qemu/hw/pci-host/pnv_phb4.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC PowerNV (POWER9) PHB4 model
   3 *
   4 * Copyright (c) 2018-2020, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9#include "qemu/osdep.h"
  10#include "qemu/log.h"
  11#include "qapi/visitor.h"
  12#include "qapi/error.h"
  13#include "qemu-common.h"
  14#include "monitor/monitor.h"
  15#include "target/ppc/cpu.h"
  16#include "hw/pci-host/pnv_phb4_regs.h"
  17#include "hw/pci-host/pnv_phb4.h"
  18#include "hw/pci/pcie_host.h"
  19#include "hw/pci/pcie_port.h"
  20#include "hw/ppc/pnv.h"
  21#include "hw/ppc/pnv_xscom.h"
  22#include "hw/irq.h"
  23#include "hw/qdev-properties.h"
  24#include "qom/object.h"
  25
  26#define phb_error(phb, fmt, ...)                                        \
  27    qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n",            \
  28                  (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
  29
  30/*
  31 * QEMU version of the GETFIELD/SETFIELD macros
  32 *
  33 * These are common with the PnvXive model.
  34 */
  35static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
  36{
  37    return (word & mask) >> ctz64(mask);
  38}
  39
  40static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
  41                                uint64_t value)
  42{
  43    return (word & ~mask) | ((value << ctz64(mask)) & mask);
  44}
  45
  46static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
  47{
  48    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
  49    uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
  50    uint8_t bus, devfn;
  51
  52    if (!(addr >> 63)) {
  53        return NULL;
  54    }
  55    bus = (addr >> 52) & 0xff;
  56    devfn = (addr >> 44) & 0xff;
  57
  58    /* We don't access the root complex this way */
  59    if (bus == 0 && devfn == 0) {
  60        return NULL;
  61    }
  62    return pci_find_device(pci->bus, bus, devfn);
  63}
  64
  65/*
  66 * The CONFIG_DATA register expects little endian accesses, but as the
  67 * region is big endian, we have to swap the value.
  68 */
  69static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
  70                                  unsigned size, uint64_t val)
  71{
  72    uint32_t cfg_addr, limit;
  73    PCIDevice *pdev;
  74
  75    pdev = pnv_phb4_find_cfg_dev(phb);
  76    if (!pdev) {
  77        return;
  78    }
  79    cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
  80    cfg_addr |= off;
  81    limit = pci_config_size(pdev);
  82    if (limit <= cfg_addr) {
  83        /*
  84         * conventional pci device can be behind pcie-to-pci bridge.
  85         * 256 <= addr < 4K has no effects.
  86         */
  87        return;
  88    }
  89    switch (size) {
  90    case 1:
  91        break;
  92    case 2:
  93        val = bswap16(val);
  94        break;
  95    case 4:
  96        val = bswap32(val);
  97        break;
  98    default:
  99        g_assert_not_reached();
 100    }
 101    pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
 102}
 103
 104static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
 105                                     unsigned size)
 106{
 107    uint32_t cfg_addr, limit;
 108    PCIDevice *pdev;
 109    uint64_t val;
 110
 111    pdev = pnv_phb4_find_cfg_dev(phb);
 112    if (!pdev) {
 113        return ~0ull;
 114    }
 115    cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
 116    cfg_addr |= off;
 117    limit = pci_config_size(pdev);
 118    if (limit <= cfg_addr) {
 119        /*
 120         * conventional pci device can be behind pcie-to-pci bridge.
 121         * 256 <= addr < 4K has no effects.
 122         */
 123        return ~0ull;
 124    }
 125    val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
 126    switch (size) {
 127    case 1:
 128        return val;
 129    case 2:
 130        return bswap16(val);
 131    case 4:
 132        return bswap32(val);
 133    default:
 134        g_assert_not_reached();
 135    }
 136}
 137
 138/*
 139 * Root complex register accesses are memory mapped.
 140 */
 141static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
 142                                     unsigned size, uint64_t val)
 143{
 144    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
 145    PCIDevice *pdev;
 146
 147    if (size != 4) {
 148        phb_error(phb, "rc_config_write invalid size %d\n", size);
 149        return;
 150    }
 151
 152    pdev = pci_find_device(pci->bus, 0, 0);
 153    assert(pdev);
 154
 155    pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
 156                                 bswap32(val), 4);
 157}
 158
 159static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
 160                                        unsigned size)
 161{
 162    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
 163    PCIDevice *pdev;
 164    uint64_t val;
 165
 166    if (size != 4) {
 167        phb_error(phb, "rc_config_read invalid size %d\n", size);
 168        return ~0ull;
 169    }
 170
 171    pdev = pci_find_device(pci->bus, 0, 0);
 172    assert(pdev);
 173
 174    val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
 175    return bswap32(val);
 176}
 177
 178static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
 179{
 180    uint64_t base, start, size, mbe0, mbe1;
 181    MemoryRegion *parent;
 182    char name[64];
 183
 184    /* Unmap first */
 185    if (memory_region_is_mapped(&phb->mr_mmio[index])) {
 186        /* Should we destroy it in RCU friendly way... ? */
 187        memory_region_del_subregion(phb->mr_mmio[index].container,
 188                                    &phb->mr_mmio[index]);
 189    }
 190
 191    /* Get table entry */
 192    mbe0 = phb->ioda_MBT[(index << 1)];
 193    mbe1 = phb->ioda_MBT[(index << 1) + 1];
 194
 195    if (!(mbe0 & IODA3_MBT0_ENABLE)) {
 196        return;
 197    }
 198
 199    /* Grab geometry from registers */
