = "machine_id",
  86        [FW_CFG_KERNEL_ADDR] = "kernel_addr",
  87        [FW_CFG_KERNEL_SIZE] = "kernel_size",
  88        [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
  89        [FW_CFG_INITRD_ADDR] = "initrd_addr",
  90        [FW_CFG_INITRD_SIZE] = "initdr_size",
  91        [FW_CFG_BOOT_DEVICE] = "boot_device",
  92        [FW_CFG_NUMA] = "numa",
  93        [FW_CFG_BOOT_MENU] = "boot_menu",
  94        [FW_CFG_MAX_CPUS] = "max_cpus",
  95        [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
  96        [FW_CFG_KERNEL_DATA] = "kernel_data",
  97        [FW_CFG_INITRD_DATA] = "initrd_data",
  98        [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
  99        [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
 100        [FW_CFG_CMDLINE_DATA] = "cmdline_data",
 101        [FW_CFG_SETUP_ADDR] = "setup_addr",
 102        [FW_CFG_SETUP_SIZE] = "setup_size",
 103        [FW_CFG_SETUP_DATA] = "setup_data",
 104        [FW_CFG_FILE_DIR] = "file_dir",
 105    };
 106
 107    if (key & FW_CFG_ARCH_LOCAL) {
 108        return fw_cfg_arch_key_name(key);
 109    }
 110    if (key < FW_CFG_FILE_FIRST) {
 111        return fw_cfg_wellknown_keys[key];
 112    }
 113
 114    return NULL;
 115}
 116
 117static inline const char *trace_key_name(uint16_t key)
 118{
 119    const char *name = key_name(key);
 120
 121    return name ? name : "unknown";
 122}
 123
 124#define JPG_FILE 0
 125#define BMP_FILE 1
 126
 127static char *read_splashfile(char *filename, gsize *file_sizep,
 128                             int *file_typep)
 129{
 130    GError *err = NULL;
 131    gchar *content;
 132    int file_type;
 133    unsigned int filehead;
 134    int bmp_bpp;
 135
 136    if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
 137        error_report("failed to read splash file '%s': %s",
 138                     filename, err->message);
 139        g_error_free(err);
 140        return NULL;
 141    }
 142
 143    /* check file size */
 144    if (*file_sizep < 30) {
 145        goto error;
 146    }
 147
 148    /* check magic ID */
 149    filehead = lduw_le_p(content);
 150    if (filehead == 0xd8ff) {
 151        file_type = JPG_FILE;
 152    } else if (filehead == 0x4d42) {
 153        file_type = BMP_FILE;
 154    } else {
 155        goto error;
 156    }
 157
 158    /* check BMP bpp */
 159    if (file_type == BMP_FILE) {
 160        bmp_bpp = lduw_le_p(&content[28]);
 161        if (bmp_bpp != 24) {
 162            goto error;
 163        }
 164    }
 165
 166    /* return values */
 167    *file_typep = file_type;
 168
 169    return content;
 170
 171error:
 172    error_report("splash file '%s' format not recognized; must be JPEG "
 173                 "or 24 bit BMP", filename);
 174    g_free(content);
 175    return NULL;
 176}
 177
 178static void fw_cfg_bootsplash(FWCfgState *s)
 179{
 180    const char *boot_splash_filename = NULL;
 181    const char *boot_splash_time = NULL;
 182    char *filename, *file_data;
 183    gsize file_size;
 184    int file_type;
 185
 186    /* get user configuration */
 187    QemuOptsList *plist = qemu_find_opts("boot-opts");
 188    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 189    boot_splash_filename = qemu_opt_get(opts, "splash");
 190    boot_splash_time = qemu_opt_get(opts, "splash-time");
 191
 192    /* insert splash time if user configurated */
 193    if (boot_splash_time) {
 194        int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
 195        uint16_t bst_le16;
 196
 197        /* validate the input */
 198        if (bst_val < 0 || bst_val > 0xffff) {
 199            error_report("splash-time is invalid,"
 200                         "it should be a value between 0 and 65535");
 201            exit(1);
 202        }
 203        /* use little endian format */
 204        bst_le16 = cpu_to_le16(bst_val);
 205        fw_cfg_add_file(s, "etc/boot-menu-wait",
 206                        g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
 207    }
 208
 209    /* insert splash file if user configurated */
 210    if (boot_splash_filename) {
 211        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
 212        if (filename == NULL) {
 213            error_report("failed to find file '%s'", boot_splash_filename);
 214            return;
 215        }
 216
 217        /* loading file data */
 218        file_data = read_splashfile(filename, &file_size, &file_type);
 219        if (file_data == NULL) {
 220            g_free(filename);
 221            return;
 222        }
 223        g_free(boot_splash_filedata);
 224        boot_splash_filedata = (uint8_t *)file_data;
 225
 226        /* insert data */
 227        if (file_type == JPG_FILE) {
 228            fw_cfg_add_file(s, "bootsplash.jpg",
 229                            boot_splash_filedata, file_size);
 230        } else {
 231            fw_cfg_add_file(s, "bootsplash.bmp",
 232                            boot_splash_filedata, file_size);
 233        }
 234        g_free(filename);
 235    }
 236}
 237
 238static void fw_cfg_reboot(FWCfgState *s)
 239{
 240    const char *reboot_timeout = NULL;
 241    uint64_t rt_val = -1;
 242    uint32_t rt_le32;
 243
 244    /* get user configuration */