 200    base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
 201    size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
 202    size |= 0xff00000000000000ull;
 203    size = ~size + 1;
 204
 205    /* Calculate PCI side start address based on M32/M64 window type */
 206    if (mbe0 & IODA3_MBT0_TYPE_M32) {
 207        start = phb->regs[PHB_M32_START_ADDR >> 3];
 208        if ((start + size) > 0x100000000ull) {
 209            phb_error(phb, "M32 set beyond 4GB boundary !");
 210            size = 0x100000000 - start;
 211        }
 212    } else {
 213        start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
 214    }
 215
 216    /* TODO: Figure out how to implemet/decode AOMASK */
 217
 218    /* Check if it matches an enabled MMIO region in the PEC stack */
 219    if (memory_region_is_mapped(&phb->stack->mmbar0) &&
 220        base >= phb->stack->mmio0_base &&
 221        (base + size) <= (phb->stack->mmio0_base + phb->stack->mmio0_size)) {
 222        parent = &phb->stack->mmbar0;
 223        base -= phb->stack->mmio0_base;
 224    } else if (memory_region_is_mapped(&phb->stack->mmbar1) &&
 225        base >= phb->stack->mmio1_base &&
 226        (base + size) <= (phb->stack->mmio1_base + phb->stack->mmio1_size)) {
 227        parent = &phb->stack->mmbar1;
 228        base -= phb->stack->mmio1_base;
 229    } else {
 230        phb_error(phb, "PHB MBAR %d out of parent bounds", index);
 231        return;
 232    }
 233
 234    /* Create alias (better name ?) */
 235    snprintf(name, sizeof(name), "phb4-mbar%d", index);
 236    memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
 237                             &phb->pci_mmio, start, size);
 238    memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
 239}
 240
 241static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
 242{
 243    uint64_t i;
 244    uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
 245        PNV_PHB4_MIN_MMIO_WINDOWS;
 246
 247    for (i = 0; i < num_windows; i++) {
 248        pnv_phb4_check_mbt(phb, i);
 249    }
 250}
 251
 252static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
 253                                      unsigned *out_table, unsigned *out_idx)
 254{
 255    uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
 256    unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
 257    unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
 258    unsigned int mask;
 259    uint64_t *tptr = NULL;
 260
 261    switch (table) {
 262    case IODA3_TBL_LIST:
 263        tptr = phb->ioda_LIST;
 264        mask = 7;
 265        break;
 266    case IODA3_TBL_MIST:
 267        tptr = phb->ioda_MIST;
 268        mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
 269        mask -= 1;
 270        break;
 271    case IODA3_TBL_RCAM:
 272        mask = phb->big_phb ? 127 : 63;
 273        break;
 274    case IODA3_TBL_MRT:
 275        mask = phb->big_phb ? 15 : 7;
 276        break;
 277    case IODA3_TBL_PESTA:
 278    case IODA3_TBL_PESTB:
 279        mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
 280        mask -= 1;
 281        break;
 282    case IODA3_TBL_TVT:
 283        tptr = phb->ioda_TVT;
 284        mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
 285        mask -= 1;
 286        break;
 287    case IODA3_TBL_TCR:
 288    case IODA3_TBL_TDR:
 289        mask = phb->big_phb ? 1023 : 511;
 290        break;
 291    case IODA3_TBL_MBT:
 292        tptr = phb->ioda_MBT;
 293        mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
 294        mask -= 1;
 295        break;
 296    case IODA3_TBL_MDT:
 297        tptr = phb->ioda_MDT;
 298        mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
 299        mask -= 1;
 300        break;
 301    case IODA3_TBL_PEEV:
 302        tptr = phb->ioda_PEEV;
 303        mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
 304        mask -= 1;
 305        break;
 306    default:
 307        phb_error(phb, "invalid IODA table %d", table);
 308        return NULL;
 309    }
 310    index &= mask;
 311    if (out_idx) {
 312        *out_idx = index;
 313    }
 314    if (out_table) {
 315        *out_table = table;
 316    }
 317    if (tptr) {
 318        tptr += index;
 319    }
 320    if (adreg & PHB_IODA_AD_AUTOINC) {
 321        index = (index + 1) & mask;
 322        adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
 323    }
 324
 325    phb->regs[PHB_IODA_ADDR >> 3] = adreg;
 326    return tptr;
 327}
 328
 329static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
 330{
 331    unsigned table, idx;
 332    uint64_t *tptr;
 333
 334    tptr = pnv_phb4_ioda_access(phb, &table, &idx);
 335    if (!tptr) {
 336        /* Special PESTA case */
 337        if (table == IODA3_TBL_PESTA) {
 338            return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
 339        } else if (table == IODA3_TBL_PESTB) {
 340            return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
 341        }
 342        /* Return 0 on unsupported tables, not ff's */
 343        return 0;
 344    }
 345    return *tptr;
 346}
 347
 348static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
 349{
 350    unsigned table, idx;
 351    uint64_t *tptr;
 352
 353    tptr = pnv_phb4_ioda_access(phb, &table, &idx);
 354    if (!tptr) {
 355        /* Special PESTA case */
 356        if (table == IODA3_TBL_PESTA) {
 357            phb->ioda_PEST_AB[idx] &= ~1;
 358            phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
 359        } else if (table == IODA3_TBL_PESTB) {
 360            phb->ioda_PEST_AB[idx] &= ~2;
 361            phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
 362        }
 363        return;
 364    }
 365
 366    /* Handle side effects */
 367    switch (table) {
 368    case IODA3_TBL_LIST:
 369        break;
 370    case IODA3_TBL_MIST: {
 371        /* Special mask for MIST partial write */
 372        uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
 373        uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
 374        uint64_t v = *tptr;
 375        if (mmask == 0) {
 376            mmask = 0xf;
 377        }
 378        if (mmask & 8) {
 379            v &= 0x0000ffffffffffffull;
 380            v |= 0xcfff000000000000ull & val;
 381        }
 382        if (mmask & 4) {
 383            v &= 0xffff0000ffffffffull;
 384            v |= 0x0000cfff00000000ull & val;
 385        }
 386        if (mmask & 2) {
 387            v &= 0xffffffff0000ffffull;
 388            v |= 0x00000000cfff0000ull & val;
 389        }
 390        if (mmask & 1) {
 391            v &= 0xffffffffffff0000ull;
 392            v |= 0x000000000000cfffull & val;
 393        }
 394        *tptr = val;
 395        break;
 396    }
 397    case IODA3_TBL_MBT:
 398        *tptr = val;
 399
 400        /* Copy accross the valid bit to the other half */
 401        phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
 402        phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
 403
 404        /* Update mappings */
 405        pnv_phb4_check_mbt(phb, idx >> 1);
 406        break;
 407    default:
 408        *tptr = val;
 409    }
 410}
 411
 412static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
 413{
 414    PnvPhb4DMASpace *ds;
 415
 416    /* Always invalidate all for now ... */
 417    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
 418        ds->pe_num = PHB_INVALID_PE;
 419    }
 420}
 421
 422static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
 423{
 424    uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
 425
 426    if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
 427        if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
 428            memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
 429                                        0xffff0000, &ds->msi32_mr);
 430        }
 431    } else {
 432        if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
 433            memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
 434                                        &ds->msi32_mr);
 435        }
 436    }
 437
 438    if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
 439        if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
 440            memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
 441                                        (1ull << 60), &ds->msi64_mr);
 442        }
 443    } else {
 444        if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
 445            memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
 446                                        &ds->msi64_mr);
 447        }
 448    }
 449}
 450
 451static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
 452{
 453    PnvPhb4DMASpace *ds;
 454
 455    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
 456        pnv_phb4_update_msi_regions(ds);
 457    }
 458}
 459
 460static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
 461{
 462    int shift, flags, i, lsi_base;
 463    XiveSource *xsrc = &phb->xsrc;
 464
 465    /* The XIVE source characteristics can be set at run time */
 466    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
 467        shift = XIVE_ESB_64K;
 468    } else {
 469        shift = XIVE_ESB_4K;
 470    }
 471    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
 472        flags = XIVE_SRC_STORE_EOI;
 473    } else {
 474        flags = 0;
 475    }
 476
 477    phb->xsrc.esb_shift = shift;
 478    phb->xsrc.esb_flags = flags;
 479
 480    lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
 481    lsi_base <<= 3;
 482
 483    /* TODO: handle reset values of PHB_LSI_SRC_ID */
 484    if (!lsi_base) {
 485        return;
 486    }
 487
 488    /* TODO: need a xive_source_irq_reset_lsi() */
 489    bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
 490
 491    for (i = 0; i < xsrc->nr_irqs; i++) {
 492        bool msi = (i < lsi_base || i >= (lsi_base + 8));
 493        if (!msi) {
 494            xive_source_irq_set_lsi(xsrc, i);
 495        }
 496    }
 497}
 498
 499static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
 500                               unsigned size)
 501{
 502    PnvPHB4 *phb = PNV_PHB4(opaque);
 503    bool changed;
 504
 505    /* Special case outbound configuration data */
 506    if ((off & 0xfffc) == PHB_CONFIG_DATA) {
 507        pnv_phb4_config_write(phb, off & 0x3, size, val);
 508        return;
 509    }
 510
 511    /* Special case RC configuration space */
 512    if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
 513        pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
 514        return;
 515    }
 516
 517    /* Other registers are 64-bit only */
 518    if (size != 8 || off & 0x7) {
 519        phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
 520                   off, size);
 521        return;
 522    }
 523
 524    /* Handle masking */
 525    switch (off) {
 526    case PHB_LSI_SOURCE_ID:
 527        val &= PHB_LSI_SRC_ID;
 528        break;
 529    case PHB_M64_UPPER_BITS:
 530        val &= 0xff00000000000000ull;
 531        break;
 532    /* TCE Kill */
 533    case PHB_TCE_KILL:
 534        /* Clear top 3 bits which HW does to indicate successful queuing */
 535        val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
 536        break;
 537    case PHB_Q_DMA_R:
 538        /*
 539         * This is enough logic to make SW happy but we aren't
 540         * actually quiescing the DMAs
 541         */
 542        if (val & PHB_Q_DMA_R_AUTORESET) {
 543            val = 0;
 544        } else {
 545            val &= PHB_Q_DMA_R_QUIESCE_DMA;
 546        }
 547        break;
 548    /* LEM stuff */
 549    case PHB_LEM_FIR_AND_MASK:
 550        phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
 551        return;
 552    case PHB_LEM_FIR_OR_MASK:
 553        phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