 245    QemuOptsList *plist = qemu_find_opts("boot-opts");
 246    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 247    reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
 248
 249    if (reboot_timeout) {
 250        rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
 251
 252        /* validate the input */
 253        if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
 254            error_report("reboot timeout is invalid,"
 255                         "it should be a value between -1 and 65535");
 256            exit(1);
 257        }
 258    }
 259
 260    rt_le32 = cpu_to_le32(rt_val);
 261    fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
 262}
 263
 264static void fw_cfg_write(FWCfgState *s, uint8_t value)
 265{
 266    /* nothing, write support removed in QEMU v2.4+ */
 267}
 268
 269static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
 270{
 271    return s->file_slots;
 272}
 273
 274/* Note: this function returns an exclusive limit. */
 275static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
 276{
 277    return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
 278}
 279
 280static int fw_cfg_select(FWCfgState *s, uint16_t key)
 281{
 282    int arch, ret;
 283    FWCfgEntry *e;
 284
 285    s->cur_offset = 0;
 286    if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
 287        s->cur_entry = FW_CFG_INVALID;
 288        ret = 0;
 289    } else {
 290        s->cur_entry = key;
 291        ret = 1;
 292        /* entry successfully selected, now run callback if present */
 293        arch = !!(key & FW_CFG_ARCH_LOCAL);
 294        e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
 295        if (e->select_cb) {
 296            e->select_cb(e->callback_opaque);
 297        }
 298    }
 299
 300    trace_fw_cfg_select(s, key, trace_key_name(key), ret);
 301    return ret;
 302}
 303
 304static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
 305{
 306    FWCfgState *s = opaque;
 307    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 308    FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 309                    &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 310    uint64_t value = 0;
 311
 312    assert(size > 0 && size <= sizeof(value));
 313    if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
 314        /* The least significant 'size' bytes of the return value are
 315         * expected to contain a string preserving portion of the item
 316         * data, padded with zeros on the right in case we run out early.
 317         * In technical terms, we're composing the host-endian representation
 318         * of the big endian interpretation of the fw_cfg string.
 319         */
 320        do {
 321            value = (value << 8) | e->data[s->cur_offset++];
 322        } while (--size && s->cur_offset < e->len);
 323        /* If size is still not zero, we *did* run out early, so continue
 324         * left-shifting, to add the appropriate number of padding zeros
 325         * on the right.
 326         */
 327        value <<= 8 * size;
 328    }
 329
 330    trace_fw_cfg_read(s, value);
 331    return value;
 332}
 333
 334static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
 335                                  uint64_t value, unsigned size)
 336{
 337    FWCfgState *s = opaque;
 338    unsigned i = size;
 339
 340    do {
 341        fw_cfg_write(s, value >> (8 * --i));
 342    } while (i);
 343}
 344
 345static void fw_cfg_dma_transfer(FWCfgState *s)
 346{
 347    dma_addr_t len;
 348    FWCfgDmaAccess dma;
 349    int arch;
 350    FWCfgEntry *e;
 351    int read = 0, write = 0;
 352    dma_addr_t dma_addr;
 353
 354    /* Reset the address before the next access */
 355    dma_addr = s->dma_addr;
 356    s->dma_addr = 0;
 357
 358    if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
 359        stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 360                   FW_CFG_DMA_CTL_ERROR);
 361        return;
 362    }
 363
 364    dma.address = be64_to_cpu(dma.address);
 365    dma.length = be32_to_cpu(dma.length);
 366    dma.control = be32_to_cpu(dma.control);
 367
 368    if (dma.control & FW_CFG_DMA_CTL_SELECT) {
 369        fw_cfg_select(s, dma.control >> 16);
 370    }
 371
 372    arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 373    e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 374        &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 375
 376    if (dma.control & FW_CFG_DMA_CTL_READ) {
 377        read = 1;
 378        write = 0;
 379    } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
 380        read = 0;
 381        write = 1;
 382    } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
 383        read = 0;
 384        write = 0;
 385    } else {
 386        dma.length = 0;
 387    }
 388
 389    dma.control = 0;
 390
 391    while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
 392        if (s->cur_entry == FW_CFG_INVALID || !e->data ||
 393                                s->cur_offset >= e->len) {
 394            len = dma.length;
 395
 396            /* If the access is not a read access, it will be a skip access,
 397             * tested before.