 554        return;
 555    case PHB_LEM_ERROR_AND_MASK:
 556        phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
 557        return;
 558    case PHB_LEM_ERROR_OR_MASK:
 559        phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
 560        return;
 561    case PHB_LEM_WOF:
 562        val = 0;
 563        break;
 564    /* TODO: More regs ..., maybe create a table with masks... */
 565
 566    /* Read only registers */
 567    case PHB_CPU_LOADSTORE_STATUS:
 568    case PHB_ETU_ERR_SUMMARY:
 569    case PHB_PHB4_GEN_CAP:
 570    case PHB_PHB4_TCE_CAP:
 571    case PHB_PHB4_IRQ_CAP:
 572    case PHB_PHB4_EEH_CAP:
 573        return;
 574    }
 575
 576    /* Record whether it changed */
 577    changed = phb->regs[off >> 3] != val;
 578
 579    /* Store in register cache first */
 580    phb->regs[off >> 3] = val;
 581
 582    /* Handle side effects */
 583    switch (off) {
 584    case PHB_PHB4_CONFIG:
 585        if (changed) {
 586            pnv_phb4_update_all_msi_regions(phb);
 587        }
 588        break;
 589    case PHB_M32_START_ADDR:
 590    case PHB_M64_UPPER_BITS:
 591        if (changed) {
 592            pnv_phb4_check_all_mbt(phb);
 593        }
 594        break;
 595
 596    /* IODA table accesses */
 597    case PHB_IODA_DATA0:
 598        pnv_phb4_ioda_write(phb, val);
 599        break;
 600
 601    /* RTC invalidation */
 602    case PHB_RTC_INVALIDATE:
 603        pnv_phb4_rtc_invalidate(phb, val);
 604        break;
 605
 606    /* PHB Control (Affects XIVE source) */
 607    case PHB_CTRLR:
 608    case PHB_LSI_SOURCE_ID:
 609        pnv_phb4_update_xsrc(phb);
 610        break;
 611
 612    /* Silent simple writes */
 613    case PHB_ASN_CMPM:
 614    case PHB_CONFIG_ADDRESS:
 615    case PHB_IODA_ADDR:
 616    case PHB_TCE_KILL:
 617    case PHB_TCE_SPEC_CTL:
 618    case PHB_PEST_BAR:
 619    case PHB_PELTV_BAR:
 620    case PHB_RTT_BAR:
 621    case PHB_LEM_FIR_ACCUM:
 622    case PHB_LEM_ERROR_MASK:
 623    case PHB_LEM_ACTION0:
 624    case PHB_LEM_ACTION1:
 625    case PHB_TCE_TAG_ENABLE:
 626    case PHB_INT_NOTIFY_ADDR:
 627    case PHB_INT_NOTIFY_INDEX:
 628    case PHB_DMARD_SYNC:
 629       break;
 630
 631    /* Noise on anything else */
 632    default:
 633        qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
 634                      off, val);
 635    }
 636}
 637
 638static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
 639{
 640    PnvPHB4 *phb = PNV_PHB4(opaque);
 641    uint64_t val;
 642
 643    if ((off & 0xfffc) == PHB_CONFIG_DATA) {
 644        return pnv_phb4_config_read(phb, off & 0x3, size);
 645    }
 646
 647    /* Special case RC configuration space */
 648    if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
 649        return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
 650    }
 651
 652    /* Other registers are 64-bit only */
 653    if (size != 8 || off & 0x7) {
 654        phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
 655                   off, size);
 656        return ~0ull;
 657    }
 658
 659    /* Default read from cache */
 660    val = phb->regs[off >> 3];
 661
 662    switch (off) {
 663    case PHB_VERSION:
 664        return phb->version;
 665
 666        /* Read-only */
 667    case PHB_PHB4_GEN_CAP:
 668        return 0xe4b8000000000000ull;
 669    case PHB_PHB4_TCE_CAP:
 670        return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
 671    case PHB_PHB4_IRQ_CAP:
 672        return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
 673    case PHB_PHB4_EEH_CAP:
 674        return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
 675
 676    /* IODA table accesses */
 677    case PHB_IODA_DATA0:
 678        return pnv_phb4_ioda_read(phb);
 679
 680    /* Link training always appears trained */
 681    case PHB_PCIE_DLP_TRAIN_CTL:
 682        /* TODO: Do something sensible with speed ? */
 683        return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
 684
 685    /* DMA read sync: make it look like it's complete */
 686    case PHB_DMARD_SYNC:
 687        return PHB_DMARD_SYNC_COMPLETE;
 688
 689    /* Silent simple reads */
 690    case PHB_LSI_SOURCE_ID:
 691    case PHB_CPU_LOADSTORE_STATUS:
 692    case PHB_ASN_CMPM:
 693    case PHB_PHB4_CONFIG:
 694    case PHB_M32_START_ADDR:
 695    case PHB_CONFIG_ADDRESS:
 696    case PHB_IODA_ADDR:
 697    case PHB_RTC_INVALIDATE:
 698    case PHB_TCE_KILL:
 699    case PHB_TCE_SPEC_CTL:
 700    case PHB_PEST_BAR:
 701    case PHB_PELTV_BAR:
 702    case PHB_RTT_BAR:
 703    case PHB_M64_UPPER_BITS:
 704    case PHB_CTRLR:
 705    case PHB_LEM_FIR_ACCUM:
 706    case PHB_LEM_ERROR_MASK:
 707    case PHB_LEM_ACTION0:
 708    case PHB_LEM_ACTION1:
 709    case PHB_TCE_TAG_ENABLE:
 710    case PHB_INT_NOTIFY_ADDR:
 711    case PHB_INT_NOTIFY_INDEX:
 712    case PHB_Q_DMA_R:
 713    case PHB_ETU_ERR_SUMMARY:
 714        break;
 715
 716    /* Noise on anything else */
 717    default:
 718        qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
 719                      off, val);
 720    }
 721    return val;
 722}
 723
 724static const MemoryRegionOps pnv_phb4_reg_ops = {
 725    .read = pnv_phb4_reg_read,
 726    .write = pnv_phb4_reg_write,
 727    .valid.min_access_size = 1,
 728    .valid.max_access_size = 8,
 729    .impl.min_access_size = 1,
 730    .impl.max_access_size = 8,
 731    .endianness = DEVICE_BIG_ENDIAN,
 732};
 733
 734static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
 735{
 736    PnvPHB4 *phb = PNV_PHB4(opaque);
 737    uint32_t reg = addr >> 3;
 738    uint64_t val;
 739    hwaddr offset;
 740
 741    switch (reg) {
 742    case PHB_SCOM_HV_IND_ADDR:
 743        return phb->scom_hv_ind_addr_reg;
 744
 745    case PHB_SCOM_HV_IND_DATA:
 746        if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
 747            phb_error(phb, "Invalid indirect address");
 748            return ~0ull;
 749        }
 750        size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
 751        offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
 752        val = pnv_phb4_reg_read(phb, offset, size);
 753        if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
 754            offset += size;
 755            offset &= 0x3fff;
 756            phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
 757                                                 phb->scom_hv_ind_addr_reg,
 758                                                 offset);
 759        }
 760        return val;
 761    case PHB_SCOM_ETU_LEM_FIR:
 762    case PHB_SCOM_ETU_LEM_FIR_AND:
 763    case PHB_SCOM_ETU_LEM_FIR_OR:
 764    case PHB_SCOM_ETU_LEM_FIR_MSK:
 765    case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
 766    case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
 767    case PHB_SCOM_ETU_LEM_ACT0:
 768    case PHB_SCOM_ETU_LEM_ACT1:
 769    case PHB_SCOM_ETU_LEM_WOF:
 770        offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
 771        return pnv_phb4_reg_read(phb, offset, size);
 772    case PHB_SCOM_ETU_PMON_CONFIG:
 773    case PHB_SCOM_ETU_PMON_CTR0:
 774    case PHB_SCOM_ETU_PMON_CTR1:
 775    case PHB_SCOM_ETU_PMON_CTR2:
 776    case PHB_SCOM_ETU_PMON_CTR3:
 777        offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
 778        return pnv_phb4_reg_read(phb, offset, size);
 779
 780    default:
 781        qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
 782        return ~0ull;
 783    }
 784}
 785
 786static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
 787                                 uint64_t val, unsigned size)
 788{
 789    PnvPHB4 *phb = PNV_PHB4(opaque);
 790    uint32_t reg = addr >> 3;
 791    hwaddr offset;
 792
 793    switch (reg) {
 794    case PHB_SCOM_HV_IND_ADDR:
 795        phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
 796        break;
 797    case PHB_SCOM_HV_IND_DATA:
 798        if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
 799            phb_error(phb, "Invalid indirect address");
 800            break;
 801        }
 802        size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
 803        offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
 804        pnv_phb4_reg_write(phb, offset, val, size);
 805        if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
 806            offset += size;
 807            offset &= 0x3fff;
 808            phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
 809                                                 phb->scom_hv_ind_addr_reg,
 810                                                 offset);
 811        }
 812        break;
 813    case PHB_SCOM_ETU_LEM_FIR:
 814    case PHB_SCOM_ETU_LEM_FIR_AND:
 815    case PHB_SCOM_ETU_LEM_FIR_OR:
 816    case PHB_SCOM_ETU_LEM_FIR_MSK:
 817    case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
 818    case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
 819    case PHB_SCOM_ETU_LEM_ACT0:
 820    case PHB_SCOM_ETU_LEM_ACT1:
 821    case PHB_SCOM_ETU_LEM_WOF:
 822        offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
 823        pnv_phb4_reg_write(phb, offset, val, size);
 824        break;
 825    case PHB_SCOM_ETU_PMON_CONFIG:
 826    case PHB_SCOM_ETU_PMON_CTR0:
 827    case PHB_SCOM_ETU_PMON_CTR1:
 828    case PHB_SCOM_ETU_PMON_CTR2:
 829    case PHB_SCOM_ETU_PMON_CTR3:
 830        offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
 831        pnv_phb4_reg_write(phb, offset, val, size);
 832        break;
 833    default:
 834        qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
 835                      "=%"PRIx64"\n", addr, val);
 836    }
 837}
 838
 839const MemoryRegionOps pnv_phb4_xscom_ops = {
 840    .read = pnv_phb4_xscom_read,
 841    .write = pnv_phb4_xscom_write,
 842    .valid.min_access_size = 8,
 843    .valid.max_access_size = 8,
 844    .impl.min_access_size = 8,
 845    .impl.max_access_size = 8,
 846    .endianness = DEVICE_BIG_ENDIAN,
 847};
 848
 849static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
 850{
 851    /* Check that out properly ... */
 852    return irq_num & 3;
 853}
 854
 855static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
 856{
 857    PnvPHB4 *phb = PNV_PHB4(opaque);
 858    uint32_t lsi_base;
 859
 860    /* LSI only ... */
 861    if (irq_num > 3) {
 862        phb_error(phb, "IRQ %x is not an LSI", irq_num);
 863    }
 864    lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
 865    lsi_base <<= 3;
 866    qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
 867}
 868
 869static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
 870{
 871    uint64_t rtt, addr;
 872    uint16_t rte;
 873    int bus_num;
 874    int num_PEs;
 875
 876    /* Already resolved ? */
 877    if (ds->pe_num != PHB_INVALID_PE) {
 878        return true;
 879    }
 880
 881    /* We need to lookup the RTT */
 882    rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
 883    if (!(rtt & PHB_RTT_BAR_ENABLE)) {
 884        phb_error(ds->phb, "DMA with RTT BAR disabled !");
 885        /* Set error bits ? fence ? ... */
 886        return false;
 887    }
 888
 889    /* Read RTE */
 890    bus_num = pci_bus_num(ds->bus);
 891    addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
 892    addr += 2 * ((bus_num << 8) | ds->devfn);
 893    if (dma_memory_read(&address_space_memory, addr, &rte, sizeof(rte))) {
 894        phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
 895        /* Set error bits ? fence ? ... */
 896        return false;
 897    }
 898    rte = be16_to_cpu(rte);
 899
 900    /* Fail upon reading of invalid PE# */
 901    num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
 902    if (rte >= num_PEs) {
 903        phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
 904        rte &= num_PEs - 1;
 905    }
 906    ds->pe_num = rte;
 907    return true;
 908}
 909
 910static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