 398             */
 399            if (read) {
 400                if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
 401                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 402                }
 403            }
 404            if (write) {
 405                dma.control |= FW_CFG_DMA_CTL_ERROR;
 406            }
 407        } else {
 408            if (dma.length <= (e->len - s->cur_offset)) {
 409                len = dma.length;
 410            } else {
 411                len = (e->len - s->cur_offset);
 412            }
 413
 414            /* If the access is not a read access, it will be a skip access,
 415             * tested before.
 416             */
 417            if (read) {
 418                if (dma_memory_write(s->dma_as, dma.address,
 419                                    &e->data[s->cur_offset], len)) {
 420                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 421                }
 422            }
 423            if (write) {
 424                if (!e->allow_write ||
 425                    len != dma.length ||
 426                    dma_memory_read(s->dma_as, dma.address,
 427                                    &e->data[s->cur_offset], len)) {
 428                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 429                } else if (e->write_cb) {
 430                    e->write_cb(e->callback_opaque, s->cur_offset, len);
 431                }
 432            }
 433
 434            s->cur_offset += len;
 435        }
 436
 437        dma.address += len;
 438        dma.length  -= len;
 439
 440    }
 441
 442    stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 443                dma.control);
 444
 445    trace_fw_cfg_read(s, 0);
 446}
 447
 448static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
 449                                    unsigned size)
 450{
 451    /* Return a signature value (and handle various read sizes) */
 452    return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
 453}
 454
 455static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
 456                                 uint64_t value, unsigned size)
 457{
 458    FWCfgState *s = opaque;
 459
 460    if (size == 4) {
 461        if (addr == 0) {
 462            /* FWCfgDmaAccess high address */
 463            s->dma_addr = value << 32;
 464        } else if (addr == 4) {
 465            /* FWCfgDmaAccess low address */
 466            s->dma_addr |= value;
 467            fw_cfg_dma_transfer(s);
 468        }
 469    } else if (size == 8 && addr == 0) {
 470        s->dma_addr = value;
 471        fw_cfg_dma_transfer(s);
 472    }
 473}
 474
 475static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
 476                                 unsigned size, bool is_write,
 477                                 MemTxAttrs attrs)
 478{
 479    return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
 480                         (size == 8 && addr == 0));
 481}
 482
 483static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
 484                                  unsigned size, bool is_write,
 485                                  MemTxAttrs attrs)
 486{
 487    return addr == 0;
 488}
 489
 490static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
 491{
 492    return 0;
 493}
 494
 495static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
 496                                 uint64_t value, unsigned size)
 497{
 498    fw_cfg_select(opaque, (uint16_t)value);
 499}
 500
 501static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
 502                                 unsigned size, bool is_write,
 503                                 MemTxAttrs attrs)
 504{
 505    return is_write && size == 2;
 506}
 507
 508static void fw_cfg_comb_write(void *opaque, hwaddr addr,
 509                              uint64_t value, unsigned size)
 510{
 511    switch (size) {
 512    case 1:
 513        fw_cfg_write(opaque, (uint8_t)value);
 514        break;
 515    case 2:
 516        fw_cfg_select(opaque, (uint16_t)value);
 517        break;
 518    }
 519}
 520
 521static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
 522                              unsigned size, bool is_write,
 523                              MemTxAttrs attrs)
 524{
 525    return (size == 1) || (is_write && size == 2);
 526}
 527
 528static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
 529    .read = fw_cfg_ctl_mem_read,
 530    .write = fw_cfg_ctl_mem_write,
 531    .endianness = DEVICE_BIG_ENDIAN,
 532    .valid.accepts = fw_cfg_ctl_mem_valid,
 533};
 534
 535static const MemoryRegionOps fw_cfg_data_mem_ops = {
 536    .read = fw_cfg_data_read,
 537    .write = fw_cfg_data_mem_write,
 538    .endianness = DEVICE_BIG_ENDIAN,
 539    .valid = {
 540        .min_access_size = 1,
 541        .max_access_size = 1,
 542        .accepts = fw_cfg_data_mem_valid,
 543    },
 544};
 545
 546static const MemoryRegionOps fw_cfg_comb_mem_ops = {
 547    .read = fw_cfg_data_read,
 548    .write = fw_cfg_comb_write,
 549    .endianness = DEVICE_LITTLE_ENDIAN,
 550    .valid.accepts = fw_cfg_comb_valid,
 551};
 552
 553static const MemoryRegionOps fw_cfg_dma_mem_ops = {
 554    .read = fw_cfg_dma_mem_read,
 555    .write = fw_cfg_dma_mem_write,
 556    .endianness = DEVICE_BIG_ENDIAN,
 557    .valid.accepts = fw_cfg_dma_mem_valid,
 558    .valid.max_access_size = 8,
 559    .impl.max_access_size = 8,
 560};
 561
 562static void fw_cfg_reset(DeviceState *d)
 563{
 564    FWCfgState *s = FW_CFG(d);
 565
 566    /* we never register a read callback for FW_CFG_SIGNATURE */
 567    fw_cfg_select(s, FW_CFG_SIGNATURE);
 568}
 569
 570/* Save restore 32 bit int as uint16_t
 571   This is a Big hack, but it is how the old state did it.
 572   Or we broke compatibility in the state, or we can't use struct tm
 573 */
 574
 575static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
 576                                const VMStateField *field)
 577{
 578    uint32_t *v = pv;
 579    *v = qemu_get_be16(f);
 580    return 0;
 581}
 582
 583static int put_unused(QEMUFile *f, void *pv, size_t size,
 584                      const VMStateField *field, QJSON *vmdesc)
 585{
 586    fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
 587    fprintf(stderr, "This functions shouldn't be called.\n");
 588
 589    return 0;
 590}
 591
 592static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
 593    .name = "int32_as_uint16",
 594    .get  = get_uint32_as_uint16,
 595    .put  = put_unused,
 596};
 597
 598#define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
 599    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
 600
 601
 602static bool is_version_1(void *opaque, int version_id)
 603{
 604    return version_id == 1;
 605}
 606
 607bool fw_cfg_dma_enabled(void *opaque)
 608{
 609    FWCfgState *s = opaque;
 610
 611    return s->dma_enabled;
 612}
 613
 614static bool fw_cfg_acpi_mr_restore(void *opaque)
 615{
 616    FWCfgState *s = opaque;
 617    bool mr_aligned;
 618
 619    mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) &&
 620                 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) &&
 621                 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size);
 622    return s->acpi_mr_restore && !mr_aligned;
 623}
 624
 625static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
 626{
 627    MemoryRegion *mr;
 628    ram_addr_t offset;
 629    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 630    void *ptr;
 631
 632    key &= FW_CFG_ENTRY_MASK;
 633    assert(key < fw_cfg_max_entry(s));
 634
 635    ptr = s->entries[arch][key].data;
 636    mr = memory_region_from_host(ptr, &offset);
 637
 638    memory_region_ram_resize(mr, size, &error_abort);
 639}
 640
 641static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
 642{
 643    FWCfgState *s = opaque;
 644    int i, index;
 645
 646    assert(s->files);
 647
 648    index = be32_to_cpu(s->files->count);
 649
 650    for (i = 0; i < index; i++) {
 651        if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
 652            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
 653        } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
 654            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
 655        } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
 656            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
 657        }
 658    }
 659
 660    return 0;
 661}
 662
 663static const VMStateDescription vmstate_fw_cfg_dma = {
 664    .name = "fw_cfg/dma",
 665    .needed = fw_cfg_dma_enabled,
 666    .fields = (VMStateField[]) {
 667        VMSTATE_UINT64(dma_addr, FWCfgState),
 668        VMSTATE_END_OF_LIST()
 669    },
 670};
 671
 672static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
 673    .name = "fw_cfg/acpi_mr",
 674    .version_id = 1,
 675    .minimum_version_id = 1,
 676    .needed = fw_cfg_acpi_mr_restore,
 677    .post_load = fw_cfg_acpi_mr_restore_post_load,
 678    .fields = (VMStateField[]) {
 679        VMSTATE_UINT64(table_mr_size, FWCfgState),
 680        VMSTATE_UINT64(linker_mr_size, FWCfgState),
 681        VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
 682        VMSTATE_END_OF_LIST()
 683    },
 684};
 685
 686static const VMStateDescription vmstate_fw_cfg = {
 687    .name = "fw_cfg",
 688    .version_id = 2,
 689    .minimum_version_id = 1,
 690    .fields = (VMStateField[]) {
 691        VMSTATE_UINT16(cur_entry, FWCfgState),
 692        VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
 693        VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
 694        VMSTATE_END_OF_LIST()
 695    },
 696    .subsections = (const VMStateDescription*[]) {
 697        &vmstate_fw_cfg_dma,
 698        &vmstate_fw_cfg_acpi_mr,
 699        NULL,
 700    }
 701};
 702
 703static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
 704                                      FWCfgCallback select_cb,
 705                                      FWCfgWriteCallback write_cb,
 706                                      void *callback_opaque,
 707                                      void *data, size_t len,
 708                                      bool read_only)
 709{
 710    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 711
 712    key &= FW_CFG_ENTRY_MASK;
 713
 714    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 715    assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
 716
 717    s->entries[arch][key].data = data;
 718    s->entries[arch][key].len = (uint32_t)len;
 719    s->entries[arch][key].select_cb = select_cb;
 720    s->entries[arch][key].write_cb = write_cb;
 721    s->entries[arch][key].callback_opaque = callback_opaque;
 722    s->entries[arch][key].allow_write = !read_only;
 723}
 724
 725static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