 911                                   bool is_write, uint64_t tve,
 912                                   IOMMUTLBEntry *tlb)
 913{
 914    uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
 915    int32_t  lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
 916    uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
 917    uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
 918
 919    /* Invalid levels */
 920    if (lev > 4) {
 921        phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
 922        return;
 923    }
 924
 925    /* Invalid entry */
 926    if (tts == 0) {
 927        phb_error(ds->phb, "Access to invalid TVE");
 928        return;
 929    }
 930
 931    /* IO Page Size of 0 means untranslated, else use TCEs */
 932    if (tps == 0) {
 933        /* TODO: Handle boundaries */
 934
 935        /* Use 4k pages like q35 ... for now */
 936        tlb->iova = addr & 0xfffffffffffff000ull;
 937        tlb->translated_addr = addr & 0x0003fffffffff000ull;
 938        tlb->addr_mask = 0xfffull;
 939        tlb->perm = IOMMU_RW;
 940    } else {
 941        uint32_t tce_shift, tbl_shift, sh;
 942        uint64_t base, taddr, tce, tce_mask;
 943
 944        /* Address bits per bottom level TCE entry */
 945        tce_shift = tps + 11;
 946
 947        /* Address bits per table level */
 948        tbl_shift = tts + 8;
 949
 950        /* Top level table base address */
 951        base = tta << 12;
 952
 953        /* Total shift to first level */
 954        sh = tbl_shift * lev + tce_shift;
 955
 956        /* TODO: Limit to support IO page sizes */
 957
 958        /* TODO: Multi-level untested */
 959        while ((lev--) >= 0) {
 960            /* Grab the TCE address */
 961            taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
 962            if (dma_memory_read(&address_space_memory, taddr, &tce,
 963                                sizeof(tce))) {
 964                phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
 965                return;
 966            }
 967            tce = be64_to_cpu(tce);
 968
 969            /* Check permission for indirect TCE */
 970            if ((lev >= 0) && !(tce & 3)) {
 971                phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
 972                phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
 973                           is_write ? 'W' : 'R', tve);
 974                phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
 975                           tta, lev, tts, tps);
 976                return;
 977            }
 978            sh -= tbl_shift;
 979            base = tce & ~0xfffull;
 980        }
 981
 982        /* We exit the loop with TCE being the final TCE */
 983        tce_mask = ~((1ull << tce_shift) - 1);
 984        tlb->iova = addr & tce_mask;
 985        tlb->translated_addr = tce & tce_mask;
 986        tlb->addr_mask = ~tce_mask;
 987        tlb->perm = tce & 3;
 988        if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
 989            phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
 990            phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
 991                       is_write ? 'W' : 'R', tve);
 992            phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
 993                       tta, lev, tts, tps);
 994        }
 995    }
 996}
 997
 998static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
 999                                              hwaddr addr,
1000                                              IOMMUAccessFlags flag,
1001                                              int iommu_idx)
1002{
1003    PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
1004    int tve_sel;
1005    uint64_t tve, cfg;
1006    IOMMUTLBEntry ret = {
1007        .target_as = &address_space_memory,
1008        .iova = addr,
1009        .translated_addr = 0,
1010        .addr_mask = ~(hwaddr)0,
1011        .perm = IOMMU_NONE,
1012    };
1013
1014    /* Resolve PE# */
1015    if (!pnv_phb4_resolve_pe(ds)) {
1016        phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1017                   ds->bus, pci_bus_num(ds->bus), ds->devfn);
1018        return ret;
1019    }
1020
1021    /* Check top bits */
1022    switch (addr >> 60) {
1023    case 00:
1024        /* DMA or 32-bit MSI ? */
1025        cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
1026        if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
1027            ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
1028            phb_error(ds->phb, "xlate on 32-bit MSI region");
1029            return ret;
1030        }
1031        /* Choose TVE XXX Use PHB4 Control Register */
1032        tve_sel = (addr >> 59) & 1;
1033        tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
1034        pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
1035        break;
1036    case 01:
1037        phb_error(ds->phb, "xlate on 64-bit MSI region");
1038        break;
1039    default:
1040        phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
1041    }
1042    return ret;
1043}
1044
1045#define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
1046DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
1047                         TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
1048
1049static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
1050                                                    void *data)
1051{
1052    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1053
1054    imrc->translate = pnv_phb4_translate_iommu;
1055}
1056
1057static const TypeInfo pnv_phb4_iommu_memory_region_info = {
1058    .parent = TYPE_IOMMU_MEMORY_REGION,
1059    .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1060    .class_init = pnv_phb4_iommu_memory_region_class_init,
1061};
1062
1063/*
1064 * MSI/MSIX memory region implementation.
1065 * The handler handles both MSI and MSIX.
1066 */
1067static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
1068                               uint64_t data, unsigned size)
1069{
1070    PnvPhb4DMASpace *ds = opaque;
1071    PnvPHB4 *phb = ds->phb;
1072
1073    uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
1074
1075    /* Resolve PE# */
1076    if (!pnv_phb4_resolve_pe(ds)) {
1077        phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1078                   ds->bus, pci_bus_num(ds->bus), ds->devfn);
1079        return;
1080    }
1081
1082    /* TODO: Check it doesn't collide with LSIs */
1083    if (src >= phb->xsrc.nr_irqs) {
1084        phb_error(phb, "MSI %d out of bounds", src);
1085        return;
1086    }
1087
1088    /* TODO: check PE/MSI assignement */
1089
1090    qemu_irq_pulse(phb->qirqs[src]);
1091}
1092
1093/* There is no .read as the read result is undefined by PCI spec */
1094static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
1095{
1096    PnvPhb4DMASpace *ds = opaque;
1097
1098    phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
1099    return -1;
1100}
1101
1102static const MemoryRegionOps pnv_phb4_msi_ops = {
1103    .read = pnv_phb4_msi_read,
1104    .write = pnv_phb4_msi_write,
1105    .endianness = DEVICE_LITTLE_ENDIAN
1106};
1107
1108static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
1109{
1110    PnvPhb4DMASpace *ds;
1111
1112    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
1113        if (ds->bus == bus && ds->devfn == devfn) {
1114            break;
1115        }
1116    }
1117    return ds;
1118}
1119
1120static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1121{
1122    PnvPHB4 *phb = opaque;
1123    PnvPhb4DMASpace *ds;
1124    char name[32];
1125
1126    ds = pnv_phb4_dma_find(phb, bus, devfn);
1127
1128    if (ds == NULL) {
1129        ds = g_malloc0(sizeof(PnvPhb4DMASpace));
1130        ds->bus = bus;
1131        ds->devfn = devfn;
1132        ds->pe_num = PHB_INVALID_PE;
1133        ds->phb = phb;
1134        snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
1135                 phb->phb_id);
1136        memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
1137                                 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1138                                 OBJECT(phb), name, UINT64_MAX);
1139        address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
1140                           name);
1141        memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1142                              ds, "msi32", 0x10000);
1143        memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1144                              ds, "msi64", 0x100000);
1145        pnv_phb4_update_msi_regions(ds);
1146
1147        QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
1148    }
1149    return &ds->dma_as;
1150}
1151
1152static void pnv_phb4_instance_init(Object *obj)
1153{
1154    PnvPHB4 *phb = PNV_PHB4(obj);
1155
1156    QLIST_INIT(&phb->dma_spaces);
1157
1158    /* XIVE interrupt source object */
1159    object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
1160
1161    /* Root Port */
1162    object_initialize_child(obj, "root", &phb->root, TYPE_PNV_PHB4_ROOT_PORT);
1163
1164    qdev_prop_set_int32(DEVICE(&phb->root), "addr", PCI_DEVFN(0, 0));
1165    qdev_prop_set_bit(DEVICE(&phb->root), "multifunction", false);
1166}
1167
1168static void pnv_phb4_realize(DeviceState *dev, Error **errp)
1169{
1170    PnvPHB4 *phb = PNV_PHB4(dev);
1171    PCIHostState *pci = PCI_HOST_BRIDGE(dev);
1172    XiveSource *xsrc = &phb->xsrc;
1173    int nr_irqs;
1174    char name[32];
1175
1176    assert(phb->stack);
1177
1178    /* Set the "big_phb" flag */
1179    phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
1180
1181    /* Controller Registers */
1182    snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
1183             phb->phb_id);
1184    memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
1185                          name, 0x2000);
1186
1187    /*
1188     * PHB4 doesn't support IO space. However, qemu gets very upset if
1189     * we don't have an IO region to anchor IO BARs onto so we just
1190     * initialize one which we never hook up to anything
1191     */
1192
1193    snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
1194             phb->phb_id);
1195    memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
1196
1197    snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
1198             phb->phb_id);
1199    memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
1200                       PCI_MMIO_TOTAL_SIZE);
1201
1202    pci->bus = pci_register_root_bus(dev, "root-bus",
1203                                     pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
1204                                     &phb->pci_mmio, &phb->pci_io,
1205                                     0, 4, TYPE_PNV_PHB4_ROOT_BUS);
1206    pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);
1207
1208    /* Add a single Root port */
1209    qdev_prop_set_uint8(DEVICE(&phb->root), "chassis", phb->chip_id);
1210    qdev_prop_set_uint16(DEVICE(&phb->root), "slot", phb->phb_id);
1211    qdev_realize(DEVICE(&phb->root), BUS(pci->bus), &error_fatal);
1212
1213    /* Setup XIVE Source */
1214    if (phb->big_phb) {
1215        nr_irqs = PNV_PHB4_MAX_INTs;
1216    } else {
1217        nr_irqs = PNV_PHB4_MAX_INTs >> 1;
1218    }
1219    object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
1220    object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
1221    if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1222        return;
1223    }
1224
1225    pnv_phb4_update_xsrc(phb);
1226
1227    phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
1228}
1229
1230static void pnv_phb4_reset(DeviceState *dev)
1231{
1232    PnvPHB4 *phb = PNV_PHB4(dev);
1233    PCIDevice *root_dev = PCI_DEVICE(&phb->root);
1234
1235    /*
1236     * Configure PCI device id at reset using a property.