 726                                              void *data, size_t len)
 727{
 728    void *ptr;
 729    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 730
 731    key &= FW_CFG_ENTRY_MASK;
 732
 733    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 734
 735    /* return the old data to the function caller, avoid memory leak */
 736    ptr = s->entries[arch][key].data;
 737    s->entries[arch][key].data = data;
 738    s->entries[arch][key].len = len;
 739    s->entries[arch][key].callback_opaque = NULL;
 740    s->entries[arch][key].allow_write = false;
 741
 742    return ptr;
 743}
 744
 745void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
 746{
 747    trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
 748    fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
 749}
 750
 751void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
 752{
 753    size_t sz = strlen(value) + 1;
 754
 755    trace_fw_cfg_add_string(key, trace_key_name(key), value);
 756    fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
 757}
 758
 759void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
 760{
 761    size_t sz = strlen(value) + 1;
 762    char *old;
 763
 764    old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
 765    g_free(old);
 766}
 767
 768void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
 769{
 770    uint16_t *copy;
 771
 772    copy = g_malloc(sizeof(value));
 773    *copy = cpu_to_le16(value);
 774    trace_fw_cfg_add_i16(key, trace_key_name(key), value);
 775    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 776}
 777
 778void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
 779{
 780    uint16_t *copy, *old;
 781
 782    copy = g_malloc(sizeof(value));
 783    *copy = cpu_to_le16(value);
 784    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 785    g_free(old);
 786}
 787
 788void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
 789{
 790    uint32_t *copy;
 791
 792    copy = g_malloc(sizeof(value));
 793    *copy = cpu_to_le32(value);
 794    trace_fw_cfg_add_i32(key, trace_key_name(key), value);
 795    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 796}
 797
 798void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
 799{
 800    uint32_t *copy, *old;
 801
 802    copy = g_malloc(sizeof(value));
 803    *copy = cpu_to_le32(value);
 804    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 805    g_free(old);
 806}
 807
 808void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
 809{
 810    uint64_t *copy;
 811
 812    copy = g_malloc(sizeof(value));
 813    *copy = cpu_to_le64(value);
 814    trace_fw_cfg_add_i64(key, trace_key_name(key), value);
 815    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 816}
 817
 818void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
 819{
 820    uint64_t *copy, *old;
 821
 822    copy = g_malloc(sizeof(value));
 823    *copy = cpu_to_le64(value);
 824    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 825    g_free(old);
 826}
 827
 828void fw_cfg_set_order_override(FWCfgState *s, int order)
 829{
 830    assert(s->fw_cfg_order_override == 0);
 831    s->fw_cfg_order_override = order;
 832}
 833
 834void fw_cfg_reset_order_override(FWCfgState *s)
 835{
 836    assert(s->fw_cfg_order_override != 0);
 837    s->fw_cfg_order_override = 0;
 838}
 839
 840/*
 841 * This is the legacy order list.  For legacy systems, files are in
 842 * the fw_cfg in the order defined below, by the "order" value.  Note
 843 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
 844 * specific area, but there may be more than one and they occur in the
 845 * order that the user specifies them on the command line.  Those are
 846 * handled in a special manner, using the order override above.
 847 *
 848 * For non-legacy, the files are sorted by filename to avoid this kind
 849 * of complexity in the future.
 850 *
 851 * This is only for x86, other arches don't implement versioning so
 852 * they won't set legacy mode.
 853 */
 854static struct {
 855    const char *name;
 856    int order;
 857} fw_cfg_order[] = {
 858    { "etc/boot-menu-wait", 10 },
 859    { "bootsplash.jpg", 11 },
 860    { "bootsplash.bmp", 12 },
 861    { "etc/boot-fail-wait", 15 },
 862    { "etc/smbios/smbios-tables", 20 },
 863    { "etc/smbios/smbios-anchor", 30 },
 864    { "etc/e820", 40 },
 865    { "etc/reserved-memory-end", 50 },
 866    { "genroms/kvmvapic.bin", 55 },
 867    { "genroms/linuxboot.bin", 60 },
 868    { }, /* VGA ROMs from pc_vga_init come here, 70. */
 869    { }, /* NIC option ROMs from pc_nic_init come here, 80. */
 870    { "etc/system-states", 90 },
 871    { }, /* User ROMs come here, 100. */
 872    { }, /* Device FW comes here, 110. */
 873    { "etc/extra-pci-roots", 120 },
 874    { "etc/acpi/tables", 130 },
 875    { "etc/table-loader", 140 },
 876    { "etc/tpm/log", 150 },
 877    { "etc/acpi/rsdp", 160 },
 878    { "bootorder", 170 },
 879
 880#define FW_CFG_ORDER_OVERRIDE_LAST 200
 881};
 882
 883/*
 884 * Any sub-page size update to these table MRs will be lost during migration,
 885 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
 886 * In order to avoid the inconsistency in sizes save them seperately and
 887 * migrate over in vmstate post_load().
 888 */
 889static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
 890{
 891    if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
 892        s->table_mr_size = len;
 893    } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
 894        s->linker_mr_size = len;
 895    } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
 896        s->rsdp_mr_size = len;
 897    }
 898}
 899
 900static int get_fw_cfg_order(FWCfgState *s, const char *name)
 901{
 902    int i;
 903
 904    if (s->fw_cfg_order_override > 0) {
 905        return s->fw_cfg_order_override;
 906    }
 907
 908    for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
 909        if (fw_cfg_order[i].name == NULL) {
 910            continue;
 911        }
 912
 913        if (strcmp(name, fw_cfg_order[i].name) == 0) {
 914            return fw_cfg_order[i].order;
 915        }
 916    }
 917
 918    /* Stick unknown stuff at the end. */
 919    warn_report("Unknown firmware file in legacy mode: %s", name);
 920    return FW_CFG_ORDER_OVERRIDE_LAST;
 921}
 922
 923void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
 924                              FWCfgCallback select_cb,
 925                              FWCfgWriteCallback write_cb,
 926                              void *callback_opaque,
 927                              void *data, size_t len, bool read_only)
 928{
 929    int i, index, count;
 930    size_t dsize;
 931    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 932    int order = 0;
 933
 934    if (!s->files) {
 935        dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
 936        s->files = g_malloc0(dsize);
 937        fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
 938    }
 939
 940    count = be32_to_cpu(s->files->count);
 941    assert(count < fw_cfg_file_slots(s));
 942
 943    /* Find the insertion point. */
 944    if (mc->legacy_fw_cfg_order) {
 945        /*
 946         * Sort by order. For files with the same order, we keep them
 947         * in the sequence in which they were added.
 948         */
 949        order = get_fw_cfg_order(s, filename);
 950        for (index = count;
 951             index > 0 && order < s->entry_order[index - 1];
 952             index--);
 953    } else {
 954        /* Sort by file name. */
 955        for (index = count;
 956             index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
 957             index--);
 958    }
 959
 960    /*
 961     * Move all the entries from the index point and after down one
 962     * to create a slot for the new entry.  Because calculations are
 963     * being done with the index, make it so that "i" is the current
 964     * index and "i - 1" is the one being copied from, thus the
 965     * unusual start and end in the for statement.
 966     */
 967    for (i = count; i > index; i--) {
 968        s->files->f[i] = s->files->f[i - 1];
 969        s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
 970        s->entries[0][FW_CFG_FILE_FIRST + i] =
 971            s->entries[0][FW_CFG_FILE_FIRST + i - 1];
 972        s->entry_order[i] = s->entry_order[i - 1];
 973    }
 974
 975    memset(&s->files->f[index], 0, sizeof(FWCfgFile));
 976    memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
 977
 978    pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
 979    for (i = 0; i <= count; i++) {
 980        if (i != index &&
 981            strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
 982            error_report("duplicate fw_cfg file name: %s",
 983                         s->files->f[index].name);
 984            exit(1);
 985        }
 986    }
 987
 988    fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
 989                              select_cb, write_cb,
 990                              callback_opaque, data, len,
 991                              read_only);
 992
 993    s->files->f[index].size   = cpu_to_be32(len);
 994    s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
 995    s->entry_order[index] = order;
 996    trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
 997
 998    s->files->count = cpu_to_be32(count+1);
 999    fw_cfg_acpi_mr_save(s, filename, len);
1000}
1001
1002void fw_cfg_add_file(FWCfgState *s,  const char *filename,
1003                     void *data, size_t len)
1004{
1005    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1006}
1007
1008void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1009                        void *data, size_t len)
1010{
1011    int i, index;
1012    void *ptr = NULL;
1013
1014    assert(s->files);
1015
1016    index = be32_to_cpu(s->files->count);
1017
1018    for (i = 0; i < index; i++) {
1019        if (strcmp(filename, s->files->f[i].name) == 0) {
1020            ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1021                                           data, len);
1022            s->files->f[i].size   = cpu_to_be32(len);
1023            fw_cfg_acpi_mr_save(s, filename, len);
1024            return ptr;
1025        }
1026    }
1027
1028    assert(index < fw_cfg_file_slots(s));
1029
1030    /* add new one */
1031    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1032    return NULL;
1033}
1034
1035bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1036                               const char *gen_id, Error **errp)
1037{
1038    FWCfgDataGeneratorClass *klass;
1039    GByteArray *array;
1040    Object *obj;