1237     */
1238    pci_config_set_vendor_id(root_dev->config, PCI_VENDOR_ID_IBM);
1239    pci_config_set_device_id(root_dev->config, phb->device_id);
1240}
1241
1242static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge,
1243                                          PCIBus *rootbus)
1244{
1245    PnvPHB4 *phb = PNV_PHB4(host_bridge);
1246
1247    snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x",
1248             phb->chip_id, phb->phb_id);
1249    return phb->bus_path;
1250}
1251
1252static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno)
1253{
1254    PnvPHB4 *phb = PNV_PHB4(xf);
1255    uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1256    uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1257    uint64_t data = XIVE_TRIGGER_PQ | offset | srcno;
1258    MemTxResult result;
1259
1260    address_space_stq_be(&address_space_memory, notif_port, data,
1261                         MEMTXATTRS_UNSPECIFIED, &result);
1262    if (result != MEMTX_OK) {
1263        phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
1264        return;
1265    }
1266}
1267
1268static Property pnv_phb4_properties[] = {
1269        DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
1270        DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
1271        DEFINE_PROP_UINT64("version", PnvPHB4, version, 0),
1272        DEFINE_PROP_UINT16("device-id", PnvPHB4, device_id, 0),
1273        DEFINE_PROP_LINK("stack", PnvPHB4, stack, TYPE_PNV_PHB4_PEC_STACK,
1274                         PnvPhb4PecStack *),
1275        DEFINE_PROP_END_OF_LIST(),
1276};
1277
1278static void pnv_phb4_class_init(ObjectClass *klass, void *data)
1279{
1280    PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1281    DeviceClass *dc = DEVICE_CLASS(klass);
1282    XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
1283
1284    hc->root_bus_path   = pnv_phb4_root_bus_path;
1285    dc->realize         = pnv_phb4_realize;
1286    device_class_set_props(dc, pnv_phb4_properties);
1287    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1288    dc->user_creatable  = false;
1289    dc->reset           = pnv_phb4_reset;
1290
1291    xfc->notify         = pnv_phb4_xive_notify;
1292}
1293
1294static const TypeInfo pnv_phb4_type_info = {
1295    .name          = TYPE_PNV_PHB4,
1296    .parent        = TYPE_PCIE_HOST_BRIDGE,
1297    .instance_init = pnv_phb4_instance_init,
1298    .instance_size = sizeof(PnvPHB4),
1299    .class_init    = pnv_phb4_class_init,
1300    .interfaces = (InterfaceInfo[]) {
1301            { TYPE_XIVE_NOTIFIER },
1302            { },
1303    }
1304};
1305
1306static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
1307{
1308    BusClass *k = BUS_CLASS(klass);
1309
1310    /*
1311     * PHB4 has only a single root complex. Enforce the limit on the
1312     * parent bus
1313     */
1314    k->max_dev = 1;
1315}
1316
1317static const TypeInfo pnv_phb4_root_bus_info = {
1318    .name = TYPE_PNV_PHB4_ROOT_BUS,
1319    .parent = TYPE_PCIE_BUS,
1320    .class_init = pnv_phb4_root_bus_class_init,
1321    .interfaces = (InterfaceInfo[]) {
1322        { INTERFACE_PCIE_DEVICE },
1323        { }
1324    },
1325};
1326
1327static void pnv_phb4_root_port_reset(DeviceState *dev)
1328{
1329    PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1330    PCIDevice *d = PCI_DEVICE(dev);
1331    uint8_t *conf = d->config;
1332
1333    rpc->parent_reset(dev);
1334
1335    pci_byte_test_and_set_mask(conf + PCI_IO_BASE,
1336                               PCI_IO_RANGE_MASK & 0xff);
1337    pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT,
1338                                 PCI_IO_RANGE_MASK & 0xff);
1339    pci_set_word(conf + PCI_MEMORY_BASE, 0);
1340    pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0);
1341    pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1);
1342    pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1);
1343    pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */
1344    pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff);
1345}
1346
1347static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp)
1348{
1349    PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1350    Error *local_err = NULL;
1351
1352    rpc->parent_realize(dev, &local_err);
1353    if (local_err) {
1354        error_propagate(errp, local_err);
1355        return;
1356    }
1357}
1358
1359static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data)
1360{
1361    DeviceClass *dc = DEVICE_CLASS(klass);
1362    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1363    PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass);
1364
1365    dc->desc     = "IBM PHB4 PCIE Root Port";
1366    dc->user_creatable = false;
1367
1368    device_class_set_parent_realize(dc, pnv_phb4_root_port_realize,
1369                                    &rpc->parent_realize);
1370    device_class_set_parent_reset(dc, pnv_phb4_root_port_reset,
1371                                  &rpc->parent_reset);
1372
1373    k->vendor_id = PCI_VENDOR_ID_IBM;
1374    k->device_id = PNV_PHB4_DEVICE_ID;
1375    k->revision  = 0;
1376
1377    rpc->exp_offset = 0x48;
1378    rpc->aer_offset = 0x100;
1379
1380    dc->reset = &pnv_phb4_root_port_reset;
1381}
1382
1383static const TypeInfo pnv_phb4_root_port_info = {
1384    .name          = TYPE_PNV_PHB4_ROOT_PORT,
1385    .parent        = TYPE_PCIE_ROOT_PORT,
1386    .instance_size = sizeof(PnvPHB4RootPort),
1387    .class_init    = pnv_phb4_root_port_class_init,
1388};
1389
1390static void pnv_phb4_register_types(void)
1391{
1392    type_register_static(&pnv_phb4_root_bus_info);
1393    type_register_static(&pnv_phb4_root_port_info);
1394    type_register_static(&pnv_phb4_type_info);
1395    type_register_static(&pnv_phb4_iommu_memory_region_info);
1396}
1397
1398type_init(pnv_phb4_register_types);
1399
1400void pnv_phb4_update_regions(PnvPhb4PecStack *stack)
1401{
1402    PnvPHB4 *phb = &stack->phb;
1403
1404    /* Unmap first always */
1405    if (memory_region_is_mapped(&phb->mr_regs)) {
1406        memory_region_del_subregion(&stack->phbbar, &phb->mr_regs);
1407    }
1408    if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
1409        memory_region_del_subregion(&stack->intbar, &phb->xsrc.esb_mmio);
1410    }
1411
1412    /* Map registers if enabled */
1413    if (memory_region_is_mapped(&stack->phbbar)) {
1414        memory_region_add_subregion(&stack->phbbar, 0, &phb->mr_regs);
1415    }
1416
1417    /* Map ESB if enabled */
1418    if (memory_region_is_mapped(&stack->intbar)) {
1419        memory_region_add_subregion(&stack->intbar, 0, &phb->xsrc.esb_mmio);
1420    }
1421
1422    /* Check/update m32 */
1423    pnv_phb4_check_all_mbt(phb);
1424}
1425
1426void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
1427{
1428    uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1429
1430    monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x\n",
1431                   phb->chip_id, phb->phb_id,
1432                   offset, offset + phb->xsrc.nr_irqs - 1);
1433    xive_source_pic_print_info(&phb->xsrc, 0, mon);
1434}
1435