1041    gsize size;
1042
1043    obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1044    if (!obj) {
1045        error_setg(errp, "Cannot find object ID '%s'", gen_id);
1046        return false;
1047    }
1048    if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1049        error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1050                   gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1051        return false;
1052    }
1053    klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1054    array = klass->get_data(obj, errp);
1055    if (!array) {
1056        return false;
1057    }
1058    size = array->len;
1059    fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1060
1061    return true;
1062}
1063
1064static void fw_cfg_machine_reset(void *opaque)
1065{
1066    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1067    FWCfgState *s = opaque;
1068    void *ptr;
1069    size_t len;
1070    char *buf;
1071
1072    buf = get_boot_devices_list(&len);
1073    ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1074    g_free(ptr);
1075
1076    if (!mc->legacy_fw_cfg_order) {
1077        buf = get_boot_devices_lchs_list(&len);
1078        ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1079        g_free(ptr);
1080    }
1081}
1082
1083static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1084{
1085    FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1086    qemu_register_reset(fw_cfg_machine_reset, s);
1087}
1088
1089static Property fw_cfg_properties[] = {
1090    DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1091    DEFINE_PROP_END_OF_LIST(),
1092};
1093
1094static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1095{
1096    FWCfgState *s = FW_CFG(dev);
1097    MachineState *machine = MACHINE(qdev_get_machine());
1098    uint32_t version = FW_CFG_VERSION;
1099
1100    if (!fw_cfg_find()) {
1101        error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1102        return;
1103    }
1104
1105    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1106    fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1107    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1108    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
1109    fw_cfg_bootsplash(s);
1110    fw_cfg_reboot(s);
1111
1112    if (s->dma_enabled) {
1113        version |= FW_CFG_VERSION_DMA;
1114    }
1115
1116    fw_cfg_add_i32(s, FW_CFG_ID, version);
1117
1118    s->machine_ready.notify = fw_cfg_machine_ready;
1119    qemu_add_machine_init_done_notifier(&s->machine_ready);
1120}
1121
1122FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1123                                AddressSpace *dma_as)
1124{
1125    DeviceState *dev;
1126    SysBusDevice *sbd;
1127    FWCfgIoState *ios;
1128    FWCfgState *s;
1129    bool dma_requested = dma_iobase && dma_as;
1130
1131    dev = qdev_new(TYPE_FW_CFG_IO);
1132    if (!dma_requested) {
1133        qdev_prop_set_bit(dev, "dma_enabled", false);
1134    }
1135
1136    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1137                              OBJECT(dev));
1138
1139    sbd = SYS_BUS_DEVICE(dev);
1140    sysbus_realize_and_unref(sbd, &error_fatal);
1141    ios = FW_CFG_IO(dev);
1142    sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1143
1144    s = FW_CFG(dev);
1145
1146    if (s->dma_enabled) {
1147        /* 64 bits for the address field */
1148        s->dma_as = dma_as;
1149        s->dma_addr = 0;
1150        sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1151    }
1152
1153    return s;
1154}
1155
1156FWCfgState *fw_cfg_init_io(uint32_t iobase)
1157{
1158    return fw_cfg_init_io_dma(iobase, 0, NULL);
1159}
1160
1161FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1162                                 hwaddr data_addr, uint32_t data_width,
1163                                 hwaddr dma_addr, AddressSpace *dma_as)
1164{
1165    DeviceState *dev;
1166    SysBusDevice *sbd;
1167    FWCfgState *s;
1168    bool dma_requested = dma_addr && dma_as;
1169
1170    dev = qdev_new(TYPE_FW_CFG_MEM);
1171    qdev_prop_set_uint32(dev, "data_width", data_width);
1172    if (!dma_requested) {
1173        qdev_prop_set_bit(dev, "dma_enabled", false);
1174    }
1175
1176    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1177                              OBJECT(dev));
1178
1179    sbd = SYS_BUS_DEVICE(dev);
1180    sysbus_realize_and_unref(sbd, &error_fatal);
1181    sysbus_mmio_map(sbd, 0, ctl_addr);
1182    sysbus_mmio_map(sbd, 1, data_addr);
1183
1184    s = FW_CFG(dev);
1185
1186    if (s->dma_enabled) {
1187        s->dma_as = dma_as;
1188        s->dma_addr = 0;
1189        sysbus_mmio_map(sbd, 2, dma_addr);
1190    }
1191
1192    return s;
1193}
1194
1195FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1196{
1197    return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1198                                fw_cfg_data_mem_ops.valid.max_access_size,
1199                                0, NULL);
1200}
1201
1202
1203FWCfgState *fw_cfg_find(void)
1204{
1205    /* Returns NULL unless there is exactly one fw_cfg device */
1206    return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1207}
1208
1209
1210static void fw_cfg_class_init(ObjectClass *klass, void *data)
1211{
1212    DeviceClass *dc = DEVICE_CLASS(klass);
1213
1214    dc->reset = fw_cfg_reset;
1215    dc->vmsd = &vmstate_fw_cfg;
1216
1217    device_class_set_props(dc, fw_cfg_properties);
1218}
1219
1220static const TypeInfo fw_cfg_info = {
1221    .name          = TYPE_FW_CFG,
1222    .parent        = TYPE_SYS_BUS_DEVICE,
1223    .abstract      = true,
1224    .instance_size = sizeof(FWCfgState),
1225    .class_init    = fw_cfg_class_init,
1226};
1227
1228static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1229{
1230    uint16_t file_slots_max;
1231
1232    if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1233        error_setg(errp, "\"file_slots\" must be at least 0x%x",
1234                   FW_CFG_FILE_SLOTS_MIN);
1235        return;
1236    }
1237
1238    /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1239     * that we permit. The actual (exclusive) value coming from the
1240     * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1241    file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1242    if (fw_cfg_file_slots(s) > file_slots_max) {
1243        error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1244                   file_slots_max);
1245        return;
1246    }
1247
1248    s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1249    s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1250    s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1251}
1252
1253static Property fw_cfg_io_properties[] = {
1254    DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1255                     true),
1256    DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1257                       FW_CFG_FILE_SLOTS_DFLT),
1258    DEFINE_PROP_END_OF_LIST(),
1259};
1260
1261static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1262{
1263    ERRP_GUARD();
1264    FWCfgIoState *s = FW_CFG_IO(dev);
1265
1266    fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1267    if (*errp) {
1268        return;
1269    }
1270
1271    /* when using port i/o, the 8-bit data register ALWAYS overlaps
1272     * with half of the 16-bit control register. Hence, the total size
1273     * of the i/o region used is FW_CFG_CTL_SIZE */
1274    memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1275                          FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1276
1277    if (FW_CFG(s)->dma_enabled) {
1278        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1279                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1280                              sizeof(dma_addr_t));
1281    }
1282
1283    fw_cfg_common_realize(dev, errp);
1284}
1285
1286static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1287{
1288    DeviceClass *dc = DEVICE_CLASS(klass);
1289
1290    dc->realize = fw_cfg_io_realize;
1291    device_class_set_props(dc, fw_cfg_io_properties);
1292}
1293
1294static const TypeInfo fw_cfg_io_info = {
1295    .name          = TYPE_FW_CFG_IO,
1296    .parent        = TYPE_FW_CFG,
1297    .instance_size = sizeof(FWCfgIoState),
1298    .class_init    = fw_cfg_io_class_init,
1299};
1300
1301
1302static Property fw_cfg_mem_properties[] = {
1303    DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1304    DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1305                     true),
1306    DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1307                       FW_CFG_FILE_SLOTS_DFLT),
1308    DEFINE_PROP_END_OF_LIST(),
1309};
1310
1311static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1312{
1313    ERRP_GUARD();
1314    FWCfgMemState *s = FW_CFG_MEM(dev);
1315    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1316    const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1317
1318    fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1319    if (*errp) {
1320        return;
1321    }
1322
1323    memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1324                          FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1325    sysbus_init_mmio(sbd, &s->ctl_iomem);
1326
1327    if (s->data_width > data_ops->valid.max_access_size) {
1328        s->wide_data_ops = *data_ops;
1329
1330        s->wide_data_ops.valid.max_access_size = s->data_width;
1331        s->wide_data_ops.impl.max_access_size  = s->data_width;
1332        data_ops = &s->wide_data_ops;
1333    }
1334    memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1335                          "fwcfg.data", data_ops->valid.max_access_size);
1336    sysbus_init_mmio(sbd, &s->data_iomem);
1337
1338    if (FW_CFG(s)->dma_enabled) {
1339        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1340                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1341                              sizeof(dma_addr_t));
1342        sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1343    }
1344
1345    fw_cfg_common_realize(dev, errp);
1346}
1347
1348static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1349{
1350    DeviceClass *dc = DEVICE_CLASS(klass);
1351
1352    dc->realize = fw_cfg_mem_realize;
1353    device_class_set_props(dc, fw_cfg_mem_properties);
1354}
1355
1356static const TypeInfo fw_cfg_mem_info = {
1357    .name          = TYPE_FW_CFG_MEM,
1358    .parent        = TYPE_FW_CFG,
1359    .instance_size = sizeof(FWCfgMemState),
1360    .class_init    = fw_cfg_mem_class_init,
1361};
1362
1363static void fw_cfg_register_types(void)
1364{
1365    type_register_static(&fw_cfg_info);
1366    type_register_static(&fw_cfg_io_info);
1367    type_register_static(&fw_cfg_mem_info);
1368}
1369
1370type_init(fw_cfg_register_types)
1371